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Abstract In this paper, we settle a problem of Frankl and Filredi, which is a special case of a 
problem of Erdt~s, determining the maximum number of hyperedges in a 3-uniform hypergraph in 
which no two pairs of distinct hyperedges have the same union. The extremal case corresponds to 
the existence of weakly union-free twofold triple systems, which is settled here with six definite 
and four possible exceptions. An application to group testing is also given. 
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1. In t roduct ion  

A group divisible design (GDD) is a triple (X, G, B) which satisfies the following prop- 
erties: 

(1) G is a partition of  a set x (of points) into subsets called groups, 
(2) B is a set of  subsets of  X (called blocks) such that a group and a block contain at 

most one common point, 
(3) every pair of  points from distinct groups occurs in exactly ~, blocks. 

The parameter ~, is the index of the GDD and IX[ is its order. The group-type (type) 
of the GDD is the multiset [IG] : G ~ G]. We usually use an "exponential" notation 
to describe group-type: a group-type g t u~g2 u2... gs us denotes ui groups of  size gi for 
1 < i < s. Groups of  size 0 are permitted as a notational convenience. The type is 
uniform when all groups have the same size, in which case the type is of  the form gU. 
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If K is a set of positive integers, each of which is not less than 2, then we say that 
a GDD (X, G, B) is a K-GDD if [BI ~ K for every block B in B. When K = {k}, we 
simply write k for K. 

A 3-GDD (X, G, B) is a weakly union-free GDD (wufGDD) if 

(1) whenever { {a, b,x}, {a, b, y} ) C_ B, the points x and y are in different groups, and 
(2) whenever four distinct blocks B1, B2,B3,B4 are chosen from B, it does not happen 

that Bl U B2 = B3 U B4. 

The second condition can be made more explicit: there cannot exist four blocks of any 
of the following four forms: 

C l :  {{a,b,c),{a,b,d),(a,c,d},{b,c,d}}, 
C2: {{x,a,b},{x,a,c},{x,b,d},{x,c,d}}, 
C3: {{x,a,b},{x,a,c},{x,b,d},{a,c,d}}, 
c a :  ({x,a,b},{x,c, dl,{y,a,b},(y,c,d}}. 

These forms correspond, respectively, to the hypergraphs depicted below. 

CI C2 C3 C4 

Our interest is in the construction of wuf 3-GDDs, and in particular, those of type 
I n and index two. A uniform GDD with group size I is a balanced incomplete block 
design; those with k = 3 and ~. = 2 are called twofold triple systems of order n, or 
TTS(n). Frankl and Fiiredi [11] began the study of wuf TTS(n) in the study of an 
old problem of Erd/Ss [10]. In 1938, Erd~Ss [9] asked what the maximum number of 
edges a graph can have and have no 3-cycle, no 4-cycle, and no repeated edges. In 
1977, he [10] asked the more general question: How many hyperedges can a k-uniform 
hypergraph have, so that whenever four hyperedges A, B, C, D satisfy A t_JB = Ct2 D, we 
find {A,B} = {C,D}? Such a family is union-free. Frankl and FiJredi [11] settled this 
question when k = 3, showing that a class of designs, the Steiner triple systems, realize 
the maximum. 

They also addressed the related question of enforcing the union-free condition only 
for sets of four distinct blocks A,B,C,D. This gives the notion of weakly union-free, 
already defined. Frankl and Fiiredi [11] established an important bound and showed 
that it is realized infinitely often: 

Theorem 1.1.[11] A weakly union-free 3-uniform hypergraph on n vertices has at most 
[n(n - 1)/3J hyperedges. Equality occurs when all, or all but one, pairs of vertices 
occur in two hyperedges each. 

They established that this bound is met whenever n = 1 (mod 6), and either n is 
a prime power at least 13 or n is sufficiently large. In this paper, we establish that 
equality is met for all n -= 0, 1 (mod 3), with a small number of definite and a small 
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(mod 3). While we have also found small designs sufficient to obtain a closure in this 
class, we concentrate on the twofold triple system case here. 

