
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023 4961

Two-Dimensional RC/SW Constrained Codes:
Bounded Weight and Almost

Balanced Weight
Tuan Thanh Nguyen , Kui Cai , Senior Member, IEEE, Han Mao Kiah , Senior Member, IEEE,
Kees A. Schouhamer Immink , Life Fellow, IEEE, and Yeow Meng Chee, Senior Member, IEEE

Abstract— In this work, we study two types of constraints on
two-dimensional binary arrays. Given p ∈ [0, 1], ϵ ∈ [0, 1/2],
we study 1) the p-bounded constraint: a binary vector of size n
is said to be p-bounded if its weight is at most pn, and 2) the
ϵ-balanced constraint: a binary vector of size n is said to be
ϵ-balanced if its weight is within

[
(1/2 − ϵ)n, (1/2 + ϵ)n

]
.

Such constraints are crucial in several data storage systems, those
regard the information data as two-dimensional (2D) instead
of one-dimensional (1D), such as the crossbar resistive memory
arrays and the holographic data storage. In this work, efficient
encoding/decoding algorithms are presented for binary arrays
so that the weight constraint (either p-bounded constraint or
ϵ-balanced constraint) is enforced over every row and every
column, regarded as 2D row-column (RC) constrained codes;
or over every window (where each window refers to as a sub-
array consisting of consecutive rows and consecutive columns),
regarded as 2D sliding-window (SW) constrained codes. While
low-complexity designs have been proposed in the literature,
mostly focusing on 2D RC constrained codes where p = 1/2 and
ϵ = 0, this work provides efficient coding methods that work for
both 2D RC constrained codes and 2D SW constrained codes,
and more importantly, the methods are applicable for arbitrary
values of p and ϵ. Furthermore, for certain values of p and
ϵ, we show that, for sufficiently large array size, there exists
linear-time encoding/decoding algorithm that incurs at most one
redundant bit.

Manuscript received 18 August 2022; revised 22 December 2022; accepted
5 February 2023. Date of publication 14 February 2023; date of current version
14 July 2023. The work of Tuan Thanh Nguyen and Kui Cai was supported by
the Singapore Ministry of Education Academic Research Funds Tier 2 under
Grant MOE2019-T2-2-123 and Grant T2EP50221-0036. The work of Han
Mao Kiah was supported by the Ministry of Education, Singapore, under its
MOE AcRF Tier 2 Award under Grant MOE-T2EP20121-0007. An earlier
version of this paper was presented in part at the 2021 IEEE International
Symposium on Information Theory [DOI: 10.1109/ISIT45174.2021.9517970]
and in part at the 2022 IEEE International Symposium on Information
Theory [DOI: 10.1109/ISIT50566.2022.9834724]. (Corresponding author:
Tuan Thanh Nguyen.)

Tuan Thanh Nguyen and Kui Cai are with the Science, Mathematics
and Technology Cluster, Singapore University of Technology and Design,
Singapore 487372 (e-mail: tuanthanh_nguyen@sutd.edu.sg; cai_kui@sutd.
edu.sg).

Han Mao Kiah is with the School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371 (e-mail:
hmkiah@ntu.edu.sg).

Kees A. Schouhamer Immink is with Turing Machines Inc., 3016 DK
Rotterdam, The Netherlands (e-mail: immink@turing-machines.com).

Yeow Meng Chee is with the Department of Industrial Systems Engineer-
ing and Management, National University of Singapore, Singapore 119077
(e-mail: ymchee@nus.edu.sg).

Communicated by G. Ge, Associate Editor for Coding and Decoding.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2023.3244979.
Digital Object Identifier 10.1109/TIT.2023.3244979

Index Terms— Two-dimensional (2D) constrained codes,
sliding-window (SW) constrained codes, balanced codes, almost-
balanced codes, bounded weight codes, encoding, decoding.

I. INTRODUCTION

TWO-DIMENSIONAL (2D) weight-constrained codes
have attracted recent attention due to various applications

in modern storage devices that are attempting to increase the
storage density by regarding the information data as two-
dimensional binary arrays. In this work, we are motivated
by the application of 2D weight-constrained codes in the
holographic recording systems and the resistive memory based
on crossbar arrays. In particular, in optical recording, the
holographic memory capitalizes on the fact that the recording
device is a surface, and therefore the recording data should
be regarded as 2D, as opposed to the track-oriented one-
dimensional (1D) recording paradigm [3], [4], [5], [6]. On the
other hand, the key in resistive memory technologies is that
the memory cell is a passive two-terminal device that can
be both read and written over a simple crossbar structure
[7], [8], [9], [10]. Both models offer a huge density advantage,
however, face new reliability issues and introduce new types
of constraints, which are now 2D constraints, rather than 1D
constraints. We next briefly describe the motivation of our
study on the two types of 2D weight constraints: the bounded
weight constraint and the almost-balanced weight constraint.

The 2D bounded weight constraint is used to limit the
number of 1’s in an array. It has been suggested as an
effective method to reduce the sneak path effect, a funda-
mental and challenging problem, in the crossbar memory
arrays. The sneak path problem was addressed by numerous
works with different approaches and at various system layers
[11], [12], [13], [14], [15], [16]. In particular, when a cell
in a crossbar array is read, a voltage is applied upon it,
and current measurement determines whether it is in a low-
resistance state (LRS, corresponding to a ‘1’) or a high-
resistance state (HRS, corresponding to a ‘0’). The sneak path
occurs when a resistor in the HRS is being read, current also
passes through a series of resistors in the LRS that exists in
parallel to it, thereby causing it to be erroneously read as low
resistance. Therefore, by enforcing fewer memory cells with
the LRSs, we can reduce the sneak path effect. This can be
achieved by applying constrained coding techniques to convert
the user data into a 2D-constrained array that limits the number

0018-9448 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3179-9471
https://orcid.org/0000-0003-2059-0071
https://orcid.org/0000-0001-5611-0848
https://orcid.org/0000-0001-6747-9261

4962 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

of 1’s. Motivated by the application, we extend the study of
2D weight-constrained codes in the literature works in two
variations:

• Design of 2D p-bounded row-column (RC) constrained
codes over n × n arrays, that limit the number of 1’s
in every row and every column to be at most pn. For a
specific value of p, Ordentlich and Roth [11] required
the weight in every row and every column to be at
most half, i.e. p = 1/2, and presented efficient encoders
with redundancy at most 2n for n × n arrays. In [17],
the authors studied the bounds of codes that require the
weight in every row and every column to be precisely pn
and provided a coding scheme based on the enumeration
coding technique. In this work, we extend the study of
2D p-bounded RC constrained codes and present efficient
encoding/decoding algorithms for arbitrary p ∈ [0, 1].

• Design of 2D p-bounded sliding-window (SW) con-
strained codes over n × n arrays, that limit the number
of 1’s in every window of size m×m for some m ⩽ n.
It was proved in [13] that imposing constraints to com-
pletely eliminate sneak paths in the array implies storage
capacity that vanishes with the array dimensions. Several
attempts have been made to avoid sneak paths without
ending up with zero capacity (for example, see [13], [14],
[16]). A common idea is to divide the array rows into
disjoint subsets, where each is a subarray consisting of
consecutive rows and columns, and then study the coding
method required to prevent sneak paths over these subar-
rays. Particularly, in [16], the authors constructed arrays
of size n×n by concatenating subarrays of size m×m for
m ⩽ 4. In this work, we enforce the p-bounded weight
constraint over every window (where each window refers
to as a subarray consisting of consecutive rows and con-
secutive columns), regarded as 2D sliding-window (SW)
constrained codes. Since the windows are not necessarily
disjoint, the design of constrained codes over every
window is more challenging than over disjoint subarrays
consisting of consecutive rows and consecutive columns.

On the other hand, the 2D almost-balanced weight constraint
is used to control the imbalance between ‘1’s and ‘0’s in
an array. This constraint is crucial in holographic recording
systems. In such systems, data is stored optically in the form
of 2D pages [5], [6], and each data page is a pattern of ‘0’s
and ‘1’s, represented by dark and light spots, respectively.
To improve the reliability of the holographic recording system,
one suggested solution by Vardy et al. [18] is to use coding
techniques that do not permit a large imbalance between ‘0’s
and ‘1’s so that, during recording, the amount of signal light be
independent of the data content. In [17], Ordentlich and Roth
also emphasized the importance of balanced codes, and exper-
iments’ reports on holographic memory and other existing
optical devices also suggested that ‘0’s and ‘1’s in the recorded
data need to be balanced within certain areas or patterns.
Motivated by the application, in this work, we study the 2D
ϵ-balanced weight constraint defined over n×n arrays via two
different models: the 2D ϵ-balanced RC constrained codes,
that enforce every row and every column to be ϵ-balanced;
and the 2D ϵ-balanced m-SW constrained codes, that enforce

every window of size m × m to be ϵ-balanced for some
m ⩽ n. For 2D ϵ-balanced RC constrained codes, when
ϵ = 0 and n is even, Talyansky et al. [3] enforced the
weight in every row and every column of n × n array to
be exactly n/2 and presented an efficient encoding method,
that uses roughly 2n log n + Θ(n log log n) redundant bits.
To further reduce the redundancy, instead of using one of the
algorithms in [19] and [20], Talyansky et al. balanced the rows
with the (more computationally complex) enumerative coding
technique. Consequently, the redundancy can be reduced to
(3/2)n log n + Θ(n log log n) redundant bits. On the other
hand, there is no known design for an arbitrary value of ϵ.
The efficient design of 2D ϵ-balanced RC constrained codes
and 2D ϵ-balanced SW constrained codes, given an arbitrary
value of ϵ > 0, is the main contribution of this work.

In summary, we present two efficient encoding methods for
2D RC constrained codes and 2D SW constrained codes for
arbitrary p ∈ [0, 1] and ϵ ∈ [0, 1/2]. The coding methods
are based on: (method A) the divide and conquer algorithm
and a modification of the Knuth’s balancing technique, and
(method B) the sequence replacement technique. The coding
rate of our proposed methods approaches the channel capacity
for all p, ϵ. In addition, for certain values of p and ϵ, we show
that for sufficiently large n, method B incurs at most one
redundant bit.

We first go through certain notations and review prior-art
coding techniques.

II. PRELIMINARIES

A. Notations

Given two binary sequences x = x1 . . . xn1 and y =
y1 . . . yn2 , the concatenation of the two sequences is defined
by xy ≜ x1 . . . xn1y1 . . . yn2 . For a binary sequence x, we use
wt(x) to denote the weight of x, i.e the number of ones
in x. We use x to denote the complement of x. For example,
if x = 00111 then wt(x) = 3 and x = 11000.

Let An denote the set of all n×n binary arrays. The ith row
of an array A ∈ An is denoted by Ai and the jth column is
denoted by Aj . For some m ⩽ n, a subarray W of size m×m
of A is called a window if W consists of m consecutive rows
and m consecutive columns. Note that an n× n binary array
A can be viewed as a binary sequence of length n2. We define
Φ(A) as a binary sequence of length n2 where bits of the array
A are read row by row.

Example 1: Given n = 3, m = 2, consider the array

A =

 a b c
d e f
g h i

 , then we have Φ(A) = abcdefghi.

In addition, we have four windows of size 2× 2 of A as

W1 =
(

a b
d e

)
, W2 =

(
b c
e f

)
,

W3 =
(

d e
g h

)
, W4 =

(
e f
h i

)
.

Definition 1: Given n, ϵ where ϵ ∈ [0, 1/2] and n is even,
a binary sequence x of length n is said to be ϵ-balanced if

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

NGUYEN et al.: TWO-DIMENSIONAL RC/SW CONSTRAINED CODES: BOUNDED WEIGHT AND ALMOST BALANCED WEIGHT 4963

wt(x) ∈
[
(1/2 − ϵ)n, (1/2 + ϵ)n

]
. When ϵ = 0, we say the

sequence is balanced. Similarly, a binary array of size n1 × n2

is said to be ϵ-balanced if the number of 1’s in the array is
within

[
(1/2− ϵ)n1n2, (1/2 + ϵ)n1n2

]
.

Definition 2: Given n, p, where p ∈ [0, 1], a binary
sequence x of length n is said to be p-bounded if wt(x) ⩽ pn.
Similarly, a binary array of size n1×n2 is said to be p-bounded
if the number of 1’s in the array is at most pn1n2.

We now show that it suffices to restrict the additional
condition that pn and ϵn are integers.

Proposition 1: Given n > 0, p ∈ [0, 1], set p′ = ⌊np⌋/n.
For arbitrary x ∈ {0, 1}n, x is p-bounded if and only if x is
p′-bounded. Similarly, given n > 0, n is even, and
ϵ ∈ [0, 1/2], set ϵ′ = ⌊ϵn⌋/n. For arbitrary x ∈
{0, 1}n, we then have x is ϵ-balanced if and only if x is
ϵ′-balanced.

