
3438 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

Correcting a Single Indel/Edit for DNA-Based Data
Storage: Linear-Time Encoders and

Order-Optimality
Kui Cai , Senior Member, IEEE, Yeow Meng Chee , Senior Member, IEEE, Ryan Gabrys , Member, IEEE,

Han Mao Kiah , Member, IEEE, and Tuan Thanh Nguyen , Member, IEEE

Abstract— An indel refers to a single insertion or deletion,
while an edit refers to a single insertion, deletion or substitution.
In this article, we investigate codes that correct either a single
indel or a single edit and provide linear-time algorithms that
encode binary messages into these codes of length n. Over the
quaternary alphabet, we provide two linear-time encoders. One
corrects a single edit with �log n� + O(log log n) redundancy
bits, while the other corrects a single indel with �log n� + 2
redundant bits. These two encoders are order-optimal. The former
encoder is the first known order-optimal encoder that corrects a
single edit, while the latter encoder (that corrects a single indel)
reduces the redundancy of the best known encoder of Tenengolts
(1984) by at least four bits. Over the DNA alphabet, we impose an
additional constraint: the GC-balanced constraint and require that
exactly half of the symbols of any DNA codeword to be either
C or G. In particular, via a modification of Knuth’s balancing
technique, we provide a linear-time map that translates binary
messages into GC-balanced codewords and the resulting codebook
is able to correct a single indel or a single edit. These are the first
known constructions of GC-balanced codes that correct a single
indel or a single edit.

Index Terms— Error correction codes, DNA-based data
storage, encoding, decoding, GC-balanced codes.

I. INTRODUCTION

ADVANCES in synthesis and sequencing technologies
have made DNA macromolecules an attractive medium

for digital information storage. Besides being biochemically
robust, DNA strands offer ultrahigh storage densities of
1015-1020 bytes per gram of DNA, as demonstrated in recent

Manuscript received October 13, 2019; revised July 25, 2020; accepted
November 9, 2020. Date of publication January 6, 2021; date of current
version May 20, 2021. The work of Kui Cai and Tuan Thanh Nguyen was
supported by the Singapore Ministry of Education Academic Research Fund
Tier 2 under Grant MOE2016-T2-2-054. This article was presented in part at
the 2019 IEEE International Symposium on Information Theory and in part
at the 2020 IEEE International Conference on Acoustics, Speech, and Signal
Processing. (Corresponding author: Tuan Thanh Nguyen.)

Kui Cai and Tuan Thanh Nguyen are with Science, Mathematics and Tech-
nology Cluster, the Singapore University of Technology and Design, Singa-
pore 487372 (e-mail: cai_kui@sutd.edu.sg; tuanthanh_nguyen@sutd.edu.sg).

Yeow Meng Chee is with the Department of Industrial Systems Engineer-
ing and Management, National University of Singapore, Singapore 119077
(e-mail: pvocym@nus.edu.sg).

Ryan Gabrys is with the Spawar Systems Center, San Diego, CA
92152 USA (e-mail: ryan.gabrys@gmail.com).

Han Mao Kiah is with the School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371 (e-mail:
hmkiah@ntu.edu.sg).

Communicated by O. Milenkovic, Guest Editor-in-Chief for the Special
Issue: “From Deletion-Correction to Graph Reconstruction: In Memory of
Vladimir I. Levenshtein.”

Digital Object Identifier 10.1109/TIT.2021.3049627

experiments (see [32, Table 1]). These synthetic DNA strands
may be stored ex vivo or in vivo. When the DNA strands are
stored ex vivo or in a non-biological environment, code design
takes into account the synthesising and sequencing platforms
being used (see [33] for a survey). In contrast, when the DNA
strands are stored in vivo or recombined with the DNA of a
living organism, we design codes to correct errors due to the
biological mutations [17].

Common to both environments are errors due to insertion,
deletion and substitution. For example, Organick et al. recently
stored 200MB of data in 13 million DNA strands and reported
insertion, deletion and substitution rates to be 5.4 × 10−4,
1.5 × 10−3 and 4.5 × 10−3, respectively [22]. When DNA
strands are stored in vivo, these errors are collectively termed
as point mutations and occur during the process of DNA
replication [8]. For convenience, we refer to a single insertion
or deletion as an indel, and a single insertion, deletion or
substitution as an edit. Given that current synthesis tech-
nologies produce strands of lengths 100 to 200 and given
the low raw error rates reported by experiments [12], [22],
we expect most DNA strands to be corrupted by at most
one edit error. Therefore, in this work, we focus on codes
that combat either a single indel or a single edit and provide
efficient methods of encoding binary messages into these
codes. Furthermore, we envision that the single-indel / edit-
correcting codes proposed in this article to be used as inner
codes in a concatenated coding scheme. Then the outer codes
can be used to correct the blocks where more than one error
occur in practice. Analysis of such concatenation schemes is
beyond the scope of this article.

Now, to correct a single indel, we have the celebrated class
of Varshamov-Tenengolts (VT) codes. While Varshamov and
Tenengolts introduced the binary version to correct asymmetric
errors [31], Levenshtein later provided a linear-time decoding
algorithm to correct a single indel for the VT codes [19]. In
the same paper, Levenshtein modified the VT construction to
correct a single edit. In both constructions, the number of
redundant bits is log n + O(1), where n is the length of a
codeword. Unless otherwise stated, all logarithms are taken
base two.

The VT construction partitions all binary words of length n
into certain n+1 classes, where each class is a VT code. Curi-
ously, even though efficient decoding was known since 1965,
a linear-time algorithm to encode into a VT code was only

0018-9448 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:10:42 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2059-0071
https://orcid.org/0000-0001-7823-8068
https://orcid.org/0000-0002-9197-3371
https://orcid.org/0000-0001-5611-0848
https://orcid.org/0000-0002-3179-9471


CAI et al.: CORRECTING A SINGLE INDEL/EDIT FOR DNA-BASED DATA STORAGE 3439

proposed by Abdel-Ghaffar and Ferriera in 1998 [1]. In the
same paper, Abdel-Ghaffar and Ferriera also adapted their
linear-time encoding schemes to a more general class of codes
called Constantin-Rao codes. Later, in 1999, Saowapa et al.
adopted a similar approach to design a linear-time encoder for
codes correcting a single edit [24].

A nonbinary version of the VT codes was proposed by
Tenengolts [28], who also provided a linear-time method
to correct a single indel. In the same paper, Tenengolts
also provided an efficient encoder that corrects a single
indel. For the quaternary alphabet, this encoder requires at
least log n + 7 bits for words of length n � 20. However,
the codewords obtained from this encoder are not contained
in a single non-binary VT code (see Section II-B for a
discussion). Hence, recently, Abroshan et al. presented a
systematic encoder that maps words into a single non-binary
VT code [3]. Unfortunately, the redundancy of this encoder
is �log n�(log q + 1) + 2(log q − 1), and when q = 4, the
redundancy is 3�log n� + 2. To the best of our knowledge,
there is no known efficient construction for q-ary codes (or
even quaternary codes) that can correct a single edit.

To further reduce errors, we also impose certain weight
constraints on the individual codewords. Specifically, the GC-
content of a DNA string refers to the percentage of nucleotides
that corresponds to G or C, and DNA strings with GC-content
that are too high or too low are more prone to both synthesis
and sequencing errors (see for example, [23], [34]). Therefore,
most work use DNA strings whose GC-content is close to
50% as codewords and use randomizing techniques to encode
binary message into the latter [22]. Recently, in addition
to the GC-content constraints, Immink and Cai studied the
homopolymer runlength constraint for DNA codewords [14].
Hence, in this work, in addition to correcting either a single
indel or a single edit, we also provide linear-time encoders
that map binary messages into codewords that have GC-content
exactly 50%. To the best of our knowledge, no such codebooks
are known prior to this work.

In summary, our broad objective is to provide practical
quaternary codes that correct either a single indel or a single
edit. In some instances, we also require the codewords to obey
certain weight constraints. Besides minimizing the number
of redundant bits, we also equip our codes with efficient
encoders. Our specific contributions are as follows.
(A) In Section III, we focus on correcting a single indel.

Instead of Tenengolts’ quaternary codes, we investigate
a class of binary codes by Levenshtein that corrects a
burst of errors. With suitable modifications, we present a
linear-time quaternary encoder that corrects a single indel
with �log n� + 2 bits of redundancy. This construction
improves the encoder of Tenengolts [28] by reducing the
redundancy by at least four bits. We then proceed to
extend and generalize this construction so as to design
efficient encoder for codes capable of correcting a burst
of indels with log n + O(log log n) bits of redundancy.
Here, a burst of indels refers to either a burst of deletions
or a burst of insertions.

(B) In Section IV, we focus on quaternary codes that cor-
rect a single edit. Specifically, we design two classes

of quaternary codes. The first class of codes incurs
2�logn�+2 bits of redundancy, while the second class of
codes incurs only log n+O(log log n) bits of redundancy
and is thus order-optimal. Even though the former is not
order-optimal, it outperforms the latter class when n �
512. In Section IV-C, we study a type of edits specific to
the DNA storage channel and provide an efficient encoder
that correct such edits with log n + log log n + O(1) bits
of redundancy.

(C) In Section V, we impose the GC-content constraints to
words in our codebook. Specifically, we encode binary
messages to GC-balanced codewords. Via a modification
of Knuth’s balancing method, we obtain linear-time GC-
balanced single indel/edit-correcting encoders.

We first go through certain notation and define the problem.
For the convenience of the reader, relevant notation and
terminology referred to throughout the paper is summarized
in Table I.

II. PRELIMINARY

Let Σ denote an alphabet of size q. For any positive integer
m < n, we let [m, n] denote the set {m, m + 1, . . . , n} and
[n] = [1, n].

Given two sequences x and y, we let xy denote the
concatenation of the two sequences. In the special case
where x, y ∈ Σn, we use x||y to denote their interleaved
sequence x1y1x2y2 . . . xnyn. For a subset I = {i1, i2, . . . , ik}
of coordinates, we use x|I to denote the vector xi1xi2 . . . xik

.
Let x ∈ Σn. We are interested in the following error balls:

B
indel(x) � {x} ∪ {y : y is obtained from x via a single insertion

or single deletion},
B

edit(x) � {x} ∪ {y : y is obtained from x via a single insertion

or single deletion, or single substitution}.
Observe that when x ∈ Σn, both Bindel(x) and Bedit(x) are
subsets of Σn−1∪Σn∪Σn+1. Hence, for convenience, we use
Σn∗ to denote the set Σn−1 ∪ Σn ∪ Σn+1.

