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Abstract—Temperature control is of utmost importance in
transmission systems. In this paper, a binary channel model
is considered in which the transmission of a one causes a
temperature increase while communicating a zero causes a tem-
perature drop. By putting constraints on the input sequences, it is
guaranteed that the channel temperature will not exceed a certain
pre-determined maximum. In the asymptotic regime, the capacity
of such a channel is studied. For the non-asymptotic regime, fixed-
length codes are presented, with the property that codewords can
be freely cascaded without violating the temperature constraint.
Optimization of the code size is investigated and codewords are
enumerated using generating functions.

Index Terms—Constrained codes, thermal-aware channel,
communication.

I. INTRODUCTION

POWER and heat dissipation have emerged as first-order
design constraints for chips, whether targeted for battery-

powered devices or high-end systems. High temperatures
have dramatic negative effects on bus performance. Power-
aware design alone is insufficient to address the thermal
challenges since it does not directly target the spatial and
temporal behavior of the operating environment. For this
reason, thermally aware approaches have emerged as one of
the most important domains of research in chip design today.
Numerous techniques have been proposed to reduce the overall

Received 19 February 2024; revised 15 December 2024; accepted 13 March
2025. Date of publication 28 March 2025; date of current version 21
May 2025. An earlier version of this paper was presented in part at
the 2023 IEEE International Symposium on Information Theory [DOI:
10.1109/ISIT54713.2023.10206738]. (Corresponding author: Van Khu Vu.)

Yeow Meng Chee is with Singapore University of Technology and Design,
Singapore 119077 (e-mail: ymchee@sutd.ed.sg).

Tuvi Etzion is with the Department of Computer Science, Technion—Israel
Institute of Technology, Haifa 3200003, Israel, and also with the Department
of Industrial Systems Engineering and Management, National University of
Singapore, Singapore 117576 (e-mail: etzion@cs.technion.ac.il).

Kees A. Schouhamer Immink is with Turing Machines Inc., 3016 DK
Rotterdam, The Netherlands (e-mail: immink@turing-machines.com).

Tuan Thanh Nguyen is with the Science, Mathematics and Technology
Cluster, Singapore University of Technology and Design, Singapore 487372
(e-mail: tuanthanh nguyen@sutd.edu.sg).

Van Khu Vu is with the Department of Industrial Systems Engineering and
Management, National University of Singapore, Singapore 117576 (e-mail:
khu.vu.vnu@gmail.com).

Jos H. Weber is with the Department of Applied Mathematics, Delft
University of Technology, 2628 CD Delft, The Netherlands (e-mail:
J.H.Weber@tudelft.nl).

Eitan Yaakobi is with the Department of Computer Science,
Technion—Israel Institute of Technology, Haifa 3200003, Israel (e-mail:
yaakobi@cs.technion.ac.il).

Communicated by F. Farnoud, Associate Editor for Coding and Decoding.
Digital Object Identifier 10.1109/TIT.2025.3555665

power consumption of on-chip buses (see [2], [3] which uses
coding techniques and the references therein using non-coding
techniques). All the non-coding techniques do not directly
address peak temperature minimization. The coding techniques
such as in [2] and [3] assume that the ` wires that have the
highest temperature are known to the transmitter, but it is not
elaborated how this is known to the transmitter. Moreover, it is
not known if ` is indeed the number of wires that are in danger
of overheating. The goal of the current paper is to take one
step to bridge this gap in the coding scheme. We will analyze
the properties of one wire and apply it later to each wire
from a multi-wire device, a topic that is beyond the current
work.

An example of a constrained binary channel which consists
of only one wire that accepts only one bit at a time slot
is a laser diode. Laser diodes have been widely used in
optical communications and data storage, both optical and
heat-assisted magnetic recording [4]. For example, in a binary
recording channel, a high-power laser diode is used to record
(burn) data into an optical disc [5]. In numerous channels,
data are recorded or transmitted by switching such a laser on
and off. As temperature increases, the efficiency of the laser
decreases, and as a result, more drive current is required to
turn on the laser diode [6]. In order to reduce the dissipation
and extend the life of the electronic component, prior art code
design has been guided by minimizing the average number of
laser pulses [7].

In order to make communication systems function properly,
it is of great importance that their electronic components
do not overheat. In order to avoid overheating electronic
devices, it is possible to use some coding scheme to control
the temperature of electronic components. In literature, there
are various techniques, see [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], and [15], that have been
proposed over the years in order to deal with temperature
control. In this work, we aim to propose a new coding
scheme to control peak-temperature of electronic devices with
following assumption. The assumption is made that sending
a one comes with a temperature rise, while a zero leads to
a cooling down. This can also be interpreted in another way,
changing the information from zero to one or from one to zero
increases the temperature. If the information does not change,
the temperature decreases. Another interpretation can be that
having a pulse (an ‘on’ state) implies that the information is
a one, while no pulse (an ‘off’ state) in the same slot of time
means that a zero was sent. Each binary system can have its
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own features to simulate this scenario. Our coding scheme is
based on constraining the input sequences to guarantee that
the system temperature does not exceed a certain maximum
value during the transmission of binary digits. We investigate
the channel, called thermal-aware channel, that only accepts
these input sequences.

Analyzing the capacity of the channel and designing coding
schemes with this channel is based on the basic parameters and
properties of the channel. There are a few such parameters.
The first parameter is the lowest possible temperature of
the channel which w.l.o.g. (without loss of generality) can
be taken as 0 and hence it can be usually ignored. This
temperature is also the initial temperature of the channel. The
second parameter is the highest temperature of the channel
Tmax which for simplicity will be denoted by T. Above this
temperature, the electric instrument (laser, wire, etc.) will be
burned. From now on it will always be called a wire. The
third parameter is t1, the heating gradient. Whenever either
the information on the channel is changed or a pulse is sent,
the wire will be heated by t1 and it should not exceed Tmax as
otherwise it will be burned. The fourth parameter is the cooling
gradient t0. Whenever the information on the channel remains
unchanged or a pulse is not sent in a certain slot of time,
the temperature is decreased by t0, but not below the initial
temperature 0.

In this work, we study thermal-aware channels: their prop-
erties, their capacities, and constructions of codes. More
specifically, the contributions of this paper are as follows.
• We show that the proposed thermal-aware channel is

a constrained channel which is closely related to other
constrained channels.