Proof: We first show that for x ∈ {0, 1}n, x is p-bounded
if and only if x is p′-bounded.
• Assume that x is p-bounded. By definition, we have

wt(x) ⩽ pn. Since wt(x) is an integer, we conclude that
wt(x) ⩽ ⌊pn⌋ = (⌊pn⌋/n) × n = p′n. Hence, x is p′-
bounded.

• On the other hand, suppose that x is p′-bounded, i.e.
we have wt(x) ⩽ p′n. Since p′ = ⌊np⌋/n ⩽ np/n = p,
it implies wt(x) ⩽ p′n ⩽ pn. Hence, x is p-bounded.

Similarly, we can show that x is ϵ-balanced if and only if
x is ϵ′-balanced.
• Assume that x is ϵ-balanced. By definition, we have

wt(x) ∈
[
(1/2 − ϵ)n, (1/2 + ϵ)n

]
. Since wt(x) is an

integer and n is even, we conclude that

⌈(1/2− ϵ)n⌉⩽ wt(x) ⩽ ⌊(1/2 + ϵ)n⌋, or

n/2− ⌊ϵn⌋⩽ wt(x) ⩽ n/2 + ⌊ϵn⌋, or

n/2− (⌊ϵn⌋/n)× n⩽ wt(x) ⩽ n/2 + (⌊ϵn⌋/n)× n, or

(1/2− ϵ′)n⩽ wt(x) ⩽ (1/2 + ϵ′)n.

In other words, it implies that x is also ϵ′-balanced.
• On the other hand, suppose that x is ϵ′-balanced, i.e.

wt(x) ∈
[
(1/2−ϵ′)n, (1/2+ϵ′)n

]
. Since ϵ′ = ⌊ϵn⌋/n ⩽

ϵn/n = ϵ, we have
[
(1/2− ϵ′)n, (1/2+ ϵ′)n

]
⊆

[
(1/2−

ϵ)n, (1/2 + ϵ)n
]
. Therefore, x is also ϵ-balanced.

According to Proposition 1, it suffices to assume that pn
and ϵn are integers. Clearly, when pn (or ϵn, respectively)
is not an integer, by setting p′ = ⌊np⌋/n (or setting ϵ′ =
⌊ϵn⌋/n, respectively), we then obtain p′n (or ϵ′n) is an integer.
Throughout this work, for simplicity, we suppose that n is
even, and pn and ϵn are integers.

Given n, m, p, ϵ, where n is even, ϵ ∈ [0, 1/2], p ∈ [0, 1],
m ⩽ n, pn, ϵn are integers, we set

BRC(n; p)≜
{

A ∈ An : Ai, A
i are p-bounded for 1 ⩽ i ⩽ n

}
,

BalRC(n; ϵ)≜
{

A ∈ An : Ai, A
i are ϵ-balanced for 1 ⩽ i ⩽ n

}
,

and

BSW(n, m; p) ≜
{

A ∈ An : every window W of A

of size m×m are p-bounded
}

,

BalSW(n, m; ϵ) ≜
{

A ∈ An : every window W of A

of size m×m are ϵ-balanced
}

.

In this work, we are interested in the problem of design-
ing efficient coding methods that encode (decode) binary
data to (from) BRC(n; p), BalRC(n; ϵ), BSW(n, m; p) and
BalSW(n, m; ϵ).

Definition 3: The map ENC : {0, 1}k → {0, 1}n×n is a
2D p-bounded RC encoder if ENC(x) ∈ BRC(n; p) for all
x ∈ {0, 1}k and there exists a decoder map DEC: {0, 1}n×n →
{0, 1}k such that DEC ◦ ENC(x) = x. The coding rate of
the encoder is measured by k/n2 and the redundancy of the
encoder is measured by the value n2 − k (bits). The 2D
ϵ-balanced RC encoder, 2D p-bounded m-SW encoder, and
2D ϵ-balanced m-SW encoder are similarly defined.

Our design objectives include low redundancy (equivalently,
high code rate) and low complexity of the encoding/decoding
algorithms. In this work, we show that for sufficiently
large n, there exist efficient encoders/decoders for BRC(n; p),
BalRC(n; ϵ), BSW(n, m; p) and BalSW(n, m; ϵ), that incur at
most one redundant bit.

B. Literature Works on 2D p-Bounded RC Constrained
Codes BRC(n; p)

We briefly describe the works by Ordentlich and Roth
in [11] and [17] that provided encoding/decoding algorithms
for BRC(n; p).
• For p = 1/2, i.e. the weight of every row and every

column is at most n/2, Ordentlich and Roth [11] pre-
sented two low complexity coding methods. The first
method is based on flipping rows and columns of an
arbitrary binary array (i.e. using the complement of rows
and columns) until the weight-constraint is satisfied in all
rows and columns while the second method is based on
efficient construction of antipodal matching. Both codes
have roughly 2n redundant bits. A lower bound on the
optimal redundancy was shown to be λn + o(n) for
a constant λ ≈ 1.42515 in [21]. Note that these two
methods can be used to construct BRC(n; p) for arbitrary
p > 1/2, in which BRC(n; 1/2) ⊂ BRC(n; p).

• For p < 1/2, one may follow the coding method in [17],
based on enumeration coding, that ensure the weight
in every row and every column to be precisely pn.
The redundancy of the proposed encoder was at most
2nµ(n, p), where µ(n, p) is the least redundancy required
to encode one-dimensional binary codewords of length n

such that the weight is pn. If we set Q(n, p) =
{

x ∈

{0, 1}n : wt(x) = pn
}

, then we have µ(n, p) = nH(p)−
log |Q(n, p)| where H(p) = −p log p−(1−p) log(1−p).
It is easy to verify that µ(n, p) = Θ(n) for all p < 1/2.
In addition, Ordentlich and Roth [17] also provided a
lower bound on the optimal redundancy, which is at least
2nµ(n, p) + O(n + log n) bits.

In this work, we first propose efficient coding methods for
BRC(n; p) when p > 1/2 or p < 1/2. Particularly, when
p < 1/2, the redundancy can be reduced to be at most

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

4964 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

nµ(n, p) + O(n + log n) bits. When p > 1/2, the redundancy
can be reduced significantly to be at most Θ(n) bits and
then to only one bit. We then extend the results to design
efficient encoders for 2D p-bounded m-SW constrained codes
BSW(n, m; p) when m = n− o(n) and p ≥ 1/2.

We review below the antipodal matching (defined in [11])
as it will be used in one of our proposed coding methods.

Definition 4 (Ordentlich and Roth [11]): An antipodal
matching ϕ is a mapping from {0, 1}n to itself with the
following properties holding for every x ∈ {0, 1}n:

1) wt(ϕ(x)) = n− w(x).
2) If wt(x) > n/2 then ϕ(x) has all its 1’s in positions where

x has 1’s. In other words, suppose x = x1x2 . . . xn and
y = ϕ(x) = y1y2 . . . yn, then yi = 1 implies xi = 1 for
1 ⩽ i ⩽ n.

3) ϕ(ϕ(x)) = x.
Ordentlich and Roth [11] presented an efficient construction

of antipodal matchings ϕ for all n. In fact, such an antipodal
matching can be decomposed into a collection of bijective
mappings ϕ = ∪n

i=0ϕi, where

ϕi :
{

x ∈ {0, 1}n : wt(x) = i
}
→

{
x ∈ {0, 1}n : wt(x) = n− i

}
,

and ϕi can be constructed in linear-time for all n, i as in [11].

C. Literature Works on 2D ϵ-Balanced RC Constrained
Codes BalRC(n; ϵ)

Over 1D codes, to encode binary balanced codes, we have
the celebrated Knuth’s balancing technique [19]. Knuth’s bal-
ancing technique is a linear-time algorithm that maps a binary
message x to a balanced word z of the same length by flipping
the first t bits of x. The crucial observation demonstrated by
Knuth is that such an index t always exists and t is commonly
referred to as a balancing index of x. To represent such a
balancing index, Knuth appends z with a short balanced suffix
of length ⌈log n⌉, which is also the redundancy of the encoding
algorithm. Formally, we have the following theorem.

Theorem 1 (Knuth [19] for ϵ = 0): For arbitrary binary
sequence x ∈ {0, 1}n, there exists the index t, where 1 ≤
t ≤ n, called a balancing index of x such that the sequence y
obtained by flipping the first t bits in x, denoted by Flipt(x),
is balanced. There exists a pair of linear-time algorithms
ENCK : {0, 1}k → {0, 1}n and DECK : {0, 1}n → {0, 1}k,
where k ≈ n − ⌈log n⌉, such that the following holds.
If ENCK(x) is balanced and DECK ◦ ENCK(x) = x for all
x ∈ {0, 1}k.

Modifications of the generic scheme are discussed for
constructing more efficient balanced codes [20], [22] and
almost-balanced codes [23], [24], [25]. Particularly, for 1D
ϵ-balanced codes, the encoding methods in [23] and [25] used
only a constant redundant bits. Crucial to the improvement in
redundancy from ⌈log n⌉ bit of Knuth’s method for balanced
codes to a constant bits for ϵ-balanced codes is the construction
of ϵ-balancing set.

Definition 5: For n even, ϵ > 0, ϵn ⩾ 1, the index t, where
1 ≤ t ≤ n, is called an ϵ-balancing index of x ∈ {0, 1}n

if y = Flipt(x), is ϵ-balanced. Suppose that ϵn > 1, let the
ϵ-balancing set Sϵ,n ⊂ {0, 1, 2, . . . , n} be the set of indices,

given by Sϵ,n = {0, n} ∪ {2⌊ϵn⌋, 4⌊ϵn⌋, 6⌊ϵn⌋, . . .}. The size
of Sϵ,n is at most ⌊1/2ϵ⌋+ 1.

Theorem 2 (Nguyen et al. [25]): Let n be even, and ϵ >
0, ϵn ⩾ 1. For arbitrary binary sequence x ∈ {0, 1}n, there
exists an index t in the set Sϵ,n, such that t is an ϵ-balancing
index of x. There exists a pair of linear-time algorithms ENCϵ :
{0, 1}k → {0, 1}n and DECϵ : {0, 1}n → {0, 1}k, where k =
n−2 log(⌊1/2ϵ⌋+1), such that the following holds. If ENCϵ(x)
is ϵ-balanced and DECϵ ◦ ENCϵ(x) = x for all x ∈ {0, 1}k.
The redundancy of the encoder is 2 log(⌊1/2ϵ⌋+ 1) = Θ(1).

Since an ϵ-balancing index can be found in Sϵ,n of constant
size, to encode such an ϵ-balancing index t, only a constant
redundant bits is needed.

Example 2: Consider n = 10, ϵ = 0.1, we then have
Sϵ,n = {0, 2, 4, 6, 8}. Let x = 0000000000. Observe that
f4(x) = 1111000000, and f6(x) = 1111110000 are
ϵ-balanced. Hence, t = 4, 6 are ϵ-balancing indices of
x. In general, there might be more than one ϵ-balancing
index.

For 2D ϵ-balanced RC codes BalRC(n; ϵ) and ϵ = 0,
Talyansky et al. [3] presented an efficient encoding method
for n×n array, where each row and each column is balanced.
The method uses 2n log n+Θ(n log log n) redundant bits and
includes three phases.

• In phase I, all rows in the array are encoded to be
balanced via the Knuth’s balancing technique, which uses
roughly log n redundant bits for each row.

• In phase II, the array is then divided into two sub-
arrays of equal size, and the problem is reduced to
balancing two subarrays from a given balanced array.
The process is repeated until each subarray is a single
column. For each subproblem, to balance two subar-
rays, the authors simply swap the elements between
two subarrays until both subarrays are balanced. The
number of swapped elements, called index, will be
encoded and decoded in phase III in order to recover the
information.

• In phase III, the author presented a method to
encode/decode all the indices used in phase II recursively.
The authors also proved that the redundancy in this phase
is at most n log n + O(log log n) bits.

To further reduce the redundancy, instead of using one of the
algorithms in [19] and [20], Talyansky et al. balanced the rows
with the (more computationally complex) enumerative coding
technique. Consequently, the redundancy can be reduced to
1.5n log n + Θ(n log log n) redundant bits.

In this work, we first extend the study in the literature works
to design 2D ϵ-balanced RC codes BalRC(n; ϵ) for arbitrary
ϵ > 0. Particularly, for n > 0, ϵ ∈ (0, 1/2), we design efficient
coding methods that encode (decode) binary data to (from)
BalRC(n; ϵ). Clearly, since BalRC(n; 0) ⊂ BalRC(n; ϵ) for all
ϵ > 0, one may use the constructions of Talyansky et al. [3]
that use at most 1.5n log n + Θ(n log log n) redundant bits.
Throughout this work, we show that the redundancy can
be reduced significantly to be at most n log n + o(n log n)
redundant bits. Furthermore, for ϵ > 0 and for sufficiently
large n, we show that there exist linear-time encoding

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

NGUYEN et al.: TWO-DIMENSIONAL RC/SW CONSTRAINED CODES: BOUNDED WEIGHT AND ALMOST BALANCED WEIGHT 4965

TABLE I
A SUMMARY OF THE ENCODERS AND DECODERS PROPOSED BY THIS WORK. THE REDUNDANCY IS

COMPUTED FOR ARRAY CODEWORDS OF LENGTH n× n, n IS EVEN, p, ϵ > 0

(and decoding respectively) algorithms for BalRC(n; ϵ) that
use only one redundant bit.

