
7094 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 11, NOVEMBER 2018

Coding for Racetrack Memories
Yeow Meng Chee, Senior Member, IEEE, Han Mao Kiah , Alexander Vardy, Fellow, IEEE,

Van Khu Vu, and Eitan Yaakobi , Senior Member, IEEE

Abstract— Racetrack memory is a new technology, which
utilizes magnetic domains along a nanoscopic wire in order to
obtain extremely high storage density. In racetrack memory,
each magnetic domain can store a single bit of information,
which can be sensed by a reading port (head). The memory is
structured like a tape, which supports a shift operation that
moves the domains to be read sequentially by the head. In order
to increase the memory’s speed, prior work studied how to min-
imize the latency of the shift operation, while the no less
important reliability of this operation has received only a lit-
tle attention. In this paper, we design codes, which combat shift
errors in racetrack memory, called position errors, namely, shift-
ing the domains is not an error-free operation and the domains
may be over shifted or are not shifted, which can be modeled
as deletions and sticky insertions. While it is possible to use con-
ventional deletion and insertion-correcting codes, we tackle this
problem with the special structure of racetrack memory, where
the domains can be read by multiple heads. Each head outputs
a noisy version of the stored data and the multiple outputs are
combined in order to reconstruct the data. This setup is a spe-
cial case of the reconstruction problem studied by Levenshtein,
however, in our case, the position errors from different heads
are correlated. We will show how to take advantage of this spe-
cial feature of racetrack memories in order to construct codes
correcting deletions and sticky insertions. In particular, under
this paradigm, we will show that it is possible to correct, with
at most a single bit of redundancy, d deletions with d + 1 heads
if the heads are well separated. Similar results are provided for
burst of deletions, sticky insertions, and combinations of both
deletions and sticky insertions.

Index Terms— Racetrack memory, deletions, sticky insertions,
run-length limited constrained codes.
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I. INTRODUCTION

RACETRACK memory, also known as domain wall
memory, is an emerging non-volatile memory which is

based on spintronic technology. It attracts significant atten-
tion due to its promising ultra-high storage density, even
comparing to other spintronic memory technologies such as
STT-RAM [32].

A racetrack memory is composed of cells, also called
domains, which are positioned on a tape-like stripe and are
separated by domain walls. The magnetization of a domain is
programmed to store a single bit value, which can be read by
sensing its magnetization direction. The reading mechanism
is operated by a read-only port, called a head, together with a
reference domain. Since the head is fixed (i.e., cannot move),
a shift operation is required in order to read all the domains.
Shifting the cells is accomplished by applying shift current
which moves the domain walls in one direction. Thus, shift
operations move all the domains one step either to the right
or to the left. It is also possible to shift by more than a
single step by applying a stronger current. When doing so,
it is required to have more than a single head to read the
domain walls [19], [26], [32]. Multiple heads can also be
used in order to significantly reduce the read access latency
of the memory. Usually these heads are distributed along the
racetrack uniformly in order to reduce the maximum shift
distance. However, since multiple heads incur a price of area
overhead, it is still desirable not to add a large number of
heads [26], [32].

There are several approaches to enhance the shift operation
in order to reduce its time and energy consumption [24], [26].
However these mechanisms suffer from degraded reliabil-
ity and cannot ensure that domains are perfectly shifted so
they are aligned with the head. These errors, called position
errors, can be modeled as deletions and sticky insertions [32],
which is the motivation for this work. A deletion is the event
where the domains are shifted by more than a single domain
location and thus one of the domains is not read, which
results in a deletion of the bit stored in this domain. In case
the domains were not successfully shifted, then the same
domain is read again and we experience an insertion, how-
ever of the same bit. This kind of insertion errors is also
referred as repetition errors [6] or sticky insertions in a sticky
channel [6], [17], [18].

In this work we study codes which correct position errors
in racetrack memory. At a first sight, this problem is not
any different than the well-studied problem of designing
codes correcting deletions and insertions [1], [8], [11], [14].
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However, we take here another approach to tackle the problem
and leverage the special features of racetrack memory, where
it is possible to use more than a single head in order to
read the domains. Thus, each domain is read more than
once and the extra reads can be used in order to correct the
position errors during the read process. Since every head
reads all the bits, we can treat every head as a channel
which returns a noisy version of the stored information, and
based on these noisy reads the information is decoded. This
model falls under the general framework by Levenshtein
of the reconstruction problem [12], [13]. However, in our
case, as opposed to the general one studied by Levenshtein,
the position errors are correlated and depend upon the loca-
tions and distance between the heads. Another similar model
where bits are read more than once and the errors are corre-
lated is the symbol-pair channel, where every pair of adjacent
bits is read together, see [2], [4], [5], [31].

In contrast to substitution errors, deletions/sticky insertions
behave differentially. Namely, to successfully decode a sub-
stitution error, it is necessary to determine the location of the
error. However, for deletions/sticky insertions, the decoder can
successfully decode the correct codeword without determining
all the locations of the deletions/sticky insertions, since it could
be any bit which belongs to the run where each deletion/sticky
insertion has occurred. Assume first that the heads are adja-
cent and on every cycle the domains are shifted by a single
location. Thus, if there are no position errors, the bit stored in
each domain is read twice. On the other hand, in the occur-
rence of position errors, the deletions/sticky insertions in the
two heads are correlated. For example, if the i th bit is deleted
in the first head then the (i +1)-st bit is deleted in the second
head. In case these two deleted bits belong to the same run,
then the noisy words from the two heads are identical and thus
we did not benefit from the extra read by the additional head.
On the other hand, if the heads are well separated and there
are no long runs in the stored information, then the heads’
outputs will differ and under this setup we will show how it
is possible to correct the position errors. Note that it is possi-
ble to correct a fixed number of deletions and sticky insertions
with a single head while the rate of the codes approaches 1
and the redundancy order is �(log(n)) [1], [11], where n is
the code length. Hence, any code construction using multi-
ple heads should have rate approaching 1 and more than that,
improve upon the redundancy result of �(log(n)). However,
this should be accomplished while minimizing the distance
between the heads.

The rest of this paper is organized as follows. In Section II,
we formally define the model and problems studied in the
paper, namely the reading process in racetrack memory and
codes correcting deletions and sticky insertions using multiple
heads. In Section III, we construct codes correcting a single
deletion using two heads with approximately 0.36 redundancy
bits, by requiring the distance between the heads to be at least
�log(n)� + 1. In Section IV, we extend this construction for
codes correcting a burst of deletions while the length of the
burst is either exactly b or at most b. In the former case the
redundancy is again approximately 0.36 bits but the distance
between the heads should be at least �log(n)� + b, while in

the latter the code redundancy is at most a single bit and the
heads are located at least �log(n)� + b + 1 positions apart.
Another extension is given in Section V for codes correcting
multiple deletions. In this case our construction can correct d
deletions using d+1 heads with at most a single bit of redun-
dancy, while the distance between adjacent heads is at least
d�log(n)�+d(d+1)/2+1. In case the number of heads m is
strictly less than d + 1, we show that it is possible to correct
m−1 deletions with the heads, and so the code should be able
to correct the remainder of d−(m−1) deletions. In Section VI,
we study codes correcting sticky insertions and in Section VII,
we study codes correcting both deletions and sticky insertions.
We also extend our construction for codes correcting a com-
bination of substitutions and deletions (or sticky insertions) in
Section VIII. Finally, we discuss some related problems and
extensions in Section IX and conclude the paper in Section X.