The difficulty of this problem appears initially to be that, while catalogues of twofold 
triple systems for small orders are available (see [5], for example), no TTS(n) is weakly 
union-free when n E {3,4,6,7,9, 10}. Moreover, when a wuf 3-GDD of type T can be 
decomposed into two 3-GDDs of index one and type T, condition (1) together with the 
exclusion of C4 ensure that these two index one 3-GDDs are "orthogonar' (see [6]). 
The existence of orthogonal uniform 3-GDDs with group size I, the so-called orthog- 
onal Steiner triple systems, remained open for thirty years until its recent solution [7]. 
The exclusion of further configurations adds to the difficulty of the problem for wuf 
TTS. 

2. Direct Constructions 

In this section, We develop a direct construction technique that is used to construct both 
wuf TTS(n) and, more generally, wuf 3-GDDs of index two. The general framework 
follows. We aim to construct a 3-GDD of index two on point set Zg, tO { '~t , . . .  ,~176 
whose type is gUkZ. Naturally, we chose Zg,, for a portion of the point set to suggest 
the cyclic action of the cyclic group on these points, Indeed our goal is to construct 
3-GDDs that have Zgu as an automorphism group. 

Let X = ZgutA {oot,. . . ,~k} and c~ a permutation mapping i ~-~ i +  1 modgu  for 
i E Zg,,, and fixing {o,,t,... ,,,ok}. Let B be the blocks of a 3-GDD of type gUkl on X 
that admits (~ as an automorphism. The action of ~ partitions B into orbits of size gu 
or, when gu -- 0 (mod 3), possibly gu/3.  A set of representatives of these orbits forms 
a set o f  starter blocks for the 3-GDD. Starter blocks of the form {0,a,b} C Zgu may 
generate orbits of length gu under c,  in which case the starter block is said to cover 
the differences +a,  +b, + ( b -  a) with arithmetic in Z~,,, (if repetitions occur, such 
differences are covered the number of times that they occur). When gu = 0 (mod 3), a 
starter block of the form {O,gu/3 ,2(gu/3)}  generates only gu/3  distinct blocks (a short 
orbit), and is therefore said to cover the differences -4-gu/3 once each. Finally, a starter 
block may have the form {ooi, 0, di}. Again, gu blocks appear in the orbit generated, but 
here only the differences +di are covered once each. 

A set D is a set of starter blocks for a 3-GDD of index two and type gUkl (under the 
action of ~) if 

(1) for 1 < i < k, there is exactly one starter block containing ooi, and 

(2) each d E Zg, is covered twice as a difference, unless d = 0 (mod u), in which case 
the difference is not covered. 

The reader can quickly verify that these conditions on starter blocks are equivalent to 
the existence of a 3-GDD of index two and type gUkl admitting a. 

In order to be a wuf 3-GDD, further conditions are imposed. Suppose D is the set 
of starter blocks for a 3-GDD of index two and type g"k t . Partition D into the blocks 
A which contain one of the infinite points, and the blocks B which do not. Evidently, 
A contains exactly k blocks, one for each of the infinite points. In addition, in order to 
meet the first wuf condition, we have: 



218 Y.M. Chee, C.J. Colboum, and A.C.H. Ling 

(1) If  {~i,0,a},  (~j,O,b) E A, then a ~ 4-b (mod gu). 

Call a difference external if it is covered once in A and once in B, and internal if it is 
covered twice in B. For each external difference d, define tx(d) = min(+2d).  For each 
internal difference d, when blocks {0,d,x} and {0,d,y} appear in the orbits of  blocks 
of B, define t~(d) = min(4- (x -y) ) .  

First, we examine constraints resulting from prohibiting the appearance of one of 
the infinite points in one of the configurations C1, C2, C3, or C4. In order to ensure that 
no infinite points occur in a C1 configuration, we require that 

(2) If  gu = 0 (mod 3) and gu/3 is an external difference, then B does not contain 
{O,gu/3,2(gu/3)}. 

In order to ensure that no infinite points occur in a C2 configuration, we require that 

(3) If  d is an external difference, then 4d ~ 0 (mod gu). 

In order to ensure that no infinite points occur in a C3 configuration, we require that 

(4) I f d  is an external difference and {0,d,x} is a block in an orbit of a starter block of B, 
then 2X ~ d (mod gu) and none of {0, d, 3d), (0, 2d, 3d), {0, 2d, d + x), (o, 2d,x}, 
or {O,d, gu/2}, when gu = 0 (mod 2), appear in the orbits of the starter blocks in 
B. 