D. Paper Organisation and Our Contribution

In this work, we present efficient encoding/decoding meth-
ods for 2D RC constrained codes and 2D SW constrained
codes for arbitrary p ∈ [0, 1] and ϵ ∈ [0, 1/2]. Method A is
based on the divide and conquer algorithm and a modification
of the Knuth’s balancing technique while method B is based
on the sequence replacement technique. We present a summary
of the encoders and decoders proposed by this work in Table I.
(A) In Section III, we uses method A to encode BRC(n; p)

when p ⩽ 1/2 with at most nµ(n, p) + O(n + log n)
redundant bits (compared to 2nµ(n, p) + O(n + log n) if
using the method in [17]), and to encode BalRC(n; ϵ) for
arbitrary ϵ ∈ (0, 1/2) with at most n log n + o(n log n)
redundant bits (compared to 1.5n log n + Θ(n log log n)
if using the method [3]).

(B) In Section IV, we first uses method B to encode
BRC(n; p) when p > 1/2 with at most n + 3 redun-
dant bits. We then show that for sufficiently large n,
we can encode BalRC(n; ϵ) or encode BRC(n; p) when
p > 1/2 with only one redundant bit.

(C) In Section V, we propose encoding/decoding meth-
ods for 2D SW constrained codes BSW(n, m; p) and
BalSW(n, m; ϵ) when m = n− o(n) and p ≥ 1/2.

III. EFFICIENT ENCODERS/DECODERS FOR BRC(n; p) AND
BalRC(n; ϵ) VIA THE DIVIDE AND CONQUER ALGORITHM

We first define the swapping function of two binary
sequences.

Definition 6: Given y = y1y2 . . . yn, z = z1z2 . . . zn.
For 1 ⩽ t ⩽ n, we use Swapt(y, z), Swapt(z, y) to
denote the sequences obtained by swapping the first t bits

of y and z, i.e.

Swapt(y, z)= z1z2 . . . ztyt+1yt+2 . . . yn, and

Swapt(z, y)= y1y2 . . . ytzt+1zt+2 . . . zn.

A key ingredient of the encoding method in [3] is the
following lemma.

Lemma 1 (Swapping Lemma): Given n is even, x = yz ∈
{0, 1}2n, x is balanced, where y = y1y2 . . . yn, z =
z1z2 . . . zn. There exists an index t, 1 ⩽ t ⩽ n such that
both Swapt(y, z) and Swapt(z, y) are balanced.

Lemma 1 states that there must be an index t, referred as a
swapping index of y and z, such that after swapping their first
t bits, the resulting sequences are both balanced. Since such an
index t belongs to {1, 2, . . . n}, in order to recover the original
sequences y, z from the output sequences Swapt(y, z) and
Swapt(z, y), a redundancy of log n (bits) is needed. Therefore,
to encode a binary array of size n × n, the method in [3]
used a total of n log n + O(log log n) redundant bits to store
all swapping indices of all pairs of subarrays. It is easy to
verify that Lemma 1 also works for p-bounded constraint and
ϵ-balanced constraint for all p, ϵ > 0. We have the following
corollary.

Corollary 1: Given n > 0, x = yz ∈ {0, 1}2n, where y =
y1y2 . . . yn, z = z1z2 . . . zn.

(i) Given p ∈ [0, 1], np is integer, if x is p-bounded then
there exists an index t, 1 ⩽ t ⩽ n such that both
Swapt(y, z) and Swapt(z, y) are p-bounded.

(ii) Given ϵ ∈ [0, 1/2], ϵn is integer, n is even, if x is ϵ-
balanced then there exists an index t, 1 ⩽ t ⩽ n such
that both Swapt(y, z) and Swapt(z, y) are ϵ-balanced.

Proof: W.l.o.g, we suppose that wt(y) ⩾ wt(z).
(i) We first show that if x is p-bounded then there exists

an index t1, 1 ⩽ t1 ⩽ n such that both Swapt1(y, z)
and Swapt1(z, y) are p-bounded. Clearly, if both y and
z are p-bounded then we can select t1 = n since
Swapn(y, z) = z and Swapn(z, y) = y. On the other

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

4966 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

hand, if one of them is not p-bounded, suppose that we
have wt(y) > pn while wt(z) < pn.
• We then swap the bits in y and z respectively in

the order from left to right. Observe that each swap
increases or decreases the weight of y (or z) by
one, and when all the bits in y and z are swapped,
i.e. t = n, we have wt

(
Swapn(y, z)

)
= wt(z) <

pn. Therefore, there must be an index t1, 1 ⩽
t1 ⩽ n such that after swapping t1 bits, we have
wt

(
Swapt1(y, z)

)
= pn. It remains to show that, for

such an index t1, we have wt
(
Swapt1(z, y)

)
⩽ pn.

• Observe that wt
(
Swapt(y, z)

)
+wt

(
Swapt(z, y)

)
=

wt(y) + wt(z) = wt(x) ⩽ p(2n) = 2pn for all 1 ⩽
t ⩽ n. Consequently, if wt

(
Swapt1(y, z)

)
= pn,

we then have wt
(
Swapt1(z, y)

)
⩽ pn. In conclu-

sion, for such an index t1, both Swapt1(y, z) and
Swapt1(z, y) are p-bounded.

In conclusion, there always exists an index t1,
1 ⩽ t1 ⩽ n such that both Swapt1(y, z) and
Swapt1(z, y) are p-bounded.

(ii) We now show that if x is ϵ-balanced then there exists
an index t2, 1 ⩽ t2 ⩽ n such that both Swapt2(y, z)
and Swapt2(z, y) are ϵ-balanced. Since x is ϵ-balanced,
i.e. wt(x) ∈ [(1/2 − ϵ)2n, (1/2 + ϵ)2n], we then have
n ⩽ wt(x) ⩽ n+2ϵn, or n−2ϵn ⩽ wt(x) ⩽ n. We first
consider the case when n ⩽ wt(x) ⩽ n + 2ϵn.
Since wt(y) ⩾ wt(z), it implies that wt(y) ⩾ n/2 and
wt(z) ⩽ n/2+ϵn. Clearly, if both y and z are ϵ-balanced
then we can select t2 = n since Swapn(y, z) = z and
Swapn(z, y) = y. On the other hand, suppose that at
least one of them is not ϵ-balanced.
• If y is not ϵ-balanced, we conclude that wt(y) >

(1/2+ϵ)n = n/2+ϵn. We then have wt(z) < n/2+
ϵn since wt(x) ⩽ n+2ϵn. We then swap the bits in
y and z respectively in the order from left to right.
Observe that each swap increases or decreases the
weight of y (or z) by one, and when t = n, we have
wt

(
Swapn(y, z)

)
= wt(z) < n/2 + ϵn. Therefore,

there must be an index t2, 1 ⩽ t2 ⩽ n such that
after swapping t2 bits, we have wt

(
Swapt2(y, z)

)
=

n/2+ϵn. In other words, Swapt2(y, z) is ϵ-balanced.
It remains to show that Swapt2(z, y) is ϵ-balanced.
Observe that wt

(
Swapt(y, z)

)
+wt

(
Swapt(z, y)

)
=

wt(y)+wt(z) = wt(x) ∈ [n, n+2ϵn] for all 1 ⩽ t ⩽
n. Therefore, when t = t2, if wt

(
Swapt2(y, z)

)
=

n/2 + ϵn, we then have

wt
(
Swapt2

(z, y)
)
⩾ n− (n/2 + ϵn) = n/2− ϵn, and

wt
(
Swapt2

(z, y)
)
⩽ n + 2ϵn− (n/2 + ϵn) = n/2 + ϵn.

Thus, Swapt2(z, y) is ϵ-balanced.
• On the other hand, if z is not ϵ-balanced, we have

wt(z) /∈ [n/2− ϵn, n/2+ ϵn]. Since wt(z) ⩽ n/2+
ϵn, we conclude that wt(z) < n/2− ϵn. Moreover,
since wt(x) ⩾ n, it implies wt(y) > n/2+ϵn, or y
is also not ϵ-balanced. We have shown that there
exists an index t2 such that both Swapt2(y, z) and
Swapt2(z, y) are ϵ-balanced in the earlier case.

We now consider the case when n/2− ϵn ⩽ wt(x) ⩽ n.
One can obtain similar proof to the case n ⩽ wt(x) ⩽
n + 2ϵn. Here, we use the idea of the complement
sequence as follows. Observe that a binary sequence
x is ϵ-balanced if and only if its complement, x is
also ϵ-balanced. We then obtain x = y z where n ⩽
wt(x) ⩽ n+2ϵn. Here, x is ϵ-balanced. We have shown
that there exists an index t2 such that Swapt2(y, z) and
Swapt2(z, y) are both ϵ-balanced. Consequently, we have
Swapt2(y, z) and Swapt2(z, y) are also ϵ-balanced.
In conclusion, there always exists an index t2, 1 ⩽
t2 ⩽ n such that both Swapt2(y, z) and Swapt2(z, y) are
ϵ-balanced.

We now present an efficient encoding method for 2D
p-bounded RC constrained codes BRC(n; p) for given p < 1/2
and for 2D ϵ-balanced RC constrained codes BalRC(n; ϵ) for
ϵ ∈ (0, 1/2) via the divide and conquer algorithm.

A. Design of BRC(n; p) When p < 1/2

Recall that one may follow the coding method in [17],
based on enumeration coding, that ensure the weight in every
row and every column to be precisely pn. The redundancy of
the proposed encoder was at most 2nµ(n, p) + O(n + log n),
where µ(n, p) is the least redundancy required to encode one-
dimensional binary codewords of length n such that the weight
is pn (refer to Section II-B).

In this section, we adapt the divide and conquer algorithm
with the enumeration coding technique. Compare to literature
works in [17] and [26] that also used modifications of the
enumeration coding technique, the major difference of our
coding method is that the rows and columns are encoded inde-
pendently, and the 2D code construction can be divided into
two 1D code constructions. In other words, the complexity of
our encoder mainly depends on the efficiency of enumeration
coding for 1D codes. Hence, the complexity of our encoder
mainly depends on the efficiency of enumeration coding for
one-dimensional codes.

In general, a ranking function for a finite set S of car-
dinality N is a bijection rank : S → [N] where [N] ≜
{0, 1, 2, . . . , N − 1}. Associated with the function rank is
a unique unranking function unrank : [N] → S, such
that rank(s) = j if and only if unrank(j) = s for all
s ∈ S and j ∈ [N]. Given n, p > 0, let S(n, p) ≜

{
x ∈

{0, 1}n : wt(x) ⩽ pn
}

, i.e. S(n, p) is the set of all one-
dimensional sequences that satisfy the p-bounded constraint.
One may use enumeration coding [27], [28] to construct
rankp : S(n, p) → [|S(n, p)|] and unrankp : [|S(n, p)|] →
S(n, p). The redundancy of this encoding algorithm is then
λ(n, p) = n− log |S(n, p)| ⩽ µ(n, p) (bits).

We now describe briefly the main idea of the algorithm.
We first consider the case when n is a power of 2, and hence,
log n is an integer. Recall from Proposition 1, it suffices to
assume that np is an integer.

Encoder ENC1
BRC(n;p). Let c be the smallest integer such that

c ⩾ ⌈1/p⌉(1 + log n) and cp is an integer. When 1/p is an

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

NGUYEN et al.: TWO-DIMENSIONAL RC/SW CONSTRAINED CODES: BOUNDED WEIGHT AND ALMOST BALANCED WEIGHT 4967

integer, we can set c = 1/p(1 + log n). In general, we have
c = O(log n). The binary data x is of length N = (n −
c)(n − λ(n, p)), i.e. the redundancy is then nλ(n, p) + cn −
cλ(n, p) = nλ(n, p) + O(n log n) bits. The encoding method
includes three phases.
• Phase I: Enforcing rows to be p-bounded. The encoder

encodes the information of length N into an array A of
size (n− c)×n where every row is p-bounded, using the
enumeration coding technique. Particularly, the informa-
tion is encoded into S(n, p) with the redundancy at most
λ(n, p) bits for each row. Therefore, the redundancy used
in Phase I is at most (n− c)λ(n, p) < nλ(n, p) bits.

