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Abstract—Transverse-read is a novel technique to detect the
number of ‘1’s stored in a domain wall memory, also known
as racetrack memory, without shifting any domains. Motivated
by the technique, we propose a novel scheme to combine
transverse-read and shift-operation such that we can reduce the
number of shift-operations while still achieving high capacity.
We also show that this scheme is helpful to correct errors in
domain wall memory. A set of valid-words in this transverse-
read channel is called a transverse-read code. Our goal in this
work is to study transverse-read codes with respect to their
properties, capacity, and applications. We first present several
properties of transverse-read codes and show that they are
equivalent to a family of constrained codes. Then, we compute
the maximal asymptotic rate of transverse-read codes for certain
parameters. Furthermore, we also present several constructions
of transverse-read codes with high rate. Finally, we design several
transverse-read codes that can correct limited-shift-errors and
limited-magnitude errors in domain wall memory.

Index Terms—Racetrack memories, constrained codes,
transverse-read, shift-errors.

I. INTRODUCTION

SPINTRONIC domain-wall memory (DWM), also referred
as racetrack memory, is a promising candidate as a

memory solution that can overcome the density limitations of
spin-transfer torque magnetic memory (STT-MRAM), while
still retaining its static energy benefits [2], [3], [4], [5]. DWM
is constructed from ferromagnetic nanowires, referred to as
tapes or racetracks, which are separated into domains and are
connected to a single or a few access transistors to create
access ports. The state of the magnetic domains is accessed
by shifting them along the nanowire and aligning the target
domain to an access device. Unfortunately, due to process
variation of deeply-scaled domain-wall memories [2], slight
fluctuations in current combined with imperfections in the
nanowires can cause faults in the shift process. These faults
include over- and under-shifting of the tape, and thus for
domain-wall memory to become viable, the shifting reliability
must be addressed. As a result, several innovative approaches
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have been developed to detect and correct shift-errors in race-
track memory [6], [7], [8], [9], [10]. Besides that, the access
latency and the energy consumption in racetrack memory
depend on the average number of shift-operations. Several
works studied how to reduce the number of shift operations
in racetrack memory [11], [12].

Another approach to overcome the faults in the shifting
process of the DWM was proposed recently in [13], [14], [15].
In these works, a novel transverse-read (TR) mechanism was
developed in order to provide global information about the
data stored within a nanowire. In particular, transverse-read
can detect the number of ones among the data stored in
a DWM without shifting any domains, while still requiring
ultra-low power. However, detecting only the number of ones
in the DWM significantly reduces the information rate that
can be stored within the memory. Hence, the authors of [15]
also demonstrated how TR can be applied to partial segments
of the nanowire, such as from an end to an access point
or between two access points. This enables a segmented
TR which allows access to all of the bits of an arbitrarily
long nanowire in several steps, while maintaining isolated
current paths. While independently sensing several segments
can increase the memory’s information rate, this increase is
still far from reaching its full potential.

In this work, we propose a novel scheme that simultaneously
combines the two important features of DWM. On one hand,
we use transverse-reads in order to sense the number of ones
between two consecutive access points, and on the other hand
we still shift all the domains so that we can transverse-read
to sense the number of ones in different segments every time.
In general, we consider a message x = (x1, . . . , xn) of n
information bits stored in n domains and consecutive access
points such that each time we can transverse-read a segment of
length �. That is, in the first read, the Hamming weight of the
first length-� segment x1, . . . , x� is sensed. Next, we shift all
domains in δ positions and sense the Hamming weight of the
length-� segment (xδ+1, . . . , xδ+�) in the second read. We keep
shifting and sensing until the last segment (xkδ+1, . . . , xkδ+�)
(for simplicity, we assume that there is an integer k such that
n = kδ + �). For example, we consider the case n = 12, δ =
2, and � = 4. If x = (0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0), the
output in our reading scheme is (1, 2, 3, 2, 0). There exist other
vectors, for example y = (0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0) �= x,
that have the same output (1, 2, 3, 2, 0). Hence, we may not
obtain the full capacity using this scheme. First, we observe
that the information rate in this scheme depends on δ and
�. For example, when δ = � = 2, we show in this paper
that the information rate is log(3)/2 ≈ 0.7925. Then, we
observe that this scheme significantly reduces the number of
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Fig. 1. Racetrack memory with twelve data domains and two heads.

shift-operations by a factor of about δ times. For example,
when δ = 2, if we just shift normally about n/2 times, we
can read only half of the information bits, however using our
scheme, we can achieve information rate roughly 0.7925. Our
first question of interest is whether we can achieve higher
information rates. Hence, we are interested in finding the trade-
off between the number of shift-operations and the maximal
information rate under this setup. Furthermore, we can show
that this scheme is also helpful to correct shift-errors in DWM.
From a practical point of view, this scheme captures the two
features of DWM in order to significantly reduce the number
of shift operations and mitigate the shift errors, while still
supporting high information rates. From a theoretical point of
view, it poses several interesting challenges in combinatorics
and algorithms.

The rest of this paper is organized as follows. In Section II,
we present the necessary notations and define the codes
formally. In Section III, we study transverse-read codes with
respect to their properties, maximal asymptotic rates, and
constructions. Then, in Section IV, we show that our scheme
of using transverse-read codes is helpful to correct shift-errors
in domain wall memories. Finally, in Section V, we summarise
our contributions in this work and discuss some future works.

II. DEFINITIONS AND PRELIMINARIES

Let �q = {0, 1, . . . , q − 1} denote the alphabet of size q
and [n] denote the set {1, 2, . . . , n}. For each sequence u =
(u1, . . . , un) ∈ �n

q , let u[i;�] = (ui, ui+1, . . . , ui+�−1), 1 ≤ i ≤
n − � + 1, denote the length-� substring of u, starting from
index i. A q-ary code C of length n is a set of q-ary sequences
of length n, that is, C ⊆ �n

q . For each code C of length n,
we define its rate to be R(C) = logq(|C|)/n, where |C| is the
size of the code C. Let � : ��q → N be a mapping from a
q-ary codeword of length � to a natural number. Let n, �, δ, k
be integers such that n − � = kδ. We define the following
mapping,

��,δ : �n
q → N

k+1,

where ��,δ(x) = (�(x[1;�]),�(x[δ+1;�]), . . . , �(x[kδ+1;�]) ∈
N

k+1, given a vector x = (x1, . . . , xn) ∈ �n
q . The vector

��,δ(x) is called the (�, �, δ)-segment read vector of x. The
mapping ��,δ may not be injective, and thus there may be two
vectors x and y such that ��,δ(x) = ��,δ(y). Furthermore, ��,δ
is also not surjective, that is, there is a vector v ∈ N

k+1 such
that there does not exist any vector x ∈ �n

q such that ��,δ(x) =
v. A vector u ∈ N

k+1 is called a valid (�, �, δ)-segment read
vector if there exists a vector x ∈ �n

q such that ��,δ(x) = u.
A channel that only accepts the valid (�, �, δ)-segment read
vectors is called the (�, �, δ)-segment read channel.