II. PRELIMINARIES AND MODEL DEFINITIONS

Let F2 denote the binary finite field. For a positive integer
n, the set {1, 2, . . . , n} is denoted by [n]. A binary word of
length n over the alphabet F2 is a vector in F

n
2. For i ∈ [n],

the i th coordinate of a word u ∈ F
n
2 is denoted by ui , so that

u = (u1, u2, . . . , un). A binary code of length n is a subset
C ∈ F

n
2 . Each element of C is called a codeword. For each

code C of length n, we define the rate of the code C to be
R(C) = log(|C|)/n and the redundancy of the code C to be
r(C) = n − log(|C|) where |C| is the size of the code C.

Let u = (u1, . . . , un) and v = (v1, . . . , vm) be two vec-
tors of length n and m, respectively. The concatenation of u
and v is the vector (u1, . . . , un, v1, . . . , vm) of length n + m,
which is denoted by u ◦ v. A subvector of a word u is a vec-
tor u[i1, i2] = (ui1 , ui1+1, . . . , ui2 ) in which 1 � i1 � i2 � n.
The length of this subvector is 1 � i2 − i1 + 1 � n. In case
i1 = i2 = i, we denote a subvector u[i, i ] of length 1 by u[i ]
to specify the i -th element of vector u.

Let � and m be two positive integers where � � m. Then,
a length-m vector v ∈ F

m
2 which satisfies vi = vi+� for all

1 � i � m − � is said to have period �. For a vector u ∈ F
n
2,

we denote by L(u, �) the length of its longest subvector which
has period �. Note that by definition L(u, �) � �, and for
� = 1, L(u, 1) equals the length of the longest run in u.

Example 1: Let u = (u1, . . . , u9) = (0, 0, 1, 1, 0, 1, 0, 1, 1)
∈ F

9
2 be a word of length 9. Since the longest run in u

is of length two, we have L(u, 1) = 2. The subvec-
tor u[4, 8] = (1, 0, 1, 0, 1) of u has period 2 since
u4 = u6 = u8 = 1 and u5 = u7 = 0. This is the longest
subvector of u of period 2, and hence L(u, 2) = 5. �

For a length-n word u ∈ F
n
2 and i ∈ [n], we denote by u(δi )

the vector obtained by u after deleting its i th bit, that is,
u(δi ) = (u1, . . . , ui−1, ui+1, . . . , un). For a set � ⊆ {δi :
i ∈ [n]}, we denote by u(�) the vector of length n − |�|
obtained from u after deleting all the bits specified by the
locations in the set �. In case � = {δi , . . . , δi+b−1} then we
denote the vector u(�) by u(δ[i,b]) to specify a burst of b
deletions starting at the i th position.

Example 2: Let u = (0, 0, 1, 1, 0, 1, 0, 1, 1) ∈ F
9
2, then

u(δ4) = (0, 0, 1, 0, 1, 0, 1, 1). For � = {δ4, δ7, δ9} then
u(�) = (0, 0, 1, 0, 1, 1), and u(δ[3,4]) = (0, 0, 0, 1, 1). �
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Fig. 1. Racetrack memory with multiple heads

In this work, we assume that the information stored in the
racetrack memory is represented by a word u. The memory is
comprised of magnetizable cells which can store a single bit.
The information is read back from the cells by sensing their
magnetization direction using heads which are fixed in their
positions; see Fig. 1.

Since the heads are fixed in their locations, the memory
cells move so they can all be read by the heads. This shift-
ing operation is performed by applying a shift current which
moves all the cells on each cycle one or more steps in the same
direction. However, the shifting mechanism does not work per-
fectly and may suffer from errors, called position errors. That
is, cells may be shifted by more than a single location on each
cycle or are not shifted. These position errors can be modeled
as deletions and sticky insertions. Namely, a single deletion is
the event where the cells are shifted by two locations instead
of one and thus one of the bits is not read by the head. In case
the cells were shifted by some b+1 > 2 locations, then b con-
secutive cells were not read and we say that a deletion burst
of size b has occurred. On the other hand, a sticky insertion is
the event where the cells were not shifted and the same cell
is read again and if this happens b > 1 times in a row, we say
that a burst of b sticky insertions has occurred. The goal of
this work is to construct codes for racetrack memories which
aim to correct this class of position errors.

In this work we assume that there are several heads and each
head reads all the cells. In case there is only a single head, then
the only approach to correct the position errors is by using
a code which is capable of correcting deletions and sticky
insertions. However, in case there are several heads, the cells
are read multiple times by each head and thus we study how
this inherent redundancy can be used to design better codes.
The output of the heads depend on their locations. For exam-
ple, assume that there are three heads which are used to read
the stored word u. Assume also that the distance between the
first two heads is t1 and the distance between the last two
heads is t2. Then, if a deletion occurs at position i in the first
head then a deletion also occurs at position i + t1 in the sec-
ond head and another deletion at position i+t1+t2 in the third
head. Therefore, the output of the first, second, third head is
the vector u(δi ), u(δi+t1), u(δi+t1+t2), respectively. A specific
scenario of this setup is given in the next example.

Example 3: Let u = (0, 0, 1, 1, 0, 1, 0, 1, 1) ∈ F
9
2 be the

word stored in the memory, and assume that there are three
heads which are positioned with t1 = 1 positions between the
first and second heads and t2 = 2 positions between the second
and third heads. Assume that a deletion occurs at position 3

in the first head, then a deletion also occurs at position 4 in
the second head and at position 6 in the third head. Hence,
the outputs from the three heads are:

Head 1 ::: u(δ3) = (0, 0, 1, 0, 1, 0, 1, 1)

Head 2 ::: u(δ4) = (0, 0, 1, 0, 1, 0, 1, 1)

Head 3 ::: u(δ6) = (0, 0, 1, 1, 0, 0, 1, 1).

�
As illustrated in Example 3, different heads may have the same
output if the distance between their locations is small and the
stored word has a long run. However, if the heads are well
separated then their outputs is more likely to be different.

The goal in this paper is to design codes which can cor-
rect position errors in the reading process. We say that a
code is an m-head b-position-error-correcting code if it can
correct b position errors using m heads. Similarly, we also
define m-head b-deletion-correcting codes, m-head b-sticky-
insertion-correcting codes, m-head b-burst-deletion-correcting
codes, and m-head b-burst-sticky-insertion-correcting codes.
We note that the locations of the heads can also be part
of the code design, however they should not be too far
apart from each other since the area for shifting the cells
may also be constrained and thus should be minimized.
As always, the goal in designing these codes is to minimize
the redundancy of each code construction.

III. TWO-HEAD SINGLE-DELETION-CORRECTING CODES

In this section we study how to construct two-head single-
deletion-correcting codes. Our main result states that if the
distance between the two heads is at least �log(n)� + 1 cells,
where n is the length of the codewords, then such codes exist
with redundancy of roughly 0.36 bits. Let us remind that if
the vector u = (u1, . . . , un) is stored in the memory and the
distance between the two heads is t locations, then if a dele-
tion of the i th bit occurs at the first head, its output is u(δi )
while the output of the second head is u(δi+t ).