Let C ⊆ Σn. We say that C corrects a single indel if
Bindel(x) ∩ Bindel(y) = ∅ for all distinct x, y ∈ C. Similarly,
C corrects a single edit if Bedit(x) ∩ Bedit(y) = ∅ for all
distinct x, y ∈ C. In this work, not only are we interested in
constructing large codes that correct a single indel or edit, we
desire efficient encoders that map binary messages into these
codes.

Definition 1: The map ENC : {0, 1}m → Σn is a single-
indel-correcting encoder if there exists a decoder map DEC :
Σn∗ → {0, 1}m such that the following hold.

(i) For all x ∈ {0, 1}m, we have DEC ◦ ENC(x) = x.
(ii) If c = ENC(x) and y ∈ Bindel(c), then DEC(y) = x.

Hence, we have that the code C = {c : c = ENC(x), x ∈
{0, 1}m} corrects a single indel and |C| = 2m. The redun-
dancy of the encoder is measured by the value n log q−m (in
bits). A single-edit-correcting encoder is similarly defined.

Therefore, our design objectives for a single-indel-
correcting or single-edit-correcting encoder are as follows.

• The redundancy is K log n + o(log n), where K is a
constant to be minimized. When K = 1, we say that
the encoder is order-optimal.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:10:42 UTC from IEEE Xplore.  Restrictions apply. 



3440 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

TABLE I

NOTATION SUMMARY

• The encoder ENC can be computed in time O(n).
• The decoder DEC can be computed in time O(n).

A. DNA Alphabet

When q = 4, we denote the alphabet by D =
{A, T, C, G} and consider the following one-to-one correspon-
dence between D and two-bit sequences:

A ↔ 00, T ↔ 01, C ↔ 10, G ↔ 11.

Therefore, given a sequence σ ∈ Dn, we have a corresponding
binary sequence x ∈ {0, 1}2n and we write x = Ψ(σ).

Let n be even. We say that σ ∈ Dn is GC-balanced if the
number of symbols in σ that correspond to C and G is n/2.
On the other hand, we say that x ∈ {0, 1}n is balanced if the
number of ones in x is n/2. For DNA-based storage, we are
interested in codewords that are GC-balanced.

Definition 2: A single-indel-correcting encoder ENC :
{0, 1}m → Dn is a GC-balanced single-indel-correcting

encoder if ENC(x) is GC-balanced for all x ∈ {0, 1}m. A GC-
balanced single-edit-correcting encoder is similarly defined.

Given σ ∈ Dn, let x = Ψ(σ) ∈ {0, 1}2n and we set Uσ =
x1x3 · · ·x2n−1 and Lσ = x2x4 · · ·x2n. In other words, σ =
Ψ−1(Uσ ||Lσ). We refer to Uσ and Lσ as the upper sequence
and lower sequence of σ, respectively. The following example
demonstrates the relation between σ, Uσ and Lσ .

Example 1: Suppose that σ = ACAGTG and we check that
σ is GC-balanced. Now, x � Ψ(σ) = 001000110111 and we
write Uσ and Lσ as follows.

σ A C A G T G
Uσ 0 1 0 1 0 1
Lσ 0 0 0 1 1 1

We make certain observations on σ, Uσ and Lσ.
Proposition 1: Let σ ∈ Dn. Then the following are true.

(a) σ is GC-balanced if and only if Uσ is balanced.
(b) σ� ∈ Bindel(σ) implies that Uσ′ ∈ Bindel(Uσ) and Lσ′ ∈

Bindel(Lσ).

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:10:42 UTC from IEEE Xplore.  Restrictions apply. 



CAI et al.: CORRECTING A SINGLE INDEL/EDIT FOR DNA-BASED DATA STORAGE 3441

(c) σ� ∈ Bedit(σ) implies that Uσ′ ∈ Bedit(Uσ) and Lσ′ ∈
Bedit(Lσ).

Remark 1: The statement in Proposition 1 can be made
stronger. Suppose that there is an indel at position i of σ.
Then there is exactly one indel at the same position i in both
upper and lower sequences of σ. For example, consider σ =
ACAGTG as in Example 1. If the third nucleotide A is deleted,
we obtain σ� = ACGTG and hence, Uσ′ = 01101 and Lσ′ =
00111. Furthermore, we observe that Ψ(σ) = Uσ||Lσ suffers
a burst of deletions of length two. In our example, Ψ(σ) =
001000110111 while Ψ(σ�) = 0010110111. In Section IV,
we make use of this observation to reduce the redundancy of
our encoders.

B. Previous Works

The binary VT syndrome of a binary sequence x ∈ {0, 1}n

is defined to be Syn(x) =
∑n

i=1 ixi.
For a ∈ Zn+1, let

VTa(n) = {x ∈ {0, 1}n : Syn(x) = a (mod n + 1)} . (1)

Then VTa(n) form the family of binary codes known as the
Varshamov-Tenengolts codes [19]. These codes can correct
a single indel and Levenshtein later provided a linear-time
decoding algorithm [19]. For any n, we know that there exists
a ∈ Zn+1 such that VTa(n) has at least 2n/(n + 1) code-
words. However, the first known linear-time encoder that maps
binary messages into VTa(n) was only described in 1998,
when Abdel-Ghaffar and Ferreira gave a linear-time systematic
encoder with redundancy �log(n + 1)�.

To also correct a substitution, Levenshtein [19] constructed
the following code

La(n) = {x ∈ {0, 1}n : Syn(x) = a (mod 2n)} , (2)

and provided a decoder that corrects a single edit. In 1999,
Saowapa et al. [24] gave a linear-time systematic encoder
with redundancy �log n�+ 1. The encoding method is crucial
in the construction of our subsequent encoders throughout
this article. For ease of exposition, we review the method in
Subsection II-C, and refer it as the Levenshtein-encoder, or
Encoder L.

Theorem 1 (Levenshtein [19] and Saowapa et al. [24]): Let
La(n) be as defined in (2). There exists a linear-time decoding
algorithm DECL

a : {0, 1}n∗ → La(n) such that the following
hold. If c ∈ La(n) and y ∈ Bedit(c), then DECL

a (y) = c.
In 1984, Tenengolts [28] generalized the binary VT codes

to nonbinary ones. Tenengolts defined the signature of a q-ary
vector x of length n to be the binary vector α(x) of length
n − 1, where α(x)i = 1 if xi+1 ≥ xi, and 0 otherwise, for
i ∈ [n − 1]. For a ∈ Zn and b ∈ Zq , set

Ta,b(n; q) �
{

x ∈ Z
n
q : α(x) ∈ VTa(n − 1) and

n∑
i=1

xi = b (mod q)
}

.

Then Tenengolts showed that Ta,b(n; q) corrects a
single indel and there exists a and b such that the size of

Ta,b(n; q) is at least qn/(qn). These codes are known to
be order-optimal [16], [28].

Surprisingly, to also correct a single substitution, i.e. to
correct a single edit, it is not straightforward as in the binary
case. One possible strategy is to adapt Levenshtein’s method
by changing the modulo value in Tenengolts’ nonbinary
single-deletion correcting codes 1. Unfortunately, this is not
possible to adopt this strategy for Tenengolts’ codes. The
reason is that it is possible for two distinct words that differ
in a single position to share the same signature. For example,
consider the ternary words x = (2, 2, 2, 1) and x� = (2, 2, 2, 0).
Their signatures are both α(x) = α(x�) = (1, 1, 0) and thus,
any syndromes computed based on their signatures result in
the same value. Hence, a novel strategy is required and we
provide one in Section IV-B.

In the same paper, Tenengolts also provided a systematic
q-ary single-indel-encoder with redundancy log n+Cq, where
n is the length of a codeword and Cq is independent of n.
When q = 4, we have that 7 � C4 � 10 for n � 20.
However, for this encoder, the codewords do not belong
to Ta,b(n; q) for some fixed values of a and b. Recently,
Abroshan et al. provided a method to systematically encode
q-ary messages into Ta,b(n; q) [3]. However, the redundancy
of such encoder is much larger compared with Tenengolts’
work. Specifically, the encoder of Abroshan et al. [3] uses at
least (log q + 1)�log n�+ 2(log q − 1) bits of redundancy and
particularly, when q = 4, the redundancy is 3�logn� + 2.

Note that to correct a single indel, it is not necessary
that all codewords to belong to the same coset Ta,b(n; q).
Nevertheless, when the words share the same VT parameters,
Abroshan et al. [3] demonstrated that these codes can be
adapted to correct multiple errors. This is in the context of
segmented edits [3], [21].

C. Levenshtein Encoder

Recall the definition of La(n) in (2) and recall that La(n) is
a binary code that can correct a single edit. For completeness,
we summarize the systematic encoder for La(n), proposed by
Saowapa et al. [24], as follows.
Encoder L. Given n, set t � �log n� and m � n − t − 1.

INPUT: x ∈ {0, 1}m

OUTPUT: c � ENCL(x) ∈ La(n)
(I) Set S � {2j−1 : j ∈ [t]} ∪ {n} and I � [n] \ S.

(II) Consider c� ∈ {0, 1}n, where c�|I = x and c�|S = 0.
Compute the difference d� � a− Syn(c�) (mod 2n). In
the next step, we modify c� to obtain a codeword c with
Syn(c) = a (mod 2n).

(III) We have the following two cases.

• Suppose that d� < n. Let yt−1 . . . y1y0 be the
binary representation of d�. In other words, d� =∑t−1

i=0 yi2i. Then we set c2j−1 = yj−1 for j ∈ [t],
cn = 0 and c|I = c�|I to obtain c.

• Suppose that n ≤ d� < 2n. We now compute the
difference d�� � d� − n (mod 2n) and hence, d�� <

1In the binary case, Levenshtein increased the modulo value from (n + 1)
to modulo 2n to correct a single substitution.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:10:42 UTC from IEEE Xplore.  Restrictions apply. 



3442 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

n. Consequently, the binary representation of d�� is
of length t = �log n� and let it be yt−1 . . . y1y0. As
before, we set c2j−1 = yj−1 for j ∈ [t], cn = 1 and
c|I = c�|I to obtain c.

We illustrate Encoder L via an example.
Example 2: Consider n = 10 and a = 0. Then t = 4

and m = 5. Suppose that the message is x = 11011 and we
compute ENCL(x) � c = c1c2c3c4c5c6c7c8c9c10 ∈ L0(10).

(I) Set S = {1, 2, 4, 8, 10} and I = {3, 5, 6, 7, 9}.
(II) Then we set c�|I = 11011 to obtain c� = 0010101010.

We then compute d� = a − Syn(c�) = 16 (mod 20).
(III) Since d� > 10, we compute d�� = d�−10 = 6 (mod 20).