• We present several techniques to compute the capacity
of the channel. In general cases, we provide several
bounds on the capacity based on their relations with other
constrained channels. In some cases, we obtain an explicit
expression of the capacity of the channel. We also present
numerical results in various cases, especially when all
parameters are small.

• We design fixed-length codes with the property that
codewords can be freely cascaded without exceeding the
maximum temperature.

• We optimize the rates of the codes and use generating
functions in order to enumerate the codewords.

The rest of this paper is organized as follows. In Sec-
tion II we describe the thermal-aware channel model under
consideration. Then, in Section III, properties of thermal-aware
sequences are provided, and their relations with running digital
sum and d-constrained sequences are given. Next, Section IV
investigates the capacity of the thermal-aware channel. Coding
techniques are presented and analyzed in Section V. Finally,
conclusions are drawn in Section VI.

II. THERMAL-AWARE CHANNEL MODEL

We start with a detailed description of the thermal-aware
channel model. It is a binary noiseless channel with a con-
straint on its maximum temperature. In every time slot either a
zero or a one is transmitted. It is assumed that the transmission

of a one increases the channel temperature, due to physical
aspects caused by, e.g., sending a pulse. On the other hand,
it is assumed that communicating a zero causes a temperature
decrease, for example since no physical transmission at all
takes place in such a time slot. We assume that the temperature
does not drop below a certain base temperature.

The temperature increase due to communicating a one
is called the heating gradient and is denoted by t1. The
temperature decrease due to communicating a zero is called
the cooling gradient and is denoted by t0. The ratio of t1 and
t0 is denoted by k. Assuming that t1 and t0 are positive rational
numbers, we can uniquely write this ratio as

t1
t0

= k =
p
q
, (1)

where p and q are positive co-prime integers. The channel base
temperature is Tmin and the maximum allowed temperature
is Tmax. Let the width of the temperature range [Tmin,Tmax]
be denoted by T, i.e., T = Tmax − Tmin. Through additive
temperature scaling, we may assume without loss of generality
that the temperature range is [0,T ] rather than [Tmin,Tmax],
which we will do throughout this paper.

Let
st0,t1 (x) = (s1, s2, . . . , sn)

denote the temperature sequence for the above-described chan-
nel when the input is the binary sequence x = (x1, . . . , xn) and
the temperature at the start of the transmission is the base
temperature. Here, si denotes the channel temperature after
transmitting xi. It holds that

si =

(
si−1 + t1 if xi = 1
max {0, si−1 − t0} if xi = 0

(2)

where s0 = 0.
A binary sequence x of length n is called a (T, t0, t1)

thermal-aware sequence (TA-sequence) if and only if all si

in st0,t1 (x) do not exceed the maximum temperature T, i.e.,

si ≤ T ∀i = 1, 2, . . . , n.

The set of all (T, t0, t1) TA-sequences of length n is denoted
by A(T, t0, t1, n). The channel that only accepts (T, t0, t1)
TA-sequences is called the (T, t0, t1) thermal-aware channel
(TA-channel). The capacity of this channel is the maximum
achievable asymptotic rate, i.e.,

capTA(T, t0, t1) = lim sup
n→∞

log2 |A(T, t0, t1, n)|
n

. (3)

Besides the additive scaling applied to have a base tempera-
ture of 0, we can also apply further multiplicative temperature
scaling, for convenience in channel analysis. Note that

A(αT, αt0, αt1, n) = A(T, t0, t1, n) (4)

for any positive real number α. Hence, any (αT, αt0, αt1) TA-
channel can be considered as being equivalent to the (T, t0, t1)
TA-channel. The following two choices of α are of particular
interest.
• By choosing α = 1/t0, we obtain a representation that is

normalized to the cooling gradient t0, i.e., the (M, 1, k)
TA-channel, where M = T/t0 and k is given by (1).
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Fig. 1. Labelled graph for the (4, 1, 2) TA-channel.

• By choosing α = q/t0, we obtain the (qT/t0, q, p) TA-
channel, in which all temperatures are integer. This
channel can also be denoted as an (N, q, p) TA-channel,
where N = bqT/t0c.

Note that the temperature sequence sq,p(x) = (s1, s2, . . . , sn)
of any (N, q, p) TA-sequence x satisfies

si ∈ {0, 1, . . . ,N} ∀i = 1, 2, . . . , n.

Hence, the (N, q, p) TA-channel can be represented by a
labelled directed graph with N + 1 nodes. Every node
j ∈ {0, 1, . . . ,N} represents a channel temperature. For each
i = 0, 1, . . . ,N − p, there is an edge from state i to state
i + p, corresponding to a signal 1 which increases the tem-
perature by p. For each i = q, q + 1, . . . ,N, there is an
edge from state i to state i − q, associated with a signal
0 which decreases the temperature by q. Finally, for each
i = 0, 1, . . . , q−1, there is an edge from state i to state 0, asso-
ciated with a signal 0 which let the channel return to the base
temperature.

The (N + 1)× (N + 1) transition matrix associated with the
graph is denoted by DN,q,p = (di, j). For all 0 ≤ i, j ≤ N, the di. j

entry equals one when there is an edge from node i to node
j, and zero otherwise, i.e,

di, j =

8̂̂̂<̂
ˆ̂:

1 if i = 0, 1, . . . ,N − p and j = i + p
1 if i = q, q + 1, . . . ,N and j = i − q,
1 if i = 0, 1, . . . , q − 1 and j = 0,
0 otherwise.

Example 1: Consider the channel with maximum tempera-
ture N = 4, cooling gradient q = 1, and heating gradient p = 2.
The graph for the (4, 1, 2) TA-channel is shown in Figure 1,
while the transition matrix is

D4,1,2 =

266664
1 0 1 0 0
1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

377775 . (5)

For the input sequences x = (1, 1, 0, 1, 0, 0, 0) and y =

(0, 1, 0, 0, 0, 1, 1) the temperature sequences are

s1,2(x) = (2, 4, 3, 5, 4, 3, 2)

and
s1,2(y) = (0, 2, 1, 0, 0, 2, 4),

respectively. Hence, y is a (4, 1, 2) TA-sequence, but x is not,
since the channel temperature would exceed N = 4 after the
transmission of x4.

