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Error Correction for Index Coding
With Side Information
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Abstract—A problem of index coding with side information was
first considered by Birk and Kol in 1998. In this study, a gener-
alization of index coding scheme, where transmitted symbols are
subject to errors, is studied. Error-correcting methods for such
a scheme, and their parameters, are investigated. In particular,
the following question is discussed: given the side information
hypergraph of index coding scheme and the maximal number
of erroneous symbols , what is the shortest length of a linear
index code, such that every receiver is able to recover the required
information? This question turns out to be a generalization of the
problem of finding a shortest length error-correcting code with
a prescribed error-correcting capability in the classical coding
theory. The Singleton bound and two other bounds, referred to as
the -bound and the -bound, for the optimal length of a linear
error-correcting index code (ECIC) are established. For large
alphabets, a construction based on concatenation of an optimal
index code with a maximum distance separable classical code is
shown to attain the Singleton bound. For smaller alphabets, how-
ever, this construction may not be optimal. A random construction
is also analyzed. It yields another inexplicit bound on the length of
an optimal linear ECIC. Further, the problem of error-correcting
decoding by a linear ECIC is studied. It is shown that in order to
decode correctly the desired symbol, the decoder is required to
find one of the vectors, belonging to an affine space containing the
actual error vector. The syndrome decoding is shown to produce
the correct output if the weight of the error pattern is less or equal
to the error-correcting capability of the corresponding ECIC.
Finally, the notion of static ECIC, which is suitable for use with
a family of instances of an index coding problem, is introduced.
Several bounds on the length of static ECICs are derived, and
constructions for static ECICs are discussed. Connections of these
codes to weakly resilient Boolean functions are established.

Index Terms—Broadcast, error correction, index coding, min-
imum distance, network coding, side information.
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I. INTRODUCTION

A. Background

T HE problem of index coding with side information (ICSI)
was introduced by Birk and Kol [1], [2]. During the trans-

mission, each client might miss a certain part of the data, due
to intermittent reception, limited storage capacity, or any other
reasons. Via a slow backward channel, the clients let the server
knowwhichmessages they already have in their possession, and
which messages they are interested to receive. The server has to
find a way to deliver to each client all the messages he requested,
yet spending a minimum number of transmissions. As it was
shown in [1], the server can significantly reduce the number of
transmissions by coding the messages.
The toy example in Fig. 1 presents a scenario with one broad-

cast transmitter and four receivers. Each receiver requires a dif-
ferent information packet (we sometimes simply call it mes-
sage). The naive approach requires four separate transmissions,
one transmission per an information packet. However, by ex-
ploiting the knowledge on the subsets of messages that clients
already have, and by using coding of the transmitted data, the
server can just broadcast one coded packet.
Possible applications of index coding include communica-

tions scenarios, in which a satellite or a server broadcasts a set of
messages to a set of clients, such as daily newspaper delivery or
video-on-demand. ICSI can also be used in opportunistic wire-
less networks. These are the networks in which a wireless node
can opportunistically listen to the wireless channel. The client
may obtain packets that are not designated to it (see [3]–[5]). As
a result, a node obtains some side information about the trans-
mitted data. Exploiting this additional knowledge may help to
increase the throughput of the system.
The ICSI problem has been a subject of several recent studies

[3], [6]–[13]. This problem can be viewed as a special case of
the network coding (NC) problem [14], [15]. On the other hand,
it was shown that every instance of the NC problem can be re-
duced to an instance of the ICSI problem in the following sense.
For each NC instance, we can construct an ICSI instance such
that there exists a scalar linear network code for the NC in-
stance if and only if there exists a perfect scalar linear index
code for the corresponding ICSI instance (see [3] and [11] for
more details).

B. Our Contribution

The preceding works on the ICSI problem consider scenario
where the transmissions are error-free. In practice, of course,
this might not be the case. In this study, we assume that the trans-
mitted symbols are subject to errors. We extend some known
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Fig. 1. Example of the ICSI problem.

results on index coding to a case where any receiver can correct
up to a certain number of errors. It turns out that the problem
of designing such error-correcting index codes (ECICs) natu-
rally generalizes the problem of constructing classical error-cor-
recting codes.
More specifically, assume that the number of messages that

the server possesses is , and that the designed maximal number
of errors is . We show that the problem of constructing ECIC
of minimal possible length is equivalent to the problem of con-
structing a matrix which has rows and the minimal possible
number of columns, such that

where is a certain subset of . Here, denotes the
Hamming weight of the vector , stands for a finite field
with elements, and is the all-zeros vector. If ,
this problem becomes equivalent to the problem of designing
a shortest length linear code of given dimension and minimum
distance.
In this study, we establish an upper bound (the -bound) and

a lower bound (the -bound) on the shortest length of a linear
ECIC, which is able to correct any error pattern of size up to
. More specifically, let be the side information hypergraph
that describes the instance of the ICSI problem. Let
denote the length of a shortest length linear ECIC over , such
that every can recover the desired message, if the number
of errors is at most . We use notation for the length
of an optimal linear error-correcting code of dimension and
minimum distance over . We obtain

(1)

where is the generalized independence number and
is the min-rank (over ) of .