Note that it is also possible to define the cyclic version
of these segment-read vectors, however, we prefer the more
practical non-cyclic version. In this work, we always assume
that n−� = kδ, � and δ are fixed while n and k tend to infinity.

If δ = 1 and ��,1 is injective, that is ��,1(x) �= ��,1(y)
for all x �= y, then the (�, �, 1)-segment read vector of x
is equivalent to an �-symbol read vector of x, defined and
studied in [20], [21]. In this case, any vector in �k+1

m is a
valid (�, �, 1)-segment read vector, where m = q�. We are
interested in a code with the ability to correct errors which
have been well studied in the context of �-symbol read chan-
nel [20], [21], [22], [23], [24]. There are many constructions
of codes correcting substitution errors [20], [21], [22], [23],
[24], [28] and some other codes correct synchronization errors,
including deletions and sticky insertions [18].

In the general case, when � can be any mapping (may
not injective), finding the maximal number of the (�, �, δ)-
segment read vectors and the capacity of the (�, �, δ)-segment
read channel is an interesting challenge. Owing to their
application in nanopore sequencing of DNA [25], the (�, �, δ)-
segment read channel has been studied independently recently.
However, only the case δ = 1 was investigated and the codes
do not have the ability to correct errors. In this work, we
focus on the case where � is the weight function owing to the
application in racetrack memory and consider various cases
of δ.

We now examine a model of domain wall memory of n
domains and two access points that are � positions far apart. A
message, which is a binary vector of length n, will be stored in
these n domains. Two read-ports can transverse-read to sense
the weight of a segment of length �. For example, Figure 1
illustrates a domain wall memory with twelve domains and
two access ports. To read the information in the domain wall
memory, besides the transverse-read technique, we also need
the shift operation. In each shift operation in the domain wall
memory, all domains together move δ positions. Let x =
(x1, . . . , xn) ∈ �n

q and let the weight function w : �n
q →

�(q−1)n+1 be such that for any x = (x1, x2, . . . , xn) ∈ �n
q then

w(x) = ∑n
i=1 xi. So, w(x) is the weight of the vector x. We

define

TR�,δ : �n
q → �k+1

(q−1)�+1

such that TR�,δ(x) = (w(x[1,�]),w(x[δ+1,�]), . . . ,w(x[kδ+1,�])).

We note that, owing to the application in domain-wall memory,
in this work, we only focus on the case q = 2 and the
stored message x ∈ �n

2 . The output in the transverse-reading
scheme is TR�,δ(x). We observe that TR�,δ(x) is actually the
(�, �, δ)-segment read vector of x. So, TR�,δ(x) is called the
(�, δ)-transverse-read vector of x. The mapping TR�,δ is not
injective, that is, there are two vectors x and y such that
TR�,δ(x) = TR�,δ(y). We are interested in a set of vectors x
such that the mapping TR�,δ is injective for this set.

Definition 1: Let n, �, δ, k be integers such that n−� = kδ.
1) A binary (�, δ)-transverse-read code of length n,

denoted by CTR(n; �, δ), is defined as a set of vectors
such that for any two vectors x, y ∈ CTR(n; �, δ),
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TR�,δ(x) �= TR�,δ(y). That is,

CTR(n; �, δ) = {
x ∈ �n

2 : ∀xi �= xj, TR�,δ(xi) �= TR�,δ
(
xj

)}
.

2) The largest size of a length-n binary (�, δ)-transverse-
read code will be denoted by A(n; �, δ) and the maximal
asymptotic rate for fixed � and δ is given by

R(�, δ) = lim sup
k→∞

log2(A(n; �, δ))
kδ + �

,

where n = �+ kδ.
Furthermore, the mapping TR�,δ is not always surjective,

that is, there exist δ, � and a vector u ∈ �k+1
�+1 such that for all

x ∈ �n
2 , it holds that TR�,δ(x) �= u. So, we now define a new

class of vectors in �k+1
�+1.

Definition 2: Let n, �, δ, k be integers such that n−� = kδ.
• A vector u ∈ �k+1

�+1 is called a valid (�, δ)-transverse-
read vector if there exists a vector x ∈ �n

2 such that
TR�,δ(x) = u.

• The set of all such vectors u of length k + 1 is called
the valid (�, δ)-transverse-read code of length n and is
denoted by TR(n; �, δ) ⊆ �k+1

�+1.
• The maximal asymptotic rate of the valid (�, δ)-

transverse-read code, given �, δ, is

R(�, δ) = lim sup
k→∞

log2(|TR(n; �, δ)|)
kδ + �

,

where n = kδ + �.

We note that in this work, we only consider the case where
(n − �)/δ = k is an integer.

Example 1: Let n = 13, � = 3, δ = 2, k = 5. Let x =
(0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0) ∈ �13

2 . Then, TR3,2(x) =
(1, 3, 2, 1, 1, 2) is the (3, 2)-transverse-read vector of x.
Hence, (1, 3, 2, 1, 1, 2) is a valid (3, 2)-transverse-read vector.
Let v = (0, 3, 3, 0, 0, 3). There does not exist any vector y ∈
�13

2 such that TR3,2(y) = v. Hence, v = (0, 3, 3, 0, 0, 3) is not
a valid (3, 2)-transverse-read vector.

Each codeword in the (�, δ)-transverse-read code is
equivalent to a valid (�, δ)-transverse-read vector. Hence,
|TR(n; �, δ)| = A(n; �, δ). The channel that only accepts valid
(�, δ)-transverse-read vectors is called the (�, δ)-transverse-
read channel. The capacity of the channel is the maximal
asymptotic rate of the (�, δ)-transverse-read code.