Fig. 2. Labelled graph for the (7, 2, 3) TA-channel.

Example 2: Let N = 7, q = 2, and p = 3. The graph for the
(7, 2, 3) TA-channel is shown in Figure 2, while the transition
matrix is

D7,2,3 =

266666666664

1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

377777777775
. (6)

For the input sequences x = (1, 1, 0, 1, 0, 0, 0) and y =

(0, 1, 0, 0, 0, 1, 1) the temperature sequences are

s2,3(x) = (3, 6, 4, 7, 5, 3, 1)

and
s2,3(y) = (0, 3, 1, 0, 0, 3, 6),

respectively. Hence, both x and y are (7, 2, 3) TA-sequence,
since all channel temperatures do not exceed N = 7.

Throughout this paper, we will use both the (N, q, p) and
the (M, 1, k) TA-channel/sequence representations, whichever
is most appropriate. As mentioned, we can do this without loss
of generality, since both are equivalent to the original (T, t0, t1)
representation because of (4). In both cases, we should first
measure t0, t1, Tmin, and Tmax to determine the parameters for
the thermal-aware channel and use any one of them. Recall
that the involved heating/cooling gradients are related through
(1), while the maximum temperatures relate via

M = T/t0 and N = bqMc = bqT/t0c.

We will always assume t1 ≤ T , and thus k ≤ M and p ≤ N,
since the all-zero sequence would be the only TA-sequence
otherwise.

III. PROPERTIES OF THERMAL-AWARE SEQUENCES

In this section, several properties of TA-sequences will be
presented. Most of these will be used in the next section
to derive results on the thermal-aware channel capacity. A
useful notation that will often be used is x[i, j] to indicate
the substring (xi, xi+1, . . . , x j) of a string x.

Lemma 1: A binary sequence x is an (M, 1, k) TA-sequence
if and only if the weight of any substring x[i, j] of x is at
most ( j − i + 1 + M)/(1 + k).

Proof: Consider the temperature sequence s1,k(x) =

(s1, s2, . . . , sn) of x. First, let x be an (M, 1, k) TA-sequence.
Suppose there exist i and j such that the substring x[i, j] of
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x has weight w exceeding ( j − i + 1 + M)/(1 + k). Then
s j ≥ si−1 + wk − ( j − i + 1 − w) ≥ w(1 + k) − ( j − i + 1) > M,
which contradicts x being an (M, 1, k) TA-sequence and this
shows the “only if” statement in the lemma.

Next, let x be such that the weight of any substring x[i, j]
of x is at most ( j− i+1+M)/(1+k). Suppose that x is not an
(M, 1, k) TA-sequence. Then there exists j such that s j > M.
Let i be the largest index such that si−1 = 0 and i ≤ j. Then
M < s j = wk − ( j − i + 1 − w) = w(1 + k) − ( j − i + 1), where
w is the weight of x[i, j]. We thus reach the contradiction that
w > ( j− i+ 1+ M)/(1+ k) which shows the “if” statement in
the lemma. �

Because of this result, TA-sequences can also be character-
ized as sequences satisfying strong local weight constraints,
and as such they could also be called strongly locally bounded
sequences, in the same spirit as locally bounded sequences and
strongly locally balanced sequences studied in [16].

The running digital sum (RDS) of a binary sequence x of
length n is defined as v = RDS(x) = (v1, v2, . . . , vn) where
vi = 2w(x[1, i]) − i, and w(x[1, i]) is the Hamming weight of
the substring x[1, i]. Given a positive integer δ, a sequence x is
said to be a δ-RDS-sequence if and only if maxi vi −mini vi 6
δ, where both the minimization and maximization are over
all 0 ≤ i ≤ n. For example, if x = (1, 0, 0, 1, 1, 0, 1, 1) then
v = (1, 0,−1, 0, 1, 0, 1, 2). Since maxi vi = 2 and mini vi = −1,
the sequence x is a 3-RDS-sequence. We note that δ-RDS-
sequences have been well studied in Chapter 8 in [17].

Lemma 2: For all k ≤ 1 and M ≥ k, any bM/kc-RDS-
sequence is an (M, 1, k) TA-sequence.

Proof: Let x be an bM/kc-RDS-sequence with RDS(x) =

(v1, v2, . . . , vn). Suppose that x is not an (M, 1, k) TA-sequence.
According to Lemma 1 this implies that there exist i and j such
that the weight w of the substring x[i, j] of x is exceeding
( j − i + 1 + M)/(1 + k). Hence,

( j − i + 1 + M)/(1 + k) < w ≤ j − i + 1

and thus
j − i + 1 > M/k

v j − vi−1 = 2w − ( j − i + 1)

>
2( j − i + 1 + M)

1 + k
− ( j − i + 1)

= ( j − i + 1)
1 − k
1 + k

+
2M

1 + k

≥
M(1 − k)
k(1 + k)

+
2M

1 + k
=

M
k
≥

�
M
k

�
which contradicts the fact that x is an bM/kc-RDS-sequence.
Note that in the second inequality in this equation we use the
condition that k ≤ 1 as stated in the lemma. In conclusion, x
is an (M, 1, k) TA-sequence. �

For any positive integer d, the well-known d-constrained
sequences are defined as binary sequences in which any two
consecutive ones are separated by at least d zeroes [17].
For example, the sequence (0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0) is
a 2-constrained sequence as any two consecutive ones are
separated by at least 2 zeroes.

Lemma 3: For all M ≥ k, any dke-constrained sequence is
an (M, 1, k) TA-sequence.

Proof: Let x be a dke-constrained sequence with temperature
sequence s1,k(x) = (s1, s2, . . . , sn). Since there are at least dke
zeroes in between any two subsequent ones in x, it follows that
si−1 = 0 for every i for which xi = 1, and thus s j ≤ k ≤ M for
all j. We can thus conclude that x is an (M, 1, k) TA-sequence.�

Lemma 4: For all k ≤ M < 2k, any (M, 1, k) TA-sequence
is a d2k − Me-constrained sequence.