For linear index codes, we also derive an analog of the Sin-
gleton bound. This result implies that (over sufficiently large
alphabet) the concatenation of a standard maximum distance
separable (MDS) error-correcting code with an optimal linear
index code yields an optimal linear ECIC. Finally, we consider

random ECICs. By analyzing its parameters, we obtain an upper
bound on its length.
When the side information hypergraph is a pentagon,

and , the inequalities in (1) are shown to be strict.
This implies that a concatenated scheme based on a classical
error-correcting code and on a linear non-error-correcting index
code does not necessarily yield an optimal linear error-cor-
recting index code. Since ICSI problem can also be viewed as
a source coding problem [6], [13], this example demonstrates
that sometimes designing a single code for both source and
channel coding can result in a smaller number of transmissions.
The decoding of a linear ECIC is somewhat different from

that of a classical error-correcting code. There is no longer a
need for a complete recovery of the whole information vector.
We analyze the decoding criteria for the ECICs and show that
the syndrome decoding, which might be different for each re-
ceiver, results in a correct result, provided that the number of er-
rors does not exceed the error-correcting capability of the code.
An ECIC is called static under a family of instances of the

ICSI problem if it works for all of these instances. Such an
ECIC is interesting since it remains useful as long as the pa-
rameters of the problem vary within a particular range. Bounds
and constructions for static ECICs are studied in Section VIII.
Connections between static ECICs and weakly resilient vecto-
rial Boolean functions are also discussed.
The problem of error correction for NC was studied in sev-

eral previous works. However, these results are not directly ap-
plicable to the ICSI problem. First, there is only a very limited
variety of results for nonmulticast networks in the existing liter-
ature. The ICSI problem, however, is a special case of the non-
multicast NC problem. Second, the ICSI problem can be mod-
eled by the NC scenario [3], yet, this requires that there are di-
rected edges from particular sources to each sink, which provide
the side information. The symbols transmitted on these special
edges are not allowed to be corrupted. By contrast, for error-cor-
recting NC, symbols transmitted on all edges can be corrupted.

C. Organization

This paper is organized as follows. Basic notations and def-
initions, used throughout this paper, are provided in Section II.
The problem of index coding with and without error correc-
tion is introduced in Section III. Some basic results are pre-
sented in that section. The -bound and the -bound are derived
in Section IV. The Singleton bound is presented in Section V.
Random codes are discussed in Section VI. Syndrome decoding
is studied in Section VII. A notion of static ECICs is presented
in Section VIII. Several bounds on the length of such codes are
derived, and connections to resilient function are shown in that
section. Finally, the results are summarized in Section IX, and
some open questions are proposed therein.

II. PRELIMINARIES

In this section, we introduce some useful notation. Here,
is the finite field of elements, where is a power of prime, and
is the set of all nonzero elements of .
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Let For the vectors
and , the (Hamming) distance be-
tween and is defined to be the number of coordinates where
and differ, namely:

If and is a set of vectors (or a vector subspace),
then the last definition can be extended to

The support of a vector is defined to be the set
. The (Hamming) weight of a

vector , denoted , is defined to be , the number
of nonzero coordinates of . Suppose . We write
whenever .
A -dimensional subspace of is called a linear

code over if the minimum distance of , i.e.,

is equal to . Sometimes, we may use the notation for the
sake of simplicity. The vectors in are called codewords. It is
easy to see that the minimumweight of a nonzero codeword in a
linear code is equal to its minimum distance . A generator
matrix of an code is a matrix whose rows are
linearly independent codewords of . Then,

. The parity-check matrix of is an matrix
over such that . Given , , and
, let denote the length of the shortest linear code over
which has dimension and minimum distance .
We use to denote the

unit vector, which has a one at the th position, and zeros else-
where. For a vector and a subset

of , where , let denote
the vector .
For an matrix , let denote its th row. For a set

, let denote the matrix obtained from
by deleting all the rows of which are not indexed by the

elements of . For a set of vectors , we use notation
to denote the linear space spanned by the vectors in . We
also use notation for the linear space spanned by
the columns of the matrix .
Let be a graph with a vertex set and an edge

set . The graph is called undirected if every edge ,
, and . A graph is directed if every edge

is an ordered pair , . A directed graph is
called symmetric if

There is a natural correspondence between undirected graph
and directed symmetric graph de-

fined as

(2)

Let be an undirected graph. A subset of vertices is
called an independent set if , . The size
of the largest independent set in is called the independence
number of and is denoted by . The graph is
called the complement of if

A coloring of using colors is a function , such
that

The chromatic number of is the smallest number such that
there exists a coloring of using colors, and it is denoted
by . By using the correspondence (2), the definitions of in-
dependence number, graph complement, and chromatic number
are trivially extended to directed symmetric graphs.

III. INDEX CODING AND ERROR CORRECTION

A. Index Coding With Side Information

ICSI problem considers the following communications sce-
nario. There is a unique sender (or source) , who has a vector
of messages in his possession. There are
also receivers , receiving information from
via a broadcast channel. For each , has side in-

formation, i.e., owns a subset of messages , where
. Each , is interested in receiving the mes-

sage (we say that requires ), where the mapping
satisfies for all . Hereafter,

we use the notation . An instance of the
ICSI problem is given by a quadruple . It can also
be conveniently described by a directed hypergraph [13].