We are now ready to present the construction of double-
head single-deletion-correcting codes.

Construction 1: For all t � n, let C1(n, 1, t) be a code of
length n such that the length of the longest run of every code-
word is at most t. That is, C1(n, 1, t) = {c ∈ F

n
2 | L(c, 1) � t}.

The correctness of this construction is proved in the next
theorem.

Theorem 2: The code C1(n, 1, t) is a two-head single-
deletion-correcting code when the heads are positioned t
locations apart.
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Proof: Let c = (c1, . . . , cn) ∈ C1(n, 1, t) be a stored
codeword of length n and assume that a single deletion
occurred at position i . Then, the outputs from the two heads
are:

Head 1 ::: c(δi ) = (c1, . . . , ci−1, ci+1, . . . , cn),

Head 2 ::: c(δi+t ) = (c1, . . . , ci+t−1, ci+t+1, . . . , cn).

Consider the first i + t − 1 bits in these two sequences:

Head 1 ::: c(δi )[1, i + t − 1]
= (c1, . . . , ci−1, ci+1, ci+2, . . . , ci+t ),

Head 2 ::: c(δi+t )[1, i + t − 1]
= (c1, . . . , ci−1, ci , ci+1, . . . , ci+t−1).

We claim that c(δi )[1, i + t − 1] �= c(δi+t )[1, i + t − 1].
Otherwise, we will get that

ci = ci+1 = · · · = ci+t−1 = ci+t ,

which implies that there is a run of length t + 1 in c in con-
tradiction to the construction of the code C1(n, 1, t). Let j1
be the leftmost index that differs between c(δi )[1, i + t − 1]
and c(δi+t )[1, i+t−1]. Such an index exists since c(δi )[1, i+
t − 1] �= c(δi+t )[1, i + t − 1] and so j1 � i + t − 1. Further-
more, j1 � i since the first i − 1 bits in the outputs from
the two heads are the same as in the stored codeword. Note
that j1 can be different from i in case the i th bit which was
deleted is in a middle of a run and so the first occurrence where
c(δi )[1, i + t − 1] and c(δi+t )[1, i + t − 1] differ is only at
the end of this run. We conclude that c[1, j1] = c(δi+t )[1, j1]
and c[ j1 + 1, n] = c(δi )[ j1, n − 1]. Hence, the original code-
word c can be recovered by concatenating the first j1 bits
from c(δi+t ) and the last n − j1 bits from c(δi ). That is, c =
c(δi+t )[1, j1]◦ c(δi )[ j1, n−1]. This proof provides also a sim-
ple decoding algorithm for the code C1(n, 1, t).

The next example demonstrates this code construction and
its decoder.

Example 4: Let n = 9, t = 3 and c = (0, 0, 1, 1, 0, 1,
0, 1, 1) be a stored codeword in C1(n, 1, t). Let us assume
that the outputs from the two heads are:

Head 1 ::: c(δ3) = (0, 0, 1, 0, 1, 0, 1, 1),

Head 2 ::: c(δ6) = (0, 0, 1, 1, 0, 0, 1, 1).

Hence j1 = 4 is the leftmost index that differs between the
two vectors, and the stored codeword is c = c(δ6)[1, 4] ◦
c(δ3)[4, 8] = (0, 0, 1, 1, 0, 1, 0, 1, 1). �

By a suitable mapping described in Section IV, the code
C1(n, 1, t) can be transformed into a code that satisfies the
(0, t−1) Run Length Limited (RLL) constraint [9], [29]. While
for each fixed t efficient encoding and decoding algorithms
are known for codes which satisfy the (0, t − 1) RLL con-
straint, the rates of these codes is strictly less than 1. Since
we can achieve codes with rate 1 by simply using a single head
and a single-deletion-correcting code of redundancy at most
log(n+1), we are interested only in codes with rate 1 and will
optimize their redundancy. Thus, we follow a similar approach
to the one taken in [23] for codes correcting bursts of dele-
tions and let t be a function of the code length n. In particular,

by choosing t = �log(n)� + 1, it was observed in [23], using
the derivations from [21] and [22], that the redundancy of
the code C1(n, 1, �log(n)� + 1) is approximately log(e)/4 ≈
0.36. Recently, in [15] this result was proved where the idea
was to use existing results from constrained codes in order
to give tight upper and lower bounds on the size of the code
C1(n, 1, �log(n)�+1) such that its asymptotic redundancy con-
verges to 0.36. Furthermore, for t = �log(n)� + 2 efficient
encoding and decoding algorithms were recently found for
these codes using a single bit of redundancy [15]. We con-
clude this discussion with the following corollary.

Corollary 3: There exists a two-head single-deletion-
correcting code when the heads are positioned t =
�log(n)� + 1 locations apart with redundancy of approxi-
mately log(e)/4 ≈ 0.36 bits.

IV. CODES CORRECTING A BURST OF DELETIONS

In this section we study the setup where the domains are
over-shifted by more than a single location and thus a burst
of deletions occurs in each head. More specifically, we study
the construction of two-head b-burst-deletion-correcting codes.
We will focus on two cases: the length of the burst is exactly
b or at most b.

A. Two-Head b-Burst-Deletion-Correcting Codes

Here we investigate codes correcting a burst of exactly b
adjacent deletions using two heads. Suppose we use two heads
at distance t to correct a burst of size b in the stored code-
word c = (c1, . . . , cn). Recall that for i ∈ [n] and b ∈ [n− i ],
the vector obtained from c after deleting the subvector c[i, i+
b−1] = (ci , . . . , ci+b−1) is c(δ[i,b]). Therefore, we know that
if the output from the first head is c(δ[i,b]) for some i and b,
then the output from the second head is c(δ[i+t,b]), where the
heads are located t positions apart. The following is the con-
struction of such codes.

Construction 4: Let C2(n, b, t) be a code of length n such
that the length of the longest subvector which has period
b of every codeword c ∈ C2(n, b, t) is at most t. That is,
C2(n, b, t) = {c ∈ F

n
2 | L(c, b) � t}.

The proof that this construction can correct a burst of dele-
tion of length b follows similar ideas to that in the proof of
Theorem 2.

Theorem 5: The code C2(n, b, t) is a two-head b-burst-
deletion-correcting code when the heads are positioned t
locations apart.

Proof: Let c = (c1, . . . , cn) ∈ C2(n, b, t) be a stored
codeword and assume that a burst of b consecutive bits c[i, i+
b − 1] is deleted in the first head, and thus the subvector
c[i + t, i + t + b − 1] is deleted in the second head. Then,
the outputs from the two heads are:

Head 1 ::: c(δ[i,b]) = (c1, . . . , ci−1, ci+b, . . . , cn)

Head 2 ::: c(δ[i+t,b]) = (c1, . . . , ci+t−1, ci+t+b, . . . , cn).