• Phase II: Enforcing columns to be p-bounded. The
encoder ensures that every column of A is p-bounded.
From Phase I, every row of A is p-bounded, and hence,
array A is p-bounded. Suppose that at some encoding
step i, we have an array S of size (n− c)×n0, which is
already p-bounded for some n0 ⩽ n, n0 is a power of 2
(initially, n0 ≡ n).
Dividing S. The encoder divides S into two subarrays of
size (n− c)× (n0/2), denoted by LS and RS , where LS

consists of the first n0/2 columns of S and RS consists
of the last n0/2 columns of S. The encoder proceeds to
ensure that LS and RS are both p-bounded as follows.
SWAP(LS , RS). The encoder follows Corollary 1 to find
a swapping index so that LS and RS are both p-bounded.
To represent such a swapping index t, we need at most
log((n− c)n0/2) redundant bits.
After both subarrays LS and RS are p-bounded, the
encoder proceeds to divide each of them into two sub-
arrays and repeats the process to ensure that the newly
created subarrays are also p-bounded. This process ends
when all subarrays of size (n − c) × 1 are p-bounded.
We illustrate the idea of the swapping procedure in
Figure 1.
Let Re(n) be the sequence obtained by concatenating all
binary representations of all swapping indices. Then

|Re(n)|⩽
∑

k=2j2⩽k⩽n

(n/k) log((n− c)k/2)

= (n− 1)(1 + log(n− c))− log n

< n(1 + log n) (bits).

• Phase III: Encoding the swapping indices. The encoder
encodes Re(n) into an array B of size c × n such that
its every row and every column is p-bounded. At the end
of Phase III, the encoder outputs the concatenation of A
and B, which is an array of size n×n. In contrast to the
encoder in [3], which proceeds to repeat the encoding
procedure to encode Re(n), we show that Re(n) can
be encoded/decoded efficiently without repeating the
encoding procedure. Recall that c ⩾ ⌈1/p⌉(1+log n) and
np is integer. Suppose that Re(n) = x1x2 . . . xn(1+log n),
we fill the bits in Re(n) into the array B
column by column as follows: the first column
B1 = (x10⌈

1
p ⌉−1)(x20⌈

1
p ⌉−1) . . . (x1+log n0⌈

1
p ⌉−1),

and for 2 ⩽ i ⩽ n the ith column is Bi = (0j−1

x(1+log n)(i−1)+10
⌈ 1

p ⌉−j) . . . (0j−1x(1+log n)i0
⌈ 1

p ⌉−j),

Fig. 1. Example for n = 8, p = 1/4. The current subarray A is of size 8×4.
The subarrays, highlighted in red, are not p-bounded while those, highlighted
in blue, are p-bounded.

where j ≡ i (mod ⌈1/p⌉). It is easy to verify that every
row and every column of B is p-bounded and Re(n)
can be decoded uniquely from B.

In conclusion, the total redundancy for encoding an n× n
array is bounded above by:

(n− c)λ(n, p) + (1/p)n(1 + log n)< nλ(n, p) + O(n log n)

< nµ(n, p) + O(n log n) bits.

For completeness, we present the corresponding decoding
algorithm as follows.

Decoder, DEC1
BRC(n;p).

INPUT: A ∈ BRC(n; p) of size n× n
OUTPUT: x ≜ DECB1

RC(n;p)(A) ∈ {0, 1}N , where N = (n −
c)(n− λ(n, p))

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

4968 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

(I) Let B be the subarray obtained by the last c rows of
A and C be the subarray obtained by the first (n − c)
rows of A

(II) Decode Re(n) from B
(III) Do the reverse swapping process in C according to

Re(n), C is an array of size (n − c) × n. Let yi be
the ith row of C, we then have yi ∈ S(n, p) for all
1 ⩽ i ⩽ n− c

(IV) For 1 ⩽ i ⩽ n − c, let zi be the binary sequence of
length (n− λ(n, p)) representing rank(yi)

(V) Output x ≜ z1z2 . . . zn−c ∈ {0, 1}(n−c)(n−λ(n,p))

Finally, we point out the changes that need to be made in
Phase II when n is not a power of 2. Suppose that we have
an array S of size (n− c)× n0, which is already p-bounded
for some n0 ⩽ n (initially, n0 ≡ n), i.e. wt(S) ⩽ p(n− c)n0.
Here, the value of n0 can be odd, in which case we can define
LS to consist of the first (n0+1)/2 columns of S, whereas RS

consists of the remaining (n0 − 1)/2 columns of S. Observe
that (n− c)p and np are integers. Clearly, if LS and RS are
both p-bounded, then no swap is needed. Suppose, on the other
hand, one of them is not p-bounded.
• Suppose that LS is not p-bounded. In other words,

we have wt(LS) > p(n−c)(n0+1)/2. We then have RS

is p-bounded and wt(RS) < p(n− c)(n0− 1)/2. Let L′S
be the array obtained by removing the column with the
minimum weight from LS . Suppose that we remove the
column j1 for some 1 ⩽ j1 ⩽ (n0+1)/2. We observe that
L′S is not p-bounded, or wt(L′S) > p(n− c)(n0 − 1)/2.
We then swap the bits from L′S and RS .
When t = 0, we have

wt(Swap0(RS , L′
S)) = wt(RS) <

p(n− c)(n0 − 1)

2
.

When all bits are swapped, t = (n− c)(n0 − 1)/2,

wt(Swap (n−c)(n0−1)
2

(RS , L′
S)) = wt(L′

S) >
p(n− c)(n0 − 1)

2

Therefore, there exists t, 1 ⩽ t < (n − c)(n0 − 1)/2,
such that wt(Swapt(RS , L′S)) = p(n − c)(n0 − 1)/2.
For such an index t, we now show that the subarray,
consisting of Swapt(L′S , RS) and the j1th column, is also
p-bounded. Clearly, since the total weight is unchanged
for each swap, we have wt(S) ⩽ p(n − c)n0. Hence,
if wt(Swapt(RS , L′S)) = p(n − c)(n0 − 1)/2 then the
weight of the remaining subarray is at most p(n − c)
(n0 + 1)/2.

• Suppose that RS is not p-bounded. In other words,
wt(RS) > p(n − c)(n0 − 1)/2. We then have LS is
p-bounded. Let L′S be the array obtained by removing the
column with the maximum weight from LS . Suppose that
we remove the column j2, where 1 ⩽ j2 ⩽ (n0 + 1)/2.
We observe that L′S is still p-bounded, or wt(L′S) <
p(n − c)(n0 − 1)/2. Similarly, we then swap the bits
from L′S and RS . There must be an index t, where
1 ⩽ t < (n−c)(n0−1)/2, such that after swapping t bits,
we obtain wt(Swapt(RS , L′S)) = p(n−c)(n0−1)/2, and
the subarray, consisting of Swapt(L′S , RS) and the j2th
column, is also p-bounded.

In conclusion, after the swapping procedure, we obtain two
subarrays which are both p-bounded. The encoder adds redun-
dancy to record the swapping index t and the index of
the excluded column (that incurs log((n0 + 1)/2) bits). The
additional redundancy to record the indices of all excluded
columns is bounded above by

∑
k=n/2i

0⩽i⩽⌈log n⌉
(n/k) log⌈k/2⌉ =

O(n) (bits).

B. Design of BalRC(n; ϵ)

Similar to the construction of ENC1
BRC(n;p) and

DEC1
BRC(n;p) for BRC(n; p) as presented in Subsection III-A,

we obtain an efficient design BalRC(n; ϵ). For ease of
exposition, we only highlight the main difference in
redundancy in each encoding step as follows.
• In phase I, all rows in the array A are encoded to be

ϵ-balanced via the encoding method in [23] and [25],
that uses at most c = Θ(1) redundant bits for each row
(refer to Theorem 2).

• In phase II, the encoder ensures that every column is
ϵ-balanced via the divide and conquer algorithm as the
case of p-bounded constraint. The total redundancy used
to record all the swapping indices and the excluded
columns (when n is not a power of 2) is n log n + O(n)
bits. Let Re(n) be the sequence obtained by concatenat-
ing all binary representations of all swapping indices and
the excluded columns.

• In phase III, we follow the method of Talyansky et al. [3]
that lets Re(n) undergo the encoding process, recursively,
to produce an array B in which all the rows and columns
are ϵ-balanced. The array B, in turn, is appended to A
so that the encoded array is of size n× n. It was proved
in [3] that the total redundancy for the encoder is at most
n log n + O(n log log n) = n log n + o(n log n) bits.

It remains to point out the changes that need to be made
in Phase II when n is not a power of 2, as what we have
shown for the p-bounded constraint. Suppose that we have an
array S of size n1 × (2k + 1), which is already ϵ-balanced,
i.e. wt(S) ∈ [(1/2 − ϵ)n1(2k + 1), (1/2 + ϵ)n1(2k + 1)].
Here, we define LS to consist of the first (k + 1) columns
of S, whereas RS consists of the remaining k columns of S.
Observe that n1ϵ is integers. Clearly, if LS and RS are both
ϵ-balanced, then no swap is needed. Suppose, on the other
hand, one of them is not ϵ-balanced. For simplicity, we assume
that wt(S) ∈ [n1(2k + 1)/2, (1/2 + ϵ)n1(2k + 1)]. The case
that wt(S) ∈ [(1/2−ϵ)n1(2k+1), n1(2k+1)/2] can be done
similarly.
• (Case 1a) Suppose that LS is not ϵ-balanced and

wt(LS) > (1/2 + ϵ)n1(k + 1). We then have wt(RS) <
(1/2 + ϵ)n1k. Similar to the p-bounded case, we set L′S
be the array obtained by removing the column with the
minimum weight from LS . Suppose that we remove the
column j1 for some 1 ⩽ j1 ⩽ k+1. We observe that LS is
not ϵ-balance, or wt(L′S) > (1/2+ ϵ)n1k. We then swap
the bits from L′S and RS . There must be an index t, 1 ⩽
t < n1k, such that wt(Swapt(RS , L′S)) = (1/2 + ϵ)n1k.
For such an index t, we can show that the subarray,

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

NGUYEN et al.: TWO-DIMENSIONAL RC/SW CONSTRAINED CODES: BOUNDED WEIGHT AND ALMOST BALANCED WEIGHT 4969

consisting of Swapt(L′S , RS) and the j1th column, is also
ϵ-balanced.

• (Case 1b) The case that LS is not ϵ-balanced and
wt(LS) < (1/2− ϵ)n1(k + 1) can be proved similarly.

• (Case 2a) Suppose that RS is not ϵ-balanced and
wt(RS) > (1/2 + ϵ)n1k. We then have wt(LS) <
(1/2 + ϵ)n1(k + 1). Similarly, we set L′S be the array
obtained by removing the column j2 with the maximum
weight from LS . We observe that wt(L′S) < (1/2 +
ϵ)n1k. We then swap the bits from L′S and RS , and
there must be an index t, 1 ⩽ t < n1k, such that
wt(Swapt(RS , L′S)) = (1/2 + ϵ)n1k, and the subarray,
consisting of Swapt(L′S , RS) and the j2th column, is also
ϵ-balanced.

• (Case 2b) The case that RS is not ϵ-balanced and
wt(RS) < (1/2− ϵ)n1k can be proved similarly.

We summarise the result as follows.
Theorem 3: Given n, ϵ > 0, ϵn ⩾ 1, there exist an

efficient encoder ENC1
BalRC(n;ϵ) and a corresponding decoder

DEC1
BalRC(n;ϵ) for BalRC(n; ϵ) with at most n log n +

o(n log n) redundant bits.
In the next section, we show that for sufficiently large n,

we can encode BalRC(n; ϵ) or encode BRC(n; p) when p >
1/2 with only one redundant bit.

IV. EFFICIENT ENCODERS/DECODERS FOR BRC(n; p) AND
BalRC(n; ϵ) VIA THE SEQUENCE

REPLACEMENT TECHNIQUE

The Sequence Replacement Technique (SRT) has been
widely applied in the literature (for example, see [24], [25],
[29], [30]). This is an efficient method for removing forbidden
substrings from a source word. The advantage of this technique
is that the complexity of encoder and decoder is very low, and
they are also suitable for parallel implementation. In general,
the encoder removes the forbidden strings and subsequently
inserts its representation (which also includes the position of
the substring) at predefined positions in the sequence. In our
recent work [24], for codewords of length m, we enforced
the almost-balanced weight-constraint over every subsequence
consisting of ℓ consecutive bits where ℓ = Ω(log m).

Theorem 4 (Nguyen et al. [24]): Given p1, p2 where 0 ⩽
p1 < 1/2 < p2 ⩽ 1, let c = min{1/2 − p1, p2 − 1/2}. For
(1/c2) lnm ⩽ ℓ ⩽ m, there exists linear-time algorithm ENC :
{0, 1}m−1 → {0, 1}m such that for all x ∈ {0, 1}m−1 if y =
ENC(x) then wt(y) ∈ [p1m, p2m]) and for every subsequence
w consisting of ℓ consecutive bits of y, wt(w) ∈ [p1ℓ, p2ℓ].