Definition 3.1: Let be an instance of the ICSI
problem. The corresponding side information (directed) hyper-
graph is defined by the vertex set
and the (directed) hyperedge set , where

Each hyperedge represents the side information and the demand
from one receiver. We often refer to as an instance
of the ICSI problem described by the hypergraph .
For instance, consider an ICSI instance where (three

messages), (four receivers), , ,
, , , , , and
. The hypergraph that describes this instance has three

vertices 1, 2, 3, and has four directed hyperedges. These are
, , , and .

This hypergraph is depicted in Fig. 2(a).
Each side information hypergraph can be as-

sociated with the directed graph in the following
way. For each directed edge , there will be
directed edges , for . For instance, is
depicted in Fig. 2(b). When and for all ,
the graph is, in fact, the side information graph, defined in
[6].

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:40:30 UTC from IEEE Xplore.  Restrictions apply. 



1520 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 3, MARCH 2013

Fig. 2. (a) Hypergraph and (b) its corresponding directed graph .

The goal of the ICSI problem is to design a coding scheme
that allows to satisfy the requests of all receivers in the
least number of transmissions. More formally, we have the fol-
lowing definition.

Definition 3.2: An index code over for an instance of the
ICSI problem described by (or just an
-IC over ) is an encoding function

such that for each receiver , there exists a decoding
function

satisfying

Sometimes we refer to such as a non-error-correcting index
code. The parameter is called the length of the index code.
In the scheme corresponding to this code, broadcasts a vector

of length over .

Definition 3.3: A linear index code is an index code, for
which the encoding function is a linear transformation over
. Such a code can be described as

where is an matrix over . The matrix is called the
matrix corresponding to the index code . The code is also
referred to as the linear index code based on .

Hereafter, we assume that is known to .
Moreover, we also assume that the code is known to each
receiver . In practice, this can be achieved by a
preliminary communication session, when the knowledge of the
sets for and of the code is disseminated between
the participants of the scheme.

Definition 3.4: Suppose corresponds to
an instance of the ICSI problem. Then, the min-rank of over
is defined as

For example, it is straightforward to verify that ,
where is depicted in Fig. 2(a). We may select ,

, , and . Then

Observe that generalizes the over of the
side information graph, which was defined in [6]. More specif-
ically, when and for all , becomes
the side information graph, and .
The of an undirected graph was first introduced by
Haemers [16] to bound the Shannon capacity of a graph, and
was later proved in [6] and [7] to be the smallest number of
transmissions in a linear index code. It was shown by Peeters
[17] that finding the min-rank of a general graph is an NP-hard
problem. Studies on graph parameters related to min-ranks can
also be found in the works of Peeters [18], [19].
The intuition behind the concept of min-rank is explained as

follows. For each , if obtains where
, then is able to determine . Indeed, as pos-

sesses for every , he can calculate if .
Hence, can retrieve as follows:

Thus, in order to satisfy all the demands, the sender may
broadcast packets , where . In
fact, it is sufficient to broadcast only

packets. Therefore, the minimum number of packets (transmis-
sions) required in this way is . It turns out that
is the smallest possible number of transmissions required if
scalar linear index codes are used, according to Lemma 3.5.
This lemma was implicitly formulated in [6] for the case where

, , for all , and generalized to its
current form in [20].

Lemma 3.5: Consider an instance of the ICSI problem de-
scribed by .
1) The matrix corresponds to a linear -IC over if and
only if for each there exists such that
• ;
• .

2) The smallest possible length of a linear -IC over is
.

B. Error-Correcting Index Code With Side Information

Due to noise, the symbols received by , may be
subject to errors. Consider an ICSI instance , and
assume that broadcasts a vector . Let
be the error affecting the information received by .
Then, actually receives the vector
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instead of . The following definition is a generalization of
Definition 3.2.

Definition 3.6: Consider an instance of the ICSI problem de-
scribed by . A -error-correcting index
code ( -ECIC) over for this instance is an encoding
function

such that for each receiver , there exists a decoding
function

satisfying

The definitions of the length, of a linear index code, and of the
matrix corresponding to an index code are naturally extended to
an ECIC. Note that if is an -IC, then it is a -ECIC,
and vice versa.

Definition 3.7: An optimal linear -ECIC over is
a linear -ECIC over of the smallest possible length

.

Consider an instance of the ICSI problem described by
. We define the set of vectors

For all , we also define

Then, the collection of supports of all vectors in is given
by

(3)

The necessary and sufficient condition for a matrix to be the
matrix corresponding to some -ECIC is given in the fol-
lowing lemma.

Lemma 3.8: The matrix corresponds to a -ECIC over
if and only if

(4)

Equivalently, corresponds to a -ECIC over if and
only if

(5)

for all and for all choices of .

Proof: For each , we define

the set of all vectors resulting from at most errors in the trans-
mitted vector associated with the information vector . Then,
the receiver can recover correctly if and only if

for every pair satisfying

(Observe that is interested only in the bit , not in the
whole vector .)
Therefore, corresponds to a -ECIC if and only if the

following condition is satisfied: for all and for all
such that and , it holds

(6)

Denote . Then, the condition in (6) can be reformu-
lated as follows: for all and for all such that

and , it holds

(7)

Note that the two sets

and

coincide. Therefore, an equivalent condition to (7) is that for all
,

Since for , we have

the condition (4) can be restated as

for all and for all choices of nonzero .