Proof: Let x be an (M, 1, k) TA-sequence with temperature
sequence s1,k(x) = (s1, s2, . . . , sn). Suppose that there are two
consecutive ones in x at positions i and j > i, such that the
number of zeroes in between them is smaller than d2k − Me.
Then,

s j ≥si−1 + k − (d2k − Me − 1) + k

≥2k + bM − 2kc+ 1 = bMc+ 1 > M,

which contradicts that x is an (M, 1, k) TA-sequence. Hence,
there are at least d2k−Me ones in between any two consecutive
ones in x. �

Combining Lemmas 3 and 4, we obtain the following result.
Corollary 1: For all k ≤ M < 2k−dke+1, a binary sequence

is an (M, 1, k) TA-sequence if and only if it is a dke-constrained
sequence.

We note that dke-constrained sequences are well studied in
[17]. Hence, when the condition in Corollary 1 is satisfied, that
is k ≤ M < 2k−dke+1, we can use (M, 1, k) TA-sequences and
dke-constrained sequences alternatively as they are the same.
In these cases, the thermal-aware channel capacity is the same
as the one for the dke-constrained channel which is known in
[17]. In other cases, when the condition in Corollary 1 is not
satisfied, the thermal-aware channel capacity is not known.
We study the thermal-aware channel capacity in the following
section.

IV. THERMAL-AWARE CHANNEL CAPACITY

Since the TA-channel is a constrained channel which can
be represented by a graph, it is known that the capacity of the
constrained channel is the base-2 logarithm of the largest real
eigenvalue of the graph’s transition matrix [17], [18], [19].
Hence, for determining capTA(N, q, p), we consider

ΓN,q,p(z) = det[zI − DN,q,p]. (7)

This determinant ΓN,q,p(z) is an (N + 1)-th degree polynomial
in z, and is called the characteristic polynomial of DN,q,p. The
capacity of the TA-channel

capTA(N, q, p) = log2 λ,

where λ is the largest real solution of the equation

ΓN,q,p(z) = 0. (8)

Several results for capTA(M, 1, k) are provided in Table I. As
expected, we observe that capTA(M, 1, k) is increasing in M
and decreasing in k.

Although the method presented in the previous paragraph
applies to any set of channel parameters, there is still a need
to have explicit expressions or estimates for the TA-channel
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TABLE I
CAPACITY CAPT A(M, 1, k) FOR SELECTED VALUES OF M AND K

capacity. For instance, note that if N is very large, it may be
infeasible to determine the largest eigenvalue of DN,q,p. Also,
to analyze the behaviour of the capacity as a function of the
channel parameters, such expressions may be useful. In the
remainder of this section, we will present explicit expressions
and bounds on the channel capacity for particular cases.

A. Bounds

In this subsection, we provide two explicit bounds based
on results from the previous section in Theorems 1 and 2. In
order to prove Theorem 1, we need the entropy function H(x)
defined by

H(x) = −x log2 x − (1) − x
�

log2(1 − x),

where 0 < x < 1. The following result was proved in [20]
(Corollary 9 on page 310).

Lemma 5: Given 0 < µ < 1/2, the following equation holds.

2nH(µ)

√
8nµ(1 − µ)

6

µnX
i=0

 
n
i

!
6 2nH(µ).

Theorem 1: For any M ≥ k > 1, we have that

capTA (M, 1, k) 6 H(1/(1 + k))

Proof: Let x = (x1, . . . , xn) be an (M, 1, k)-thermal-aware
sequence of length n. According to Lemma 1 with i = 1 and
j = n, the weight of x is at most w∗ = (n + M)/(1 + k). Let
A(n,w∗) be the set of all binary sequences of length n with
weight at most w∗. Then,

A(M, 1, k, n) ⊆ A (n,w∗)

Given M and k, we obtain limn→∞ w∗/n = 1/(1 + k). Hence,
it follows from Lemma 5 that limn→∞

�
log2 |A (n,w∗)|

�
/n =

H(1/(1+k)). Therefore, the capacity of the (M, 1, k) TAchannel
is upper bounded by H(1/(1 + k)). �

Note that this theorem implies that when extending Table I
with larger values of M, the value of capTA(M, 1, k) would
grow with M, but it does not exceed H(1/(1 + k)) for any
M ≥ k > 1. For example, capTA(M, 1, 2) 6 H(1/3) ≈ 0.9183
for any M ≥ 2.

According to Lemma 2, every bM/kc-RDS-sequence is an
(M, 1, k) TA-sequence if k ≤ 1. The capacity of the δ-RDS-
channel, which is the binary noiseless channel admitting only
δ-RDS-sequences, has been studied in Chapter 8 in [17]. For
any positive integer δ, the capacity of the channel is calculated

on page 203 of [17] to be log2(2 cos(π/(δ + 2))). Hence,
capTA(M, 1, k) is lower bounded by log2(2 cos(π/(bM/kc+2))).
We state the result formally as follows.

Theorem 2: For any k ≤ 1 and M ≥ k, it holds that

capTA(M, 1, k) > log2(2 cos(π/(bM/kc+ 2)))

Note that Theorem 2 implies that for any k ≤ 1, the capacity
capTA(M, 1, k) tends to 1 when M grows large.

B. The Case That k Is Integer

In this subsection, the focus is on the channel capacity for
the case where k is an integer, that is, q = 1 and p = k. To
this end, we investigate the characteristic polynomial ΓN,1,p(z)
of the matrix DN,1,p.

First, we define a slightly different matrix, namely the (N+
1)× (N + 1) matrix EN,1,p, by

ei, j =

(
0 ifi = j = 0
di, j otherwise,

where the di, j are the entries from DN,1,p. Let

ΦN,1,p(z) = det[zI − EN,1,p] (9)

denote the characteristic polynomial of EN,1,p. We observe
that, for the case p = 1, EN,1,p is the transition matrix of the
state machine for N-RDS codes, which have been well studied
in [17] [Chapter 8]. The first few characteristic polynomials
ΦN,1,1(z) can easily be evaluated by hand:

Φ1,1,1(z) = z2 − 1,

Φ2,1,1(z) = z3 − 2z,

Φ3,1,1(z) = z4 − 3z2 + 1.