We claim that the first i + t − b bits in those two vectors, i.e.,

c(δ[i,b])[1, i+t−b]= (c1, . . . , ci−1, ci+b, ci+b+1, . . . , ci+t ),

c(δ[i+t,b])[1, i+t−b]= (c1, . . . , ci−1, ci , ci+1, . . . , ci+t−b),
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are different. Assume the contrary that equality holds between
the last two vectors. Then, we get that c j = c j+b for i � j �
i + t − b and thus the subvector c[i, i + t] of length t + 1
has period b, in contradiction to the construction of the code
C2(n, b, t). Let j1 be the leftmost index that differs between
c(δ[i,b])[1, i + t − b] and c(δ[i+t,b])[1, i + t − b]. Similarly
to the proof of Theorem 2, such an index j1 exists and i �
j1 � i + t − b. Thus, i + b − 1 � j1 + b − 1 � i + t − 1.
We note that the first i + t − 1 bits in c(δ[i+t,b]) are correct,
that is, c(δ[i+t,b])[1, i + t − 1] = c[1, i + t − 1], and since
j1 + b − 1 � i + t − 1, we deduce that

c[1, j1 + b − 1] = c(δ[i+t,b])[1, j1 + b − 1]. (1)

Following the same arguments, the last n − i − b + 1 bits in
c(δ[i,b]) are correct, that is, c(δ[i,b])[i, n − b] = c[i + b, n].
Since j1 + b � i + b, we get that

c[ j1 + b, n] = c(δ[i,b])[ j1, n − b]. (2)

Combining (1) and (2) we conclude that the stored codeword
c can be recovered as follows:

c = c(δ[i+t,b])[1, j1 + b − 1] ◦ c(δ[i,b])[ j1, n − b].

The next example demonstrates the decoding procedure in
Theorem 5.

Example 5: Let n = 10, b = 2, t = 3 and

c = (0, 0, 1, 1, 0, 1, 1, 0, 1, 1)

be a stored codeword in C(n, b, t). Assume that the two adja-
cent bits c3 and c4 are deleted in the first head, so the bits c6
and c7 are deleted in the second head. Then, the outputs from
the two heads are:

Head 1 ::: c(δ[3,2]) = (0, 0, 0, 1, 1, 0, 1, 1),

Head 2 ::: c(δ[6,2]) = (0, 0, 1, 1, 0, 0, 1, 1).

Therefore, j1 = 3 is the leftmost index that differs between
the two vectors, and we conclude that the stored codeword is
c = c(δ[6,2])[1, 4] ◦ c(δ[3,2])[3, 8] = (0, 0, 1, 1, 0, 1, 1, 0, 1, 1).

�
Next we turn to evaluate the size of the code C2(n, b, t).

In particular, as done in the previous section, we will find a
value of t for which the redundancy of the code will be approx-
imately 0.36 bits. We start with the following definition.

Definition 6: Let u = (u1, u2, . . . , um) ∈ F
m
2 be a length-

m vector. For b < m, the b-period check vector of u is the
vector pb(u) = (u1 + u1+b, u2 + u2+b, . . . , um−b + um) of
length m − b.

The following lemma can be readily verified.
Lemma 7: A word u contains a subvector of length t with

period b if and only if pb(u) contains a run of t − b zeroes.
For a vector u, we denote by L0(u) the length of the longest

run of zeroes in u. For example L0(0110100010)= 3. For all
n and t � n, we define the code R(n, t) to be

R(n, t) = {c ∈ F
n
2 |L0(u) � t}.

Using Lemma 7, we can construct a bijection between
C2(n, b, t) and the set F

b
2 × R(n − b, t − b) for n � b + 1.

Specifically, we define the following maps.

• � : C2(n, b, t)→ F
b
2 ×R(n − b, t − b), where �(u) =

(u[1, b], pb(u)).
• � : Fb

2×R(n−b, t−b)→ C2(n, b, t), where �(v,w) =
u and

ui =
{

vi , if i � b,

ui−b +wi−b, otherwise.

In the context of error-correcting codes for tandem dupli-
cations [10], Jain et al. demonstrated Lemma 7 and the fact
that � and � are bijections when t = 2b − 1. It is straight-
forward to extend the proof for t � b. Hence, we have the
following lemma that is useful in evaluating the size of the
code C2(n, b, t).

Lemma 8: For all n, b, t ,

|C2(n, b, t)| = 2b · |R(n − b, t − b)|.
The size of the code R(n, t) can be calculated using the

results from Section III and by applying Lemma 8 for b = 1
to get that for all n and t � n,

|R(n, t)| = |C1(n + 1, 1, t + 1)|
2

.

We can now conclude with the following corollary.
Corollary 9: For all n, b, t ,

|C2(n, b, t)| = 2b · |C1(n − b + 1, 1, t − b + 1)|
2

.

Finally, according to Corollary 3 and Corollary 9 we get
the following result.

Corollary 10: There exists a two-head b-burst-deletion-
correcting code when the heads are positioned t =
�log(n)� + b locations apart with redundancy of approxi-
mately log(e)/4 ≈ 0.36 bits.

B. Correcting a Burst of Length at Most b

The goal of this section is to design a code correcting a burst
of at most b deletions using two heads. We follow the same
ideas presented thus far and use the following construction.

Construction 11: Let C3(n,� b, t) be a code of length
n which is the intersection of the codes C2(n, �, t) for
1 � � � b. That is,

C3(n,� b, t) = ∩b
�=1C2(n, �, t)

= {c ∈ F
n
2 | L(c, �) � t, for all � � b}.

The correctness of this construction is verified in the next
theorem.

Theorem 12: The code C3(n,� b, t) can correct up to b
consecutive deletions using two heads at distance t.

Proof: According to the output length of each head we
can easily determine the size � of the burst of deletions. Since
C3(n,� b, t) ⊆ C2(n, �, t), we simply apply the decoding
algorithm presented in Theorem 5 for the code C3(n, �, t) in
order to decode the stored codeword.

We now turn to the evaluation of the code cardinality
of C3(n,� b, t). We will not be able to provide an exact
approximation for the redundancy of the code C3(n,� b, t)
as we did before. However, we will find a value of t for
which the redundancy of the code is at most a single bit. For
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this purpose, we follow similar ideas to the ones presented by
Schoeny et al. [23] when studying the redundancy of the
so-called universal RLL constraint. This will be proved in the
next theorem.

Theorem 13: For all n, b, t ,

|C3(n,� b, t)| � 2n

(
1− n ·

(
1

2

)t−b
)

.

In particular, for t = �log(n)� + b + 1 the redundancy of the
code C3(n,� b, t) is at most a single bit.

Proof: According to the construction of the code C3(n,�
b, t) = ∩b

�=1C2(n, �, t), we have that

|C3(n,� b, t)| = 2n−|C3(n,� b, t)| = 2n−|∩b
�=1C2(n, �, t)|

� 2n −
b∑

�=1

|C2(n, �, t)|.

For 1 � � � b, a vector c belongs to C2(n, �, t) if and only if
it consists of a subvector of period � and length t + 1. There
are at most n− t starting positions for such a subvector. Once
we set the first � bits in this subvector of length t+1, the rest
of its bits are determined uniquely. The remaining n− (t + 1)
bits in the vector can be chosen arbitrarily. Hence, accord-
ing to the union bound, we get that the number of vectors in
C2(n, �, t) is upper bounded by

|C2(n, �, t)| � (n − t) · 2� · 2n−(t+1) � 2n · n ·
(

1

2

)t−�+1

.