Corollary 3.9: For all , let
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Then, the matrix corresponds to a -ECIC over if and
only if

(8)

Proof: It suffices to show that the conditions (5) and (8) are
equivalent. First, to avoid confusion, we rewrite (5) as follows:

(9)

for all and for all choices of , . By
definition of (see (3)), the condition (9) is equivalent to
the condition that

for all and for all choices of and ,
. We can also rewrite this condition as

(10)

for all and for all choices of , . The
conditions (10) and (8) are obviously equivalent.

The next corollary also follows directly from Lemma 3.8 by
considering an error-free setup, i.e., . It is easy to verify
that the conditions stated in this corollary and in Lemma 3.5 are
equivalent, as expected.

Corollary 3.10: The matrix corresponds to an -IC over
if and only if

for all and for all choices of , or,
equivalently,

Example 3.11: Let , , and for
. Suppose , , and .

Let

Note that generates a code, which has minimum dis-
tance one. However, the index code based on can still correct
one error. Indeed, let ; we have

Since each row of has weight at least three, it follows that
for all . By Lemma 3.8, corresponds

to a -ECIC over .

In fact, for this instance, even a simpler index code of length
three, based on

is a -ECIC over .

Example 3.12: Assume that and for all
. Furthermore, suppose that for all

(i.e., there is no side information available to the receivers). Let
. Then, . Hence, by

Lemma 3.8, the matrix corresponding to a -ECIC
over (for some integer ) is a generating matrix of an

linear code. Thus, under these settings, the
problem of designing an optimal ECIC is reduced to the problem
of constructing an optimal classical linear error-correcting code.
Observe, however, that for general , changing the order of

rows in can lead to ECICs with different error-correcting ca-
pabilities, according to Corollary 3.9. Therefore, the problem of
designing an optimal linear ECIC is essentially the problem of
finding the matrix corresponding to that code. However, the
minimum distance of the code generated by the rows of is not
necessarily a valid indicator for goodness of an ECIC. Some-
times, as Example 3.11 shows, matrix with redundant rows
yields a good ECIC.

IV. -BOUND AND THE -BOUND

Let be an instance of the ICSI problem, and let
be the corresponding side information hypergraph. Next, we

introduce the following definitions for the hypergraph .

Definition 4.1: A subset of is called a generalized in-
dependent set in if every nonempty subset of belongs
to .

Definition 4.2: A generalized independent set of the largest
size in is called a maximum generalized independent set. The
size of a maximum generalized independent set in is called
the generalized independence number, and denoted by .

When and for all , the generalized
independence number of is equal to the maximum size of an
acyclic induced subgraph of , which was introduced in [6].
In particular, when is symmetric, is the independence
number of . We prove the latter statement in the Appendix.
Next, we present a lower bound on the length of a
-ECIC. We call this bound -bound.

Theorem 4.3 ( -Bound): The length of an optimal linear
-ECIC over satisfies

Moreover, the equality is attained if there exists an
matrix over satisfying the following condition:
for all and for all choices of , there
always exists some such that
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Proof: Consider an matrix , which corresponds
to a -ECIC. Let be a maximum
generalized independent set in . Then, every subset
satisfies . Therefore

for all , , and for all choices of .
Hence, the rows of , namely , form
a generator matrix of an code. Therefore

Next, we assume the existence of a matrix satisfying the
properties stated in the theorem. Let be a generator matrix of
some code, where .
We construct the matrix as follows. For , let

For every and for all choices of ,
we have

where the last transition is due to the existence of
such that

and the fact that ’s are linearly independent nonzero code-
words of a code of minimum distance .
We conclude that the index code based on is capable of

correcting errors. Therefore, .

Example 4.4: Let , , for all
, and . Assume

Let . Then

It is easy to check that . Therefore, Theorem 4.3
implies that

Fig. 3. Concatenation of an error-correcting code and an index code.

The last equality can be verified by [21].
On the other hand, take the matrix

The matrix satisfies the property that for all ,
, there exists such that

From Theorem 4.3, we have .

Remark 4.5: In [6], when and for all ,
was shown to be a lower bound on the length of a (non-

error-correcting) linear index code. However, the -bound in
Theorem 4.3 does not follow from the results in [6]. The reason
is that a concatenation of an optimal linear error-correcting code
with an optimal non-error-correcting index code might fail to
produce an optimal linear error-correcting index code. This is
illustrated later in Example 4.8.

The following proposition is based on the fact that concatena-
tion of a -error-correcting code with an optimal (non-error-cor-
recting) -IC yields a -ECIC (see Fig. 3).
Proposition 4.6 ( -Bound): The length of an optimal
-ECIC over satisfies

Proof: Let , which is an matrix, correspond
to an optimal -IC over . Denote

Let be a generator matrix of an optimal
code , where

Consider a scheme where broadcasts the vector . If
less than errors occur, then each receiver is able to recover
by using . Hence, each is able to recover . Therefore,
for the index code based on ,
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each receiver is capable to recover if the number of
errors is less or equal to . The length of the corresponding ECIC
is . Therefore

By combining the results in Theorem 4.3 and in Proposition
4.6, we obtain the following corollary.