The binary representation of 6 is 0110. Therefore, we set
c1 = 0, c2 = 1, c4 = 1, c8 = 0. Since d� > 10, we set
c10 = 1. In summary, c = 0111101011. We can verify
that Syn(c) = 0 (mod 20).

For completeness, we summarize the corresponding decoder
for La(n) as follows.

Decoder L. For any n, set m = n − �log n� − 1.
INPUT: y ∈ {0, 1}n∗

OUTPUT: x = DECL(y) ∈ {0, 1}m

(I) Using Theorem 1, set c � DECL
a (y).

(II) Set x � c|I , where I is defined by Encoder L.

It is not hard to use Encoder L to construct an efficient
encoder for DNA alphabet and the output codewords can
correct a single edit. For any DNA strand σ, we can use
Encoder L to encode the upper sequence Uσ and lower
sequence Lσ into into La(n). If Uσ and Lσ can correct a
single edit, according to Proposition 1, σ can correct a single
edit. This construction costs 2�log n� + 2 bits of redundancy.

To correct a single indel, we can modify Encoder L to lower
the redundancy to �log n� + 2 bits when q = 4.

III. ENCODERS CORRECTING A SINGLE INDEL

In this section, we design efficient encoders for non-
binary codes correcting a single indel. As mentioned earlier,
the Tenengolts’ codes correct a single indel for alphabet size
q > 2 and recently, Abroshan et al. presented a systematic
encoder that maps words into these codes [3]. Their encoder
was built on the framework proposed in [1] in the context of
Constantin-Rao codes. However, adapting the methods in [1]
for the non-binary signatures is not straightforward. Hence,
the redundancy of the encoder proposed by Abroshan et al. is
at least �log n�(log q +1)+2(log q− 1). For the specific case
when q = 4, the redundancy is 3�log n� + 2 which exceeds
log n by a significant amount.

To construct an order-optimal linear-time encoder, we look
at another code. In Section III-A, instead of Tenen-
golts’ quaternary codes, we investigate a class of binary
codes proposed by Levenshtein to correct a single burst
of deletions. We then show that these binary codes
can be transformed into quaternary single-indel-correcting
codes and provide a corresponding linear-time encoder in
Section III-B. In Section III-C, we continue our investi-
gation and provide encoders that correct single bursts of
indels.

A. Code Construction

Recall that in Remark 1, we observed that when an indel
occurs in σ ∈ Dn, the binary sequence Ψ(σ) has a burst of
indels of length two. In other words, we are interested in binary
codes that correct a single burst of indels of length two. To do
so, we have the following construction by Levenshtein [19].

For x ∈ {0, 1}n, we write x as the concatenation of s
substrings x = u0u1 . . . us−1, where each substring ui contains
identical bits, while substrings ui and ui+1 contain different
bits. Each substring ui is also known as a run in x. Let ri be
the length of the run ui. The run-syndrome of the binary word
x, denoted by Rsyn(x), is defined as follows.

Rsyn(x) =
s−1∑
i=1

iri. (3)

Example 3: The word 0010110 has five runs, namely, u0 =
00, u1 = 1, u2 = 0, u3 = 11 and u4 = 0. Hence, r1 = r2 =
r4 = 1, r0 = r3 = 2 and Rsyn(x) = 13.

Theorem 2 (Levenshtein [20]): For a ∈ Z2n, set

Lburst
a (n) � {x ∈ {0, 1}n : Rsyn(0x) = a (mod 2n)}. (4)

Then code Lburst
a (n) can correct a burst of indel of length two.

Furthermore, there exists a linear-time algorithm DECburst
a

such that DECburst
a (y) = c for all y ∈ Bburst(c) and c ∈

Lburst
a (n). Here, Bburst(c) refers to the error ball with respect

to a single burst of indel of length two centered at c.
Using this family of codes, we have a code over D that

corrects a single indel. For a ∈ Z2n, set

Ca(n) �
{
Ψ−1(c) : c ∈ Lburst

a (2n)
}

. (5)

To design a linear-time encoder for Ca(n), we make
use of the following relation between run-syndrome and
VT-syndrome of a binary word.

Lemma 1 (Levenshtein [20]): Define Φ : {0, 1}n → {0, 1}n

such that

Φ(x)i =

{
xi + xi+1 (mod 2) when i ∈ [n − 1],
xn when i = n.

(6)

Then Φ is an one-to-one map, and we have that

Rsyn(0x) = −Syn(Φ(x)) (mod 2n). (7)

Example 4 (Example 3 Continued): Consider x = 010110.
We have Φ(x) = 111010 and −Syn(Φ(x)) = −11 =
1 (mod 12). On the other hand, 0x = 0010110 and indeed,
Rsyn(0x) = 13 = 1 (mod 12).

B. Efficient Encoder Correcting a Single Indel

We now present an efficient method to translate binary
sequences into Ca(n) and hence, obtain a linear-time single-
indel-correcting encoder over D. We refer this as Encoder I.

Encoder I. Given n, set m = 2n − �log n� − 2.
INPUT: x ∈ {0, 1}m

OUTPUT: σ = ENCI(x) ∈ Ca(n), where Ca(n) is defined
in (5)

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:10:42 UTC from IEEE Xplore.  Restrictions apply. 



CAI et al.: CORRECTING A SINGLE INDEL/EDIT FOR DNA-BASED DATA STORAGE 3443

(I) Observe that m = 2n − �log 2n� − 1. Using Encoder
L, compute c ∈ L−a(2n). In other words, Syn(c) =
−a (mod 4n).

(II) Compute c� � Φ−1(c) as defined in (6). Hence,
Rsyn(0c�) = a (mod 4n).

(III) Set σ � Ψ−1(c�).
Example 5: Consider n = 5, m = 2n − �log 2n� − 1 = 5,

a = 0. We encode x = 11000.
(I) Encode x to a codeword c ∈ L0(10) using Encoder L.

Hence, c = 0110100001.
(II) Next, we compute c� = Φ−1(c) = 0010011111.

(III) Hence, we obtain σ = Ψ−1(c�) = ACTGG.
Proposition 2: Encoder I is correct and has redundancy

�log n� + 2 bits. In other words, ENCI(x) ∈ Ca(n) for all
x ∈ {0, 1}m.

Proof: Let σ � ENCI(x). From Remark 1, it suffices to
show that c� � Ψ(σ) belongs to Lburst

a (2n), or Rsyn(0c�) =
a (mod 4n). This follows from Lemma 1 and the fact that
c = Φ(c�) and Syn(c) = −a (mod 4n).

Remark 2: Encoder I runs in linear-time and the redundancy
is �log n�+2 bits. As mentioned earlier, one may use the sys-
tematic q-ary single-indel-encoder introduced by Tenengolts
[28] for q = 4. The redundancy of such encoder is log n + c,
where 7 � c � 10 for n � 20. In other words, in general,
Encoder I improves the redundancy by at least four bits.

For completeness, we state the corresponding decoder,
Decoder I, for DNA codes that correct a single indel.

Decoder I. For any n, set m = 2n− �log n� − 2.
INPUT: σ ∈ Dn∗

OUTPUT: x = DECI(σ) ∈ {0, 1}m

(I) Compute ĉ� � Ψ(σ).
(II) Using Theorem 2, compute c� � DECburst

a

(
ĉ�
)

.

(III) Set c � Φ(c�).
(IV) Set x � c|I , where I is defined by Encoder L.

Encoder I can be extended to obtain linear-time q-ary single-
indel-correcting encoders with redundancy (1/2 log q) log n +
O(1). This improves the encoder of Abroshan et al. that uses
(log q+1) log n+O(1) bits of redundancy [3]. Unfortunately,
unlike Tenengolts’ encoder [28], this q-ary encoder is not
order-optimal.

C. Efficient Encoder for Codes Correcting a
Burst of Indels

Recently, Schoeny et al. constructed binary codes that
corrects a single burst of indels of length b with log n+o(log n)
bits of redundancy for fixed values of b [25]. Here, we extend
our techniques to provide linear-time encoders for the codes
of Schoeny et al., and hence obtain order-optimal linear-time
burst-indel-correcting encoders for alphabet of size q, q > 2.
In this article, we focus on the case q = 4. The work can be
easily extended and generalized to any alphabet size. We first
introduce the definition of burst of indels.

Let x ∈ Σn. We refer to a b-burst of dele-
tions when exactly b consecutive deletions have occurred,
i.e., from x, and we obtain a subsequence x� =
(x1, x2, . . . , xi, xi+b+1, . . . , xn) ∈ Σn−b. Similarly, we refer

to a b-burst of insertions when exactly b consecutive inser-
tions have occurred, i.e., from x, and we obtain x�� =
(x1, x2, . . . , xj , y1, y2, . . . , yb, xj+1, . . . , xn) ∈ Σn+b. A b-
burst of indels refers to either a b-burst of deletions or a b-burst
of insertions. We define the b-burst error ball:

Bindel
b−burst(x) � {x} ∪

{
y : y is obtained from x

via a b-burst of indels
}

.

Let C ⊆ Σn. We say that C is a b-burst-indels-correcting code
if Bindel

b−burst(x) ∩ Bindel
b−burst(y) = ∅ for all distinct x, y ∈ C.

In the binary case, Schoeny et al. represent the codewords
of length n in the b-burst-indels-correcting code as b × n/b
codeword arrays, where b divides n. Thus, for a codeword
x, the codeword array Ab(x) is formed by b rows and n/b
columns, and the codeword is transmitted column-by-column.
Observe that a b-burst deletes (or inserts) in x exactly one bit
from each row of the array Ab(x). Here, the ith row of the
array is denoted by Ab(x)i.

Ab(x) =

⎡⎢⎢⎢⎣
x1 xb+1 · · · x(j−1)b+1 · · · x(n/b−1)b+1

x2 xb+2 · · · x(j−1)b+2 · · · x(n/b−1)b+2

...
...

. . .
...

. . .
...

xb x2b · · · xjb · · · xn

⎤⎥⎥⎥⎦ .

Construction 1 (Schoeny et al. [25]): Given n > 0, b =
o(n), Schoeny et al. then construct a b-burst-indels-correcting
code of length n as follows. For a codeword x, the codeword
array Ab(x) satisfies the following constraints.

• The first row in the array is a VT-code which also restricts
the longest run of 0’s or 1’s to be at most r = log 2n +
O(1). Schoeny et al. also provided the runlength-limited
encoder which uses only one redundancy bit in order to
encode binary vectors of maximum run length at most
�log n� + 3 (see [25, Appendix B]).

• Each of the remaining (b − 1) rows in the array is then
encoded using a modified version of the VT-code, which
they refer as shifted VT (SVT) code. This code corrects
a single indel in each row provided the indel position is
known to be within P consecutive positions. To obtain
the desired redundancy, Schoeny et al. set P = r + 1 =
log 2n + O(1).