We note that to read data in a racetrack memory, we
normally read bit by bit and need a shift operation each
time we read a bit. Hence, to read a message of length n,
we need to shift n times. Using the transverse-read, in each
time, we can scan a segment and will shift all domains by δ
positions to read the next segment. Thus, to read a message
of length n, we only need to shift k = �n/δ� times. For
example, in Figure 1, two access ports can transverse-read a
segment of length three and each time, we shift all domains
two positions. If the stored message is a binary vector of length
13, c = (c1, c2, . . . , c13), the output in our reading scheme is
TR3,2(c) = (w(c1, c2, c3),w(c3, c4, c5), . . . ,w(c11, c12, c13)).
In this case, we only need to shift all domains six times.
However, given δ and �, the maximal information rate in
racetrack memories is R(�, δ), which may not achieve the
full capacity. Hence, in this work, we are interested in finding
the maximal size A(n, �, δ) and the maximal asymptotic rate

R(�, δ). Given δ, we are also interested in finding the optimal �
such that the asymptotic rate R(�, δ) is maximal. Furthermore,
we also seek for some constructions of (�, δ)-transverse-read
codes with efficient encoding/decoding algorithms.

Besides that, both shift-operation and transverse-read may
not work perfectly and errors may occur. It is known that
the shift-errors can be modelled as synchronizations, including
sticky-insertions and deletions [7], [8], [9]. We also see that
errors in transverse-read vector may cause some substitution
errors. Hence, in this work, we also study some transverse-read
codes which can correct shift-errors and substitutions errors.

From Definitions 1 and 2, we can see that an
(�, δ)-transverse-read code is equivalent to a valid (�, δ)-
transverse-read code through the mapping TR�,δ . Hence, in this
work, we use the term (�, δ)-transverse-read code for both.

III. TRANSVERSE-READ CODES

In this section, given �, δ, we study (�, δ)-transverse-read
codes, their properties, and aim to find the maximal asymptotic
rate of these codes. We are also interested in constructing these
codes with efficient encoding and decoding algorithms.

We first present several basic results on A(n; �, δ) and
R(�, δ) in the following theorem.

Theorem 1: Let n, �, δ, and k = (n − �)/δ be all positive
integers.

1) For � = 1, it holds that A(n; � = 1, δ) = 2
n−1
δ

+1 and
R(� = 1, δ) = 1/δ.

2) For � ≤ δ, it holds that A(n; �, δ) = (� + 1)
n−�
δ

+1 and
R(�, δ) = log2(�+1)

δ
.

3) For δ = 1 and some constant �, it holds that A(n; �, δ =
1) ≥ 2n−� and R(�, δ = 1) = 1.

Proof:
1) To prove this claim for � = 1 and k = (n −

1)/δ, we consider a vector x = (x1, . . . , xn) ∈
�n

2 and its transverse-read vector TR�,δ(x) =
(x1, xδ+1, . . . , xkδ+1) ∈ �k+1

�+1. We observe that for any
vector u ∈ �k+1

2 , u is a valid (�, δ)-transverse-read
vector. Hence, A(n, � = 1, δ) = |TR(k, � = 1, δ)| =
2k+1 and thus R(� = 1, δ) = lim supk→∞ k+1

kδ+� = 1
δ
.

2) We now consider the case � ≤ δ. Let
x = (x1, . . . , xn) ∈ �n

2 and TR�,δ(x) =
(w(x[1;�]),w(x[δ+1;�]), . . . ,w(x[kδ+1;�]) ∈ �k+1

�+1. Since
all segments x[iδ+1;�], for 0 ≤ i ≤ k, are non-
overlapping, any vector u ∈ �k+1

�+1 is a valid
(�, δ)-transverse-read vector. Hence, A(n, �, δ) =
|TR(k, �, �)| = (� + 1)k+1 = (� + 1)

(n−�)
δ

+1 and thus
R(�, δ) = lim supk→∞

(k+1)(log2(�+1))
kδ+� = log2(�+1)

δ
.

3) To prove this claim, we consider two length-n vec-
tors u = (0, . . . , 0, u1, . . . , un−�) ∈ �n

2 and v =
(0, . . . , 0, v1, . . . , vn−�) ∈ �n

2 such that u �= v. We
observe that TR�,δ=1(u) �= TR�,δ=1(v). Let CTR(n, �, δ)
be a set of all vectors of length n that the first �
entries are zeros. So, CTR(n, �, δ) is a binary (�, δ =
1)-transverse-read code and |CTR(n, �, δ = 1)| = 2n−�.
Therefore, A(n, �, δ = 1) ≥ 2n−� and R(�, δ = 1) =
lim supk→∞ n−�

kδ+� = 1.
For all cases in Theorem 1, we can find the maximal

asymptotic rate of (�, δ)-transverse-read codes. In the rest of
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the paper, we focus on the more challenging cases when 1 <
δ < �. First, we establish the case where � is a multiple of δ.

Theorem 2: Given two positive integers δ and � such that
� is a multiple of δ, it holds that

R(�, δ) = log2(δ + 1)

δ
.

Before we prove Theorem 2, we show the following result.
Lemma 1: Given two positive integers δ and � such that �

is a multiple of δ, it holds that

R(�, δ) ≤ log2(δ + 1)

δ
. (1)

Proof: Let n1 = n/δ and �1 = �/δ be two positive
integers. Given a vector x = (x1, . . . , xn) ∈ �n

2 , let
f (x) = (f1, . . . , fn1) ∈ �

n1
δ+1 where fi = w(x[(i−1)δ+1;δ]) ∈

{0, . . . , δ} for 1 ≤ i ≤ n1. We see that TR�,δ=2(x) =
(w(f[1;�1]),w(f[2;�1]), . . . ,w(f[n1−�1+1;�1]) ∈ �

n1−�1+1
(�+1)(δ) . Let

CTR(n, �, δ) be a binary (�, δ)-transverse-read code, that is,
for two different vectors x, y ∈ CTR(n, �, δ), it holds that
TR�,δ(x) �= TR�,δ(y). Hence, f (x) �= f (y). So, |CTR(n, �, δ)| ≤
|�n1
δ+1| = (δ + 1)n1 , for any (�, δ)-transverse-read code

CTR(n, �, δ). Therefore, A(n, �, δ) ≤ (δ + 1)n/2, and thus
R(�, δ) ≤ log2(δ+1)

δ
.