In this section, we show that, for sufficiently large n,
the redundancy to encode (decode) binary data to (from)
BRC(n; p) when p > 1/2 and BalRC(n; ϵ) for arbitrary
ϵ ∈ (0, 1/2) can be reduced significantly to only a single bit
via the SRT. Particularly, we provide two efficient encoders:
• The first encoder adapts the SRT (presented in [24]) with

the antipodal matching (constructed in [11]) to encode
arbitrary data to BRC(n; p) when p > 1/2 with at most
n + 3 redundant bits.

• The second encoder, which is the main contribution of
this work, modifies the SRT as presented in [24] to

encode BalRC(n; ϵ) with only one redundant bit. Since
BalRC(n; ϵ) ⊂ BRC(n; p) for all ϵ ⩽ p − 1/2, this can
be apply to encode BRC(n; p) when p > 1/2 with one
redundant bit as well.

A. SRT and Antipodal Matching for BRC(n; p)
When p > 1/2

Recall that the encoders proposed in [11] can be used for
constructing BRC(n; p) when p > 1/2, and the redundancy
is roughly 2n (bits). In this section, we provide a linear-time
encoder for BRC(n; p) where p > 1/2 with at most (n + 3)
redundant bits. We have p > 1/2 in all our descriptions in this
part.

Recall that for an array A of size n × n, we use Ai to
denote the ith row of A and Aj to denote the jth column of
A. In addition, we use Ai;⟨j⟩ to denote the sequence obtained
by taking the first j entries of the row Ai and use Ai;⟨j⟩ to
denote the sequence obtained by taking the first j entries of
the column Ai. For example, if

A =

 a b c
d e f
g h i

 , then A1;⟨2⟩ = ab, A3;⟨2⟩ = cf.

We now describe the detailed construction of the Encoder
ENC2

BRC(n;p), where p > 1/2.

Encoder ENC2
BRC(n;p), where p > 1/2. Set N = n2−(n+3),

ℓ = n, p1 = 0, p2 = p and c = p − 1/2. According to
Theorem 4, for sufficiently large n that (1/c2) ln(n2−n−2) ⩽
n ⩽ n2 − n − 2, there exists linear-time encoder, ENCseq :
{0, 1}N → {0, 1}N+1 such that for all x ∈ {0, 1}N and
y = ENCseq(x) we have wt(w) ∈ [0, pn] for every subse-
quence w consisting of n consecutive bits of y. In addition,
we follow [11] to construct the antipodal matchings ϕ for
sequences of length n− 1.

INPUT: x ∈ {0, 1}N

OUTPUT: A ≜ ENC2
BRC(n;p)(x) ∈ BRC(n; p) with p > 1/2

(I) Set y = ENCseq(x) ∈ {0, 1}N+1. Suppose that y =
y1y2 . . . yn2−n−2.

(II) Fill n2 − n− 1 bits of y to A row by row as follows.
• Set Ai ≜ yn(i−1)+1 . . . yni for 1 ⩽ i ⩽ n− 2.
• Set An−1 ≜ yn(n−2)+1 . . . yn2−n−2 ∗1 ∗2, where
∗1, ∗2 are determined later.

• Suppose that An = z1z2 . . . zn where zi is deter-
mined later.

• If wt
(
An−1;⟨n−2⟩

)
> p(n − 2), flip all bits in

An−1;⟨n−2⟩ and set ∗1 = 1, otherwise set ∗1 = 0.
(III) For 1 ⩽ i ⩽ (n− 1), we check the ith column:

• if wt
(
Ai;⟨n−1⟩

)
> pn, set zi = 1 and replace

Ai;⟨n−1⟩ with ϕ
(
Ai;⟨n−1⟩

)
• Otherwise, set zi = 0.

(IV) Check the nth row:

• If wt
(
An;⟨n−1⟩

)
> pn, set ∗2 = 1 and replace

An;⟨n−1⟩ with ϕ
(
An;⟨n−1⟩

)
• Otherwise, set ∗2 = 0.

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

4970 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

(V) Check the nth column:

• If wt
(
An;⟨n−1⟩

)
> pn, set zn = 1 and replace

An;⟨n−1⟩ with ϕ
(
An,⟨n−1⟩

)
.

• Otherwise, set zn = 0.
(VI) Output A.

We have the following result.
Theorem 5: The Encoder ENC2

BRC(n;p) is correct. In other
words, ENC2

BRC(n;p)(x) ∈ BRC(n; p) with p > 1/2 for all
x ∈ {0, 1}N . The redundancy is n + 3 (bits).

Proof: Let A = ENC2
BRC(n;p)(x). We first show that the

weight of every column of A is at most pn. From Step (III)
and Step (V), the encoder guarantees that the weights of n
columns are at most pn. Although there is a replacement in
the nth row in Step (IV), it does not affect the weight of any
column. Indeed, from the definition of an antipodal matching,
if wt(x) > n/2, then ϕ(x) has all its 1’s in positions where x
has 1’s and wt(ϕ(x)) ⩽ n/2. Therefore, whenever the encoder
performs replacement step in any row (or respectively any
column), it does not increase the weight of any column (or
respectively any row). Therefore, we conclude that wt

(
Ai

)
⩽

pn for all 1 ⩽ i ⩽ n.
We now show that the wt

(
Ai

)
⩽ pn for all 1 ⩽ i ⩽ n.

From Step (IV), we observe that the nth row satisfies the
weight-constraint. As mentioned above, during Step (III) and
Step (V), whenever the encoder performs replacement step in
any column, it does not increase the weight of any row, i.e. the
weight-constraint is preserved over the first (n− 2) rows that
is guaranteed by the Encoder ENCseq from Step (I). It remains
to show that the (n− 1)th row satisfies the weight constraint
with the determined values of ∗1, ∗2. Indeed, from Step (II),
if ∗1 = 0, we have:

wt
(
An−1

)
⩽ p(n− 2) + 1 = pn + (1− 2p) ⩽ pn.

Otherwise,

wt
(
An−1

)
< (1−p)(n−2)+2 < pn for all n > 2/(2p−1).

In conclusion, we have ENC2
BRC(n;p)(x) ∈ BRC(n; p) for all

x ∈ {0, 1}m. Since N = n2 − (n + 3), the redundancy of our
encoder is then n2 −N = n + 3 (bits).

Remark 1: We now discuss the lower bound for n so that
the encoding algorithm works. It requires (1/c2) ln(n2 − n−
2) ⩽ n ⩽ n2−n−2 where c = p−1/2. Since n2−n−2 ⩾ n
for all n ⩾ 3 and ln(n2 − n − 2) ⩽ ln n2 = 2 ln n, a simple
lower bound can be described as n ⩾ 3 and n/ ln n ≥ 1/
(p− 1/2)2.

For completeness, we describe the corresponding decoder
DEC2

BRC(n;p) as follows. Recall that the positions of redundant
bits are fixed by our encoder that includes all n bits of the last
row An and the last two bits of An−1 (refer to Step II in the
construction of the encoder ENC2

BRC(n;p)).

Decoder, DEC2
BRC(n;p).

INPUT: A ∈ BRC(n; p)
OUTPUT: x ≜ DEC2

BRC(n;p)(A) ∈ {0, 1}N , where N = n2 −
n− 3

(I) Decode the nth column, An. If the last bit is 1, flip it to
0 and replace An;⟨n−1⟩ with ϕ

(
An;⟨n−1⟩

)
. Otherwise,

proceed to the next step.
(II) Decode the nth row, An. Check the last bit in An−1, if it

is 1, flip it to 0 and replace An;⟨n−1⟩ with ϕ
(
An;⟨n−1⟩

)
.

Otherwise, proceed to the next step.
(III) Decode the (n − 1)th row, An−1. Check the second

last bit in An−1, if it is 1, flip all the bits in An−1.
Otherwise, proceed to the next step.
Suppose the nth row is now An = z1z2 . . . zn.

(IV) For 1 ⩽ i ⩽ (n − 1), we decode the ith column,
i.e. Ai, as follows. If zi = 1, replace Ai;⟨n−1⟩ with
ϕ
(
Ai,⟨n−1⟩

)
.

(V) Set y ≜ A1A2 . . . An−2An−1;⟨n−2⟩ ∈ {0, 1}n2−n−2.
(VI) Output x ≜ DECseq(y) ∈ {0, 1}n2−n−3.

Complexity analysis. For n × n arrays, it is easy to
verify that encoder ENC2

BRC(n;p) and decoder DEC2
BRC(n;p)

have linear-time complexity. Particularly, there are at most
n + 2 replacements, each replacement is done over
sequence of length n, and the complexity of encoder/decoder
ENCseq, DECseq is linear over codeword length N = n2−n−
3 = Θ(n2). We conclude that the running time of encoder
ENC2

BRC(n;p) and decoder DEC2
BRC(n;p) is Θ(n2) which is

linear in the message length N = n2 − n− 3.
Remark 2: In [3], Talyansky et al. studied the t-conservative

arrays constraint, where every row has at least t transitions
0 → 1 or 1 → 0 for some t ⩽ n/(2 log n)−O(log n) < n/2.
Such a constraint is equivalent to the p-bounded constraint in a
weaker condition, where the weight constraint is enforced in
every row only. Indeed, for a sequence x = x1x2 . . . xn ∈
{0, 1}n, consider the differential of x, denoted by Diff(x),
which is a sequence y = y1y2 . . . yn ∈ {0, 1}n, where
y1 = x1 and yi = xi − xi−1 (mod 2) for 2 ⩽ i ⩽ n.
We then observe that x has at least t transitions if and only if
the weight of Diff(x) is at least t. In addition, the constraint
problem where the weight in every row is at least t where
t < n/2 is equivalent to the constraint problem where the
weight in every row is at most t where t > n/2. Therefore,
one may modify the construction of our proposed encoder
ENC2

BRC(n;p) (i.e for p = 1− 1/(2 log n)) > 1/2) to construct
binary arrays such that there are at least t transitions in every
row and every column with at most n+3 redundant bits. When
the weight-constraint is only required on rows, only Step (I) in
ENC2

BRC(n;p) is sufficient and N = n2 − 1. Although there is
no improvement in the redundancy (the encoder in [3] also
use only one redundant bit), our encoder can be applied for a
larger range of t, where t ⩽ n/c for any c > 2.

B. Modified SRT to Encode BalRC(n; ϵ) With One
Redundant Bit

In this section, we show that, for sufficient n, the redun-
dancy to encode (decode) binary data to (from) BalRC(n; ϵ)
can be further reduced from Θ(n) bits (from the encoding
method in Section III-B) to only a single bit via the SRT.

Similar to the coding method in [24], the original data of
length (n2 − 1) is prepended with 0. We then also remove

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

NGUYEN et al.: TWO-DIMENSIONAL RC/SW CONSTRAINED CODES: BOUNDED WEIGHT AND ALMOST BALANCED WEIGHT 4971

all the forbidden strings, and append the replacement strings
(starting with marker 1). To ensure that the encoding process
terminates, replacement strings are of shorter lengths com-
pared to the forbidden strings.

On the other hand, the differences in this work are as
follows. There are two types of forbidden strings: those
comprising consecutive bits (to ensure the weight constraint
over the rows) and those comprising bits that are of distance n
bits apart (to ensure the weight constraint over the columns).
Consequently, we have two types of markers.

Definition 7: For a binary sequence x = x1x2 . . . xm,
a subsequence y of x is said to be (ℓ, ϵ)-r-forbidden if y =
xixi+1 . . . xi+ℓ−1 for some i and y is not ϵ-balanced. On the
other hand, a subsequence z of x is said to be (ℓ, ϵ)-c-forbidden
if z = xjxj+n . . . xj+(ℓ−1)n for some j and z is not ϵ-
balanced.

Given ϵ > 0, let F(ℓ, ϵ) denote the set of all forbidden
sequences of size ℓ, that are not ϵ-balanced. The following
theorem provides an upper bound on the size of F(ℓ, ϵ).

Theorem 6: [24, Theorem 5] For ϵ > 0, m ⩾ 16 and ℓ ⩽ m
such that (1/ϵ2) lnm ⩽ ℓ, let k = ℓ− 3− log m, there exists
an one-to-one map Ψ : F(ℓ, ϵ) → {0, 1}k.

The look-up table for Ψ : F(ℓ, ϵ) → {0, 1}k, which is
roughly of size 2ℓ, is needed for our encoding and decoding
algorithms. To obtain efficient algorithms whose running time
is linear in m, we set ℓ = α ln m = Θ(log m), for some fixed
α ⩾ 1/ϵ2.

Note that, when all forbidden strings have been removed,
the length of the current encoded sequence is strictly smaller
than n2. Similar to the coding methods in [24] and [30],
we introduce the extension phase procedure to append bits
to obtain an encoded sequence of length n2 while the weight
constraint is still preserved. Crucial to the correctness of our
encoding algorithm is the following lemma.

Lemma 2: Given ϵ > 0, integers n, ℓ, s, where n = ℓs,
nϵ ⩾ 2. Set ϵ′ = ϵ/2 and suppose that x ∈ {0, 1}n−1 where
every window of size ℓ of x is ϵ′-balanced. We then have
x0 and x1 that are both ϵ-balanced.