Hence,

b∑
�=1

|C2(n, �, t)| �
b∑

�=1

2n · n ·
(

1

2

)t−�+1

= 2n · n · 2b − 1

2t
� 2n · n ·

(
1

2

)t−b

.

Therefore,

|C3(n,� b, t)| � 2n−
b∑

�=1

|C2(n, �, t)|

� 2n−2n · n ·
(

1

2

)t−b

=2n

(
1− n ·

(
1

2

)t−b
)

.

In particular, for t = �log(n)� + b + 1, we get that

|C3(n,� b, �log(n)�+b+1)| � 2n

(
1−n ·

(
1

2

)log(n)+b+1−b
)

= 2n−1,

and thus the redundancy of the last code is at most a
single bit.

V. CODES CORRECTING MULTIPLE DELETIONS

In this section we move to the more challenging task
of correcting multiple deletions and construct m-head d-
deletion-correcting codes. For simplification, we first consider
the case d = 2 and show that the code C3(n,� 2, t1),
which can correct a burst of at most two deletions by using

two heads, is a three-head double-deletion-correcting code,
when the distance between every adjacent heads is at least
t = 2(t1 − 1). We will then use this result as a building
block for a more general claim on codes which can cor-
rect d deletions using d + 1 heads, that is, (d + 1)-head
d-deletion-correcting codes. Lastly, we show that the case
of d + 1 heads is a special case of a more general result
which claims that if the number of heads is m � d + 1
then it is possible to correct m − 1 deletions using the m
heads. Hence, in order to correct d deletions, the stored
codeword should belong to a code correcting d − m + 1
deletions. While we do not design new code construc-
tions, a key point in the construction is finding the required
minimum distance between two adjacent heads for its
success.

A. Three-Head Double-Deletion-Correcting Codes

We start by presenting our result for the construction of
three-head double-deletion-correcting codes.

Theorem 14: The code C3(n,� 2, t1) is a three-head
double-deletion-correcting code when the distance between
adjacent heads is at least t = 2(t1 − 1).

Proof: Let c = (c1, . . . , cn) ∈ C3(n,� 2, t1) be the stored
codeword and t = 2(t1 − 1) be the distance between adjacent
heads. Let us assume that the two deletions occurred in the
first head are in positions i1, i2, where i1 < i2. Hence the
deletions in the second head are in positions i1+ t, i2+ t and
in the third head they are in positions i1+ 2t, i2+ 2t . That is,
the outputs from the three heads are:

Head 1 ::: c(δi1 , δi2 )

=(c1, . . . , ci1−1, ci1+1, . . . , ci2−1, ci2+1, . . . , cn),

Head 2 ::: c(δi1+t , δi2+t )

=(c1, . . . , ci1+t−1, ci1+t+1, . . . , ci2+t−1, ci2+t+1, . . . , cn),

Head 3 ::: c(δi1+2t , δi2+2t )

=(c1, . . . , ci1+2t−1, ci1+2t+1, . . . , ci2+2t−1, ci2+2t+1, . . . , cn).

We prove that it is possible to correct the two deletions by
explicitly showing how to decode them. This will be done in
three steps:

1) First, we use the first two heads to correct the first dele-
tion in the first head.

2) Then, we use the second and third heads to correct the
first deletion in the second head.

3) At this point, the first and second heads have only a sin-
gle deletion and thus we proceed to correct this deletion
as was done in Theorem 2.

We start with the first step and show how to correct the first
deletion in the first head. To accomplish this task, we show
that c(δi1 , δi2 )[1, i1 + t − 1] �= c(δi1+t , δi2+t )[1, i1 + t − 1].
Assume the contrary, then we distinguish between the follow-
ing two cases:
• Case 1.1: If i2 − i1 � t1 + 1 then the two subvectors

c(δi1 , δi2)[1, i1 + t1 − 1]
= (c1, . . . , ci1−1, ci1+1, ci1+2, . . . , ci1+t1),

c(δi1+t , δi2+t )[1, i1 + t1 − 1]
= (c1, . . . , ci1−1, ci1 , ci1+1, . . . , ci1+t1−1)
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are identical, and thus the subvector (ci1 , ci1+1, . . . ,
ci1+t1−1, ci1+t1) forms a run of length t1 + 1, in contra-
diction to the construction of the code C3(n,� 2, t1).

• Case 1.2: If i2 − i1 � t1 then i1 + t = i1 + 2t1 − 2 �
i2 + t1 − 2. Then the first i2 + t1 − 3 bits in the first two
heads, which are the subvectors

c(δi1 , δi2 )[1, i2 + t1 − 3]
= (c1, . . . , ci1−1, ci1+1, . . . , ci2−1, ci2+1, . . . , ci2+t1−1),

c(δi1+t , δi2+t )[1, i2 + t1 − 3]
= (c1, . . . , ci1−1, ci1 , . . . , ci2−2, ci2−1, . . . , ci2+t1−3),

are identical, which implies that (ci2−1, ci2 , . . . , ci2+t1−1)
is a subvector of length t1+1 with period 2, again in con-
tradiction to the construction of the code C3(n,� 2, t1).

Let j1 be the leftmost index that c(δi1 , δi2) and c(δi1+t , δi2+t )
differ. Similarly to the argument in the proof of Theorem 2,
such an index exists and i1 � j1 � i1 + t − 1. To correct the
first deletion in the first head, we concatenate the first j1 bits
in c(δi1+t , δi2+t ) and the last n−1− j1 bits in c(δi1 , δi2). Now,
there are two cases to consider.

• Case 2.1: If j1 < i2 − 1 then c(δi1 , δi2 )[ j1, n − 2] =
(c j1+1, . . . , ci2−1, ci2+1, . . . , cn) and c(δi1+t , δi2+t )
[1, j1] = (c1, . . . , c j1). Thus, c(δi1+t , δi2+t )[1, j1] ◦
c(δi1 , δi2 )[ j1, n − 2] = c(δi2).

• Case 2.2: If j1 � i2 − 1 then c(δi1 , δi2 )[ j1, n − 2] =
(c j1+2, . . . , cn) and c(δi1+t , δi2+t )[1, j1] = (c1, . . . , c j1).
Thus, c(δi1+t , δi2+t )[1, j1] ◦ c(δi1 , δi2 )[ j1, n − 2] =
c(δ j1+1). Furthermore, in this case, (ci2−1, ci2 , . . . , c j1,
c j1+1) is a subvector of length j1 − i2 + 3 with period
2. Hence, j1 − i2 + 3 � t1, which provides that
j1 + 1 � i2 + t1 − 2.

Therefore, in both cases we can write

c(δi1+t , δi2+t )[1, j1] ◦ c(δi1 , δi2 )[ j1, n − 2] = c(δi2+k1 ),

where 0 � k1 � t1 − 2.
The second step is not different than the first one. In fact,

we have the same problem in the sense of having two heads
at distance t which both had two deletions. Hence, we apply
the same proof to show that

c(δi1+2t , δi2+2t )[1, i1 + 2t−1] �= c(δi1+t , δi2+t )[1, i1 + 2t−1],
and then correct the first deletion in the second head to get
c(δi2+t+k2) where 0 � k2 � t1 − 2.