Formally, the following results were provided by
Schoeny et al. [25].

Theorem 3 (Schoeny et al. [25]): There exists a pair of
linear-time algorithms ENCRLL : {0, 1}n−1 → {0, 1}n and
DECRLL : {0, 1}n → {0, 1}n−1 such that the following holds.
If ENCRLL(x) = y, then y is a binary vector of maximum run
length at most �log n� + 3 and DECRLL(y) = x.

For 0 ≤ c < P and d ∈ {0, 1}, the shifted VT-code
SVTc,d,P (n) is defined as

SVTc,d,P (n) �
{

x :Syn(x) = c (mod P ) and
n∑

i=1

xi = d (mod 2)
}
.

Theorem 4 (Schoeny et al. [25]): The code SVTc,d,P (n)
can correct a single indel given knowledge of the location of

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:10:42 UTC from IEEE Xplore.  Restrictions apply. 



3444 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

the deleted (or inserted) bit to within P consecutive positions.
Furthermore, there exists a linear-time algorithm DECSV T

c,d,P

such that the following holds. If c ∈ SVTc,d,P (n), y ∈
Bindel(c) and the deleted (or inserted) index belongs to J �
[j, j+P−1] for some 1 � j � n−P , then DECSV T

c,d,P (y, J) = c.
We now modify the construction of Schoeny et al. to obtain

a quaternary linear-time b-burst-indels-correcting encoder with
redundancy log n + o(log n). Observe that if we convert a
quaternary sequence of length n into binary sequence of length
2n, then a b-burst-indels in quaternary sequence results in a
2b-burst-indels in the corresponding binary sequence. Suppose
that we want to encode messages into quaternary code of
length n = bN .

Construction 2: Let n = bN, P, r > 0, P ≥ r + 1. Given
a ∈ ZN , c ∈ ZP , and d ∈ Z2, let Cindel

b−burst(n, P, r; a, c, d) be
the code contains all codewords σ ∈ DbN such that when we
view x = Ψ(σ) ∈ {0, 1}2bN as the array A2b(x), the following
constraints are satisfied.

• The first row A2b(x)1 ∈ La(N) and the longest run of
0’s or 1’s is at most r.

• For 2 ≤ i ≤ 2b, the ith row A2b(x)i ∈ SVTc,d,P (N).

Clearly, Cindel
b−burst(n, P, r; a, c, d) is a b-burst-indels-

correcting code. Before we provide the encoder for
Cindel

b−burst(n, P, r; a, c, d), an encoder for SVTc,d,P (n) is
needed. One can easily modify the encoder for VT-code
to obtain an efficient encoder for shifted VT-code with
redundancy �log P � + 1. For completeness, we describe the
encoder for shifted VT-code SVTc,d,P (n).
SVT-Encoder. Given n, c, d, P , set t � �log P � and m �
n − t − 1.

INPUT: x ∈ {0, 1}m

OUTPUT: c � ENCSV T (x) ∈ SVTc,d,P (n)

(I) Set S � {2j−1 : j ∈ [t]} ∪ {P} and I � [n] \ S.
(II) Consider c� ∈ {0, 1}n, where c�|I = x and c�|S = 0.

Compute the difference d� � a − Syn(c�) (mod P ). In
the next step, we modify c� to obtain a codeword c with
Syn(c) = a (mod P ).

(III) Let yt−1 . . . y1y0 be the binary representation of d�. In
other words, d� =

∑t−1
i=0 yi2i. Then we set c2j−1 = yj−1

for j ∈ [t].
(IV) Finally, we set the bit xP as the parity check bit that

satisfies xP = d −∑i∈[n]\P xi (mod 2).

To conclude this subsection, we provide a linear-time
encoder for Cindel

b−burst(n; a, c, d).
b-Burst-Indels-Encoder. Given n = bN, r = 2�log N� +
4, P = r + 1, a ∈ ZN , c ∈ ZP , d ∈ Z2, set t � �log P � and
m � 2bN − �log N� − (2b − 1)(t + 1) − 2.

INPUT: x ∈ {0, 1}m

OUTPUT: c � ENCindel
b−burst(x) ∈ Cindel

b−burst(n; a, c, d)

(I) Set x1 be the first (N − �log N� − 2) bits in x and
for 2 ≤ i ≤ 2b, set xi be the subsequence of length
(N − t − 1) of x such that x = x1x2 . . . x2b.

(II) Let y�
1 = ENCRLL(x1) and use Encoder L as described

in Subsection II-C to encode y1 = ENCL(y�
1).

(III) For 2 ≤ i ≤ 2b, use SVT Encoder ENCSV T to encode
yi = ENCSV T (xi) ∈ SVTc,d,P (n).

(IV) Finally, set y = y1||y2|| . . . ||y2b and output σ �
Ψ−1(y).

For given n = bN , the b-Burst-Indels-Encoder costs �log N�+
O(log log N) = log n + O(log log n) bits of redundancy.

Proposition 3: Let b = Θ(1). The b-Burst-Indels-
Encoder is correct. In other words, ENCindel

b−burst(x) ∈
Cindel

b−burst(n, P, r; a, c, d) for all x ∈ {0, 1}m.
Proof: Let σ � ENCindel

b−burst(x) and y = Ψ(σ). It is
sufficient to show that when we view y as the array A2b(y)
the constraints in Construction 2 are satisfied. Based on our
encoder, y = y1||y2|| . . . ||y2b and yi = ENCSV T (xi) ∈
SVTc,d,P (n) for 2 ≤ i ≤ 2b. It remains to show that the first
row y1 ∈ La(N) and the longest run of 0’s or 1’s is at most
r. Observe that y�

1 = ENCRLL(x1), which implies the longest
run of 0’s or 1’s in y�

1 is at most (�log N� + 3) according to
Theorem 3. Therefore, the maximum run in y1 after ENCL is
at most (�log N� + 3) + (�log N� + 1) = 2�log n� + 4 = r
(refer to Subsection III-C, Encoder L).

IV. ENCODERS CORRECTING A

SINGLE EDIT

In this section, we present efficient encoders for codes
over Dn that can correct a single edit. Unlike indel error,
the main challenge to design codes correcting edit is that when
substitution error occurs in a DNA strand σ, it might not affect
Uσ or Lσ. Therefore, putting a VT constraint in either one of
these sequences might not tell any information about the loss
in the other sequence. We illustrate this scenario through the
example below.

Example 6: Suppose that σ = ACAGTG. Suppose a substi-
tution error occurs at the third symbol, changing A to T, and
we received σ1 = ACTGTG. On the other hand, suppose a
substitution error also occurs at the third symbol, changing A
to C, and we received σ2 = ACCGTG. We then see the change
in Uσ and Lσ.

σ A C A G T G
Uσ 0 1 0 1 0 1
Lσ 0 0 0 1 1 1

σ1 A C T G T G
Uσ 0 1 0 1 0 1
Lσ 0 0 1 1 1 1

σ2 A C C G T G
Uσ 0 1 1 1 0 1
Lσ 0 0 0 1 1 1

According to Proposition 1, if σ� ∈ Bedit(σ) implies that
Uσ′ ∈ Bedit(Uσ) and Lσ′ ∈ Bedit(Lσ). Therefore, a simple
solution is to encode both of the sequences Uσ and Lσ

into La(n) using Encoder L. Recall that La(n) can detect
and correct a single edit. Hence, σ = Ψ−1(Uσ||Lσ) can
correct a single edit. This simple encoder costs 2�log n� + 2
bits of redundancy, which is at most twice the optimal. For
completeness, we present the encoder below and refer this
as the Encoder A. We remark that Encoder A is crucial in
construction of GC-balanced codebooks in Section V.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:10:42 UTC from IEEE Xplore.  Restrictions apply. 



CAI et al.: CORRECTING A SINGLE INDEL/EDIT FOR DNA-BASED DATA STORAGE 3445

A. First Class of Single-Edit-Correcting Codes

Proposition 4: Set m = 2(n− �log n� − 1). There exists a
linear-time single-edit-correcting encoder ENCA

E : {0, 1}m →
Dn with redundancy 2�logn� + 2.

Proof: We describe the single-edit-correcting encoder.
Consider the message x1x2 ∈ {0, 1}m with |x1| = |x2| =
n − �log n� − 1. For i ∈ [2], set ci = ENCL(xi) ∈ {0, 1}n.
Then set ENCA

E (x1x2) = Ψ−1(c1||c2).
An alternative approach to correct a single edit is to consider

the quaternary Hamming Code CH with log(3n+1) ≈ log n+
1.58 bits of redundancy. If we partition the codewords in CH

into 4n equivalence classes according to their VT parameters,
we are then guaranteed a code that corrects a single edit with
redundancy at most 2 logn+3.58. In contrast, the linear-time
encoder in Proposition 4 has redundancy 2�logn� + 2.

Furthermore, the best known linear-time encoder that maps
messages into one such class is the one by Abroshan et al.
and the encoder introduces additional 3�logn�+ 2 redundant
bits [3]. Thus, an efficient single-edit-correcting encoder
obtained via the construction has redundancy approximately
4 logn + 3.58.

B. Order-Optimal Quaternary Codes Correcting
a Single Edit

In this subsection, we consider the quaternary alphabet
Σ4 = {0, 1, 2, 3} as a subset of integers. Our main result
in this subsection is the construction of a quaternary single-
edit-correcting code that has redundancy log n+O(log log n),
where n is the length of the codeword.

As noted in Section II, the log n-bit VT-syndrome computed
on the signature of a word is unable to uniquely identify
single substitution errors. Hence, we introduce another log n-
bit VT-syndrome computed on the non-binary word itself to
correct single substitution errors. However, this incurs roughly
2 logn bits of redundancy. To achieve order-optimality, á
la Schoeny et al. [25], we instead use the shorter shifted
VT syndrome for the signature. To correct single indels with
the shifted VT codes, we then impose a certain constraint
on all codewords. With the appropriate choice of parameters,
we demonstrate that the resulting redundancy is as desired.
We outline our subsection as follows.

(I) We first define the sum-balanced constraint in Defini-
tion 3 and show that most quaternary words obey this
constraint in Lemma 2.

(II) In Construction 3, we defined our single-edit-correcting
codes CB . Lemmas 4 and 6 then provide the decod-
ing algorithms for single substitutions and deletions,
respectively.

(III) In Theorem 6, we provide a choice of parameters that
achieve order-optimality. The remaining of the subsec-
tion describes an efficient encoder for CB .