Proof: Since every window of size ℓ of x is ϵ′-balanced,
we then have

wt(x1) ⩾ wt(x0)⩾ (1/2− ϵ′)ℓs− 1
= (1/2− ϵ)n + nϵ/2− 1
⩾ (1/2− ϵ)n.

Similarly, we have

wt(x0) ⩽ wt(x1)⩽ (1/2 + ϵ′)ℓs + 1
= (1/2 + ϵ)ℓs + (1− ϵℓs/2)
= (1/2 + ϵ)n + (1− ϵn/2)
⩽ (1/2 + ϵ)n.

Thus, x0 or x1 are both ϵ-balanced.
We now present a linear-time algorithm ENC2

BalRC(n;ϵ) to
encode BalRC(n; ϵ) that incurs at most one redundant bit.

Encoder ENC2
BalRC(n;ϵ). Given n, ϵ > 0, we set m =

n2, ϵ′ = ϵ/2, ℓ = ⌈α loge m⌉ for some fixed number α ⩾
1/ϵ′2. The source sequence x ∈ {0, 1}n2−1. For simplicity,

we assume log n is an integer, and n = ℓs for some integer s.
According to Theorem 6, there exists an one-to-one map Ψ :
F(ℓ, ϵ′) → {0, 1}k, where k = ℓ−3− log m = ℓ−3−2 log n.
Here, F(ℓ, ϵ′) denotes the set of all forbidden sequences of
size ℓ, that are not ϵ′-balanced and can be mapped one-to-one
to binary sequences of length ℓ− 3− 2 log n.

The algorithm contains three phases: initial phase, replace-
ment phase and extension phase. Particularly, the extension
phase includes row extension and array extension.

Initial phase. The source sequence x ∈ {0, 1}n2−1 is
prepended with 0, to obtain c = 0x ∈ {0, 1}n2

. The
encoder scans c and if there is no forbidden subsequence,
neither (ℓ, ϵ′)-r-forbidden or (ℓ, ϵ′)-c-forbidden, it outputs
Φ−1(c), which is an array of size n × n. Otherwise, it pro-
ceeds to the replacement phase. Observe that if there is no
(ℓ, ϵ′)-r-forbidden or (ℓ, ϵ′)-c-forbidden in all rows and all
columns then all rows and all columns are ϵ′-balanced, and
since ϵ′ = ϵ/2 < ϵ, all rows and all columns are then
ϵ-balanced.

Replacement phase. Let the current word c of length
N0. In the beginning, N0 = n2. The encoder searches
for the forbidden subsequences. Suppose the first forbidden
subsequence starts at xi for some 1 ⩽ i ⩽ N0 − ℓ + 1. Let p
be the binary representation of the index i of length 2 log n.
Let y = xixi+1 . . . xi+ℓ−1 and z = xixi+n . . . xi+(ℓ−1)n.

• If y is (ℓ, ϵ′)-r-forbidden, the encoder sets R = 11pΨ(y).
It then removes y from c and prepends R to c. The
encoder repeats the replacement phase.

• If y is not (ℓ, ϵ′)-r-forbidden, and z is (ℓ, ϵ′)-c-forbidden,
the encoder sets R = 10pΨ(z). It then removes z from c
and prepends R to c. The encoder repeats the replacement
phase.

The encoder exits the replacement phase and proceeds to
the extension phase if, after some replacement, the cur-
rent sequence c contains no (ℓ, ϵ′)-r-forbidden (or (ℓ, ϵ′)-c-
forbidden) subsequence, or the current sequence is of length
n/2. Otherwise, the encoder repeats the replacement phase.
Note that such a replacement operation reduces the length of
the sequence by one, since we remove a subsequence of ℓ bits
and replace it by 2 + 2 log n + k = 2 + 2 log n + (ℓ − 3 −
2 log n) = ℓ−1 (bits). Therefore, this procedure is guaranteed
to terminate. We illustrate the idea of the replacement phase
through Figure 2.

Extension phase. If the length of the current sequence c
is N0 where N0 < n, the encoder appends a suffix of length
N1 = n2 − N0 to obtain a sequence of length n2. Note that
at the end of the replacement phase, the length of the current
sequence is at least n/2. Suppose that N0 = n× q + r where
0 ⩽ q < n, 0 ⩽ r < n. If we fill the bits in c to an array of
size n×n, we can fill q rows and the (q+1)th row includes r
bits. From the replacement phase, in the worst case scenario,
we have N0 = n/2, q = 0, r = n/2. The extension phase
includes two steps: the row extension step

(
to fulfill the (q +

1)th row
)

and the array extension step
(
to fulfill the remaining

(n− q − 1) rows
)
.

Row extension. The encoder fulfills the (q + 1)th row as
follows.

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

4972 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

Fig. 2. (ℓ, ϵ′)-r-forbidden and (ℓ, ϵ′)-c-forbidden replacement.

• If N0 = n/2, i.e. q = 0, r = n/2, the encoder simply
concatenate the sequence c and its complement c to obtain
the first row. In this case, it is easy to see that the row is
balanced.

• If N0 > n/2 > ℓ, we then observe that the output
sequence from the replacement phase, c, contains no
(ℓ, ϵ′)-r-forbidden subsequence of length ℓ. Let w be the
suffix of length ℓ of c. The encoder simply appends w
repeatedly until the (q + 1)th row is fulfilled. Formally,
let j be the smallest integer such that c′ = cwj is of
length greater than (q + 1)n. The encoder outputs the
prefix of length (q+1)n of c′. In this case, it is also easy
to verify that, after the row extension phase, the (q+1)th
row is ϵ′-balanced. Since c does not contain any (ℓ, ϵ′)-
r-forbidden subsequence, it remains to show that there is
no (ℓ, ϵ′)-r-forbidden subsequence in the suffix wj . It is
easy to see that repeating the vector w clearly satisfies the
constraint since every subsequence of size ℓ generated in
this manner is a cyclic shift of the vector w, and since w
is ϵ′-balanced, there is no (ℓ, ϵ′)-r-forbidden subsequence.

Array extension. After the row extension step, the array
is of size (q + 1) × n, where 0 ⩽ q < n, and every row is
ϵ′-balanced.

• If q + 1 = n or q = n − 1, the encoder simply
outputs this array. Since every row is ϵ′-balanced, which
is also ϵ-balanced, it remains to show that every column
is ϵ-balanced. From the replacement step, every window
of size ℓ of the first (n − 1) bits in every column is
ϵ′-balanced. According to Lemma 2, we then have every
column is ϵ-balanced.

• If q + 1 ⩽ n/2, the encoder simply fills in the next
(q + 1) rows with the complement of the current array.
After that the encoders fills the remaining rows alternately
with balanced sequences w = 0101 . . . = (01)n/2, and
w′ = 1010 . . . = (10)n/2. In this case, it is easy to show
that every row and every column is ϵ-balanced.

• If q+1 > n/2, similar to the process in the row extension
step, for each column i, the encoder sets yi to be the
sequence obtained by the first q bits (i.e. except the bit
in the (q+1)th row) and wi to be the suffix of length ℓ of
yi. It then appends wi repeatedly until the ith column is
fulfilled. Similar to the proof in the row extensive phase,
for every column, the sequence obtained by (n− 1) bits,
except the bit in the (q +1)th row, is ϵ′-balanced. Again,
according to Lemma 2, every column is ϵ-balanced. Note
that all (n − q − 1) rows, that have been fulfilled, are
actually repetitions of some previous rows (i.e. the jth
column is filled exactly as the j − ℓ − 1th column),
therefore, they are all ϵ′-balanced, and hence, are also
ϵ-balanced.

The following result is then immediate.
Theorem 7: The Encoder ENC2

BalRC(n;ϵ) is correct, i.e.
ENC2

BalRC(n;ϵ)(x) ∈ BalRC(n; ϵ) for all x ∈ {0, 1}n2−1. The
redundancy of the proposed encoder is one bit.

For completeness, we describe the corresponding decoder
DEC2

BalRC(n;ϵ) as follows.

Decoder DEC2
BalRC(n;ϵ).

INPUT: A ∈ BalRC(n; ϵ)
OUTPUT: x ≜ DEC2

BalRC(n;ϵ)(A) ∈ {0, 1}n2−1

Decoding procedure. From an array A of size n × n, the
decoder first obtains the binary sequence x = Φ(A) of
length n2. The decoder scans from left to right. If the first
bit is 0, the decoder simply removes 0 and identifies the
last (n2 − 1) bits are source data. On the other hand, if it
starts with 11, the decoder takes the prefix of length (ℓ − 1)
and concludes that this prefix is obtained by a replacement
of (ℓ, ϵ′)-r-forbidden subsequence. In other words, the prefix
is of the form 11pΨ(y), where p is of length 2 log n and
Ψ(y) is of length k. The decoder removes this prefix, adds
the subsequence y = Ψ−1(Ψ(y)) into position i, which takes
p as the binary representation. On the other hand, if it starts
with 10, the decoder takes the prefix of length (ℓ − 1) and
concludes that this prefix is obtained by a replacement of
(ℓ, ϵ′)-c-forbidden subsequence. In other words, the prefix is
of the form 10pΨ(z), where p is of length 2 log n and Ψ(z)
is of length k. The decoder removes this prefix, and adds the
forbidden subsequence z = Ψ−1(Ψ(z)) into position i, which
takes p as the binary representation. It terminates when the
first bit is 0, and simply takes the following (n2 − 1) bits as
the source data.

We illustrate the idea of the extension phase through the
following example.

Example 3: Consider n = 6, ℓ = 3, ϵ = 1/6, i.e. the weight
of every row and every column is within [2, 4]. The first

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

NGUYEN et al.: TWO-DIMENSIONAL RC/SW CONSTRAINED CODES: BOUNDED WEIGHT AND ALMOST BALANCED WEIGHT 4973

example considers the worst case scenario.

1 1 0 ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

→

1 1 0 0 0 1

0 0 1 1 1 0

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

In this example, N0 = n/2 = 3 and q = 0. The bits in
blue denote the complement of the first n/2 bits in the row
extension step, the bits in green denote the complement of the
first row in the array extension step since q+1 = 1 < n/2, and
the last three rows are filled by sequences w = 010101 and
w′ = 101010 alternately.

Another example is as follows.

1 1 0 1 0 1

0 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1

0 ? ? ? ? ?

? ? ? ? ? ?

→

1 1 0 1 0 1

0 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1

0 0 1 0 0 1

0 1 0 1 0 0

In this example, N0 = 25 and q = 4. The encoder first fulfills
the (q + 1)th or the fifth row, and then proceeds to the array
extension. Here, the bits in blue denote the suffix of length ℓ
bits before the row extension step, and the bits in red denote
the process that the encoder repeats the suffix until the fifth row
is fulfilled, and finally the last row is filled as the repetition of
the second row. Throughout the two examples, we can verify
that every row and every column is ϵ-balanced.

Remark 3: We now discuss the lower bound for n so that
the encoding algorithm works. Given ϵ ∈ (0, 1/2), we require
n2 ⩾ 1/ϵ′2 ln n2 = 8/ϵ2 ln n and nϵ ⩾ 2. Since n ≫ ln n,
a simple lower bound would be n ⩾ 8/ϵ2. Furthermore, when
p > 1/2, if we set ϵ = p−1/2 then BalRC(n; ϵ) ⊂ BRC(n; p).
Hence, one may use our encoding method for BalRC(n; ϵ)
to encode BRC(n; p), which uses one redundant bit. This
improves the redundancy of the encoder in Subsection IV-A,
which incurs n + 3 redundant bits.

V. 2D SLIDING-WINDOW CONSTRAINED CODES

In this section, we are interested in the problem of designing
efficient coding methods that encode (decode) binary data
to (from) BSW(n, m; p) and BalSW(n, m; ϵ). Similar to the
case of constructing 2D RC constrained codes BRC(n; p) and
BalRC(n; ϵ), the challenge in coding design is to find an
efficient method to enforce the weight constraint in every
window so that changing the weight of a window does not
violate the weight-constraint in previously coded windows.

Our main results in this section are summarised as follows.
• We use the construction of antipodal matching (as dis-

cussed in Section II-B and Section IV-A) to encode
(decode) binary data to (from) BSW(n, m; p) with at most
n redundant bits when m = n − Θ(1) and p ⩾ 1/2.
The construction can be extended to obtain capacity-
approaching encoder with at most o(n2) redundant bits
when m = n− o(n).

• We use SRT to encode (decode) binary data to (from)
BalSW(n, m; ϵ). For sufficiently large n, this method
incurs at most one redundant bit.

We first recall the sets BSW(n, m; p) and BalSW(n, m; ϵ).
Given n, m, p, ϵ, where m ⩽ n, ϵ ∈ [0, 1/2], p ∈ [0, 1] we set

BSW(n, m; p) ≜
{

A ∈ An : every window W of A

of size m×m are p-bounded
}

,

BalSW(n, m; ϵ) ≜
{

A ∈ An : every window W of A

of size m×m are ϵ-balanced
}

.