This sequence of polynomials is known under the name
Vieta-Fibonacci (VF). The VF-polynomials Vn(z) have been
originally defined by the recursion Vn(z) = zVn−1(z) − Vn−2(z),
with V0(z) = 0 and V1(z) = 1. These are closely related to the
well-known Chebyshev polynomials of the second kind [21].
It holds that

ΦN,1,1(z) = VN+2(z) =
sin((N + 2) arccos(z/2))

sin(arccos(z/2))
. (10)

An explicit expression for VF-polynomials derived in [21] is

Vn(z) =

b n−1
2 cX

i=0

(−1)i

 
n − 1 − i

i

!
zn−1−2i,
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which implies

ΦN,1,1(z) =

b
N+1

2 cX
i=0

(−1)i

 
N + 1 − i

i

!
zN+1−2i.

For 1 ≤ p ≤ N, from Equation (9), we can obtain the recursion
ΦN,1,p(z) = zΦN−1,1,p(z)−ΦN−p−1,1,p(z). Following the proof in
[21] to find the explicit expression for VF-polynomials, we
obtain

ΦN,1,p(z) =

b
N+1
p+1 cX
i=0

(−1)i

 
N + 1 − pi

i

!
zN+1−i(p+1). (11)

For example, this gives ΦN,1,N(z) = zN+1 − 1, which is indeed
equal to the determinant from (9) with p = N.

For the characteristic polynomial ΓN,1,p(z), we can easily
derive an expression for the case p = N by first-column
expansion of the determinant from (7):

ΓN,1,N(z) = zN+1 − zN − 1. (12)

For the cases that p < N, we can make use of a connection
between ΦN,1,p(z) and ΓN,1,p(z), which follows from the fact
that the matrices zI−DN,1,p and zI−EN,1,p are identical, except
for the upper-left entries, which equal z−1 and z, respectively.
It immediately follows that

ΓN,1,p(z) = ΦN,1,p(z) − ΦN−1,1,p(z) (13)

for any N ≥ 2 and 1 ≤ p < N. We see ΦN,1,p(z) and ΓN,1,p(z)
are closely related, or in other words, the RDS sequences and
the thermal-aware sequences with integer k are closely related.
Using Equations (11) and (13), we can find the characteristic
polynomials ΓN,1,p(z) and compute the capacity of the channel.
For example, the first few characteristic polynomials are

Γ2,1,1(z) = Φ2,1,1(z) − Φ1,1,1(z)

= z3 − z2 − 2z + 1,
Γ3,1,1(z) = Φ3,1,1(z) − Φ2,1,1(z)

= z4 − z3 − 3z2 + 2z + 1,
Γ3,1,2(z) = Φ3,1,2(z) − Φ2,1,2(z)

= z4 − z3 − 2z + 1.

By finding the largest real roots of these polynomials we can
obtain the capacity of the corresponding TA-channels. For p =

q = 1, i.e., the case that the heating and cooling gradients are
equal, we derive an explicit formula for the capacity of the
(N, q, p) thermal-aware channel as follows.

Theorem 3: The capacity of the (N, 1, 1) TA-channel is

capTA(N, 1, 1) = log2(2 cos(π/(2N + 3))).

Proof: We have

ΓN,1,1(z) = ΦN,1,1(z) − ΦN−1,1,1(z)

=
sin((N + 2)x)

sin x
−

sin((N + 1)x)
sin x

= 2 cos
�

2N + 3
2

x
�

sin(x/2)
sin x

,

where the first equality follows from (13) and the second from
(10) using the notation x = arccos(z/2). Note that the displayed

expression equals zero if and only if x = (2i+1)π/(2N+3), i =

0, 1, . . . ,N. Hence, the eigenvalues of ΓN,1,1(z) are 2 cos((2i +
1)π/(2N+3)), from which it follows that the largest eigenvalue
equals 2 cos(π/(2N + 3)). In conclusion, the capacity of the
(N, 1, 1) TA-channel equals log2(2 cos(π/(2N + 3))). �

C. Approximations

As discussed, the capacity of a TA-channel can be deter-
mined via the eigenvalues of its transition matrix. Since this
matrix is of size (N + 1) × (N + 1), where N = bqMc, this
approach may be infeasible when q is large. However, since
capTA(M, 1, k) is non-increasing in k, it can be approximated
as follows for large values of q (and p). Let p′, q′, p′′, and
q′′ be positive integers such that

p′

q′
≈ k =

p
q
≈

p′′

q′′
and

p′

q′
≤ k =

p
q
≤

p′′

q′′
,

where both q′ and q′′ are considerably smaller than q. Then

capTA(M, 1, p′′/q′′) ≤ capTA(M, 1, k) ≤ capTA(M, 1, p′/q′).
(14)

If it is feasible to calculate the first and the third capacities
in (14) and if these are close to each other, then we obtain
a good approximation for capTA(M, 1, k). For example, when
M = 10, for all 1/2 6 k 6 2/3, we can estimate 0.999424 6
capTA(M, 1, k) 6 0.99999 and the gap between upper bound
and lower bound is less than 0.001. We note that there is a
trade-off between the gap in (14) and the complexity. However,
with the power of the computer nowadays, from practical
point of view, we believe that it is possible to estimate the
capacity as close as it is required. From theoretical point of
view, the exact value and the behavior of the capacity when
all parameters are large are of our interest.

Another way to approximate the capacity of the TA channel
is to determine A(N, q, p, n) for sufficiently large n, and then
approximate capTA(N, q, p) by (log2 |A(N, q, p, n)|)/n. Note
that A(N, q, p, n) equals the sum of all entries in the top row
of the matrix Dn

N,q,p. Since the size of the matrix DN,q,p is
constant, it is a folklore that we can compute the matrix Dn

N,q,p
in O(log n) time for fixed N, q, and p using a general method
known as exponentiation by squaring. In particular, we can
compute all the matrices D2i

N,q,p for i = 1, 2, . . . , blog nc in
O(log n) times. Since Dn

N,q,p is a sum of at most blog nc matri-
ces of fixed size, we can compute Dn

N,q,p in O(log n) times.
Thus, we can count the number of (N, q, p) TA-sequences of
length n in O(log n) time for fixed N, q, and p.