First, we define the sum-balanced constraint.
Definition 3: Let x = (x1, x2, . . . , xn) ∈ Σn

4 . A window
W of length k of x, i.e. W = (xi+1, . . . , xi+k) is called
sum-balanced if k <

∑
xj∈W xj < 2k. A word x is k-sum-

balanced if every window W of the word x is sum-balanced
whenever the window length is at least k.

A key ingredient of our code construction is the set of all
k-sum-balanced words.

Balk(n) � {x ∈ Σn
4 : x is k-sum-balanced} .

We have the following properties of Balk(n). The first
lemma states that whenever k = Ω(log n), the set Balk(n)
incurs at most one symbol of redundancy.

Lemma 2: Given n � 4, if k = 36 logn, then |Balk(n)| ≥
4n−1.

To prove this lemma, we require Hoeffding’s inequality [13].
Theorem 5 (Hoeffding’s Inequality): Let Z1, Z2, . . . , Zn be

independent bounded random variables such that ai � Zi � bi

for all i. Let Sn =
∑n

i=1 Zi. For any t > 0, we have

P (Sn − E[Sn] ≥ t) ≤ e−2t2/
�n

i=1(bi−ai)
2
.

Proof of Lemma 2: Let x be a uniformly at random
selected element from Σn

4 . We evaluate the probability that
the first k-length window W of x does not satisfy the
sum-balanced constraint. Applying Hoeffding’s inequality we
obtain:

P

(∣∣∣∣∣ ∑
xi∈W

xi − 3k

2

∣∣∣∣∣ ≥ k

2

)
= 2 P

((∑
xi∈W

xi − 3k

2

)
≥ k

2

)

≤ 2 e−
2k2/4

9k = 2e−k/18.

Since f(k) = e−k/18 is decreasing in k, the probability that
a k�-length window violates the sum-balanced constraint is
at most f(k) for k� � k. Also, since there are at most n2

windows, applying the union bound and setting k = 36 logn
yields

P (x /∈ Balk(n)) ≤ n22e−
k
18 = 2n2 e−2 log n = 2 n2−2 log e.

Therefore, the size of Balk(n) is at least

|Balk(n)| ≥ 4n(1 − 2 n2−2 log e).

Since n ≥ 4, we have that 1 − 2 n2−2 log e ≥ 1/4. Therefore,
|Balk(n)| ≥ 4n−1.

Next, we recall that the signature of x, denoted by α(x), is a
binary vector of length n − 1, where α(x)i = 1 if xi+1 ≥ xi,
and 0 otherwise, for i ∈ [n − 1]. It is well-known that if a
single deletion occurs in x, resulting in y, then α(y) can be
obtained by deleting a single symbol from α(x). The following
lemma provides an upper bound on the length of a run of a
k-balanced word and its signature.

Lemma 3: Let x ∈ Balk(n). Then the length of a run in x
is at most (k − 1) while the length of a run in α(x) is strictly
less than 2(k − 1).

Proof: Let x ∈ Balk(n). We first show that the length
of a run in x is at most (k − 1). Suppose otherwise that the
run in x is (xi+1, . . . , xi+t) where t ≥ k. Since x ∈ Balk(n),
we have xi+1 + xi+2 + · · ·+ xi+t = txi+1 ∈ (t, 2t). We have
a contradiction since xi+1 ∈ {0, 1, 2, 3}.

Let W(0,1) be a window in x that contains only 0 and 1
symbols. We claim that the length of W(0,1) is at most (k−1).
Otherwise, assume that the size is s where s ≥ k. Then the
sum of symbols in this window is at most s. We then get a
contradiction since x ∈ Balk(n) and the sum of such symbols

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:10:42 UTC from IEEE Xplore.  Restrictions apply. 



3446 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

is strictly more than s. Similarly, let W(2,3) be a window in x
that contains only 2 and 3 symbols. Then the length of W(2,3)

is at most (k − 1).
We look at runs in the signature α(x). First, the run of

zeroes in α(x) is at most three and this happens when the
corresponding window is (3, 2, 1, 0). Next, we look at a run
of ones in α(x). Now, such a run is obtained when there is a
subsequence y in x of the form y = 0t11t22t33t4 . As shown
earlier, the window 0t11t2 has length at most (k − 1) and the
window 2t33t4 has length at most (k − 1). Hence, the length
of y is at most (2k− 2), which the corresponding run of ones
in α(x) is at most 2(k − 1).

We are now ready to present our main code construction
for this subsection.

Construction 3: Given k < n, set P = 5k. For a ∈ Z4n+1,
b ∈ ZP , c ∈ Z2 and d ∈ Z7, set CB(n; a, b, c, d) as follows.

CB(n; k, a, b, c, d)

=
{

x ∈ Balk(n) : Syn(x) = a (mod 4n + 1),

α(x) ∈ SVTb,c,P (n − 1), and
n∑

i=1

xi = d (mod 7)
}

.

In what follows, we first prove the correctness of Con-
struction 3 by providing an efficient decoder that can correct
a single edit in linear time. Subsequently, in Theorem 6,
we show that C is order-optimal with a suitable choice
of k.

The decoding operates as follows.

• First, the decoder decides whether a deletion, insertion
or substitution has occurred. Note that this information
can be recovered by simply observing the length of the
received word.

• If the length of the output word is equal to n, then
we conclude that at most a single substitution error has
occurred and Lemma 4 provides the procedure to correct
the substitution error (if it exists).

• Otherwise, the output vector has length n− 1 (or n +1).
We then conclude that a single deletion (or insertion) has
occurred and we proceed according to Lemma 6.

Lemma 4: The code CB(n; a, b, c, d) corrects a single sub-
stitution in linear time.

Proof: Suppose that the original codeword is x and we
receive a vector y of length n. The decoder proceeds as
follows.

• Step 1. Error detection. Compute d� �∑n
i=1 yi (mod 7). If d� = d, then we conclude

that there is no error and y is the original codeword
x. Otherwise, a substitution error occurs. Henceforth,
we assume that it occurs in position j.

• Step 2. Next, we compute yj − xj = d� − d (mod 7).
Since, xj , yj ∈ {0, 1, 2, 3}, we can determine the value
of yj − xj as integers.

• Step 3. Error location. Compute a� =
Syn(y) (mod 4n + 1) and clearly, we have
a� − a = j(yj − xj) (mod 4n + 1). Now, since
1 � j � n, we uniquely determine the index j with the
value of yj − xj from Step 2.

• Step 4. Recovering the symbol. Finally, given the error
location j, we recover xj using yj and yj − xj .

It is easy to see that all the decoding steps run in O(n) time.
Hence, CB(n; a, b, c, d) corrects a single substitution in linear
time.

It remains to describe the decoding procedure for correcting
a single deletion. To this end, we have the following technical
lemma that that characterizes words whose deletion balls
intersect and whose syndromes are the same.

Lemma 5: Let x and z be two words such that the following
hold.
(B1) x and z belongs to Balk(n).
(B2) Syn(x) = Syn(z) = a (mod 4n + 1).
(B3)

∑n
i=1 xi =

∑n
i=1 zi = d (mod 7).

(B4) Bindel(x) ∩ Bindel(z) is non-empty.
Suppose that y ∈ Bindel(x) ∩Bindel(z). If y is obtained from
x by deleting xi and obtained from z by deleting zj , then we
have that |i − j| < k.

Proof: From (B3) and the fact that xi and zj belongs to
Σ4, we have that the deleted symbols are the same. In other
words, xi = zj and we set this value to be m.

Without loss of generality, assume that i > j. We compute
the syndrome of y

Syn(y) =
n−1∑
t=1

tyt = a� (mod 4n + 1),

and consider the quantity

(a−a�) (mod 4n+1) =
n∑

t=1

txt−
n−1∑
t=1

tyt = im+
n−1∑
t=i

yt. (8)

On the other hand, if we compute the same quantity using
z, we have that

(a − a�) (mod 4n + 1) = jm +
n−1∑
t=j

yt. (9)

Now, we know that yt = zt+1 for t � j. Subtracting (9)
from (8) and setting i − j = b, we have that

bm =
i∑

t=j+1

zt (mod 4n + 1).

Since bm < 4n + 1 and 0 ≤ zt ≤ 3 for all t, we have that
bm =

∑i
t=j+1 zt. Suppose to the contrary that i− j = b ≥ k.

Then since z ∈ Balk(n), we have that b <
∑i

t=j+1 zt < 2b.
Hence, we have that b < bm < 2b, contradicting the fact that
m is an integer. Therefore, i − j < k.

Finally, we present the deletion-correcting procedure.
Lemma 6: The code CB(n; a, b, c, d) corrects a single dele-

tion or single insertion in linear time.
Proof: Since the decoding process for correcting an inser-

tion is similar to correcting a deletion, we only present the case
of a deletion. Now, let y be the result of a deletion occurring
to x ∈ CB(n; a, b, c, d) at position i. To recover x, the decoder
proceeds as follows.

• Step 1. Identifying the deleted symbol. From the con-
straint

∑n
t=1 xt ≡ d (mod 7), we compute the deleted

symbol m � d −∑n−1
t=1 yt (mod 7).

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:10:42 UTC from IEEE Xplore.  Restrictions apply. 



CAI et al.: CORRECTING A SINGLE INDEL/EDIT FOR DNA-BASED DATA STORAGE 3447

• Step 2. Localizing the deletion.
– Localizing the deletion in x. Using (8) or (9),

we compute the possible deleted positions. Specifi-
cally, set a� = Syn(y) (mod 4n+1) and we compute
J = {1 ≤ j ≤ n : a� + jm +

∑n−1
t=j yt =

a (mod 4n + 1)}. According to Lemma 5, we have
|i − j| < k for all i, j ∈ J.

– Localizing the deletion in α(x). For j ∈ J, set y+
j to

be word obtained by inserting m at index j. Suppose
that α(y) can be obtained by deleting a single symbol
from α(y+

j ) at position j�. Then we add j� to the
set J�j . We set J� �

⋃
j∈J

J�j . We claim that J� ⊆
[j�min, j�min+P−1] where j�min is the smallest index.
Indeed, Lemma 3 states that the longest run in x is
at most (k − 1) and the longest run in α(x) is less
than 2(k−1). Therefore, the interval containing J� is
of length at most 2(k−1)+k+2(k−1) < 5k = P .

• Step 3. Recovering α(x). Since α(x) ∈ SV Tb,c,P (n−1),
we apply DECSV T

b,c,P (from Theorem 4) to α(y) and J� to
recover α(x).

• Step 4. Recovering x. From recovered α(x) and symbol
m, we can determine x uniquely.

It is easy to see that all the decoding steps run in O(n). Hence,
C(n; a, b, c, d) can correct a single deletion or single insertion
in linear time.