We now construct a binary (�, δ)-transverse-read code
CTR(n, �, δ) as follows.

Construction 1: Let F = {(f1, f2, . . . , fn1) : fi =
0 for all i = 1, . . . , �1} ⊆ �

n1
δ+1 be a set of all (δ + 1)-ary

vectors of length n1 such that their first �1 entries are all zeros.
We define the mapping φ : F → �n

2 such that, for each f =
(f1, . . . , fn1) ∈ F , φ(f ) = x = (x1, . . . , xn) ∈ �n

2 such that
x[(i−1)δ+1;δ] = (0δ−j1j) if fi = j. Let n = δn1, � = δ�1, and let
CTR(n, �, δ) = φ(F) = {φ(f ) : f ∈ F} be a set of all vectors
x of length n such that there is f ∈ F and x = φ(f ).
For each x ∈ CTR(n; �, δ), we obtain TR�,δ(x) = TR�1,1(f )
where φ(f ) = x. Hence, given two vectors x �=
y ∈ CTR(n; �, δ), TR�,δ(x) �= TR�,δ(y). So, the code
CTR(n; �, δ) from Construction 1 is a (�, δ)-transverse-read
code of length n. Moreover, |F | = (δ + 1)n1−�1 and thus
|CTR(n, �, δ)| = |F | = (δ + 1)n1−�1 . Therefore, A(n, �, δ) ≥
(δ + 1)n1−�1 and thus, for any even integer �,

R(�, δ) ≥ log2(δ + 1)

δ
. (2)

From inequalities 1 and 2, we obtain R(�, δ) = log2 δ+1
δ

.

Hence, Theorem 2 is proven.
In particular, when δ = 2, we obtain the following corollary.
Corollary 1: Let � be an even number. Then, it holds that

R(�, δ = 2) = log2(3)

2
≈ 0.7925.

Next, we continue to study the case where δ = 2, � is an odd
integer and provide a construction of a (�, δ)-transverse-read
code as follows.

Construction 2: Given two odd integers n and �, let k =
(n − �)/2. We define the mapping

g : �k
3 → �n

2

as follows. For each u = (u1, . . . , uk) ∈ �k
3, g(u) = c =

(c1, . . . , cn) ∈ �n
2 such that ci = 0 for all i = 1, . . . , �

and for 1 ≤ i ≤ k, (c�+2i−1, c�+2i) = (0, 0) if ui = 0,
(c�+2i−1, c�+2i) = (0, 1) if ui = 1, and (c�+2i−1, c�+2i) =
(1, 1) if ui = 2. Let CTR(n, �, 2) = {g(u) : u ∈ �k

3}.
We now consider u �= v ∈ �k

3, then g(u) �= g(v). Hence,
|CTR(n, �, δ = 2)| = |�k

3| = 3k. Moreover, if g(u) �= g(v)
then TR�,2(g(u)) �= TR�,2(g(v)). Thus, the code CTR(n, �, 2)
constructed above is an (�, δ)-transverse-read code. Hence,
A(n, �, 2) ≥ |CTR(n, �, 2)| = 3k and thus, for any odd integer �,

R(�, 2) ≥ log2 3

2
≈ 0.7925. (3)

From inequalities (2) and (3), we obtain the following result
for any integer �.

Lemma 2: For any integer � ≥ 2, we obtain the following
lower bound on the rate of the (�, δ)-transverse-read code
when δ = 2,

R(�, δ = 2) ≥ log2 3

2
≈ 0.7925.

Now, we extend the result in Lemma 2 for arbitrary values
of � and δ such that � > δ. Namely, we construct a binary
(�, δ)-transverse-read code as follows.

Construction 3: Given four integers k, �, δ, n such that
kδ = n − �. We define the mapping ψ as follows,

ψ : �k
δ+1 → �n

2 ,

for each u = (u1, . . . , uk) ∈ �k
δ+1, then ψ(u) = c =

(c1, . . . , cn) ∈ �n
2 such that ci = 0 for 1 ≤ i ≤ � and for

1 ≤ i ≤ k, if ui = j then c[�+δ(i−1)+1;δ−j] is all-zero vector of
length δ− j and c[�+δ(i)−j+1;j] is all-one vector of length j. Let
CTR(n, �, δ) = {ψ(u) : u ∈ �k

δ+1}.
We state the result formally as follows.
Theorem 3: The code CTR(n, �, δ) constructed in

Construction 3 is a binary (�, δ)-transverse-read code of length
n and thus A(n, �, δ) ≥ (δ + 1)k.

Proof: We consider any two vectors u, v ∈ �k
δ+1 such

that u �= v. Let i be the smallest index such that ui �=
vi. Hence, ψ(u)[�+δ(i−1)+1;δ] �= ψ(v)[�+δ(i−1)+1;δ]. Thus
ψ(u) �= ψ(v). We now consider two vectors TR�,δ(ψ(u)) and
TR�,δ(ψ(v)) and see that TR�,δ(ψ(u))i+1 = w(ψ(u)[δi;�]) �=
w(ψ(v)[δi;�]) = TR�,δ(ψ(v))i+1. Hence, TR�,δ(ψ(u)) �=
TR�,δ(ψ(v)).

Therefore, we conclude that the code CTR(n, �, δ) con-
structed in Construction 3 is a binary (�, δ)-transverse-read
code since for any x, y ∈ CTR(n, �, δ), we get TR�,δ(x) �=
TR�,δ(y). Moreover, |CTR(n, �, δ)| = |�k

δ+1| = (δ + 1)k since
ψ is an injection. Hence, A(n, �, δ) ≥ |CTR(n, �, δ)| = (δ+1)k

and the theorem is proved.
From Theorem 3, we obtain the following result on the

lower bound on the maximal asymptotic rate of (�, δ)-
transverse-read codes.

Corollary 2: If � and δ are two integers such that � > δ >

1 then

R(�, δ) ≥ log2(δ + 1)

δ
.

Furthermore, from Construction 3, there is a binary (�, δ)-
transverse-read code with an efficient encoding algorithm.