V. THERMAL-AWARE CODING

After having studied the maximum asymptotic rate that
can be achieved for communication over a TA-channel in
the previous section, we will now focus on the maximum
achievable rate when using TA-sequences of a finite length
n. In principle, this would be (log2 |A(N, q, p, n)|)/n, but if
we require that such sequences should be freely cascadable
without violating the TA-constraint, then it may be lower. Note
that in Example 2 the sequences y and x are both (7, 2, 3)
TA-sequences, but that the cascaded sequence (y, x) is not.
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Hence, x and y cannot both be included in a set of (7, 2, 3)
TA-sequences that is used to represent messages that are to be
serially transmitted over the (7, 2, 3) TA-channel.

For practical purposes, there is thus a desire for subsets
C of A(N, q, p, n), called codes, such that sequences from
C can be cascaded without violating the maximum temper-
ature constraint N. Messages can be mapped to unique code
sequences, leading to a rate (log2 |C|)/n. If the messages are
binary sequences of fixed length, then the maximum message
length that can be accommodated by the code C is blog2 |C|c,
leading to a rate of (blog2 |C|c)/n.

There are mature methods for designing codes based on
finite-state machines, such as Franaszek’s successive elimina-
tion method [22] and the state-splitting ACH method [23]. In
this section, we will explore code design for the (N, q, p) TA-
channel under consideration.

A. Preliminaries

For x = (x1, x2, . . . , xn) ∈ {0, 1}n, we recursively define
vq,p(x, u) = (v1, v2, . . . , vn), u ∈ {0, 1, . . . ,N}, by v0 = u and

vi =

(
vi−1 + p ifxi = 1,
max{0, vi−1 − q} ifxi = 0,

(15)

for i = 1, 2, . . . , n. Note that sq,p(x) considered earlier is equal
to vq,p(x, 0).

Let Su,v, with u, v ∈ {0, 1, . . . ,N}, denote the subset of {0, 1}n

which contains all (N, q, p) TA-sequences x emerging from
state u and ending in state v, i.e., for which vq,p(x, u) satisfies
vi ≤ N for all i and vn = v.

The encoder has a set of states, denoted by Σ∗, which is
assumed to be a subset of the set Σ = {0, 1, . . . ,N} of nodes
in the graph. The set of valid TA-sequences that emerge from
u ∈ Σ∗ and terminate in one of the states in Σ∗, denoted by
Fu,Σ∗ , is defined by

Fu,Σ∗ =
[
v∈Σ∗
Su,v. (16)

We have
|Fu,Σ∗ | =

X
v∈Σ∗

d[n]
u,v, (17)

where d[n]
u,v denotes the (u, v)-th element of Dn

N,q,p. Any Σ∗

satisfying
min
u∈Σ∗

X
v∈Σ∗

d[n]
u,v > |M| (18)

is an acceptable encoder state set for encoding a message set
M. Such a state set can be found by exhaustive search of all
possible subsets of Σ or by application of Franaszek’s method
[22].

A decoder requires, in general, the knowledge of the
encoder state, which may result in additional errors when
encoded words are received in error. Note that in the case
at hand the decoder cannot, in general, uniquely restore the
channel state by observing a limited number of consecutive
symbols. State-independent decoding is attractive for circum-
venting such error propagation.

B. State-Independent Encoding and Decoding

Let
SΣ∗ =

\
u∈Σ∗
Fu,Σ∗ (19)

denote the intersection of the |Σ∗| sets Fu,Σ∗ . The set SΣ∗

consists of admissible binary sequences that can start and
terminate in any of the states in Σ∗. A single look-up table
for encoding and decoding is possible if

|SΣ∗ | > |M|. (20)

If (20) is satisfied, a subset of the words in SΣ∗ can be uniquely
assigned (paired) to the |M| source words, thus constructing
a one-to-one relationship between source and codewords.

In the above, we have tacitly assumed that we conduct an
exhaustive search for an acceptable state set Σ∗. Freiman and
Wyner [24] showed that it is not necessary to consider all
possible state subsets Σ∗. It is sufficient to consider particular
state subsets, called complete terminal sets. Define the partial
ordering ‘≺’ on the states: that is, u ≺ v, if every n-bit sequence
admissible from state u is also admissible from state v, in other
words, if ∪ j∈ΣS u, j ⊆ ∪ j∈ΣS v, j. A state set Σ′ is a complete
terminal set if u ∈ Σ′, u ≺ v ⇒ v ∈ Σ′. For the model under
consideration in this paper, this implies that we only need
to consider state subsets of the form {0, 1, . . . , a}, with a ∈
{0, 1, . . . ,N}, as shown next.

Lemma 6: Let x be an admissible sequence from state u
and ending in state w, with 1 6 u 6 N and 0 6 w 6 N. Then
x is also an admissible sequence from state u − 1, ending in
state w′ 6 w.

Proof: Denote vq,p(x, u) by (v1, v2, . . . , vn) and vq,p(x, u −
1) by (v′1, v

′
2, . . . , v

′
n). Let i∗ be the smallest value of i ∈

{1, 2, . . . , n} such that vi−1 ≤ q and xi = 0. Set i∗ = n + 1
if such an i does not exist. Then,

v′i =

(
vi − 1 if i < i∗

vi if i > i∗
(21)

Since vi 6 N, also v′i 6 N for all 1 6 i 6 n, and so x is
admissible from state u−1, ending in state w′ = v′n 6 vn = w.�

From Lemma 6 and the definition of ≺ we have the
following result.

Corollary 2: For any state u with 1 6 u 6 N, u ≺ u − 1.
Hence, any complete terminal set is of the form {0, 1, . . . , a},
with 1 6 a 6 N. Furthermore, from Lemma 6 and the
definition of Fu,Σ∗ , we also have the following result.

Corollary 3: For any state set Σ∗ = {0, 1, . . ., a} with 0 6
a 6 N, it holds that Fu,Σ∗ ⊆ Fu−1,Σ∗ , for all 1 6 u 6 a.

Hence, for all 0 6 a 6 N, it holds that

S {0,1,...,a} =
\

u∈{0,1,...,a}

Fu,{0,1,...,a}

= Fa,{0,1,...,a}.

For clerical convenience, let Fa,{0,1,...,a} be denoted by Ca.
Hence, Ca is the subset of {0, 1}n which contains all vectors x
for which vq,p(x, a) satisfies vi ≤ N for all i and vn ≤ a.