Corollary 4.7: The length of an optimal linear -ECIC
over satisfies

It is shown in the example below that the inequalities in
Corollary 4.7 can be strict. In particular, it follows that mere
application of an error-correcting code on top of an index code
may fail to provide us with an optimal linear ECIC. This fact
motivates the study of ECICs in Sections III–VII.

Example 4.8: Let , , , and
for all . Assume

Let . Then, we have

The side information graph of this instance is symmetric
and can be regarded as a (undirected) pentagon (Fig. 4). It is
easy to verify that . It follows from [7,
Th. 9] that . Thus, from [21], we
have

Due to Corollary 4.7, we have

Using a computer search, we obtain that , and the
corresponding optimal scheme is based on

It is technical to verify that for all ,

Fig. 4. Side information graph .

Therefore, by Lemma 3.8, for the index code based on , each
receiver is able to recover , if the number of errors is
less than or equal to 2. Observe that the length of the ECIC
corresponding to lies strictly between the -bound and the
-bound.
When the graph is undirected (or symmetric), the following

theorem holds (see, for instance, [16]).

Theorem 4.9: Let denote the chromatic number of the
complement of the graph . Then

When and for all , we have that
and . Moreover, if

the graph is symmetric and satisfies , then
from Corollary 4.7, we have

for all , and the corresponding bounds in Corollary 4.7 are tight.

Definition 4.10: An undirected (or symmetric) graph is
called perfect if for every induced subgraph of ,

.
Perfect graphs include families of graphs such as trees, bi-

partite graphs, interval graphs, and chordal graphs. If ,
for all , and is perfect, then the bounds in

Corollary 4.7 are tight. For the full characterization of perfect
graphs, the reader can refer to [22].

V. SINGLETON BOUND

The following bound is analogous to the Singleton bound for
classical linear error-correcting codes.

Theorem 5.1 (Singleton Bound): The length of an optimal
linear -ECIC over satisfies

Proof: Let be the matrix corresponding
to some optimal -ECIC. Let be the matrix obtained by
deleting any columns from .
By Lemma 3.8, satisfies
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for all and all choices of . We
deduce that the rows of also satisfy

By Corollary 3.10, corresponds to a linear -IC. Therefore,
by Lemma 3.5, part 2, has at least columns.We deduce
that

which concludes the proof.

The following corollary from Proposition 4.6 and Theorem
5.1 demonstrates that, for sufficiently large alphabets, a con-
catenation of a classical MDS error-correcting code with an op-
timal (non-error-correcting) index code yields an optimal ECIC.
However, as it was illustrated in Example 4.8, this does not hold
for the index coding schemes over small alphabets.

Corollary 5.2 (MDS Error-Correcting Index Code): For
,

(11)

Proof: From Theorem 5.1, we have

On the other hand, from Proposition 4.6

for (by taking doubly extended
Reed–Solomon (RS) codes). Therefore, for these , (11)
holds.

Remark 5.3: Let , , and
for all . Let and .

For , let . Let .
Then, is the (symmetric) odd cycle of length . Therefore,

. From [7],
. From -bound

By contrast, from Theorem 5.1

As there are no nontrivial binary MDS codes, we have

for all choices of . Therefore, for these choices, the
-bound is at least as good as the Singleton bound.

VI. RANDOM CODES

In this section, we prove an inexplicit upper bound on the
optimal length of the ECICs. The proof is based on constructing
a random ECIC and analyzing its parameters.

Theorem 6.1: Let describe an instance
of the ICSI problem. Then, there exists a -ECIC over
of length if

where

(12)

is the volume of the -ary sphere in .
Proof: We construct a random matrix over ,

row by row. Each row is selected independently of other rows,
uniformly over . Define vector spaces

for all . We also define the following events:

and

The event represents the situation when the receiver
cannot recover . Then, by Corollary 3.9, the event is
equivalent to . Therefore

(13)

For a particular event ,

(14)

There exists a matrix that corresponds to a -ECIC if
. It is enough to require that the right-hand side of

(13) is smaller than 1. By plugging in the expression in (14), we
obtain a sufficient condition on the existence of a -ECIC
over :

Remark 6.2: The bound in Theorem 6.1 does not take into ac-
count the structure of the sets ’s, other than their cardinalities.
Therefore, this bound generally is weaker than the -bound. On
the other hand, for a particular instance of the ICSI problem, it
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is easier to compute this bound, while calculating the -bound
in general is an NP-hard problem.

Remark 6.3: The bound in Theorem 6.1 implies a bound on
, which is tight for some . Indeed, fix . The bound

implies that there exists a linear index code of length when-
ever

(15)

Let , and for all . Let
and . For

, let . Let
be the corresponding side information hypergraph. Then, is
the complement of the (symmetric directed) odd cycle of length
. We have for all . Then, (15) becomes

If , then we obtain . Observe that in this case,
(see [13, Claim A.1]), and thus,

the bound is tight.