Combining the results of Lemma 4 and Lemma 6 we have
the following theorem.

Theorem 6: The code CB(n; a, b, c, d) corrects a single
edit in linear-time. There exist a, b, c, d such that the size of
CB(n; a, b, c, d) is at least

|C(n; a, b, c, d)| ≥ |Balk(n)|
35(4n + 1)k

.

When k = 36 log4 n, we have that the redundancy is at most
log4 n + O(log log n) bits.

Proof: It remains to demonstrate the property of the code
size. The lower bound is obtained using pigeonhole principle.
Setting k = 36 log4 n, we have that |Balk(n)| � 4n−1 and
hence the redundancy is log4 n + O(log log n).

Remark 3: Observe that CB(n; a, b, c, d) requires at least
1 + log (35(4n + 1)k) � 13 + log n bits of redundancy. In
contrast, the encoder ENCA

E from Proposition 4 requires at
most 4 + 2 logn bits of redundancy. Therefore, even though
CB(n; a, b, c, d) is order-optimal, the encoder ENCA

E incurs
less redundant bits whenever n � 29 = 512.

Finally, we provide an efficient encoder that encodes binary
messages into a quaternary codebook that corrects a single
edit. While the codebook in general is not the same as
CB(n; a, b, c, d), the decoding procedure is similar and the
number of redundant bits is similar to that of CB(n; a, b, c, d).

A high-level description of the encoding procedure is as
follows.

(I) Enforcing the k-sum-balanced constraint. Given an
arbitrary message x over Σ4 of length m−1, we encode
x to a word z ∈ Balk(m). However, it is not straight-
forward to efficiently code for this constraint. Hence,
we instead impose a tighter constraint on the sum, but

we impose the constraint only on windows of length
exactly k. We provide the formal definition of restricted-
sum-balanced in Definition 4.

(II) Appending the syndromes. Using z, we then com-
pute its VT syndrome a � Syn(z) (mod 4n +
1), SVT syndrome b � Syn(α(z)) (mod P ) and
c �

∑n
i=1 α(z)i (mod 2), and the check d �∑n

i=1 zi (mod 7). Finally, we append the quaternary
representations of a, b, c and d to the end of z with
a marker between z and these syndromes. It turns out
we can modify the procedures given in Lemma 4 and
Lemma 6 and correct a single edit in linear time. We do
so in Theorem 7.

Enforcing the k-sum-balanced constraint. As mentioned
earlier, instead of encoding into k-sum-balanced words,
we require the words to have the following property.

Definition 4: Let x = (x1, x2, . . . , xn) ∈ Σn
4 . A window

W of length k of x, i.e. W = (xi+1, . . . , xi+k) is called
restricted-sum-balanced if 5k/4 <

∑
xj∈W xj < 7k/4. A

word x is k-restricted-sum-balanced if every window W of
length exactly k of the word x is restricted-sum-balanced.

The following lemma states that a k-restricted-sum-balanced
is also (4k)-sum-balanced.

Lemma 7: Let Bal∗k(n) = {x ∈ Σn
4 :

x is k-restricted-sum-balanced}. We have that Bal∗k(n) ⊆
Bal4k(n).

Proof: Let x ∈ Bal∗k(n) and W be a window of x whose
length is at least 4k.

Suppose that the length of W is Mk + N for some M ≥ 4
and 0 ≤ N < k. Hence, we write W � z1z2 . . . zM zM+1

where each zi is a window of length k for 1 ≤ i ≤ M and
the window zM+1 is of length N .

Since x ∈ Bal∗k(n), we then have zi is k-restricted-sum-
balanced for 1 ≤ i ≤ M . Therefore, 5k/4 <

∑
xj∈zi

xj <
7k/4 for 1 ≤ i ≤ M . Hence, for M ≥ 4 and 0 ≤ N < k,
we have

∑
xj∈W

xj >

M∑
i=1

(∑
xt∈zi

xt

)
> 5Mk/4 = Mk + Mk/4
≥ Mk + k > Mk + N, and∑

xj∈W

xj <

M∑
i=1

(∑
xt∈zi

xt

)
+ 3N

< 7Mk/4 + 3N = 2Mk + 2N + (N − Mk/4)
< 2Mk + 2N.

This shows that W is sum-balanced. Hence, x ∈ Bal4k(n).
Now, we may modify the sequence replacement techniques

[9], [30] to encode for the restricted-sum-balanced constraint.
Proposition 5: Suppose that k � 72 logn. Then there is

a pair of efficient algorithms ENCk−rsb : Σn−1
4 → Σn

4 and
DECk−rsb : Im(ENCk−rsb) → Σn−1

4 such that ENCk−rsb(x) ∈
Bal∗k(n) and DECk−rsb ◦ ENCk−rsb(x) = x for all x ∈ Σn−1

4 .

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:10:42 UTC from IEEE Xplore.  Restrictions apply. 



3448 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

Appending the syndromes. Set k = 72 logn in Proposition 5.
Suppose that the message x ∈ Σn−1

4 is encoded to y =
(y1, y2, . . . , yn) ∈ Bal∗k(n), or, y � ENCk−rsb(x).

Let k� = 4k and P = 5k�. The encoder computes the
following four sequences over Σ4.

• Set the VT syndrome a � Syn(y) (mod 4n + 1). Let
R1 be the quaternary representations of a of length
�log4(4n + 1)�.

• Set the SVT syndrome b � Syn(α(y)) (mod P ). Let R2

be the quaternary representations of b of length �log4 P �.
• Set the parity check of α(y), i.e. c �∑n

i=1 α(y)i (mod 2). Let R3 ≡ c.
• Set the check d �

∑n
i=1 yi (mod 7). Let R4 be the

quaternary representations of d of length 2.

Let r be the smallest symbol in Σ4\{yn} and let the marker
M = (r, r). We append M, R1, R2, R3, R4 to y and output the
codeword yMR1R2R3R4 of length N = (n+�log4(4n+1)�+
�log4 P � + 5).

Finally, we summarize our encoding procedure and demon-
strate its correctness.

Theorem 7: Given n, a, b, c, d, set k = 72 logn, k� = 4k,
P = 5k� and N = (n + �log4(4n + 1)�+ �log4 P �+ 5). We
define ENCB

E : Σn−1
4 → ΣN

4 as follows. Set y = ENCk−rsb(x)
as in Theorem 5 and let M, R1, . . . , R4 be as defined above.
If we set ENCB

E (x) � yMR1R2R3R4, then the code defined
by ENCB

E corrects a single edit in linear time. Therefore,
the redundancy of ENCB

E is log n + O(log log n) bits.
Proof: It remains to provide the corresponding decoder

and show that it corrects a single edit in linear time. Suppose
that we receive z�. The idea is to recover y as the first n
symbols in z� and then use the decoder in Proposition 5 to
recover the information sequence x. First, the decoder decides
whether a deletion, insertion or substitution has occurred. Note
that this information can be recovered by simply observing the
length of the received word. The decoding operates as follows.

(i) If the length of z� is N , we conclude that at most a single
substitution error has occurred. Let z� = (z�1, . . . , z�N).
The decoder sets y� as the first n symbols of z�,
the marker M = (z�n+1, z

�
n+2), R�

1 as the next �log4(4n+
1)� symbols, R�

2 as the next �log4 P � symbols, R�
3 as

the next symbol and the last two symbols as R�
4. The

decoder proceeds as follows.

• Checking the marker. If z�n+1, z
�
n+2 are not

identical, then the substitution occurred here. The
decoder concludes that y ≡ y�. On the other hand,
if z�n+1, z

�
n+2 are identical, the decoder concludes

that there is no error in the marker. The decoder
computes a� � Syn(y�) (mod 4n + 1), b� �
Syn(α(y�)) (mod P ), c� �

∑n
i=1 α(y�)i (mod 2)

and d� �
∑n

i=1 y�
i (mod 7), and proceeds to the

next step.
• Comparing the check. If R�

4 corresponds the qua-
ternary representation of d�, the decoder concludes
that y ≡ y�. Otherwise, it proceeds to the next step.

• Comparing the VT syndrome. If R�
1 corresponds

to the quaternary representations of a�, the decoder
concludes that y ≡ y�. Otherwise, there must be a

substitution in the y�. Hence, there is no error in
R�

1, R�
2, R�

3, and R�
4. The decoder follows the steps

in Lemma 4 to recover y from y�.
(ii) If the length of z� is (N −1), we conclude that a single

deletion has occurred. Suppose z� = (z�1, . . . , z
�
N−1). The

decoder proceeds as follows.

• Localizing the deletion. If z�n and z�n+1 are differ-
ent, the decoder concludes that there is no deletion in
y and sets y as the first n symbols of z�. Otherwise,
there is a deletion in the first n symbols. Hence,
there is no error in R1, R2, R3, and R4.

• Recovering y. The decoder sets y� as the first (n−1)
symbols in z� and follows the steps in Lemma 6 to
recover y from y�.

(iii) If the length of z� is (N +1), we conclude that a single
insertion has occurred. Suppose z� = (z�1, . . . , z�N+1).
The decoder proceeds as follows.

• Localizing the insertion. If z�n+1 and z�n+2 are
identical, the decoder sets y as the first n symbols of
z�. On the other hand, if z�n+1 and z�n+2 are different,
the decoder sets y� as the first (n + 1) symbols of
z� and there is no error in R1, R2, R3, and R4.

• Recovering y. The decoder follows the steps in
Lemma 6 to recover y from y�.

It is easy to see that all the decoding steps run in O(n) time.
Since the posting of our preprint on arXiv, a group at

Stanford University written an implemention of the encoder
described in this subsection. The open-source implementation
is available here [27].

C. Edit Error in DNA Storage Channel

There are recent works that characterize the error probabil-
ities by analyzing data from certain experiments [12], [22].
Specifically, Heckel et al. [12] studied the substitution errors
and computed conditional error probabilities for mistaking a
certain nucleotide for another. They also compared their data
with experiments from other research groups and observed that
the probabilities of mistaking T for a C (T → C) and A for a G
(A → G) are significantly higher than substitution probabilities.

Motivated by the study, we consider an alternative error
model where substitution errors only occur between certain
nucleotides. We refer this error as a nucleotide edit. The
edits that we define earlier is referred as general edit. In the
nucleotide-edit model, besides a single deletion, insertion,
a substitution happens only when

A → {C, G}, T → {C, G}, C→ {A, T}, and G → {A, T}.
Now, recall that the one-to-one correspondence between

D = {A, T, C, G} and two-bit sequences is:

A ↔ 00, T ↔ 01, C ↔ 10, G ↔ 11.

Then a nucleotide-edit (substitution) in a symbol occurs if
and only if the corresponding first bit is flipped.