Let ma = blog2 |Ca|c. The following results follow from the
above analysis.
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Theorem 4: For any 0 6 a 6 N, the code Ca ⊆ A(N, q, p, n)
can be used to encode (decode) messages from a message set
of size at most |Ca| into (from) binary codewords of length
n. Cascading such codewords results in a valid (N, q, p) TA-
sequence.

Corollary 4: For any 0 6 a 6 N, there exists a subset of Ca

that can act as a code to encode (decode) binary messages of
length ma into (from) binary codewords of length n. Cascading
such codewords results in a valid (N, q, p) TA-sequence.

Example 3: For N = 3, q = 1, p = 2, and n = 12, we obtain

D12
3,1,2 =

2664
98 56 83 36
83 51 76 27
56 27 51 20
36 20 27 15

3775 . (22)

Hence, |C0| = 98, |C1| = 83 + 51 = 134, |C2| = 56 + 27 +
51 = 134, and |C3| = 36 + 20 + 27 + 15 = 98. Thus, |C1|

has a rate log2(134)/12 ≈ 0.589, which is about 92% of the
capacity of the (3, 1, 2) TA-channel. Further, we have m0 =

m3 = blog2(98)c = 6 and m1 = m2 = blog2(134)c = 7. Thus,
there exists a code encoding binary messages of length 7 into
codewords of length 12. The achieved code rate 7/12 is about
91% of capacity.

C. Optimal Codes

For x = (x1, x2, . . . , xn) ∈ {0, 1}n, let the reversed vector be
denoted by xR, i.e.,

xR = (xn, xn−1, . . . , x1).

Let tq,p(x) = (t1, t2, . . . , tn) be defined by

ti =

iX
j=1

(px j + q(x j − 1)) = −qi + (p + q)
iX

j=1

x j,

i = 0, 1, . . . , n. Note that tq,p(x) is a kind of “weighted”
running digital sum of x, where each zero contributes −q and
each one contributes p, with ti starting the count at index 1
and stopping at index i.

In order to optimize the code rate, it follows from the
previous subsection that we should determine for which value
of a ∈ {0, 1, . . . ,N} the size of Ca is the largest. In this
subsection, we will show that the maximum is established for
a = bN/2c if q = 1, i.e., if k is an integer.

Theorem 5: For all a ∈ {0, 1, . . . ,N} it holds that

x ∈ Ca ⇔ xR ∈ CN−a.

Proof: Let x be any sequence in Ca, and let vq,p(x, a) =

(v1, v2, . . . , vn), tq,p(x) = (t1, t2, . . . , tn), vq,p(xR,N − a) =

(v′1, v
′
2, . . . , v

′
n), and tq,p(xR) = (t′1, t

′
2, . . . , t

′
n). We first show

that x ∈ Ca implies xR ∈ CN−a, i.e., a) v′i ≤ N for all i and
b) v′n ≤ N − a.

a) In order to prove that v′i ≤ N for all i, we suppose that
there exists a j ∈ {1, 2, . . . , n} such that v′j > N and show that
this contradicts the fact that x ∈ Ca. To this end, we consider
for such a j two cases: (i) there is no g ≤ j such that v′g = 0,
and (ii) there does exist such a g. In case (i), it holds that
v′j = N − a + t′j and thus

t′j = v′j − N + a > N − N + a = a

Hence,

vn ≥vn− j + tn − tn− j

= vn− j + t′j > 0 + a = a,

which contradicts x ∈ Ca. In case (ii), let g∗ denote the largest
g such that v′g = 0 and g ≤ j. Note that

t′j − t′g∗ = v′j − v′g∗ > N − 0 = N

This implies

vn−g∗ ≥vn− j + tn−g∗ − tn− j ≥ tn−g∗ − tn− j

= t′j − t′g∗ > N,

which contradicts x ∈ Ca. In conclusion, v′i ≤ N for all i.
b) In order to prove that v′n ≤ N − a, we show that this

inequality not being true contradicts the fact that x ∈ Ca. So
suppose that v′n > N−a. We again consider two cases: (i) there
is no g ≤ n such that v′g = 0, and (ii) there does exist such a
g. In case (i), it holds that v′n = N − a + t′n and thus

t′n = v′n − N + a > N − a − N + a = 0.

Hence,
vn ≥ a + tn = a + t′n > a

which contradicts x ∈ Ca. In case (ii), let g∗ denote the largest
g such that v′g = 0 and g ≤ n. Note that

t′n − t′g∗ = v′n − v′g∗ = v′n > N − a

This implies

vn−g∗ ≥ a + tn−g∗ = a + t′n − t′g∗ > a + N − a = N

which contradicts x ∈ Ca. In conclusion, v′n ≤ N − a.
It follows from a) and b) that the “⇒” statement holds, and

thus the “⇐” statement holds as well, since (xR)R = x. �
Corollary 5: It holds for all a ∈ {0, 1, . . . ,N} that

|Ca| = |CN−a|

Theorem 6: If q = 1 and 0 ≤ a ≤ N/2 − 1, then

|Ca| ≤
ˇ̌
Ca+1

ˇ̌
Proof: The proof is established by providing an injective

mapping f from Ca to Ca+1. Let x be any sequence in Ca,
and let vq,p(x, a) = (v1, v2, . . . , vn), tq,p(x) = (t1, t2, . . . , tn), and
tq,p(xR) = (t′1, t

′
2, . . . , t

′
n). Define zx as the smallest index for

which the running digital sum of x becomes negative, i.e.,

ti ≥ 0 ∀1 ≤ i ≤ zx − 1 and ti = −1 fori = zx.

If such an index does not exist, i.e., if ti ≥ 0 ∀1 ≤ i ≤ n, then
set zx = n.