Example 4: Consider n = 4, m = 2, p = 1/4 and two given
arrays A and B as follows. We observe that A ∈ BRC(n; p),
however A /∈ BSW(n, m; p) since there is a window of size
2 × 2 (highlighted in red), which is not p-bounded. On the
other hand, we have B ∈ BSW(n, m; p), and B /∈ BRC(n; p)
as the first column of B (highlighted in blue) is not p-bounded.

A =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , B =

1 0 0 0
0 0 1 0
1 0 0 0
0 0 0 1

A. Antipodal Matching for BSW(n, m; p)

Suppose that m = n − k for some constant number k =
Θ(1). Observe that BSW(n, m; 1/2) ⊂ BSW(n, m; p) for all
p ⩾ 1/2. Hence, we aim to encode (decode) binary data to
(from) BSW(n, m; 1/2) with at most n redundant bits, i.e. for
any array A ∈ BSW(n, m; 1/2), the weight of every window
of size m×m is at most m2/2. For simplicity, we suppose
that m is even and 2(k + 1)2 ⩽ n.

We follow [11] to construct the antipodal matchings ϕ1 for
sequences of length m2 and ϕ2 for sequences of length
m2 − m. In other words, ϕ1 : {0, 1}m2 → {0, 1}m2

and
ϕ2 : {0, 1}m2−m → {0, 1}m2−m such that for arbitrary
x ∈ {0, 1}m2

and y ∈ {0, 1}m2−m:
• wt(ϕ1(x)) = n− wt(x), and wt(ϕ2(y)) = n− wt(y),
• If wt(x) > m2/2 then ϕ1(x) has all its 1’s in posi-

tions where x has 1’s. In other words, suppose x =
x1x2 . . . xm2 and z = ϕ1(x) = z1z2 . . . zm2 , then zi = 1
implies xi = 1 for 1 ⩽ i ⩽ m2. We have the same
argument for y.

• ϕ1(ϕ1(x)) = x and ϕ2(ϕ2(y)) = y.
We now describe the detailed construction of the sliding-

window p-bounded encoder, ENCBSW(n,m;p) when p ⩾ 1/2.
SW p-bounded encoder, ENCBSW(n,m;p).

INPUT: x ∈ {0, 1}n2−n

OUTPUT: A ≜ ENCBSW(n,m;p)(x) ∈ BSW(n, m; 1/2), where
BSW(n, m; 1/2) ⊂ BSW(n, m; p)

(I) Fill n2−n bits of x to A row by row to obtain a subarray
of size (n − 1) × n and suppose the last row of A is
An = y1y2 . . . yn.

(II) Observe that there are (k +1)2 windows of size m×m
that we need to enforce the weight constraint. We set

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

4974 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

the order of the windows as row by row and let Wi be
the ith window of A for 1 ⩽ i ⩽ (k + 1)2.

(III) Using ϕ1 for Wi where 1 ⩽ i ⩽ k(k + 1):
• If wt(Wi) > m2/2, set y2i−1 = 1 and replace the

entire subarray Wi with ϕ1(Wi).
(IV) Using ϕ2 for (k + 1) windows of size (m− 1)×m:

• For k(k + 1) + 1 ⩽ i ⩽ (k + 1)2, set Ci be
the subarray obtained by removing the last row of
Wi. In other words, Ci is of size (m − 1) × m
which does not include the bits of the last
row An.

• If wt(Ci) > (m2−m)/2, set y2i−1 = 1 and replace
the entire subarray Ci with ϕ2(Ci).

(V) Filling the remaining bit of the nth row:
• Set y2i = y2i−1 for 1 ⩽ i ⩽ (k + 1)2. We then

obtain y1y2 . . . y2(k+1)2 as a balanced sequence.
• Fill the remaining bits of the nth row with 0.

(VI) Output A.
Theorem 8: The Encoder ENCBSW(n,m;p) is correct.

In other words, ENCBSW(n,m;p)(x) ∈ BSW(n, m; 1/2) for all
x ∈ {0, 1}n2−n. The redundancy is n (bits).

Proof: Suppose that A = ENCBSW(n,m;p)(x) for some
x ∈ {0, 1}n2−n. We now show that every window of size
m × m has weight at most m2/2. We set the order of the
windows as row by row and let Wi be the ith window of A
for 1 ⩽ i ⩽ (k + 1)2.

We first show that the weight of Wi is at most m2/2 for
1 ⩽ i ⩽ k(k + 1). From step (III), suppose that a window
Wi satisfies the weight constraint and the encoder proceeds
to replace some window Wj with ϕ1(Wj) where Wj has
some overlapping bits with Wi and wt(Wj) > m2/2. Since
ϕ1(Wj) has all its 1’s in positions where Wj has 1’s and
wt(ϕ1(Wj)) ⩽ m2/2. Therefore, whenever the encoder per-
forms replacement in Wj , it does not increase the weight of
Wi, the ‘0’ bits in Wi will not change to ‘1’, only the ‘1’ bits
in Wi will either stays as 1 or change to 0. Hence, it does not
violate the weight constraint in Wi. Thus, at the end of step
(III), the encoder ensures that the weight of Wi is at most
m2/2 for 1 ⩽ i ⩽ k(k + 1). Similarly, at the end of step
(IV), we have the weight of Ci is at most (m2 − m)/2 for
k(k + 1) + 1 ⩽ i ⩽ (k + 1)2.

It remains to show that the weight of Wi is at most m2/2 for
k(k + 1) + 1 ⩽ i ⩽ (k + 1)2. Observe that, from step (V),
every m consecutive bits of the last row An form a balanced
sequence (here m is even). For k(k + 1) + 1 ⩽ i ⩽ (k + 1)2,
each Wi is the concatenation of Ci (the weight of Ci is at
most (m2−m)/2) and m consecutive bits of the last row An

(which is a balanced sequence). Thus, the weight of Wi is
also at most (m2 −m)/2 + m/2 = m2/2.

For completeness, we describe the corresponding decoder
DECBSW(n,m;p) as follows.
SW p-bounded decoder, DECBSW(n,m;p).

INPUT: A ∈ BSW(n, m; p)
OUTPUT: x ≜ DECBSW(n,m;p)(A) ∈ {0, 1}n2−n

(I) Suppose that An = y1y2 . . . yn. We set the order of the
windows as row by row and let Wi be the ith window of

A of size m×m for 1 ⩽ i ⩽ (k+1)2. For k(k+1)+1 ⩽
i ⩽ (k + 1)2, set Ci to be the subarray obtained by
removing the last row of Wi. In other words, Ci is of
size (m− 1)×m.

(II) For 1 ⩽ i ⩽ k(k + 1), if y2i−1 = 1, replace Wi with
ϕ1(Wi).

(III) For k(k + 1) + 1 ⩽ i ⩽ (k + 1)2, if y2i−1 = 1, replace
Ci with ϕ2(Ci).

(IV) Set A′ be the array obtained by the first (n − 1) rows
of the current array.

(V) Output x ≜ Φ−1(A′) ∈ {0, 1}n2−n.
We illustrate the idea of the encoding process through the

following example.
Example 5: Consider n = 9, m = 8, i.e. the weight of every

window of size 8×8 is at most 32. We construct two antipodal
matchings: ϕ1 for sequences of length 64 and ϕ2 for sequences
of length 56. There are four windows of A to enforce the
weight constraint and the last row A9 = y1y2 . . . y9 is for the
redundant bits.

A =

1 0 0 0 0 0 1 0 1

0 1 1 1 1 0 0 0 1

0 0 1 1 1 1 1 1 1

0 0 0 1 1 0 0 1 1

1 1 1 1 1 1 1 1 1

1 0 1 0 0 1 1 0 1

1 1 1 0 0 1 1 1 1

0 0 1 0 1 1 1 1 1

y1 y2 y3 y4 y5 y6 y7 y8 y9

The encoder first checks W1 and since wt(W1) = 38 > 32,
it replaces W1 with ϕ1(W1) (as highlighted in blue), where
wt(ϕ(W1)) = 26, and sets y1 = 1.

A =

0 0 0 0 0 0 1 0 1

0 1 1 0 0 0 0 0 1

0 0 1 0 1 1 1 1 1

0 0 0 1 1 0 0 0 1

0 1 1 1 1 1 0 1 1

0 0 1 0 0 1 1 0 1

0 1 1 0 0 0 0 0 1

0 0 1 0 1 1 1 1 1

1 y2 y3 y4 y5 y6 y7 y8 y9

The encoder then checks W2 and since wt(W2) = 34 > 32,

it replaces W2 with ϕ1(W2) (as highlighted in blue), where
wt(ϕ(W2)) = 30, and sets y3 = 1.

A =

0 0 0 0 0 0 1 0 1

0 1 1 0 0 0 0 0 1

0 0 1 0 1 0 0 1 1

0 0 0 1 1 0 0 0 0

0 1 1 1 1 1 0 1 0

0 0 1 0 0 1 1 0 1

0 1 1 0 0 0 0 0 1

0 0 1 0 1 1 1 1 1

1 y2 1 y4 y5 y6 y7 y8 y9

The encoder then checks C1 and C2 as two subarrays of

size 8 × 7, and observes that their weights are both smaller
than 28. It then sets y5 = y7 = 0. Since y1y3y5y7 = 1100,

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

NGUYEN et al.: TWO-DIMENSIONAL RC/SW CONSTRAINED CODES: BOUNDED WEIGHT AND ALMOST BALANCED WEIGHT 4975

it sets y2y4y6y8 = 0011 and sets y9 = 0. The final output is
as follows.

A =

0 0 0 0 0 0 1 0 1

0 1 1 0 0 0 0 0 1

0 0 1 0 1 0 0 1 1

0 0 0 1 1 0 0 0 0

0 1 1 1 1 1 0 1 0

0 0 1 0 0 1 1 0 1

0 1 1 0 0 0 0 0 1

0 0 1 0 1 1 1 1 1

1 0 1 0 0 1 0 1 0

Remark 4: To obtain capacity-approaching codes, the con-

struction can be further extended for m = n − k when k is
no longer a constant. Since the redundancy of the encoder is
2(k + 1)2, in order to get the asymptotic rate of the encoder
to be one, it is sufficient to require k = o(n).

B. SRT for BalSW(n, m; ϵ)
In this subsection, we show that SRT is an efficient method

to encode BalSW(n, m; ϵ). Similar to the results in Section IV,
we show that for sufficiently large n, the coding method
incurs at most one redundant bit. Recall the definition of
(ℓ, ϵ)-r-forbidden and (ℓ, ϵ)-c-forbidden in Definition 7.

Lemma 3: Suppose that A is a binary array of size
n× n. If there is no (m, ϵ)-r-forbidden in any row of A
or there is no (m, ϵ)-c-forbidden in any column of A then
A ∈ BalSW(n, m; ϵ).

Proof: Clearly, if there is no (m, ϵ)-r-forbidden in any
row of A, then every m consecutive bits in each row form
an ϵ-balanced sequence. If we consider any window of size
m × m, since each row is ϵ-balanced, the window is also
ϵ-balanced.

According to Lemma 3, one may view an array of size
n × n as a binary sequence of length n2 and then uses our
SRT coding method (as presented in Section IV) to enforce the
ϵ-balanced weight constraint over every m consecutive bits.
We summarise the result as follows.

Theorem 9 (Modified Theorem 4): Given n > 0, ϵ ∈
(0, 1/2). For (1/ϵ2) ln(n2) ⩽ m ⩽ n, there exists linear-
time algorithms ENCBalSW(n,m;ϵ) : {0, 1}n2−1 → {0, 1}n2

and DECBalSW(n,m;ϵ) : BalSW(n, m; ϵ) → {0, 1}n2−1 such
that for all x ∈ {0, 1}n2−1 if A = ENCBalSW(n,m;ϵ)(x),
which is an array of size n × n, then for every subsequence
w consisting m consecutive bits of Ai, wt(w) ∈ [(1/2 −
ϵ)m, (1/2 + ϵ)m] for all 1 ⩽ i ⩽ n. In other words, we have
A ∈ BalSW(n, m; ϵ). Furthermore, we have DECBalSW(n,m;ϵ)◦
ENCBalSW(n,m;ϵ)(x) ≡ x for all x ∈ {0, 1}n2−1.

Remark 5: Given ϵ ∈ (0, 1/2), Theorem 9 requires
(1/ϵ2) ln(n2) ⩽ m ⩽ n, or (2/ϵ2) lnn ⩽ m ⩽ n. Since
n ≫ ln n, Theorem 9 works for a wide range of m with
respect to n.

VI. CONCLUSION

We have presented efficient encoding/decoding methods
for two types of constraints over two-dimensional binary
arrays: the p-bounded constraint and the ϵ-balanced constraint.