Example 7: Suppose that σ = ACAGTG. Suppose a substi-
tution error occurs at the third symbol, changing A to C, and
we received σ1 = ACCGTG. On the other hand, suppose a

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:10:42 UTC from IEEE Xplore.  Restrictions apply. 



CAI et al.: CORRECTING A SINGLE INDEL/EDIT FOR DNA-BASED DATA STORAGE 3449

substitution error also occurs at the third symbol, changing A
to G, and we received σ2 = ACGGTG. We then see that there
is exactly one substitution in Uσ which is also at the third
symbol.

σ A C A G T G
Uσ 0 1 0 1 0 1
Lσ 0 0 0 1 1 1

σ1 A C C G T G
Uσ 0 1 1 1 0 1
Lσ 0 0 0 1 1 1

σ2 A C G G T G
Uσ 0 1 1 1 0 1
Lσ 0 0 1 1 1 1

We now constructed order-optimal nucleotide-edit-
correcting codes Cnt(n; a, b, c) for DNA storage as follows.

Construction 4: For given n, r, P > 0, P ≥ r + 1, a ∈
Zn, b ∈ ZP , c ∈ Z2, let Cnt

a,b,c(n, r, P ) be the set of all DNA
strands σ of length n satisfying the following constraints.

• Upper-array constraints.

– The upper-array Uσ is a codeword in La(n).
– The longest run of 0’s or 1’s in Uσ is at most r.

• Lower-array constraint. The lower array Lσ is a code-
word in SVTb,c,P (n).

Theorem 8: The code Cnt
a,b,c(n, r, P ) corrects a single

nucleotide edit in linear time.
Proof: Suppose σ� is the received word. According to

Proposition 1, σ� ∈ Bedit(σ) implies that Uσ′ ∈ Bedit(Uσ)
and Lσ′ ∈ Bedit(Lσ). Since Uσ ∈ La(n), where La(n) can
correct a single edit, we can recover Uσ in linear time. For
Lσ, we have two cases.

• If σ� is of length n − 1 (or n + 1), then a deletion or
insertion has occurred. Now, we are able to identify the
location of deletion (or insertion) in Uσ, which belongs to
a run of length at most r. Hence, we can locate the error
in Lσ within (r + 1) positions. Since Lσ ∈ SVTb,c,P (n)
with P ≥ r + 1, we are able to recover uniquely Lσ.

• If σ� is of length n, then a nucleotide substitution has
occurred. Therefore, it is necessary that a bit flip occur
in the Uσ and hence, we can locate the error. To correct
the corresponding position in Lσ, we simply make use
of the syndrome in SVTb,c,P (n).

Next, we present an efficient encoder that maps messages
into Cnt

a,b,c(n, r, P ).
Nucleotide-Edit-Encoder. Given n, r = 2�logn� + 4, P =
r + 1, a ∈ Zn, b ∈ ZP , c ∈ Z2, set t � �log P � + 1 and
m � 2n− �log n� − t − 2.

INPUT: x ∈ {0, 1}m

OUTPUT: σ � ENCnt
E (x) ∈ Cnt

a,b,c(n, r, P )
(I) Set x1 be the first (n−�log n�− 2) bits in x and x2 be

the last (n − t) bits in x.
(II) Let y�

1 = ENCRLL(x1) and use Encoder L as described
in Subsection II-C to encode y1 = ENCL(y�

1) ∈ La(n).
(III) Use SVT-Encoder ENCSV T to encode y2 =

ENCSV T (x2) ∈ SVTb,c,P (n).

(IV) Finally, set y = y1||y2 and output σ � Ψ−1(y).
Proposition 6: The Nucleotide-Edit-Encoder is correct.

In other words, ENCnt
E (x) ∈ Cnt

a,b,c(n, r, P ) for all x ∈ {0, 1}m.
The redundancy of our encoder is log n + log log n + O(1).

Proof: Let σ � ENCnt
E (x). Based on our encoder, Uσ =

y1 and y1 = ENCL(y�
1) ∈ La(n). In addition, y�

1 =
ENCRLL(x1), which implies the longest run of 0’s or 1’s
in y�

1 is at most (�log n� + 3) according to Theorem 3.
Therefore, the maximum run in Uσ after ENCL is at most
(�log n� + 3) + (�log n� + 1) = 2�log n� + 4 = r. Since
P = r + 1, it satisfies the upper-array constraints in Con-
struction 4. On the other hand, based on our encoder, Lσ =
y2 and y2 = ENCSV T (x2) ∈ SVTb,c,P (n). It implies Lσ

also satisfies the lower-array constraint in Construction 4.
Therefore, ENCnt

E (x) ∈ Cnt
a,b,c(n, r, P ) for all x ∈ {0, 1}m. The

redundancy of our encoder is �log n� + 2 + �log(2�log n� +
5)� + 1 = log n + log log n + O(1).

For completeness, we state the corresponding Nucleotide-
Edit-Decoder, DECnt

E (σ), for DNA codes that correct a single
nucleotide edit.

Nucleotide-Edit-Decoder. For given n, a, b, c, r = 2�log n�+
4, P = r + 1, t = �log P �+ 1, set m = 2n− �log n� − t − 2.

INPUT: σ ∈ Dn∗

OUTPUT: x = DECnt
E (σ) ∈ {0, 1}m

(I) Compute ŷ1 = Uσ and ŷ2 = Lσ.
(II) Compute y�

1 � DECL
a (ŷ1) to correct a single edit in ŷ1.

(III) Compute y2 � DECSV T
b,c,P (ŷ2) of length (n − t).

(IV) Compute y1 = DECRLL(y�
1) of length (n−�log n�−2).

(V) Output y1y2 of length m = 2n − �log n� − t − 2.

V. GC-BALANCED ENCODER CORRECTING SINGLE EDIT

We modify the single-edit-correcting Encoder L in
Section III to obtain a GC-balanced single-edit-correcting
encoder. Our modification makes use of the celebrated Knuth’s
balancing technique [18].

Knuth’s balancing technique is a linear-time algorithm that
maps a binary message x to a balanced word z of the
same length by flipping the first k bits of x. The crucial
observation demonstrated by Knuth is that such an index k
always exists and k is commonly referred to as the balancing
index. Formally, we have the following theorem.

Theorem 9 (Knuth [18]): There exists a pair of linear-time
algorithms ENCK : {0, 1}n → {0, 1}n × [n] and DECK :
{0, 1}n × [n] → {0, 1}n such that the following holds. If
ENCK(x) = (z, k), then z is balanced and DECK(z, k) = x.

To represent the balancing index, Knuth appends z with
a short balanced suffix of length �log n� and so, a lookup
table of size n is required. In constrast, since we only require
the upper sequence Uσ to be balanced, we simply store the
balancing index k in the lower sequence Lσ. Consequently,
we do not need a look up table for the balancing indices.

GC-Balanced Encoder. Given n, set t = �log n� and m =
2n − 3t − 2.

INPUT: x ∈ {0, 1}n, y ∈ {0, 1}n−3t−2 and so, xy ∈
{0, 1}m

OUTPUT: σ = ENCGC(xy)

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:10:42 UTC from IEEE Xplore.  Restrictions apply. 



3450 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

(I) Apply Knuth’s balancing technique to obtain (z, k) �
ENCK(x).

(II) Compute d � Syn(z) (mod 2n) and let d be the binary
representation of d of length t + 1. On the other hand,
let k be the binary representation of the balancing index
k of length t.

(III) Next, we append d and k to y to obtain a binary word
of length n − t − 1. Using Encoder L, we compute
c � ENCL(ydk).

(IV) Finally, we set σ � Ψ−1(z||c).
Example 8: Consider n = 16 and a = 0. So, t = 4 and

m = 2n − 3t − 2 = 18. Let x = 1111111100001111 and
y = 01, and so the message is 111111110000111101.

(I) Knuth’s method yields z = 0000111100001111 with
index k = 4.

(II) So, d = Syn(z) = 20 (mod 2n). The binary repre-
sentations of d and k are d = 10100 and k = 0100,
respectively.

(III) Hence, we have ydk = 01101000100 and use Encoder
1 to compute c = ENCL(ydk) = 1101110110001001.

(IV) So, the DNA codeword is σ = TTATGGCGTAAAGCCG.
To demonstrate that the map ENCGC corrects a single edit,

we provide an explicit decoding algorithm.

GC-Balanced Decoder. For any n, set m = 2n−3�logn�−2.
INPUT: σ ∈ Dn∗

OUTPUT: xy = DECGC(σ) ∈ {0, 1}m

(I) Compute ẑ = Uσ and ĉ = Lσ.
(II) Compute c � DECL

a (ĉ) to correct a single edit in ĉ.
(III) Remove the suffices d and k to obtain y and figure out

the syndrome d and balancing index k.
(IV) Using the syndrome d, compute z � DECL

d (ẑ) to correct
a single edit in ẑ.

(V) Using the index k, compute x � DECK(z, k).
Theorem 10: The map ENCGC is a GC-balanced single-edit-

correcting encoder with redundancy 3�log n� + 2.
Proof: The GC-Balanced Decoder shows that the GC-

Balanced Encoder corrects a single edit. Hence, it remains
to verify that any codeword σ = ENCGC(xy) is GC-balanced.
This follows from the fact that Uσ = z is the binary balanced
word obtained from balancing x.

VI. CONCLUSION

We designed order-optimal quaternary encoders for codes
that correct either a single indel or a single edit. The encoders
map binary messages into quaternary codes in linear-time and
the redundancy is at most log n + O(log log n). Moreover,
in the case for indel, our encoder uses only �log n� + 2
redundant bits, improving the best known encoder of Tenen-
golts (1984) by at least four bits. We also present linear-time
encoders for quaternary codes that correct a single nucleotide
edit and GC-balanced codes that can correct a single edit.

To conclude, we discuss open problems and possible direc-
tions of research.

(i) Provide a construction of nonbinary single-edit-
correcting codes with log n + O(1) redundant bits.
While Theorem 6 provides a family of single-edit-
correcting codes with log n+Θ(log log n) redundant bits,

the sphere-packing bound states that log n+Ω(1) redun-
dant bits are necessary. It remains open to determine
whether there exists codes with log n + O(1) redundant
bits.

(ii) Extend the linear-time encoders for codes correct-
ing multiple deletions. Recently, Sima et al. [26]
constructed q-ary t-deletions-correcting codes with
4t log n+Θ(log log n) redundant bits for t � 2 and fixed
values of q. In the same work, the authors also provided
an efficient encoder for these codes and the method
essentially involves appending two syndromes of lengths
4t log n + O(1) and Θ(log log n) to the message. How-
ever, these codes have encoding/decoding complexity
O(n2t) so that the constructions admit polynomial-time
encoders/decoders only for the case where t is a constant
with respect to n. In contrast, in our work, the encoders
ENCL, ENCI and ENCSVT insert only one syndrome at
specially chosen positions. A natural question is whether
the linear-time encoders can be modified and adapted
for the codes in [26] so that the encoder uses only
4t log n + O(1) redundant bits.