In order to ensure that no infinite points occur in a C4 configuration, we require that 

(5) I f d  and d ~ are external differences, or i fd  is external and d ~ is internal, then t~(d) = 
~(d')  only i fd  = d ~. 

Once conditions (1) - (5) are met, any violation of the wuf conditions occurs entirely 
among the blocks on Zgu. 

In order to check that none of the conditions are violated on the blocks involving no 
infinite points, we first observe that the first wuf condition is equivalent to: 

(6) If  d is an internal difference, then tx(d) ~ 0 (mod u). 

To check that the four configurations are missed, we first form the restricted neigh- 
borhood of the point 0, defined by No = {{x,y} : {0,x,y} is in the orbit of a block of 
B}. This is a graph on the vertex set consisting of Zgu, except integers congruent to 0 
(mod u). In this graph, every vertex has degree one or two, and so No consists of  disjoint 
paths and cycles. 

To avoid C1, we require: 

(7) If  (a,b,c) forms a 3-cycle in No, then {a,b,c} does not appear in the orbit of any 
block in B. 

To avoid C2, we require: 

(8) No does not contain a 4-cycle. 

To avoid C3, we require: 
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(9) For every 3-edge path (a,b,c,d) in No, no block of the form {a,c,d} or {a,b,d} 
appears in the orbit of a block of B. 

To avoid a C4 configuration, we require that 

(10) Ifd and d' are internal differences, then cx(d) = cx(d) only ifd = d ~. 

This is apparently an extensive list of conditions, but each condition is easily checked. 
In fact, Frankl and Fiiredi [11] establish the existence of some GDDs of index 2 and type 
1 q when q = 1 (mod 6). They show that if co is a primitive element of the finite field 
Fq and q = 1 (mod 6), q # 7, then {{0,o~i,(o 9'+i +0.)  i} " 0 __~ i < 2t} is a set of starter 
blocks for a wufTTS(q). Hence, we have: 

Lenuna 2.1.[11] A 3-GDD of index two and type 1 q exists whenever q -- 1 (mod 6) is 
a prime power, except when q = 7. 

It is essential that ingredients for other congruence classes modulo 6 be found as 
well. We employed a combination of backtracking and hillclimbing techniques to pro- 
duce a large number of wuf GDDs. 

Numerous 3-GDDs of type lUx I over Zu are given in order to establish the state- 
ment: 

Lemma 2.2. A wuf3-GDD oftype I n existsforn = 21, 24, 27, 28, 30, 33, 34, 36, 39, 
40, 42, 45, and 46. 

Proof. For each pair {a,b} presented in the table to follow, {0,a,b} is a starter block. 
In addition, ifu = 0 (mod 3) andx = I (mod 3), then {O,u/3,2u/3} is a starter block. 
Finally, each difference covered only once in the starter blocks so produced is also in a 
starter block with an infinite point. 

GDD Internal Starter Blocks 

12011 {1,7} 
12311 {1,6} 
12611 {1,6} 
12801 {1,2} 
12911 {1,7} 
13211 {1,3} 
13311 {1,4} 
1351 t 

13811 

14o01 

14211 

14411 

14511 

{1,9} {2,4} {3,8} {3,13} {4,9} 
{2,13} {2,16} {3,12} {3,18} {4,8} {6,16} 
{2,12} {2,23} {3,19} {4,13} {4,18} {6,17} {7,18} 
{2,13} {3,7} {3,12} {4,12} {5,11} {5,19} {6,13} {8,18} 
{2,15} {2,18} {3,8} {3,12} {4,22} {4,23} {5,19} {8,17} 
{1,8} {3,10} {4,19} {4,20} {5,18} {5,26} {6,23} {8,18} {9,21} 
{2,8} {2,21} {3,16} {4,26} {5,15} {5,24} {6,24} {7,23} {8,21} 