VII. SYNDROME DECODING

Consider the -ECIC based on a matrix . Suppose that
the receiver , , receives the vector

(16)

where is the codeword transmitted by , and is the error
pattern affecting this codeword.
In the classical coding theory, the transmitted vector , the

received vector , and the error pattern are related by
. Therefore, if is known to the receiver, then there is

a one-to-one correspondence between the values of unknown
vectors and . For index coding, however, this is no longer the
case. The following theorem shows that, in order to recover the
message from using (16), it is sufficient to find just one
vector from a set of possible error patterns. This set is defined
as follows:

We henceforth refer to the set as the set of relevant error
patterns.

Lemma 7.1: Assume that the receiver receives .
1) If knows the message , then it is able to determine
the set .

2) If knows some vector , then it is able to
determine .
Proof:

1) From (16), we have

(17)

If knows , then it is also able to determine

Since has a knowledge of , it is also able to determine
the whole .

2) Suppose that knows a vector

for some . We show that is able then
to determine . Indeed, we rewrite (17) as

(18)

The receiver can find some solution of the equation

(19)

with respect to the unknowns and . Observe that
(19) has at least one solution due to (18).
From (18) and (19), we deduce that

This equality implies that (otherwise, by
Corollary 3.9, the sum in the right-hand side will have
nonzero weight). Hence, is able to determine , as
claimed.

We now describe a syndrome decoding algorithm for linear
ECICs. From (17), we have

Let , and let be a parity
check matrix of . We obtain that

(20)

Let be a column vector defined by

(21)

Observe that each is capable of determining . Then, we
can rewrite (20) as

This leads us to the formulation of the decoding procedure for
, which is presented in Fig. 5.

Remark 7.2: The solution in (22) might not be unique.
Nevertheless, any such solution of the lowest Hamming weight
yields the correct answer in the algorithm.

Remark 7.3: Gaussian elimination can be used to solve (23)
for . However, since also corresponds to an -IC, there
is more efficient way to do so. From Lemma 3.5, there exists
a vector satisfying . Hence,

for some . Therefore

With the knowledge of and , can determine and .
Therefore, it can also determine . Note that (23) may have
more than one solution with . However, as shown
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in the next theorem, if at most errors occur in , then it always
holds that .

Example 7.4: Consider the ICSI instance presented in Ex-
ample 4.8. Suppose the binary ECIC based on the following ma-
trix is used

Let . The sender broadcasts . As
, the receiver knows in advance and .

Since , requests . Suppose two errors occur and
receives the erroneous vector , where

Then

As and ,

A parity check matrix of is

Recall that . We have

and

Therefore, the syndrome is

In this case, is the unique lowest Hamming weight vector
that has syndrome . Choosing ,

, we have

Since knows and , can compute

Therefore, as discussed in Remark 7.3, obtains

which is equal to —the message that requests.

Fig. 5. Syndrome decoding procedure.

Theorem 7.5: Let be the vector received by
, and let . Assume that the procedure in Fig. 5 is

applied to . Then, its output satisfies .
Proof: By Lemma 7.1, it is sufficient to prove that
. Indeed, since

we have

Hence, , and therefore,

(24)

for some and , .
Since is a solution of (22), and , we deduce that

as well. Hence

Therefore, by Corollary 3.9, . Hence, , as
desired, and therefore, .

Remark 7.6: We anticipate Step 2 in Fig. 5 to be computa-
tionally hard. Indeed, the problem of finding over of the
lowest weight satisfying

(25)

for a given binary vector is at least as hard as a deci-
sion problem coset weights that was shown in [23] to be
NP-complete.

VIII. STATIC CODES AND RELATED PROBLEMS

A. Static Error-Correcting Index Codes

In the previous sections, we focused on linear -error-cor-
recting index codes for a particular instance of the ICSI
problem. When some of the parameters , , , and are
variable or not known, it is very likely that an ECIC for the
instance with particular values of these parameters cannot be
used for the instances with different values of some of these
parameters. Therefore, it is interesting to design an ECIC which
will be suitable for a family of instances of the ICSI problem.
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Definition 8.1: Let be a set of instances
for an ICSI problem. A -error-correcting index code over
is said to be static under the set if it is a -error-correcting

-IC over for all instances .
Recall that an instance can be described by the

side information hypergraph . For a set of in-
stances , let

(26)

where is defined as in (3). We also define

Lemma 8.2: The matrix corresponds to a -error-
correcting index code which is static under if and only if

for all and for all choices of .
Proof: The proof follows from Definition 8.1 and Lemma

3.8.

Notice that when is used for an instance
with , then the last rows of are simply
discarded.
One particular family of interest is , the family that

contains all instances where each receiver owns at least
messages as its side information. More formally

A -error-correcting index code which is static under
will provide successful communication between the sender and
the receivers under the presence of at most errors, despite a
possible change of the collection of the side information sets ,
a change of the set of receivers, and a change of the demand
function, as long as each receiver still possesses at least
messages.
In the rest of this section, we assume that ,

and .

Definition 8.3: An matrix is said to satisfy the
-Property if any nontrivial linear combination of at most

rows of has weight at least .
Proposition 8.4: The matrix corresponds to a
-error-correcting linear index code, which is static under

, if and only if satisfies the -Property.
Proof: Let be an matrix that satisfies the
-Property. We show that this is equivalent to the condition

that corresponds to a -error-correcting linear index code,
which is static under . By Lemma 8.2, it suffices to
show that is the collection of all nonempty subsets
of , whose cardinalities are not greater than .