Lastly, in the third step we have two vectors c(δi2+k1 )
and c(δi2+t+k2). Note that (i2 + t + k2) − (i2 + k1) �
(i2 + t) − (i2 + t1 − 2) = t1. That is, the distance between
the two deletions in the two vectors is at least t1. Therefore,
following the proof in Theorem 2, we can reconstruct the
codeword c from the two vectors c(δi2+k1 ) and c(δi2+t+k2),
thereby correcting two random deletions by using three heads
of distance t between adjacent heads.

The next example demonstrates the decoding procedure
presented in Theorem 14.

Example 6: Let n = 14, t1 = 3, t = 4 and

c = (0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1)

be a stored codeword in C(14,� 2, 3). Assume that the
outputs from three heads are:

Head 1 ::: c(δ3, δ5) = (0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1)

Head 2 ::: c(δ7, δ9) = (0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1)

Head 3 ::: c(δ11, δ13) = (0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1).

By comparing the outputs from first two heads, we see that
j1 = 5 is the leftmost index that c(δ3, δ5) and c(δ7, δ9) differ.
Hence, we can obtain the vector

c(δ6) = c(δ7, δ9)[1, 5] ◦ c(δ3, δ5)[5, 12]
= (0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1).

Similarly, we find the leftmost index that c(δ7, δ9) and
c(δ11, δ13) differ which is j2 = 7 and obtain the vector

c(δ9) = c(δ11, δ13)[1, 7] ◦ c(δ7, δ9)[7, 12]
= (0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1).

Note that when decoding the first deletion in the first head the
condition j1 < i2−1 does not hold so we are in Case 2.2 and
thus the remaining deletion is in location 6 instead of 5. How-
ever, this condition does hold when decoding the first deletion
in the second head and hence the deletion is in position 9
(Case 2.1). Lastly, we can recover the original codeword by
finding j3 = 7 as the leftmost index that c(δ6) and c(δ9) differ
and recover the stored codeword c to be

c = c(δ9)[1, 7] ◦ c(δ6)[7, 13]
= (0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1).

�
Although Theorem 13 provides a good approximation on the
cardinality of the code C3(n,� b, t1) for all b, the following
lemma gives a better result on the special case with b = 2.

Lemma 15: For all n, t ,

|C3(n,� 2, t1)| = |C2(n, 2, t1)| = 2 · |C1(n − 1, 1, t1 − 1)|.

Proof: We observe that any vector (x1, . . . , x�) which has
period 1, that is x1 = x2 = · · · = x�, has also period 2. Hence,
C2(n, 2, t1) ⊆ C2(n, 1, t1). Therefore,

C3(n,� 2, t1) = C2(n, 2, t1) ∩C2(n, 1, t1) = C2(n, 2, t1).

Moreover, from Corollary 9, we obtain

|C2(n, 2, t1)| = 2 · |C1(n − 1, 1, t1 − 1)|.

Lastly, from the equations above, Lemma 15 is proven.
Based on the results in Lemma 15 and Corollary 3 we con-

clude with the following corollary.
Corollary 16: There exists a three-head double-deletion-

correcting code with redundancy of approximately log(e)/
4 ≈ 0.36 bits when the distance between adjacent heads is at
least t = 2(�log(n)� + 1).
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B. Multiple-Head b-Deletion-Correcting Codes

The idea in the proof of Theorem 14 is to use every two
pairs of subvectors in order to correct the first deletion in
the first subvector in each pair. It turns that this basic proce-
dure can be generalized to d random deletions which we need
to construct the m-head d-deletion-correcting codes. We start
with the case of m = d + 1 which allows to correct all the
deletions and then discuss the arbitrary case of m � d .

First we show how to generalize the procedure of using two
adjacent heads to correct the first deletion in the first head for
the case of arbitrary number of deletions d .

Lemma 17: Let d and t1 be two positive integers such that
t1 > d and let t = dt1 − d(d + 1)/2 + 1. For h = 1, 2 let
�h = {δih,1 , . . . , δih,d } be two sets of deletion locations, such
that for � ∈ [d],

i2,� − i1,� � t = dt1 − d(d + 1)/2+ 1. (3)

Assume c ∈ C3(n,� d, t1) and the two vectors c(�1)
and c(�2) are given. Then, it is possible to correct the first
deletion in the first vector c(�1) and obtain the vector c(�′1),
where �′1 = {δi ′1,2

, . . . , δi ′1,d
} and for 2 � � � d,

i1,� � i ′1,� � i1,� + (d − 1)t1 − d(d − 1)/2+ 1. (4)

Proof: We will first show that

c(�1)[1, i1,1 + t − 1] �= c(�2)[1, i1,1 + t − 1].
Assume the contrary that c(�1)[1, i1,1+t−1] = c(�2)[1, i1,1+
t − 1], and we prove the following proposition.

Proposition 18: For all 1 � k � d − 1,

i1,k+1 � i1,k + t1 − k + 1 � i1,1 + kt1 −
k−1∑
i=1

i

= i1,1 + kt1 − k(k − 1)/2.

Proof: We prove this property by induction. For the base
we prove that it holds for k = 1. Assume the contrary that
the claim does not hold, that is, i1,2 � i1,1 + t1 + 1. Then,
the following two subvectors

c(�1)[1, i1,1 + t1 − 1]
= (c1, . . . , ci1,1−1, ci1,1+1, ci1,1+2, . . . , ci1,1+t1),

c(�2)[1, i1,1 + t1 − 1]
= (c1, . . . , ci1,1−1, ci1,1 , ci1,1+1, . . . , ci1,1+t1−1)

are identical since i1,1+ t1−1 � i1,1+ t−1. That is, the sub-
vector (ci1,1 , ci1,1+1, . . . , ci1,1+t1−1, ci1,1+t1) is a run of length
t1 + 1, which is a contradiction since c ∈ C3(n,� d, t1).

Next we assume that this property holds for all k such that
1 � k < k0 � d−1 and we prove its correctness for k0. Notice
that according to the induction assumption for k = k0 − 1 we
have that

i1,k0 � i1,1 + (k0 − 1)t1 −
k0−2∑
i=1

i,

and therefore

i1,k0 + t1 − k0 + 1 � i1,1 + k0t1 −
k0−1∑
i=1

i,

which implies that

i1,k0 + t1 − k0 + 1 � i1,1 + t − 1.

Assume the contrary that i1,k0+1 > i1,k0 + t1 − k0 + 1. Then
the following two subvectors

c(�1)[i1,k0 − k0, i1,k0 + t1 − 2k0 + 1]
= (ci1,k0−1, ci1,k0+1, . . . , ci1,k0+t1−k0+1)

c(�2)[i1,k0 − k0, i1,k0 + t1 − 2k0 + 1]
= (ci1,k0−k0 , ci1,k0−k0+1, . . . , ci1,k0+t1−2k0+1)

are identical. That is, the subvector (ci1,k0−k0+1, . . . ,
ci1,k0+t1−k0+1) is a subvector with period k0 of length t1 + 1,
which leads again to a contradiction. Therefore, we deduce
that i1,k0+1 � i1,k0 + t1 − k0 + 1, and the claim holds also for
k = k0 + 1. This completes the proof.

According to Proposition 18, we obtain that for k = d − 1,

i1,d � i1,1 + (d − 1)t1 − (d − 1)(d − 2)/2.