{1,4} {2,6} {2,19} {3,20} {5,12} {5,29} {7,18} {8,16} {9,22} {9,23} 
{I0,20} 
{1,4} {2,7} {2,17} {3,15} {4,18} {5,13} {6,12} {7,27} {8,22} {9,22} 
{9,28} { 10,27} 
{1,2} {2,5} {3,7} {4,27} {5,15} {6,24} {7,29} {8,21} {8,28} {9,21} 
{9,26} { 11,26} 
{1,4} {2,6} {2,14} {3,30} {5,24} {5,31} {6,21} {7,18} {7,32} {8,20} 
{8,25} {9,28} {10,28} 
{1,2} {2,5} {3,7} {5,13} {6,20} {6,33} {7,23} {8,24} {9,26} {9,19} 
{10,34} {I1,31} {12,30} {13,28} 
{1,4} {2,6} {2,7} {3,29} {5,35} {6,34} {7,25} {8,22} {8,29} {9,20} 
{9,31} {10,27} {12,24} {13,26} 
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Lemma 2.3. A w u f 3 - G D D o f t y p e  ln e x ~ g f o r n  = 48 ,51 ,52 ,54 ,55 ,57 ,58 ,60 ,63 ,  
64, 66 ,69 ,70 ,72 ,75 ,  76,78,81,  82 ,84 ,85 ,87 ,88 ,90 ,91 ,  93,94, 96,99,100,  102, 
105 ,108 ,111 ,112 ,114 ,115 ,117 ,118 ,120 ,123 ,124 ,126 ,129 ,130 ,132 ,133 ,135 ,  
136, 138, 141, 142, 144, 145, 148, 150, 154, 156, 159, 160, 161, 165,166, 171, 177, 
178,184,195,201,207,213,219, and 243. 

Proof. Constructions are av~lablefromthe authors. | 

The remaining small values do not appear to be able to be handled by this general 
approach. However, we have succeeded in one more case. 

Lernma 2.4. A wuf  3-GDD o f  type 116 exists. 

Proof. Let X = Zs x {0, 1}. For succinctness, we write (x,i) E X as xi. Let o : X -~ X 
be the permutation such that o :xi ~-+ (x+ 1 (mod 8))i. Developing the following set of 
starter blocks by o gives a wuf 3-GDD of type 116 on X: 

{00, 10,31} {0o,40,01} {00,20,50} {0o,20,11} {3o,01,1t} 
{0o, 11,31} {0o, 10,51} {01,21,51} {0o,21,61} {00,01,71}. | 

3. Recursive Constructions 

We employ two well-known constructions. 

Theorem 3.1.[15] Let (X, G, B) be a GDD (the master GDD) with groups G l, G2 . . . GI. 
Suppose there exists a function w : X -~ Z+U {0} (a weight function) which has the 
property that, f o r  each block B = {x l ,x2 , . . .  ,x~} E B, there exists a K-GDD o f  type 
[w(xi), w(x2). . . ,  w(xk)] (such a GDD is an "ingredient" GDD). Then there exists a 
K-GDD of  type 

We leave as an easy exercise that when all oftbe ingredient GDDs are wuf, so is the 
GDD constructed. In general, our desire is to produce GDDs with group size 1, so we 
need to fill in the holes in some way. 

Theorem 3.2.[12] I f  there exists a wuf  GDD o f  type gig2. . .gn,  and for  2 < i < n, 
a w u f G D D  of  type lgih i exists, then there exists a wu fGDD o f  type I I;}'--2 g~ (gl + h)I. 

In Theorem 3.2, both gl = 0 and h = 0 correspond to useful special cases. Filling 
in holes preserves the wuf property primarily as a consequence of the first requirement, 
since none of the forbidden configurations can have both a block from the wuf GDD of 
type glg2. . .gn  and one from a wuf GDD of type l~ih i. Normally, we do not comment 
on applications of Theorem 3.2, leaving this to the diligent reader. Typically, Theorem 
3.1 is applied using suitable ingredients, and Theorem 3.2 is then applied to extract 
useful consequences for group size I. 

The master designs used in Theorem 3. I all arise from the same source. A transver- 
sal design TD(k,n)  is a k-GDD of type n k. There is an extensive literature on the 
existence of transversal designs [ 1 ], but for our purpose here, one result suffices: 
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Lemma 3.3.[I] l f  q is a prime power and 1 < k < q+ 1, then a TD(k,q) exists. 

Now we give some applications of Theorem 3.1. 

Lemma 3.4. I f  a T D( 6,n) exists, then a wuf 3-GDD of type (3n)5(6n) l exists. More- 
over, there exist wuf TTS of orders 106, 147, 168, 189, and231. 