The constraint is enforced over either every row and every
column, regarded as the 2D row/column (RC) constrained
codes, or over every window (where each window refers to
as a subarray consisting of consecutive rows and consecutive
columns), regarded as the 2D sliding-window constrained
codes. The coding methods are based on: the divide and
conquer algorithm and a modification of the Knuth’s bal-
ancing technique, and the sequence replacement technique.
Some encoding algorithms used the construction of antipodal
matching as introduced in [11]. For certain code parameters,
we have shown that there exist linear-time encoding/decoding
algorithms that incur at most one redundant bit.

To conclude, we discuss open problems and possible future
directions of research.

1) Study the channel capacity. The capacity of the constraint
channels are defined by

cRC(p)≜ lim
n→∞

log |BRC(n; p)|
n2

,

cRC(ϵ)≜ lim
n→∞

1/n2 log |BalRC(n; ϵ)|,

cSW(m; p)≜ lim
n→∞

log |BSW(n, m; p)|
n2

,

cSW(m; ϵ)≜ lim
n→∞

1/n2 log |BalSW(n, m; ϵ)|.

In this work we show that cRC(p) = 1 for all p ⩾ 1/2,
and cRC(ϵ) = 1 for all ϵ. On the other hand, the values
cSW(m; p), cSW(m; ϵ) remain unknown for fixed m,
which is deferred to our future research work. Although
we can design efficient encoders for BalSW(n, m; p)
when m = n − o(n) or BalSW(n, m; ϵ) when m ⩾
(2/ϵ2) lnn, a general construction for arbitrary values of
m remains as an open problem.

2) Combine the constrained encoders with error-correction
capability. To further reduce the error propagation during
the decoding procedure, we are interested in the problem
of combining our proposed encoders with error-correction
capability. Recently, the problem of correcting multiple
criss-cross deletions (or insertions) in arrays has been
investigated in [31] and [32]. A natural question is
whether such codes can be modified and adapted for our
encoders so that the output arrays are 2D constrained
codes that are also capable of correcting deletions, inser-
tions, and substitutions.

REFERENCES

[1] T. T. Nguyen, K. Cai, K. A. S. Immink, and Y. M. Chee, “Efficient design
of capacity-approaching two-dimensional weight-constrained codes,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021, pp. 2930–2935.

[2] T. T. Nguyen, K. Cai, H. M. Kiah, K. A. S. Immink, and Y. M. Chee,
“Using one redundant bit to construct two-dimensional almost-balanced
codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2022,
pp. 3091–3096.

[3] R. Talyansky, T. Etzion, and R. M. Roth, “Efficient code construc-
tions for certain two-dimensional constraints,” IEEE Trans. Inf. Theory,
vol. 45, no. 2, pp. 794–799, Mar. 1999.

[4] D. Psaltis, M. A. Neifeld, A. Yamamura, and S. Kobayashi, “Optical
memory disks in optical information processing,” Appl. Opt., vol. 29,
no. 14, pp. 2038–2057, 1990.

[5] J. J. Ashley, M. Blaum, and B. H. Marcus, “Report on coding techniques
for holographic storage,” IBM Res., New York, NY, USA, Tech. Rep. RJ
10013, 1996.

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

4976 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

[6] D. Brady and D. Psaltis, “Control of volume holograms,” J. Opt. Soc.
Amer. A, Opt. Image Sci., vol. 9, no. 7, pp. 1167–1182, 1992.

[7] A. Chen, “Accessibility of nano-crossbar arrays of resistive switching
devices,” in Proc. 11th IEEE Int. Conf. Nanotechnol., Aug. 2011,
pp. 1767–1771.

[8] T. Raja and S. Mourad, “Digital logic implementation in memristor-
based crossbars,” in Proc. Int. Conf. Commun., Circuits Syst., Jul. 2009,
pp. 939–943.

[9] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and
U. C. Weiser, “Memristor-based material implication (IMPLY) logic:
Design principles and methodologies,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 10, pp. 2054–2066, Oct. 2014.

[10] R. B. Hur and S. Kvatinsky, “Memory processing unit for in-memory
processing,” in Proc. IEEE/ACM Int. Symp. Nanosc. Architectures
(NANOARCH), Jul. 2016, pp. 171–172.

[11] E. Ordentlich and R. M. Roth, “Low complexity two-dimensional
weight-constrained codes,” in Proc. IEEE Int. Symp. Inf. Theory,
Saint Petersburg, Russia, Jul. 2011, pp. 149–153.

[12] P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky,
and R. S. Williams, “Writing to and reading from a nano-scale cross-
bar memory based on memristors,” Nanotechnology, vol. 20, no. 42,
Sep. 2009, Art. no. 425204.

[13] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Information-theoretic sneak-
path mitigation in memristor crossbar arrays,” IEEE Trans. Inf. Theory,
vol. 62, no. 9, pp. 4801–4813, Sep. 2016.

[14] X. Zhong, K. Cai, G. Song, and N. Raghavan, “Deep learning based
detection for mitigating sneak path interference in resistive memory
arrays,” in Proc. IEEE Int. Conf. Consum. Electron. Asia (ICCE-Asia),
Seoul, South Korea, Nov. 2020, pp. 1–4.

[15] G. Song, K. Cai, X. Zhong, Y. Jiang, and J. Cheng, “Performance
limit and coding schemes for resistive random-access memory channels,”
IEEE Trans. Commun., vol. 69, no. 4, pp. 2093–2106, Apr. 2021.

[16] X. Zhong, K. Cai, G. Song, W. Wang, and Y. Zhu, “Constrained coding
and deep learning aided threshold detection for resistive memories,”
IEEE Commun. Lett., vol. 26, no. 4, pp. 803–807, Apr. 2022.

[17] E. Ordentlich and R. M. Roth, “Two-dimensional weight-constrained
codes through enumeration bounds,” IEEE Trans. Inf. Theory, vol. 46,
no. 4, pp. 1292–1301, Jul. 2000.

[18] A. Vardy, M. Blaum, P. H. Siegel, and G. T. Sincerbox, “Conservative
arrays: Multidimensional modulation codes for holographic recording,”
IEEE Trans. Inf. Theory, vol. 42, pp. 227–230, Jan. 1996.

[19] D. Knuth, “Efficient balanced codes,” IEEE Trans. Inf. Theory,
vol. IT-32, no. 1, pp. 51–53, Jan. 1986.

[20] L. G. Tallini, R. M. Capocelli, and B. Bose, “Design of some new
efficient balanced codes,” IEEE Trans. Inf. Theory, vol. 42, no. 3,
pp. 790–802, May 1996.

[21] E. Ordentlich, F. Parvaresh, and R. M. Roth, “Asymptotic enumeration of
binary matrices with bounded row and column weights,” in Proc. IEEE
Int. Symp. Inf. Theory, Saint Petersburg, Russia, Jul. 2011, pp. 154–158.

[22] K. A. S. Immink and J. H. Weber, “Very efficient balanced codes,” IEEE
J. Sel. Areas Commun., vol. 28, no. 2, pp. 188–192, Feb. 2010.

[23] N. Alon, E. E. Bergmann, D. Coppersmith, and A. M. Odlyzko,
“Balancing sets of vectors,” IEEE Trans. Inf. Theory, vol. IT-34, no. 1,
pp. 128–130, Jan. 1988.

[24] T. T. Nguyen, K. Cai, and K. A. S. Immink, “Binary subblock energy-
constrained codes: Knuth’s balancing and sequence replacement tech-
niques,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Los Angeles, CA,
USA, Jun. 2020, pp. 37–41.

[25] T. T. Nguyen, K. Cai, K. A. S. Immink, and H. M. Kiah, “Capacity-
approaching constrained codes with error correction for DNA-based
data storage,” IEEE Trans. Inf. Theory, vol. 67, no. 8, pp. 5602–5613,
Aug. 2021.

[26] C. D. Nguyen, V. K. Vu, and K. Cai, “Two-dimensional weight-
constrained codes for crossbar resistive memory arrays,” IEEE Commun.
Lett., vol. 25, no. 5, pp. 1435–1438, May 2021.

[27] T. M. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory,
vol. IT-19, no. 1, pp. 73–77, Jan. 1973.

[28] K. A. S. Immink, Codes for Mass Data Storage Systems, 2nd ed.
Eindhoven, The Netherlands: Shannon Foundation Publishers, 2004.

[29] A. J. van Wijngaarden and K. A. S. Immink, “Construction of maximum
run-length limited codes using sequence replacement techniques,” IEEE
J. Sel. Areas Commun., vol. 28, no. 2, pp. 200–207, Feb. 2010.

[30] O. Elishco, R. Gabrys, M. Medard, and E. Yaakobi, “Repeat-free codes,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2019, pp. 932–936.

[31] L. Welter, R. Bitar, A. Wachter-Zeh, and E. Yaakobi, “Criss-cross
deletion correcting codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2021, pp. 304–308.

[32] L. Welter, R. Bitar, A. Wachter-Zeh, and E. Yaakobi, “Multiple criss-
cross deletion-correcting codes,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jul. 2021, pp. 2798–2803.

Tuan Thanh Nguyen received the B.Sc. and Ph.D. degrees in mathe-
matics from Nanyang Technological University, Singapore, in 2014 and
2019, respectively. He was a Research Fellow with the School of Physical
and Mathematical Sciences, Nanyang Technological University, from August
2018 to September 2019. He is currently a Research Fellow at the Advanced
Coding and Signal Processing (ACSP) Laboratory, Singapore University
of Technology and Design (SUTD). His research project concentrates on
error correction codes and constrained codes for communication systems
and data storage systems, especially codes for DNA-based data storage. His
research interests include the interplay between combinatorics and computer
science/engineering, particularly including combinatorics and coding theory.

Kui Cai (Senior Member, IEEE) received the B.E. degree in information and
control engineering from Shanghai Jiao Tong University, Shanghai, China,
the M.Eng. degree in electrical engineering from the National University
of Singapore, and the joint Ph.D. degree in electrical engineering from
the Technical University of Eindhoven, The Netherlands, and the National
University of Singapore. She has been with the Data Storage Institute,
Singapore, for 14 years. Currently, she is an Associate Professor with the
Singapore University of Technology and Design (SUTD). Her main research
interests are in the areas of coding theory, information theory, and signal
processing for emerging data storage systems and digital communications.
She received the 2008 IEEE Communications Society Best Paper Award in
Coding and Signal Processing for Data Storage. She served as the Vice-Chair
(Academia) for the IEEE Communications Society, Data Storage Technical
Committee (DSTC) during 2015–2016. She was listed in the 2020 Who’s
Who in Engineering Singapore.

Han Mao Kiah (Senior Member, IEEE) received the Ph.D. degree in mathe-
matics from Nanyang Technological University (NTU), Singapore, in 2014.
From 2014 to 2015, he was a Post-Doctoral Research Associate with the
Coordinated Science Laboratory, University of Illinois at Urbana–Champaign.
From 2015 to 2018, he was a Lecturer with the School of Physical and
Mathematical Sciences (SPMS), NTU, where he is currently an Assistant
Professor. His research interests include DNA-based data storage, coding
theory, enumerative combinatorics, and combinatorial design theory.

Kees A. Schouhamer Immink (Life Fellow, IEEE) received the Ph.D. degree
(Hons.) from the University of Johannesburg in 2014. He founded Turing
Machines Inc., an innovative start-up focused on novel signal processing
for solid-state memories, where he is currently the President. He has been
a Visiting Professor at the Singapore University of Technology and Design
(SUTD). He has designed coding techniques of digital video, audio and data
recording products, such as CD, DVD, and Blu-ray Disc. He was elected
into the Royal Netherlands Academy of Sciences and the (U.S.) National
Academy of Engineering. He received the Knighthood in 2000, the Personal
Emmy Award in 2004, the 2017 IEEE Medal of Honor, the 1999 AES Gold
Medal, the 2004 SMPTE Progress Medal, the 2014 Eduard Rhein Prize for
Technology, the 2015 IET Faraday Medal, and the Golden Jubilee Award for
Technological Innovation by the IEEE Information Theory Society in 1998.

Yeow Meng Chee (Senior Member, IEEE) received the B.Math. degree
in computer science, and combinatorics and optimization and the M.Math.
and Ph.D. degrees in computer science from the University of Waterloo,
Waterloo, ON, Canada, in 1988, 1989, and 1996, respectively. Currently,
he is a Professor of design and engineering with the National University
of Singapore. Prior to this, he was a Professor of mathematical sciences with
Nanyang Technological University, the Program Director of interactive digital
media research and development with the Media Development Authority of
Singapore, a Post-Doctoral Fellow with the University of Waterloo and the
IBM’s Zurich Research Laboratory, the General Manager of the Singapore
Computer Emergency Response Team, and the Deputy Director of Strategic
Programs at the Infocomm Development Authority, Singapore. His research
interests include the interplay between combinatorics and computer sci-
ence/engineering, particularly in combinatorial design theory, coding theory,
extremal set systems, and their applications. He is a fellow of the Institute
of Combinatorics and its Applications. He is an Editor of the Journal of
Combinatorial Theory, Series A.

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:43:48 UTC from IEEE Xplore. Restrictions apply.