We decompose x as

x = (u,w)

with u being of length n− z and w being of length z, where
z = zxR , and map x to

y = f (x) =
�
wR, u

�
Let vq,p(y, a + 1) = (v′′1 , v

′′
2 , . . . , v

′′
n ) and tq,p(y) =

(t′′1 , t
′′
2 , . . . , t

′′
n ). We will show that y is in Ca+1, that is, it holds
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that a) v′′i ≤ N for all i and b) v′′n ≤ a + 1, and, furthermore,
that y is unique for every x. Observe that if there exists an
index i such that t′i = −1, then we have from the definitions
of z and y that

v′′z = a + 1 + t′z = a + 1 − 1 = a

and
v′′i = vi−z (23)

for all z + 1 ≤ i ≤ n.
a) Note that t′′i = t′i ≤ a for all 1 ≤ i ≤ z, since t′j ≥ a + 1

for any j ∈ {1, 2, . . ., z} would imply that vn ≥ vn− j + t′j ≥
a + 1, which contradicts x ∈ Ca. Hence,

v′′i = a + 1 + t′′i ≤ a + 1 + a = 2a + 1 ≤ N

for all 1 ≤ i ≤ z. If z < n, then we have from (23) that

v′′i = vi−z ≤ N

for all z + 1 ≤ i ≤ n.
b) If there exists an index i such that t′i = −1, then we have

from (23) that

v′′n = vn−z ≤ vn − t′z ≤ a + 1

where the latter inequality follows from the facts that
vn ≤ a and t′z = −1. If there does not exist an index i
such that t′i = −1, then z = n, y = xR, and thus

v′′n = a + 1 + t′n = a + 1 + tn ≤ a + 1

The inequality follows from the fact that tn ≤ 0, since
tn > 0 would imply vn ≥ a + tn > a, which contradicts
x ∈ Ca.

We conclude that a) v′′i ≤ N for all i and b) v′′n ≤ a + 1,
and thus that y ∈ Ca+1. Finally, note that z = zxR = zy, so we
can retrieve z from y and thus establish the inverse mapping
f −1(y) = f −1((wR,u)) = (u, (wR)R) = (u,w) = x. Hence, f is
indeed an injective mapping from Ca to Ca+1, which proves
the statement in the theorem.�

Combining Corollary 5 and Theorem 6 gives us the follow-
ing important result.

Corollary 6: If q = 1, then the cardinality of Ca is
maximized for a = bN/2c, i.e.,

|Ca| ≤
ˇ̌
CbN/2c

ˇ̌
for all a = 0, 1, . . . ,N.

While this result solves the problem of determining the
largest Ca in the case that q = 1, the problem is still open in
the case that q > 1. One could conjecture that CbN/2c is optimal
for any q, but this is not true. The next example shows a case
in which |Ca| is not maximized for a = bN/2c.

Example 4: Let N = 7, q = 3, p = 4, and n = 5. Then

D5
7,3,4 =

266666666664

5 2 1 0 3 1 1 0
5 2 1 0 3 1 0 1
4 3 1 0 3 1 0 0
4 1 2 0 3 1 0 0
3 1 0 1 2 1 0 0
3 1 0 0 3 1 0 0
3 1 0 0 1 2 0 0
2 1 0 0 1 0 1 0

377777777775
.

Observe that |C0| = |C7| = 5, |C1| = |C6| = 7, |C2| = |C5| = 8, and
|C3| = |C4| = 7. Hence |Ca| is maximized for a = 2 and a = 5.

D. Generating Functions

Generating functions [25] are a very useful tool for enumer-
ating codewords. Define the generating function

G(z) =
X

gizi. (24)

The operation [zn]G(z) denotes the extraction of the coefficient
of zn in the formal power series G(z), that is,

[zn]G(z) = [zn]
�X

gizi
�

= gn. (25)

For the model under consideration, let the elements, hi, j(z),
of the (N + 1) × (N + 1) matrix H(z) denote the generating
functions of the number of valid binary sequences starting
in state i and ending in state j. Invoking the transfer-matrix
method [26], we yield

H(z) = (I − zDN,q,p)−1, (26)

where

hi, j(z) =
∆ j,i

∆
, (27)

∆ = det[I − zDN,q,p] = zN+1ΓN,q,p(1/z), (28)

and ∆ j,i is the j, i-th cofactor (signed minor) of [I − zDN,q,p].
From the analysis in the previous subsection it follows that
the optimal code size for a code of length n equals

MN,q,p(n) = [zn]
bN/2cX

j=0

hbN/2c, j(z) (29)

if q = 1. Below we work out a special case.
Example 5: We consider the same setting as in Example 3,

i.e., N = 3, q = 1, and p = 2. For this case we have {0, 1} as
an optimal encoder state set. From (26)–(29) it follows that
the maximum code size is

M3,1,2(n) = [zn]
1X

j=0

h1, j(z) = [zn]
1

z4 − 2z3 − z + 1
. (30)

This implies the recursion relation for n > 0,

M3,1,2(n)= M3,1,2(n − 1)+2M3,1,2(n − 3) − M3,1,2(n − 4), (31)

where M3,1,2(i) = 0, i < 0, and M3,1,2(0) = 1. After an
evaluation, we obtain

M3,1,2(n) = [zn](1 + z + z2 + 3z3 + 4z4

+5z5 + 10z6 + 15z7 + 21z8 + 36z9

+56z10 + 83z11 + 134z12 + · · · ). (32)

This integer sequence is related to sequences A176848,
A052916, A113435 in [27] as all these four sequences have the
same linear recurrence with the constant coefficients (1,0,2,-1).
They differ in their initial conditions. Note that the coeffi-
cient of z12 in (32) equals 134, which is in agreement with
Example 3.
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VI. CONCLUSION AND FUTURE WORK

We have described a thermal-aware channel model and
thoroughly analyzed its capacity. Furthermore, fixed-length
codes for such channels have been presented. Maximum-sized
codes have been identified for the case that the ratio of the
heating and cooling gradients is an integer. The non-integer
case is still open.

An interesting question is to enumerate exactly the number
of all (N, p, q) TA-sequences of length n, given four inte-
gers N, p, q, n. Although there is an algorithm to determine
A(N, q, p, n) as mentioned in Subsection IV-C, it is only
efficient when N, q, p are constant. Hence, we are interested
in an explicit formula for A(N, q, p, n) for all parameters. We
observe that an (N, p, q) TA-sequence is closely related to a
generalized Dyck path of bounded height [28]. In our future
work, we will exploit some enumerative techniques to find an
explicit formula for A(N, q, p, n).

Another interesting question is the behaviour of thermal-
aware communication using multiple wires [29]. Multiple
wires can be used to transmit codewords to a receiver. The
combination of the properties of one wire used in a multiple
wires channel to send information is intriguing. This extension
is left for future work as it is beyond the scope of this paper.
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