In the rest of this section, we present a technique to find
the asymptotic rate of (�, δ)-transverse-read codes exactly,
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Fig. 2. Non-deterministic finite state transition diagram � = 3, δ = 2.

given � > δ > 1. To find the asymptotic rate of the above
codes, we first prove that these codes are equivalent to a class
of constrained codes avoiding some specific patterns and a
class of regular languages. Then, we can use some known
techniques in constrained codes and regular languages using
finite state machines to compute the maximal asymptotic rates.

We first consider the case � = 3 and δ = 2. We recall
that A(n, �, δ) = |TR(k, �, δ)| where TR(k, �, δ) is the set of
all valid (�, δ)-transverse-read vectors of length k + 1. Let
u = (u1, . . . , uk+1) ∈ TR(k, � = 3, δ = 2) ⊆ �k+1

4 be a valid
(� = 3, δ = 2)-transverse-read vector. So, there exists a vector
x ∈ �n

2 such that TR�,δ(x) = u. Then, for each 1 ≤ i ≤ k + 1,
ui = w(x2i−1, x2i, x2i+1) = x2i−1 + x2i + x2i+1 ∈ {0, 1, 2, 3}.
We observe that TR(k, � = 3, δ = 2) is a regular language.
It is recognized by a non-deterministic state machine as in
Figure 2. The machine is a graph of two nodes, 0 and 1. For
each ui, there is a corresponding tuple (x2i−1, x2i, x2i+1) such
that ui = w(x2i−1, x2i, x2i+1). The node j corresponds to the
state x2i+1 = j for j = 0, 1. We start with ui = 0, that is,
x2i−1 +x2i +x2i+1 = 0, and thus x2i−1 = x2i = x2i+1 = 0. The
machine is at state 0. If ui+1 = 0 then the machine remains at
the same state 0 and there is an edge labelled 0 from node 0
to itself. If ui+1 = 1, that is, x2i+1 + x2i+2 + x2i+3 = 1, then
x2i+3 can be either 0 or 1. Hence, there is an edge labelled 0
from node 0 to itself and there is an edge labelled 1 from node
0 to node 1. If ui+1 = 2, that is, x2i+1 + x2i+2 + x2i+3 = 2,
then since x2i+1 = 0, it holds that x2i+2 = x2i+3 = 1. Hence,
the state of the machine is 1 and there is an edge labelled 2
from node 0 to node 1. Once the machine is at state 1, that
is, x2i+3 = 1, we consider the next symbol ui+2 = x2i+3 +
x2i+4 + x2i+5. Since x2i+3 = 1 we have ui+2 ≥ 1. If ui+2 = 1
then x2i+4 = x2i+5 = 0 and the machine will be at state 0. So,
there is an edge labelled 1 from node 1 to node 0. If ui+2 = 2
then x2i+4 + x2i+5 = 1. Hence, x2i+5 can be 0 or 1, that is,
the machine will be at state 0 or state 1. So, there is an edge
labelled 2 from node 1 to node 0 and a self loop labelled 2
from node 1 to itself. If ui+2 = 3 then x2i+4 = x2i+5 = 1 and
the machine will be at state 1. So, there is a loop labelled 3
from node 1 to itself. Therefore, the state machine in Figure 2
is a non-deterministic finite state machine. It is well known
that for any regular language which can be recognized by a
non-deterministic finite state machine, it can be expressed by
a deterministic state machine. For example, in the case � =
3 and δ = 2, the regular language TR(n, �, δ) is recognized
by a deterministic finite state machine as in Figure 3. In this
diagram, we have a new node “*” which is the state that
x2i−1 can be 0 or 1. The adjacency matrix of this deterministic
diagram is:

AG =
⎛

⎝
1 1 1
1 2 1
1 1 1

⎞

⎠

Fig. 3. Deterministic finite state transition diagram � = 3, δ = 2.

Next, using the well-known Perron-Frobenius theory [17], we
can exactly calculate the maximal asymptotic rate of (� =
3, δ = 2)-transverse-read codes to be (log2 λ)/2 = 0.8858
where λ = 3.4142 is the largest real eigenvalue of AG.

Additionally, the code TR(k, �, δ), which can be expressed
by the state machine in Figure 3, is also a constrained system.
We now state the following result.

Theorem 4: We consider the following set

F = {(
3, (1, 2)i, 0

)
,
(
3, (1, 2)i, 1, 3

)
,

(
0, (2, 1)i, 3

)
,
(
0, (2, 1)i, 2, 0

)}
.

A valid (� = 3, δ = 2)-transverse-read code is a constrained
code avoiding all patterns in F .

Theorem 4 can be proven by showing that both above codes
have the same finite state transition diagram as in Figure 3.

Next, we aim to extend the above results for other values
of � > δ > 1. We now build a non-deterministic finite state
machine G�,δ = (V�,δ,E�,δ) where V�,δ is the set of all vertices
and E�,δ is the set of all edges. The graph G�,δ has |V�,δ| =
2�−δ vertices and each vertex represents a binary word of
length s = � − δ. If � ≥ 2s, there are directed edges from
the vertex x = (x1, . . . , xs) to the vertex y = (y1, . . . , ys) with
labels {a, a + 1, . . . , a + � − 2s} where a = ∑s

i=1(xi + yi)

for any pair of vertices. If � < 2s, there is a directed edge
from the vertex x = (x1, . . . , xs) to the vertex y = (y1, . . . , ys)

if and only if x[δ+1;s−δ] = y[1;s−δ]. Such an edge is labelled
by b where b = ∑s

i=1 xi + ∑s
j=s−δ+1 yj. So, in both cases,

we can build a non-deterministic finite state machine of the
transverse-read channel.

For example, when � = 5 and δ = 2, we can build a non-
deterministic finite state machine of (� = 5, δ = 2) as in
Figure 4. In the graph, there are 8 nodes, each of which is a
state of the machine. We start with u1 = 0 and the machine
is at state (0, 0, 0). If u2 = 0, then the machine stays at state
(0, 0, 0) and there is a loop with label 0 from (0, 0, 0) into
itself. If u2 = 1, the machine can move to state (0, 1, 0) or
(0, 0, 1). There is an edge from state (0, 0, 0) to state (0, 1, 0)
with label 1 and an edge from state (0, 0, 0) to state (0, 0, 1)
with label 1. If u2 = 2, the machine can move to state (0, 1, 1).
There is an edge from state (0, 0, 0) to state (0, 1, 1) with label
2. We can consider other states and build the non-deterministic
state machine of 8 nodes and multiple edges as in Figure 4.
For simplicity in the illustration, in Figure 4, we only label all
edges that go out from nodes (0,0,0) and (1,1,1).