Proof A wuf 3-GDD of type 356 t exists with presentation {{ 1,12}, {2,9}). Use the 
TD(6,n) as a master design and the 3-GDD of type 356 t as an ingredient design in 
Theorem 3.1. Apply with n = 5,7,8,9, 11 and fill in holes using wuf 3-GDDs of types 
1 t511 and 13~ t when n = 5, and of types 13n and 16n for the remaining values of n. II 

Lemma 3.5. l f  a TD(7,n) exists, then a wuf3-GDD of type (2n) 7 exists. Hence, wuf 
TTS of orders 112, 183, and225 exist. 

Proof One wuf 3-GDD of type 27 has presentation {{1,4}, {1,6}, {2,6}, {2, 11}}; 
Theorem 3.1 gives the wuf 3-GDD of type (2n) 7. Applying with n = 8, 13, 16, and 
filling holes with wuf 3-GDDs of types 116, 12611, and 13211 gives the required conse- 
quences. II 

Lenmaa 3.6. If  a T D( 8,n) exists and 0 < x < n, then a wuf 3-GDD of type (3n)7(3n + 
6x) l exists. Hence, there exist wufTTS of  orders 174, 180, 186, 192, 198, 204, 210, 
216, 222, 228, and 187. 

Proof A wuf 3-GDD of type 38 = 373 ! exists over Z24 with presentation 

{{1,3}, {1,20}, {2, 12}, {3, 10}, {4, 11 }, {5, 18}, {6, 15}}. 

A wuf 3-GDD of type 3791 exists with presentation {{1,13}, {2,5}, {4, 10}}. Apply 
Theorem 3.1 using weight 3 in seven groups and weight 3 or 9 in the eighth, to produce 
a wuf 3-GDD of type (3n)7(3n + 6x) 1 . Apply with n = 7, 8 and fill in holes to obtain the 
stated consequences. For the final value, apply with n = 7 and employ a wuf 3-GDD of 
type 12171 to fill holes. It has presentation {{ 1,4}, { 1,6}, {2,9}, {2, 13}}. | 

Lemma 3.7. l f  a TD(14,q) exists and 0 < x < 6q satisfies x =_ 0 (mod 3), then a wuf 
3-GDD of type qL3xl exists. I f  in addition, a wuf3-GDD of type lqh I exists, so does a 
wufGDD of type 113q(x q- h) 1. 

Proof Use as ingredient wuf 3-GDDs the ones of type I1301 from Lemma 2.1, of 
type 11331 presented as {{1,4},{3,4},{2,8)}, and of type lt361 presented as 
{{1,4}, {2, 8}}. Give all points in thirteen groups of the ZD(14,q) weight one, and 
points in the final group weights 0, 3, or 6 so that the total weight in the final group is 
x. Theorem 3. I then gives a wuf 3-GDD of type q13xl. Filling in holes with a 3-GDD 
of type 1 qh ! (when one exists) gives a wuf GDD of type 1 !3q(x + h) I. | 

Corollary 3.8, A wuf TTS(n) exists whenever n = 169 or 190 < n < 304 and n =_ 1 
(mod 3). 

Proof If n < 247, write n = 13- 13 + x, then 0 < x < 6. t 3 and a wuf 3-GDD of type 1 x 
has been previously given. Apply Theorem 3.7 with a TD(14, 13). If instead n > 247, 
write n = 13.16 + x and proceed similarly with a TD(14, 16). | 
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Coro l la ry  3.9. A wufTTS(n) exists whenever n - 0 (mod 3) and234 < n < 327, except 
possibly when n = 243. 

Proof. Write n = 13.17 + 4 + x. A wuf 3-GDD of  type I x+4 has been presented, and 
a wuf  3-GDD of  type 11741 has presentation {{1,3}, {1,5}, {2, 12}, {3, 11}}. Apply 
Lemma  3.7 with h = 4. II 

L e m m a  3.10. l f  a TD(k,q) exists for k > 14, a wuf 3-GDD of type I q exists, and 0 < 
x < 6 ( k -  13) satisfiesx -- 0 (rood 3), then a wuf3-GDD of type 113(q- I)(X+ 13) 1 exists. 
Hence, wuf TTS of  orders 172 and 175 exist. 

Proof. Use the same ingredients as Lemma 3.7. Give all points in thirteen groups of  
the TD(14,q) weight one, and choose a single block B of length k. Assign all points in 
the remaining k -  13 levels weight 0 if they are not on B, and weight 0, 3, or 6 if they 
are on B so that the total weight of  such points is x. When q = 13 and x = 3,6, wuf 
3-GDDs of types 1156161 and 1156191 result. II 

T h e o r e m  3.11. Let n -- 0, 1 (mod 3). I fwu fTTS  exist for all orders n satisfying 24 < 
n < 304, then wufTTS existforall orders n >_ 24. 