(iii) Extend the linear-time encoders for codes correcting
multiple edits. Particularly, in the segmented edit model,
we have the additional assumption that the channel input
is divided into segments and that at most one edit can
occur within a segment [4], [21]. Our encoders, namely,
ENCI and ENCA

E , can be extended for this model and a
detailed discussion of the construction is deferred this to
our future research work. In addition, our proposed single
edit correcting codes can also be used for recovering
several edits in some modern storage devices that provide
users with multiple reads (see [2], [7], [11]).

ACKNOWLEDGMENT

The authors would like to thank the editor and the reviewers
for their constructive feedback and helpful suggestions.

REFERENCES

[1] K. A. S. Abdel-Ghaffar and H. C. Ferreira, “Systematic encoding of
the Varshamov-Tenengol’ts codes and the Constantin-Rao codes,” IEEE
Trans. Inf. Theory, vol. 44, no. 1, pp. 340–345, Jan. 1998.

[2] M. Abroshan, R. Venkataramanan, L. Dolecek, and A. G. i Fàbregas,
“Coding for deletion channels with multiple traces,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Paris, France, Jul. 2019, pp. 1372–1376.

[3] M. Abroshan, R. Venkataramanan, and A. G. I. Fabregas, “Efficient
systematic encoding of non-binary VT codes,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Vail, CO, USA, Jun. 2018, pp. 91–95.

[4] M. Abroshan, R. Venkataramanan, and A. G. i Fabregas, “Coding for
segmented edit channels,” IEEE Trans. Inf. Theory, vol. 64, no. 4,
pp. 3086–3098, Apr. 2018.

[5] Y. M. Chee, H. M. Kiah, and T. T. Nguyen, “Linear-time encoders
for codes correcting a single edit for DNA-based data storage,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris, France, Jul. 2019,
pp. 772–776.

[6] K. Cai, X. He, H. M. Kiah, and T. T. Nguyen, “Efficient constrained
encoders correcting a single nucleotide edit in DNA storage,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Barcelona,
Spain, May 2020, pp. 8827–8830.

[7] M. Cheraghchi, R. Gabrys, O. Milenkovic, and J. Ribeiro, “Coded trace
reconstruction,” IEEE Trans. Inf. Theory, vol. 66, no. 10, pp. 6084–6103,
Oct. 2020.

[8] S. Clancy, “Genetic mutation,” Nature Edu., vol. 1, no. 1, p. 187, 2008.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:10:42 UTC from IEEE Xplore.  Restrictions apply. 



CAI et al.: CORRECTING A SINGLE INDEL/EDIT FOR DNA-BASED DATA STORAGE 3451

[9] O. Elishco, R. Gabrys, M. Medard, and E. Yaakobi, “Repeat-free codes,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris, France, Jul. 2019,
pp. 932–936.

[10] R. Gabrys, E. Yaakobi, and O. Milenkovic, “Codes in the Damerau
distance for deletion and adjacent transposition correction,” IEEE Trans.
Inf. Theory, vol. 64, no. 4, pp. 2550–2570, Apr. 2018.

[11] H. M. Kiah, T. T. Nguyen, and E. Yaakobi, “Coding for sequence
reconstruction for single edits,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Los Angeles, CA, USA, Jun. 2020, pp. 676–681.

[12] R. Heckel, G. Mikutis, and R. N. Grass, “A characterization of the DNA
data storage channel,” Sci. Rep., vol. 9, no. 1, pp. 1–12, Jul. 2019.

[13] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. Amer. Stat. Assoc., vol. 58, no. 301, pp. 13–30, Mar. 1963.

[14] K. A. S. Immink and K. Cai, “Properties and constructions of con-
strained codes for DNA-based data storage,” IEEE Access, vol. 8,
pp. 49523–49531, 2020.

[15] K. S. Immink and J. Weber, “Very efficient balanced codes,” IEEE J.
Sel. Areas Commun., vol. 28, no. 2, pp. 188–192, Feb. 2010.

[16] A. A. Kulkarni and N. Kiyavash, “Nonasymptotic upper bounds for
deletion correcting codes,” IEEE Trans. Inf. Theory, vol. 59, no. 8,
pp. 5115–5130, Aug. 2013.

[17] S. Jain, F. F. Hassanzadeh, M. Schwartz, and J. Bruck, “Duplication-
correcting codes for data storage in the DNA of living organisms,” IEEE
Trans. Inf. Theory, vol. 63, no. 8, pp. 4996–5010, Aug. 2017.

[18] D. Knuth, “Efficient balanced codes,” IEEE Trans. Inf. Theory,
vol. IT-32, no. 1, pp. 51–53, Jan. 1986.

[19] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Doklady Akademii Nauk SSSR, vol. 163, no. 4,
pp. 845–848, 1965.

[20] V. I. Levenshtein, “Asymptotically optimum binary code with correction
for losses of one or two adjacent bits,” (in Russian), Problemy Kiber-
netiki, vol. 19, pp. 293–298, 1967.

[21] Z. Liu and M. Mitzenmacher, “Codes for deletion and insertion channels
with segmented errors,” IEEE Trans. Inf. Theory, vol. 56, no. 1,
pp. 224–232, Jan. 2010.

[22] L. Organick et al., “Random access in large-scale DNA data storage,”
Nature Biotechnol., vol. 36, no. 3, pp. 242–248, 2018.

[23] M. G. Ross et al., “Characterizing and measuring bias in sequence data,”
Genome Biol., vol. 14, no. 5, p. R51, 2013.

[24] K. Saowapa, H. Kaneko, and E. Fujiwara, “Systematic deletion/insertion
error correcting codes with random error correction capability,” in Proc.
IEEE Int. Symp. Defect Fault Tolerance VLSI Syst. (EFT), Albuquerque,
NM, USA, Nov. 1999, pp. 284–292.

[25] C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes
correcting a burst of deletions or insertions,” IEEE Trans. Inf. Theory,
vol. 63, no. 4, pp. 1971–1985, Apr. 2017.

[26] J. Sima, R. Gabrys, and J. Bruck, “Optimal codes for the q-ary deletion
channel,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Los Angeles, CA,
USA, Jun. 2020, pp. 740–745.

[27] D. C. H. Tan. Single Edit Correcting Code. Accessed: Aug. 13, 2020.
[Online]. Available: https://github.com/dtch1997/single-edit-correcting-
code

[28] G. Tenengolts, “Nonbinary codes, correcting single deletion or inser-
tion,” IEEE Trans. Inf. Theory, vol. IT-30, no. 5, pp. 766–769, Sep. 1984.

[29] J. H. Weber and K. A. S. Immink, “Knuth’s balancing of codewords
revisited,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1673–1679,
Jul. 2010.

[30] A. Van Wijngaarden and K. S. Immink, “Construction of maximum run-
length limited codes using sequence replacement techniques,” IEEE J.
Sel. Areas Commun., vol. 28, no. 2, pp. 200–207, Feb. 2010.

[31] R. R. Varshamov and G. M. Tenengolts, “Codes which correct sin-
gle asymmetric errors,” Avtomatika Telemekhanika, vol. 26, no. 2,
pp. 288–292, 1965.

[32] S. M. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and
error-free DNA-based data storage,” Sci. Rep., vol. 7, no. 1, pp. 1–6,
Dec. 2017.

[33] S. M. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and
O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE Trans.
Mol., Biol. Multi-Scale Commun., vol. 1, no. 3, pp. 230–248, Sep. 2015.

[34] P. Yakovchuk, “Base-stacking and base-pairing contributions into ther-
mal stability of the DNA double helix,” Nucleic Acids Res., vol. 34,
no. 2, pp. 564–574, Jan. 2006.

Kui Cai (Senior Member, IEEE) received the B.E. degree in information and
control engineering from Shanghai Jiao Tong University, Shanghai, China,
the M.Eng. degree in electrical engineering from the National University
of Singapore, and the joint Ph.D. degree in electrical engineering from
the Technical University of Eindhoven, The Netherlands, and the National
University of Singapore. She is currently an Associate Professor with the
Singapore University of Technology and Design (SUTD). Her main research
interests include coding theory, information theory, and signal processing for
various data storage systems and digital communications. She received the
2008 IEEE Communications Society Best Paper Award in Coding and Signal
Processing for Data Storage. She has served as the Vice-Chair (Academia)
for IEEE Communications Society and the Data Storage Technical Committee
(DSTC) in 2015 and 2016.

Yeow Meng Chee (Senior Member, IEEE) received the B.Math. degree in
computer science and combinatorics and optimization and the M.Math. and
Ph.D. degrees in computer science from the University of Waterloo, Waterloo,
ON, Canada, in 1988, 1989, and 1996, respectively. He was a Professor with
the School of Physical and Mathematical Sciences and the Interim Dean of
science with Nanyang Technological University. He is currently a Professor
with the Department of Industrial Systems Engineering and Management and
the Associate Vice President of innovation and enterprise with the National
University of Singapore. His research interests include the interplay between
combinatorics and computer science/engineering, particularly combinatorial
design theory, coding theory, extremal set systems, and electronic design
automation.

Ryan Gabrys (Member, IEEE) is currently the Scientist of the Naval
Information Warfare Center Pacific. His research interest includes theoretical
computers science with applications to cyber security and information storage.

Han Mao Kiah (Member, IEEE) received the Ph.D. degree in mathematics
from Nanyang Technological University (NTU), Singapore, in 2014. From
2014 to 2015, he was a Post-Doctoral Research Associate with the Coordi-
nated Science Laboratory, University of Illinois at Urbana–Champaign. From
2015 to 2018, he was a Lecturer with the School of Physical and Mathematical
Sciences (SPMS), NTU, where he is currently an Assistant Professor. His
research interests include DNA-based data storage, coding theory, enumerative
combinatorics, and combinatorial design theory.

Tuan Thanh Nguyen (Member, IEEE) received the B.Sc. and Ph.D. degrees
in mathematics from Nanyang Technological University (NTU), Singapore,
in 2014 and 2018, respectively. He was a Research Fellow with the School
of Physical and Mathematical Sciences, NTU, from August 2018 to Septem-
ber 2019. He is currently a Research Fellow with the Singapore University of
Technology and Design. His research interests include error correction codes
and constrained codes for communication systems and data storage systems,
especially codes for DNA-based data storage.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:10:42 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