Once we have a non-deterministic finite state machine, it is
a folklore that we can convert from a non-deterministic finite
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Fig. 4. Non-deterministic finite state transition diagram � = 5, δ = 2.

TABLE I
THE MAXIMAL ASYMPTOTIC RATES OF

(�, δ)-TRANSVERSE-READ CODES

state machine to a deterministic finite state machine. Hence,
we can compute the capacity of the constrained channel
represented by this machine, and thus the maximal asymptotic
rate of transverse-read codes. Several numerical results were
computed and are tabulated in Table I.

From the results in Table I, we see that 0.936 =
TR�=7,δ=2 > TR�=5,δ=2 > TR�=3,δ=2 > TR�=2,δ=2 = 0.795.
So, using our scheme, even if we reduce the number of shift-
operations to 50%, we can still achieve the information rate
93.6% when � = 5. We observe in Table I that the asymptotic
rates of (�, δ = 2) are increasing when � is odd and increasing.
For any value of �, the rate satisfies TR�,δ=2 ≤ 1. We are
interested in finding the maximum asymptotic rates TR�,δ=2
for all odd numbers �. We obtained a trivial lower bound and
an upper bound, 0.936 ≤ max� TR�,δ=2 ≤ 1. We now state the
following conjecture and will study further in future work.

Conjecture 1: Let δ = 2 and �1, �2 be two odd number
such that �1 > �2.

1) The following inequality holds,

TR�1,δ=2 > TR�2,δ=2.

2) For any ε > 0, there exists an odd number � such that
TR�,δ=2 > 1 − ε.

We remark that the algorithm converts a non-deterministic
state machine with v nodes to a deterministic state machine
with 2v nodes. Hence, it is not efficient to compute the capacity
of the transverse-read channel when � is large. However, when
� is small, it is fast to build a deterministic finite state machine
of (�, δ)-transverse-read channel. Using the state machine, it is
possible to construct an (�, δ)-transverse-read code achieving
the capacity with efficient encoding/decoding algorithms. We
may use the well-known finite state splitting algorithms [17]
or some rank/unrank algorithms. In the following section, we
will study the ability of correcting shift-errors and substitution-
errors of these codes.

IV. TRANSVERSE-READ CODES CORRECTING ERRORS

Given �, δ, in this work, we consider the channel that only
accepts (�, δ)-transverse-read vectors. In the previous section,
we investigated the capacity of the channel which is the
maximal asymptotic rate of (�, δ)-transverse-read code and
constructed some codes with high rate. In this section, we
study and construct some error-correcting codes for the (�, δ)-
transverse-read channel. We consider two types of errors in
the channel, namely, shift-errors and substitution errors. We
construct codes correcting shift-errors in Section IV-A and
codes correcting substitution errors in Section IV-B.

A. Limited-Shift-Errors

In this subsection, we start with the (�, δ)-transverse-read
channel when � = 2 and δ = 1. We consider a domain
wall memory of n domains and two access ports which are
within two locations. These two access ports can transverse-
read to detect the number of ones in a segment of length
�. Let x = (x1, . . . , xn) ∈ �n

2 be the stored vector in the
domain wall memory. Using the transverse-read technique
in each segment of length � = 2 and shift-operation one
position in each step, we obtain the output vector TR2,1(x) =
(x1 + x2, x2 + x3, . . . , xn−1 + xn) which is the transverse-read
vector of x. In this scheme, a shift-operation might not work
perfectly and errors may occur. For example, an under-shift
error occurs at the first position, the first entry in the output
is repeated, and thus, we obtain the output (x1 + x2, x1 +
x2, x2 +x3, . . . , xn−1 +xn). This kind of error can be modelled
as a sticky-insertion. Besides that, if there is an over-shift
error, one entry in the output is deleted. For example, if an
over-shift occurs at the second position, we obtain the output
(x1 + x2, x3 + x4, . . . , xn−1 + xn). So, an over-shift error can
be modelled as a deletion in the transverse-read vector. Our
goal in this subsection is to correct these errors.

Normally, to correct these errors, one may need to use
some classical codes correcting deletions and sticky-insertions.
We note that, there are several asymptotically optimal binary
codes that correct t sticky-insertion errors with only t log n
redundancy bits. However, it is much more complicated to
correct t > 1 deletions. In this work, we show that transverse-
read codes have some special properties that are useful for
correcting these shift-errors. Let us consider a vector x =
(x1, x2, x3, x4, x5) = (0, 0, 1, 1, 0) and its transverse-read
vector TR2,1(x) = (x1 + x2, x2 + x3, x3 + x4, x4 + x5) =

Authorized licensed use limited to: National University of Singapore. Downloaded on March 15,2024 at 05:53:44 UTC from IEEE Xplore.  Restrictions apply. 



790 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

(0, 1, 2, 1). Once an over-shift occurs, a symbol in TR2,1(x)
is deleted and we may obtain an invalid word. For example,
an over-shift occurs in the second position and the symbol
x2 + x3 = 1 is deleted. Hence, we obtain the vector (0, 2, 1).
However, the word (0, 2, 1) is not a valid (2,1)-transverse-
read vector since 0 can not be followed by a 2. Hence,
we can detect and locate a single deletion in this case.
Based on this simple observation, we can show a strong
connection between a code correcting sticky-deletions and a
code correcting t deletions in our channel where there are no
consecutive deletions. We note that, a sticky-deletion is an
error that a bit in a run is deleted but the whole run cannot
be deleted. Codes correcting sticky-deletions have attracted
a lot of attention recently [26], [27] and there are known
constructions of codes correcting t sticky-deletions with at
most t log(n)+o(log n) bits of redundancy. Hence, we are able
to design a code correcting t deletions, where there are no
consecutive deletions, with at most t log(n)+ o(log n) bits of
redundancy. For simplicity, we first present the result for � =
2, δ = 1, and t = 1. If there is no error, then we showed in part
4 of Theorem 1 that the maximal size of the (2,1)-transverse-
read code is 2n−1. In the following result, we will show that
the maximal size of the (2,1)-transverse-read code correcting is
O(2n/nt).