Proof. Form two infinite sequences of  integers (ri : i > 0) and (si : i >_ 0) for which 

(1) r0 = 19 and so = 23; 

(2) ri+l >" ri and si+l > si; 
(3) 13ri+l + 2 1  < 19ri and 13si+t + 2 5  > 19si+ I; 
(4) ri - 1 (mod 3) and si - 2 (mod 3), and 
(5) TD( 14, ri) and TD( 14, Si) exist. 

A TD(14,n) exists whenever n is relatively prime to 2, 3, 5, 7, and I 1 (by MacNeish 's  
theorem; see [1]). Among the integers congruent to l modulo 3, considering the se- 
quence of  those relatively prime to 2, 3, 5, 7, and 1 l, we find a largest difference 
between consecutive values of  24. Choose the ri's to be the sequence of numbers con- 
gruent to 1 modulo 3 and relatively prime to 2, 3, 5, 7, and 11, beginning with I9, 
in addition to the number 25. It is now an easy verification that we have the specified 
properties. In the same way, the si's are the sequence of numbers congruent to 2 modulo 
3 and relatively prime to 2, 3, 5, 7, and 11, beginning with 23, in addition to the number 
32. 

To prove the theorem, we proceed inductively. In general, we suppose wuf  TTS 
have been produced for all orders less than n, where n =- 0, 1 (mod 3), and we establish 
that a wuf  TTS(n)  exists. By assumption, wuf  TTS(n)  exist whenever 24 < n < 304. 
Now, if n -- 1 (mod 3), find the largest i for which 13ri + 24 < n < 19ri, such a choice 
exists by the definition of  the sequence. Then a TD(14, ri) exists. Wuf 3-GDDs of  type 
1 r~ and I n-tari exist by the inductive hypothesis. Apply Theorem 3.7 to obtain the wuf  
TTS(n) .  In the same way, if n - 0 (mod 3), find the largest si for which 13si + 25 < 
n < 19s i+  1; such a choice exists by the definition of  the sequence. Then a TD(14,si) 
exists. Wuf 3-GDDs of type lSil I and 1 n-13si exist by the inductive hypothesis. Apply 
Theorem 3.7 to obtain the wuf  TTS(n).  II 
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Now we can prove the main theorem. 

Theorem 3.12. A wuf TTS(n) exists whenever n = 0, 1 (mod 3) except when 
n E {3,4,6,7,9, 10} and possibly when n E {12,15, 18,22}. 

Proof. The definite exceptions can all be verified by an exhaustive search. Now, if n is 
a prime or prime power, apply Lemma 2.1. Otherwise, apply Lemmas 2.2, 2.3, and 2.4 
to treat most small orders, and Lemmas 3.4, 3.5, 3.6, 3.10 and Corollaries 3.8 and 3.9 
to treat n = 21 and all remaining values satisfying 24 < n < 304. Then apply Theorem 
3.11 to complete the proof. I 

4. An Application to Group Testing 

Let I2 be a population of items, where each item is in exactly one of the states 0, 1. 
Furthermore, at most r items are in state 1. The problem is to determine the state of 
each item (or equivalently, to determine the set of all items in state I) through some tests. 
A test can be performed on any subset P _C ~,  called a pool. The feedback to a test on 
pool P, denoted f(P), is defined by f(P) = max{state of co}. This problem, known as 

a~P 
the group testing problem, has numerous real-world applications ranging from multiple 
access communications [2] to DNA clone isolation [4], and its study constitutes an 
important part of combinatorial search theory [8]. In some applications, it is desirable 
to have each item involved in exactly k pools. We call the resulting problem k-restricted. 
For simplicity, we denote the k-restricted group testing problem, with at most r items in 
state 1, by GTP~ (r). 

An algorithm for the group testing problem is said to be an a-approximation algo- 
rithm if it returns a set S of at most a r  items, so that S contains all items of ~ that are 
in state 1. 