Consider an instance . For all
, we have and , and thus

we deduce that

Hence by (3), the cardinality of each set in
is at most

Therefore, due to (26), every set in has at most
elements.
It remains to show that every nonempty subset of whose

cardinality is at most belongs to . Consider an ar-
bitrary -subset of , with .
Consider an instance with

and . Since

we have

The proof follows.

B. Application: Weakly Resilient Functions

In this section, we introduce the notion of weakly resilient
functions. Hereafter, we restrict the discussion to the binary
alphabet.
The concept of binary resilient functions was first introduced

by Chor et al. [24] and independently by Bennet et al. [25].

Definition 8.5: A function is called -resilient
if satisfies the following property: when arbitrary inputs of
are fixed and the remaining inputs run through all the
-tuples exactly once, the value of runs through every

possible output -tuple an equal number of times. Moreover, if
is a linear transformation, then it is called a linear -resilient

function. We refer to the parameter as the resiliency of .

The applications of resilient functions can be found in fault-
tolerant distributed computing, quantum cryptographic key dis-
tribution [24], privacy amplification [25], and random sequence
generation for stream ciphers [26]. Connections between linear
error-correcting codes and resilient functions were established
in [24].

Theorem 8.6 [24]: Let be an binary matrix. Then,
is a generator matrix of a linear error-correcting code with

minimum distance if and only if is
-resilient.

Remark 8.7: Vectorial Boolean functions with certain prop-
erties are useful for design of stream ciphers. These properties
include high resiliency and high nonlinearity (see, for instance,
[26]). However, linear resilient functions are still particularly in-
teresting, since they can be transformed into highly nonlinear re-
silient functions with the same parameters. This can be achieved
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by a composition of the linear function with a highly nonlinear
permutation (see [27] and [28] for more details).
Below we introduce a definition of a -weakly -resilient

function, which is a weaker version of a -resilient function.

Definition 8.8: A function is called -weakly -
resilient if satisfies the property that every set of coordinates
in the image of runs through every possible output -tuple an
equal number of times, when arbitrary inputs of are fixed
and the remaining inputs run through all the -tuples
exactly once.

Remark 8.9: A -weakly -resilient function
can be viewed as a collection of different -resilient func-
tions , each such function is obtained by taking some
coordinates in the image of . Similarly to [24], consider a

scenario, in which two parties are sharing a secret key, which
consists of randomly selected bits. Suppose that at some mo-
ment out of the bits of the key are leaked to an adversary.
By applying a -resilient function to the current -bit key, two
parties are able to obtain a completely new and secret key of
bits, without requiring any communication or randomness gen-
eration. However, if the parties use various parts of the key for
various purposes, they may only require one of the -bit secret
keys (instead of the larger -bit key). In that case, a -weakly
-resilient function can be used. By applying a -weakly -re-
silient function to the current -bit key, the parties obtain a set
of different -bit keys, each key is new and secret (however,
these keys might not be independent of each other).

Theorem 8.10: Let be an binary matrix. Then,
satisfies the -Property if and only if the function
defined by is -weakly -resilient.
Proof:

1) Suppose that satisfies the -Property. Take any
-subset . By Definition 8.3, the submatrix
of is a generating matrix of the error-correcting code

with the minimum distance . By Theorem 8.6,
the function defined by
is -resilient. Since is an arbitrary -subset of , the
function is -weakly -resilient.

2) Conversely, assume that the function is -weakly -re-
silient. Take any subset , . Then, the func-
tion defined by is -re-
silient. Therefore, by Theorem 8.6, is a generating ma-
trix of a linear code with minimum distance . Since
is an arbitrary -subset of , by Proposition 8.4, sat-

isfies the -Property.

C. Bounds and Constructions

In this section, we study the problem of constructing a matrix
satisfying the -Property. Such with the minimal pos-

sible number of columns is called optimal. First, observe that
from Proposition 8.4, we have

which is the set of all nonempty subsets of of cardinality at
most . Next, consider an instance satisfying

(27)

where is the side information hyper-
graph corresponding to that instance. Such an instance can be
constructed as follows. For each subset

, we introduce a receiver which requests the mes-
sage and has a set as its side information.
It is straightforward to verify that indeed we obtain an instance

satisfying (27). The problem of designing an
optimal matrix satisfying the -Property then becomes
equivalent to the problem of finding an optimal -ECIC.
Thus, is equal to the number of columns in an op-
timal matrix which satisfies the -Property.
The corresponding -bound and -bound for can

be stated as follows.

Theorem 8.11: Let be the smallest number such that a
linear code exists. Then, we have

Proof: The first inequality follows from the -bound and
from the fact that , which is due to (27).
For the second inequality, it suffices to show that
. By Corollary 3.10, an matrix corresponds to an
-IC if and only if is linearly independent for

every . Since is the set of all nonempty
subsets of cardinality at most , this is equivalent to saying that
every set of at most rows of is linearly independent. This
condition is equivalent to the condition that is a parity check
matrix of a linear code with the minimum distance at least
[29, Ch. 1]. Therefore, a linear -IC of length exists if and
only if an linear code exists. Since is the
smallest number such that an code exists,
we conclude that .