Theorem 5: Let C1 ⊂ �n
2 be a binary code correcting a

single sticky-deletion. Then, the code C1 can correct a single
deletion in the (2,1)-transverse-read code. That is, if a deletion
occurs in a transverse-read vector TR2,1(c) where c ∈ C1, we
can recover the original word c.

Proof: Let c = (c1, c2, . . . , cn) ∈ C1 be a stored word. Then,
u = TR2,1(c) = (u1, u2, . . . , un−1), where ui = ci+ci+1, is the
(2,1)-transverse-read vector of c. We observe that in a valid
(2,1)-transverse-read vector, the run of 1’s has odd length if
it is bounded by two different symbols, that is (0, 1, . . . , 1, 2)
or (2, 1, . . . , 1, 0), and the run of 1’s has even length if it
is bounded by the same symbol, that is (0, 1, . . . , 1, 0) or
(2, 1, . . . , 1, 2). Hence, if the symbol 1 is deleted in the valid
(2,1)-transverse-read vector, we can detect and locate the error
and thus correct it. We now consider the case where the symbol
0 or 2 was deleted. Note that if ui = 0 then ci = ci+1 = 0
and if ui = 2 then ci = ci+1 = 1. Hence, if the symbol 0 or
2 is deleted in the transverse-read vector u, a sticky-deletion
occurs in the stored word c. Since c ∈ C1 which can correct
a single sticky-deletion, we can correct the error and recover
the original word c. Hence, we can recover the stored word c.
Therefore, code C1 can correct a single deletion in the (2,1)-
transverse-read code.

It is known that correcting a sticky-deletion is easier
than correcting a deletion. Hence, the transverse-read code
is helpful in correcting a deletion (over shift error). It is
interesting that we can also extend the result for codes
correcting multiple deletions. We present the result on codes
correcting multiple deletions where there is at most a single
deletion in each run as follows.

Theorem 6: Given t > 1, let Ct be a code of length n
correcting t sticky-deletions. If there are at most t deletions
in a (2, 1)-transverse-read vector TR2,1(c) where c ∈ Ct such
that there is at most a single deletion in each run of same

symbols (length of each run can be one), then we can recover
the original word c.

Proof: To prove the theorem, we just need to follow
iteratively the argument in the proof of Theorem 5. Let c =
(c1, c2, . . . , cn) ∈ C1 be a stored word. Then, u = TR2,1(c) =
(u1, u2, . . . , un−1), where ui = ci+ci+1, is the (2,1)-transverse-
read vector of c. Let v = (v1, v2, . . . , vn−t−1) be the output
that we receive after t deletions occur. Since u is a valid
(2, 1)-transverse-read vector, if 01r0 or 21r2 is a substring of
u, then r is an even number. If there is a deletion in a run
of symbols 1’s in a pattern 01r0 or 21r2, we can detect this
error by checking the parity of r. To correct this error, we
just need to add the symbol 1 in this position of the vector v.
Furthermore, if 01s2 or 21s0 is a substring of u then s is an
odd number. Similarly, we can detect and correct a deletion
in each run of 1’s. After we correct all deletions in each run
of 1’s in the output, we obtain a valid (2, 1)-transverse-read
vector of length m, v′. So, there is a vector c′ ∈ �m

2 such
that TR2,1(c′) = v′. If m < n, we can obtain v′ from v after
deleting (n − m) symbols of 0’s or 2’s. That is, we can obtain
c′ from c after (n − m) sticky-deletions. Since the code Ct can
correct at most t deletions and n − m < t, we can correct
all these errors to recover c. This completes the theorem’s
proof.

From the above proof of Theorem 6, we can obtain a
simple decoding algorithm to correct at most t deletions in
the transverse-read code. So far, we showed that our scheme
of using (�, δ)-transverse-read code is helpful to correct shift-
errors for � = 2 and δ = 1. The main idea is to use codes
correcting sticky-deletion to correct deletions, using some
special properties of (2,1)-transverse-read codes. This idea is
presented in [18] for codes correcting deletions in the symbol-
pair read channel. We note that the best known results on
codes correcting t deletions require at least 4t log n+o(t log n)
bits of redundancy [29] while it is possible to correct t sticky-
deletions using only t log n+o(log n) bits of redundancy, given
a constant t. Hence, in our scheme for � = 2 and δ = 1, it is
easier to correct shift-errors.

B. Limited Magnitude Errors

In the previous subsection, we studied transverse-read codes
correcting shift-errors in domain wall memories. In this sec-
tion, we focus on substitution errors. A substitution error
occurs when there is a misread in the transverse-read and a
symbol is read incorrectly. Let x = (x1, . . . , xn) ∈ �n

2 and
TR3,1(x) = y = (y1, . . . , yn−2) where yi = w(x[i;3]). If there is
an error in the transverse-read vector at the i-th position, then
we obtain y′

i �= yi. In this work, we assume that the magnitude
of an error caused by transverse-read is limited by a small
number b, that is |y′

i − yi| ≤ b. Such an error is called a b-
limited magnitude error. Given two vectors u = (u1, . . . , un)

and v = (v1, . . . , vn), we define the b-limited distance between
u and v, denoted db(u, v), as follows. If there is an index
i such that |ui − vi| > b then db(u, v) = ∞. Otherwise,
db(u, v) = |{i : ui �= vi}|. That is, the b-limited distance
between the two vectors of fixed length is either infinity or
the Hamming distance between two vectors. For example,
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x = (0, 0, 1, 1, 1, 0, 1, 1) and TR3,1(x) = y = (1, 2, 3, 2, 2, 2).
If the output is y′ = (1, 2, 2, 2, 1, 2), we observe that the
1-limited distance between y and y′ is db(y, y′) = 2. An (�, δ)-
transverse-read code CTR(n, �, δ) is said to be able to correct t
b-limited magnitude errors if x ∈ CTR(n, �, δ) ⊂ �n

2 is a stored
message and y′ ∈ �

(n−�)/δ+1
�+1 is the output in the transverse-

read channel such that db(y′,TR�,δ(x)) ≤ t, then it is possible
to recover the vector x from the output y′. That is, if there
are at most t b-limited magnitude errors in the transverse-
read channel, we can recover the original vector x in the code
CTR(n, �, δ).