There are two well-known classes of algorithms for solving group testing problems: 
sequential and nonadaptive algorithms. In a sequential algorithm, the decision of which 
pool to test next can depend on the feedback to previous tests. On the other hand, a non- 
adaptive algorithm must specify all the pools to be tested at the very beginning, without 
receiving any feedback. The complexity of a group testing algorithm is defined to be the 
number of tests conducted (hence, also the number of pools). The best sequential algo- 
rithm has a complexity no higher than any nonadaptive algorithm. However, the advent 
of massively parallel computers prompted Hwang and S6s [13] to make a case for the 
study of nonadaptive algorithms. Further motivation is given by Knill and Muthukr- 
ishnan [14] who observed that certain features in the screening of clone libraries with 
hybridization probes strongly encourage nonadaptive algorithms. 

Our focus in this section is on nonadaptive 3/2-approximation algorithms for 
GTP3(2). Any nonadaptive algorithm A for GTP3(2) corresponds to a 3-uniform hy- 
pergraph H(A) = (X, B) as follows: 

(I)  X = {xp : P is a pool of A}. 

(2) B = {B~ : Co E fa}. 

(3) xp E B~ if and only if co E P. 
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We call H(A) the hypergraph of A. We make the following useful observation con- 
cerning H(A).  Let O be the set of all state 1 items in I'Z. Then xt, E Uco~oBco if and 
only if P is a pool of A such that f(P) = 1. Hence, if we know that one of  O or O I 
contains the set of all state 1 items in I2, then a necessary and sufficient condition which 
allows us to distinguish them is 

U U B,,,. 
(oEO 0 . ~ O  ~ 

Lemma 4.1. If  A is a nonadaptive 3~2-approximation algorithm for GTP3 (2), then 
H(A) = (X, B) is weakly union-free. 

Proof Assume to the contrary that there are four distinct hyperedges Bo~i E B, 1 < i < 4, 
such that Boo, OBo~ = Bo~ UB~ .  If one of {(ol,o~} or {o)3,o)4} is the pair of  state 1 
items, then A cannot distinguish them. The best A can do is then to conclude that 
{(oi,o)2,o>3,o)4} contains all state 1 items of fL But this violates the condition that A 
is a 3/2-approximation algorithm. I 

Lem_ma 4.2. The complexity of any nonadaptive 3~2-approximation algorithm for 
GTP3 (2) with a population of n items is at least [ v ~  + (1/2)]. 

Lernma 4.3. Any wuf TTS(n) is the hypergraph of a nonadaptive 3/2-approximation 
algorithm for GTP3 (2). 

Proof Let A be the nonadaptive algorithm specified by a wufTTS(n), H(A) = (X, B). 
Let cot, ra~, o)3 E ~ be any three distinct items. Then Boo1 # B~  since H(A) contains no 
repeated hyperedges, and Bcol # B~  U B~  since the union of two distinct hyperedges 
contains at least four vertices. Hence, if 12 contains only one item in state I, then A can 
identify that item precisely. We are thus left with the task of considering the case with 
two items in state 1. 

It suffices to show that for any three distinct hyperedges Boh,Bo~,B~ E B such 
that Bco~ U B ~  = Bco~ U B ~  = F, we have {B,B'} C {Bo~,Bo~,Bo~} whenever BU 
B ~ = F. So let B U B ~ = F. Suppose that at least one of B or B t is not Boot, B~ ,  or 
B ~ ,  otherwise we are done. Therefore, we must have {B,B') = {Bo~t ,Bo~4}, for some 
(o4 ~ {(ol, o>2, o~) since (X, B) is weakly union-free. We know that IB,~ nB~l  # 0 or 3 
because B contains no repeated hyperedges. If IB~ M Bo~l = 2, then IFI = 4, implying 
that {B~,  B ~ ,  B~ ,  Boo4 } is the complete 3-uniform hypergraph on four vertices, which 
is not weakly union-free. It follows that IBcot r'IB~ ] = I. But then B~  \Boo1 is a 2-subset 
that must also be contained in the blocks B~  and Bo~. This contradicts the assumption 
that (X, B) is a twofold triple system. I 

Lemma 4.4. For any n =_ 0,1 (mod 3), and n > 22, there exists a nonadaptive 3/2- 
approximation algorithm of (optimal) complexity n for GTP3(2) with a population of 
n(n - I ) /3  items. 

Acknowledgments. Thanks to Ron Mullin and Alex Rosa for helpful discussions about this 
research. 
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