Corollary 8.12: The length of an optimal -error-correcting
linear index code over which is static under satisfies

where is the smallest number such that an
code exists.

Proof: This is a straightforward corollary of Theorem 5.1
(the Singleton bound) and Theorem 8.11.

Corollary 8.13: For , the length of
an optimal -error-correcting linear index code over which
is static under is .

Proof: For , there exists an
linear code with (for example, one can take an extended
RS code [29, Ch. 11]). Due to the Singleton bound, we con-
clude that is the smallest value such that
linear code exists. Following the lines of the proof of The-

orem 8.11, there exists a -error-correcting index code of length
, which is static under . As ,

we have
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(for example, by taking an extended RS code). Due to Corollary
8.12, this static ECIC is optimal.

Remark 8.14: We observe from the proof of Theorem 8.11
that the problem of constructing an optimal linear (non-error-
correcting) index code, which is static under , is, in fact,
equivalent to the problem of constructing a parity check matrix
of a classical linear error-correcting code.

Example 8.15: Let , , , and . From
[21], the smallest possible dimension of a binary linear code of
length 20 and minimum distance 11 is 3. We obtain that
. We also have . Theorem 8.11 implies the

existence of a one-error-correcting binary index code of length
22 which can be used for any instance of IC problem, in which
each receiver owns at least 10 out of (at most) 20 messages, as
side information. It also implies that the length of any such static
ECIC is at least . Corollary 8.12 provides a better
lower bound on the minimum length, which is .

Example 8.16: Below we show that with the same number of
inputs and outputs , a weakly resilient function may have
strictly higher resiliency .
From Example 8.15, there exists a linear vectorial Boolean

function which is 10-weakly 2-resilient.
According to [21], an optimal linear code has min-
imum distance . Hence, due to Theorem 8.6, the resiliency
of any linear vectorial Boolean function
cannot exceed one.
The problem of constructing an matrix that satisfies

the -Property is a natural generalization of the problem of
constructing the parity check matrix of a linear

code. Indeed, is a parity check matrix of an
code if and only if every set of columns of is linearly

independent. Equivalently, any nontrivial linear combination of
at most columns of has weight at least one. For comparison,
satisfies the -Property if and only if any nontrivial linear

combination of at most columns of has weight at least
.

Some classical methods for deriving bounds on the param-
eters of error-correcting codes can be generalized to the case
of linear static ECICs. Below we present a Gilbert–Varshamov-
like bound.

Theorem 8.17: Let denotes the volume of -ary
sphere of radius in given by (12). If

then there exists an matrix which satisfies the
-Property.
Proof: We build up the set of rows of one by one.

The first row can be any vector in of weight at least .
Now suppose we have chosen rows so that no nontrivial linear
combination of at most among these rows have weight less
than . There are at most

vectors which are at distance less than from any linear
combination of at most among chosen rows (this includes
vectors at distance less than from ). If this quantity is
smaller than , then we can add another row to the set so
that no nontrivial linear combination of at most rows in has
weight less than . The claim follows if we replace by

.

Remark 8.18: If we apply Theorem 6.1 to the instance
defined in the beginning of this section, then

we obtain a bound, which is somewhat weaker then its coun-
terpart in Theorem 8.17, namely the matrix as above
exists if

IX. CONCLUSION

In this work, we generalize the Index Coding with Side In-
formation problem toward a setup with errors. Under this setup,
each receiver should be able to recover its desired message even
if a certain amount of errors happen in the transmitted data. This
is the first work that considers such a problem.
A number of bounds on the length of an optimal error-cor-

recting index code are constructed. As it is shown in Example
4.8, a separation of error-correcting code and index code some-
times leads to a nonoptimal scheme. This raises a question of
designing coding schemes in which the two layers are treated
as a whole. Therefore, the question of constructing error-cor-
recting index codes with good parameters is still open.
A general decoding procedure for linear error-correcting

index codes is discussed. The difference between decoding of
a classical error-correcting code and decoding of an error-cor-
recting index code is that in the latter case, each receiver does
not require a complete knowledge of the error vector. This
difference may help to ease the decoding process. Finding an
efficient decoding method for error-correcting index codes
(together with their corresponding constructions) is also still an
open problem.
The notion of error-correcting index code is further gener-

alized to static index code. The latter is designed to serve a
family of instances of error-correcting index coding problem.
The problem of designing an optimal static error-correcting
index code is studied, and several bounds on the length of such
codes are presented.

APPENDIX

Lemma A.1: If is symmetric, then the generalized in-
dependence number of is the independence number of .

Proof: It suffices to show that if is symmetric, then the
set of generalized independent sets of and the set of indepen-
dent sets of coincide.
Let be a generalized independent set in . If , then

obviously is an independent set in . Assume that .
For any pair of vertices , the set belongs to .
By definition of , either there is no edge from to , or
there is no edge from to , in . Since is symmetric, there
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are no edges between and , in neither directions. Therefore,
is an independent set in .
Conversely, let be an independent set in . For each
, since there are no edges from to all other vertices in , we

deduce that . Due to (3), every subset of which
contains belongs to . This holds for an arbitrary .
Therefore, every nonempty subset of belong to . We
obtain that is a generalized independent set of .
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