In this subsection, we focus on the case b = 1 and design
a code to correct 1-limited magnitude errors in this channel.
Before we present the construction of our code, we present
the following codes.

Construction 4: For 0 < P, let the code SVT(n,P) be

SVT(n,P) =
{

c ∈ �n
q :

n∑

i=1

ici ≡ 0 mod (P + 1);
n∑

i=1

ci ≡ 0 mod 3

}

.

We note that the above code SVT(n,P) is similar to the well-
known shifted VT code [19]. The authors in [19] showed that
shifted-VT code can correct a deletion, given knowledge of
the location of the error within P positions. We now present
a similar result for a single 1-limited magnitude error.

Proposition 1: Given a codeword c ∈ SVT(n,P), and a
vector c′ such that the 1-limited distance between two vectors
is d1(c, c′) = 1. If i is an index where ci �= c′

i and we know
that i ∈ {a + 1, . . . , a + P}, then we can recover c from c′. Or
in other words, the above code SVT(n,P) can correct a single
1-limited-magnitude error given knowledge of the location of
the error within P consecutive positions.

Proof: We consider two vectors c and c′. Since there is only
one index i such that ci �= c′

i, we obtain
∑n−1

j=0 (j + 1)cj −
∑n−1

j=0 (j+1)c′
j = (i+1)(ci−c′

i) and
∑n

j=1 cj−∑n
j=1 c′

j = ci−c′
i.

We note that |ci − c′
i| = 1, that is, ci − c′

i is either 1 or –1.
Furthermore,

∑n−1
j=0 (j + 1)cj − ∑n−1

j=0 (j + 1)c′
j is either i + 1

or −i − 1. Since
∑n

i=1 ci ≡ 0 mod 3, we can determine if
ci−c′

i is 1 or –1. And thus, we also can determine if
∑n−1

j=0 (j+
1)cj − ∑n−1

j=0 (j + 1)c′
j is i + 1 or −i − 1. Hence, we can find

the exact value of the index i. From the corrupted vector c′,
we can recover the vector c ∈ SVT(n,P).

Next, we present the constrained code for limited length
of period sub-vector. Let p and m be two positive integers
where p ≤ m. Then, a length-m vector v ∈ �m

2 which satisfies
vi = vi+p for all 1 ≤ i ≤ m − p is said to have period p. For a
vector u ∈ �n

2 , we denote by L(u, p) the length of its longest
subvector which has period p. By definition, L(u, p) ≥ p and
for p = 1, L(u, 1) is the length of the longest run in u.

Example 2: Let u = (u1, . . . , u9) = (0, 0, 1, 1, 0, 1, 0, 1, 1)
∈ �9

2 be a word of length 9. Since the longest run in u is
of length two, we have L(u, 1) = 2. The subvector u[4, 8] =
(1, 0, 1, 0, 1) of u has period 2 since u4 = u6 = u8 = 1 and
u5 = u7 = 0. This is the longest subvector of u of period 2,
and hence L(u, 2) = 5.

Construction 5 [7]: Let Cpe(n, p, t) be a code of length n
such that the length of the longest sub-vector which has period
p of every codeword c ∈ Cpe(n, p, t) is at most t. That is,
Cpe(n, p, t) = {c ∈ �n

2 : L(c, p) ≤ t}.
The code Cpe(n, p, t) was well-studied in [7]. The authors

in [7] showed that it is possible to construct the code
Cpe(n, p, �log n�) with only a single bit of redundancy. Now,
we are ready to present a code construction that can correct a
single 1-limited magnitude error for the (2,1)-transverse-read
channel.

Construction 6: Let the code C2,1(n, 1) be

C2,1(n, 1) = {
c ∈ �n

2 : c ∈ Cpe(n, 2, log n) and

TR2,1(c) ∈ SVT(n − 1,P = 3 log n)
}
.

Theorem 7: The above code C2,1(n, 1) can correct a sin-
gle 1-limited magnitude error for the (2, 1)-transverse-read
channel.

Proof: Given a vector c ∈ C2,1(n, 1), we observe the length
of each run of symbol 1’s in the vector TR2,1(c). A pattern
(0, 1k, 0) and a pattern (2, 1k, 2) are valid if and only if k is
even. A pattern (0, 1k, 2) and a pattern (2, 1k, 0) are valid if
and only if k is odd. We call this the run-length rule. If a single
1-limited-magnitude error occurs at the index i of TR2,1(c),
one or two consecutive runs of symbols 1’s will violate the
run-length rule and thus the output will be an invalid (2,1)-
transverse-read vector. The location of the error is within the
segment of one or two consecutive runs of symbols 1’s. Since
c ∈ Cpe(n, 2, log n), the longest sub-vector with period two has
length at most log n. Thus, the longest run of 1’s in TR2,1(c)
has length at most log n−1. So, we can locate the error within
the segment of length P = 3 log n. Then, using the decoder
of the code SVT(n,P) in Construction 4, we can correct the
1-limited magnitude error. This concludes the proof.

We note that the above construction of the code C2,1(n, 1) is
a combination of Construction 4 and Construction 5. Since we
just need a single bit of redundancy to construct C(n, 2, log n)
in Construction 5 and at most log log n + c bits of redundancy
to construct SVT(n − 1,P = 3 log n) in Construction 4, we
need at most log log n + c + 1 bits of redundancy to construct
C2,1(n, 1) in Construction 6 for some constant c. The next
theorem summarizes this result.

Theorem 8: There is a (2,1)-transverse-read code correcting
a single 1-limited magnitude error with at most log log n + c
bits of redundancy for some constant c.

Lastly, we note that to correct a single substitution of limited
magnitude in the classical channel, it is required to use at least
log n bits of redundancy. The remarkable result in Theorem 8
is that we only need log log n+c bits of redundancy to correct
one error in this channel.

V. CONCLUSION AND DISCUSSION

In this work, we proposed a new scheme of reading
information in domain wall memories to reduce the number
of shift-operations while still achieving high information rates.
We introduce a new family of codes, called (�, δ)-transverse-
read codes, and study their properties, maximal asymptotic
rates, and constructions. Furthermore, we show that our
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scheme of using transverse-read codes is helpful to correct
shift-errors and substitution errors in domain wall memories.
Lastly, we design several codes which are able to correct
multiple over-shift errors and a code correcting a single limited
magnitude error.
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