Therefore,

i1,d+t1−2d+1� i1,1+ v(d−1)t1−(d−1)(d−2)/2+t1−2d+1

= i1,1 + t − 1.

Hence, the following two vectors

c(�1)[i1,d − d, i1,d + t1 − 2d + 1]
= (ci1,d−1, ci1,d+1, . . . , ci1,d+t1−d+1),

c(�2)[i1,d − d, i1,d + t1 − 2d + 1]
= (ci1,d−d , ci1,d−d+1, . . . , ci1,d+t1−2d+1)

are also identical. Again we get a contradiction since the sub-
vector (ci1,d−d+1, . . . , ci1,d+t1−d+1) with period d is of length
t1 + 1. Therefore,

c(�1)[1, i1,1 + t − 1] �= c(�2)[1, i1,1 + t − 1].
Let j1 be the leftmost index where the last two vectors

c(�1) and c(�2) differ. Similarly to the argument in the proof
of Theorem 2, we know that such an index exists and

i1,1 � j1 � i1,1 + t − 1. (5)

To correct the first deletion in c(�1), we concatenate the first
j1 bits from c(�2) with the last n−d− j1+1 bits from c(�1),
that is, we form the vector

c(�′1) = c(�2)[1, j1] ◦ c(�1)[ j1, n − d],
which has d − 1 deletions that we denote by the set

�′1 = {δi ′1,2
, . . . , δi ′1,d

}.
Note that j1 > i1,1 − 1 and i1,1 − 1 � i1,2 − 2 � · · · �
id − d since i1,1 < i1,2 < · · · < i1,d . Hence, there exists a
unique index r ∈ [d − 1] such that i1,r − r < j1 � i1,r+1 −
(r + 1) or j1 > i1,d − d. We now consider the following two
cases.

• Case 1: There exists an index r ∈ [d−1] such that i1,r−
r < j1 � i1,r+1− (r+1). In this case, c(�1)[ j1] = c j1+r
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and i1,1 < · · · < i1,r < j1 + r < i1,r+1 < · · · < i1,d .
Hence,

c(�1)[ j1, n − d] = c[ j1 + r, n]({δi1,r+1 , . . . , δi1,d }).
That is, the locations of the last d − r deletions did not
change. Furthermore, according to (5) we get

c(�2)[1, j1] = c[1, j1] = (c1, . . . , c j1).

Therefore,

c(�2)[1, j1] ◦ c(�1)[ j1, n − d] = c(�′1)

where

�′1 = {δi ′1,2
, . . . , δi ′1,d

}
= {δ j1+1, . . . , δ j1+r−1, δi1,r+1 , . . . , δ1,i1,d }.

Now, we need to prove that i1,� � i ′1,� � i1,� + (d − 1)
t1 − d(d − 1)/2 + 1 for 2 � � � d . For 2 � � � r ,
i1,� � j1 + � − 1 = i ′1,�, since j1 > ir − r � · · · �
i1,� − �. Furthermore, since j1 + r < i1,r+1, we have
that i ′1,� = j1 + � − 1 � j1 + r − 1 � i1,r+1 and from
Proposition 17,

i ′1,� � i1,r+1 � i1,r + t1 − (r − 1)

� i1,r−1 + t1 − (r − 1)+ t1 − (r − 2)

� i1,� +
r−1∑

u=�−1

(t1 − u)

= i1,� +
d−1∑
u=1

(t1 − u)� i1,�+(d−1)t1−d(d−1)/2+1.

Lastly, for r + 1 � � � d , i ′1,� = i1,�, so we conclude
that the property in (4) holds in this case.

• Case 2: j1 > i1,d − d. In this case, c(�1)[ j1, n − d] =
c[ j1 + d, n] and c(�2)[1, j1] = c[1, j1]. Hence,

c(�2)[1, j1] ◦ c(�1)[ j1, n − d] = c(�′1)

where

�′1 = {δi ′1,2
, . . . , δi ′1,d

} = {δ j1+1, . . . , δ j1+d−1}.
Similarly to the proof of Proposition 18, we consider the
two identical vectors

c(�1)[i1,d − d, j1 − 1] = (ci1,d−1, ci1,d+1, . . . , c j1+d−1),

c(�2)[i1,d − d, j1 − 1] = (ci1,d−d , ci1,d−d+1, . . . , c j1−1)

which imply that the subvector (ci1,d−d+1, ci1,d−d+2, . . . ,
c j1+d−1) of length j1− i1,d+2d−1 has period d . There-
fore j1− i1,d + 2d − 1 � t1 or j1 � i1,d + t1− d + 1. For
all 2 � � � d − 1, as in Case 1, we have that

i1,d � i1,� +
d−2∑

u=�−1

(t1 − u),

and together we conclude that

i ′1,� = j1 + �− 1 � i1,d + t1 − d + 1+ �− 1

� i1,� +
d−2∑

u=�−1

(t1 − u)+ t1 − d + �

= i1,� + (d−�+ 1)t1−
( d−2∑

u=�−1

u

)
−(d−1)+ (�−1)

= i1,� + (d−�+ 1)t1 −
( d−1∑

u=�

u

)
� i1,� + (d−1)t1 − d(d − 1)/2+ 1.

To summarize, we get that in both cases, i1,� � i ′1,� � i1,� +
(d − 1)t1 − d(d − 1)/2 + 1 for all 2 � � � d , which verifies
the correctness of Lemma 17.

For the rest of this section we assume that d and t1 are two
positive integers such that t1 > d and the value of T (d) is
given by

T (d) = t1 +
d∑

k=1

(
(k − 1)t1 − k(k − 1)/2+ 1

)

= t1

(
d(d − 1)

2
+ 1

)
+ 7d − d3

6
.

Before constructing (d + 1)-head d-deletion-correcting codes,
we provide the following claim.

Claim 19: Let �h = {δih,1 , . . . , δih,d } for h ∈ [d + 1] be
such that ih,1 < ih,2 < · · · < ih,d where for given �, h ∈ [d],
it holds that ih+1,� − ih,� � T (d). Assume the d + 1 vectors
c(�h) for h ∈ [d + 1] are given, where c ∈ C3(n,� d, t1).
Then, it is possible to decode the codeword c.

Proof: We prove this claim by induction on d . For the base
when d = 1, we need to prove that using two vectors, c(δi1,1 )
and c(δi2,1 ), the codeword c can be successfully decoded. This
is proven in Theorem 2.

Next, we assume that Claim 19 holds for all 1 � d � d0−1,
and we show that it holds also for d = d0. For h ∈ [d0+1], let
�h = {δih,1 , . . . , δih,d0

} be d0+1 sets which satisfy the proper-
ties in the claim. For h ∈ [d0], let us consider the two vectors
c(�h) and c(�h+1). According to Lemma 17, it is possible to
obtain the vector c(�′h) where �′h = {δi ′h,2

, . . . , δi ′h,d0
} and for

2 � � � d0, ih,� � i ′h,� � ih,�+ (d0− 1)t1− d0(d0− 1)/2+ 1.
Furthermore, since ih+1,� − ih,� � T (d0), we get that for all
h, � ∈ [d0 − 1],
i ′h+1,� − i ′h,� � ih+1,� −

(
ih,� + (d0 − 1)t1 − d0(d0−1)/2+1

)
� T (d0)−

(
(d0 − 1)t1 − d0(d0 − 1)/2+ 1

)
= T (d0 − 1).

Thus, according to the induction assumption for the d0 sets
�′h , h ∈ [d0], we can successfully decode the codeword c,
which proves the statement in the claim.

Now we are ready to present our construction of (d + 1)-
head d-deletion-correcting codes.

Theorem 20: The code C3(n,� d, t1) is a (d + 1)-head d-
deletion-correcting code where the distance between adjacent
heads is t � T (d).
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Proof: Let c ∈ C3(n,� d, t1) be a stored codeword. For
h ∈ [d + 1], let �h be a set of d deletions occurred in the
h-th head. Since the distance between adjacent heads is t �
T (d), all d+ 1 sets �h satisfy the condition in Claim 19, and
therefore we can successfully decode the codeword c.

We note that the code that we use to correct up to d ran-
dom deletions using d + 1 heads is the same code used to
correct a burst of at most d deletions using two heads, how-
ever here we require the distance between adjacent heads to
be larger. The following corollary summarizes this discussion
and analyzes the redundancy of the construction.

Corollary 21: There exists a (d + 1)-head d-deletion-
correcting code with at most a single bit of redundancy
when the distance between adjacent heads is at least((d

2

)+ 1
)
· �log n� + d3+5d+3

3 .

We now turn to the case where the number of heads is less
than d+1. In this case we can still follow the same logic of the
proof in Theorem 20. However, now it is possible to correct
only the first m − 1 deletions. Thus if the stored codeword
belongs to a (d −m+ 1)-deletion-correcting code, then it will
be possible to correct all d deletions. This result is stated in
the next theorem.

Theorem 22: Let C be a (d − m + 1)-deletion-correcting
code, where m � d. Then, the code C∩C3(n,� d, t1) is an m-
head d-deletion-correcting code where the distance between
adjacent heads is t � T (d). In particular under this setup,
if t1 = �log(n)� + d + 1 then:

1) There exists a (d + 1)-head d-deletion-correcting code
with at most a single bit of redundancy

2) There exists a d-head d-deletion-correcting code with
redundancy at most �log(n + 1)� + 1.

The second part of Theorem 22 is proved by simply using
the Varshamov-Tenengolts codes for single-deletion correc-
tion [25], which form a partition of the space. In order to
correct more than a single deletion, one can use multiple-
deletion correcting codes in [1], however there is no explicit
expression for their redundancy.

VI. CODES CORRECTING MULTIPLE BURSTS OF STICKY

INSERTIONS

In this section, we consider the case that there are only
sticky insertions and construct codes correcting multiple sticky
insertions using multiple heads. Recall that a sticky insertion
occurs when the domain is not shifted and the same bit is
read again by the head. Furthermore, if the domain does not
move on several consecutive shift operations, then the same
bit might be read multiple times in a row by the head and thus
a burst of sticky insertions occurs.

For a length-n word u ∈ F
n
2 and i ∈ [n], we denote by

u(γ[i,b]) the vector obtained by u after repeating its i th bit b
times, that is,

u(γ[i,b]) = (u1, . . . , ui−1, ui , . . . , ui︸ ︷︷ ︸
b+1 times

, ui+1, . . . , un).

In case b = 1, we simply use the notation u(γi ) instead
of u(γ[i,1]). For a set 	 ⊆ {γ[i,bi ] : i ∈ [n], bi � 1},

we denote by u(	) the vector obtained from u after repeating
its i th bit bi times for all i, bi such that γ[i,bi ] ∈ 	.

Example 7: Let u = (0, 0, 1, 1, 0, 1, 1) ∈ F
7
2, then

u(γ[4,3]) = (0, 0, 1, 1, 1, 1, 1, 0, 1, 1). For 	 = {γ[1,1], γ[4,2]}
then u(	) = (0, 0, 0, 1, 1, 1, 1, 0, 1, 1). �

Recall again that in a racetrack memory, we use multiple
heads in fixed positions to read the information so each bit is
read multiple times. Therefore, if a sticky insertion occurs at
the i -th position in the first head then in the second head it
appears in the (i + t)-th position. That is, if u is the stored
codeword and the output from the first head is u(γ[i,b]), then
the output from the second head is u(γ[i+t,b]).

Although codes correcting a single sticky insertion are well-
studied and asymptotically optimal codes exist, the redundancy
of such codes is at least log(n) − 1 bits [6], [18]. The main
result in this section shows that using multiple heads, it is
possible to correct multiple bursts of sticky insertions with at
most a single bit of redundancy.

We observe that correcting a sticky insertion is an easier
task than correcting a deletion. In fact, the code C1(n, 1, t),
which is a two-head single-deletion-correcting code when the
distance between the heads is at least t , is capable of correct-
ing a single sticky insertion under the same setup. However,
the next theorem shows that this code is actually capable of
correcting a burst of sticky insertions of length at most t − 1.

Theorem 23: The code C1(n, 1, t) is a two-head b-burst-
sticky-insertion-correcting code for b � t−1 using two heads
of distance t.

Proof: Let c = (c1, . . . , cn) ∈ C1(n, 1, t) be a stored
codeword and assume that the output from the first, second
head is c(γ[i,b]) and c(γ[i+t,b]), where b � t − 1, respectively.
Hence the outputs from the two heads are given by:

Head 1 ::: c(γ[i,b]) = (c1, . . . , ci−1, ci , ci , . . . , ci︸ ︷︷ ︸
b+1 times

, ci+1, . . . ,

ci+t−b−1, ci+t−b, ci+t−b+1, . . . , cn),

Head 2 ::: c(γ[i+t,b]) = (c1, . . . , ci−1, ci , . . . ,

ci+b, ci+b+1, . . . , ci+t−1, ci+t , . . . , ci+t︸ ︷︷ ︸
b+1 times

, ci+t+1, . . . , cn).

As in previous proofs, we claim that c(γ[i,b])[1, i + t − 1] �=
c(γ[i+t,b])[1, i+t−1]. Assume the contrary that equality holds,
then we will get that

ci = ci+1 = · · · = ci+b+1 = · · · = ci+t ,

which implies a run of length t + 1 in c, a contradiction.
Let us choose j to be the leftmost index such that c(γ[i,b])
and c(γ[i+t,b]) differ, and note that as before i + 1 � j �
i + t − 1. Since we know that the error is a burst of sticky
insertions of length b and it first occurs in the head first, we can
recover the stored codeword by simply deleting the b consec-
utive bits c(γ[i,b])[ j, j + b − 1] in c(γ[i,b]).

The next corollary is a direct result of Theorem 23 and the
results stated in Section III

Corollary 24: There exists a two-head b-burst-sticky-
insertion-correcting code for b � t−1, where t = �log(n)�+1,
when the distance between the heads is t. The redundancy of
the code is approximately 0.36 bits.
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Next we extend this construction to correct multiple burst
of sticky insertions using multiple heads. We follow the same
logic as in Section V. Every two adjacent heads will allow
to correct the first burst of sticky insertions in the first head
and if there are m heads it is possible to correct m − 1 bursts
of sticky insertions. Similarly to Section V, we also general-
ize the last construction to codes correcting multiple bursts of
sticky insertions using multiple heads. This property is for-
mally stated as follows. We omit the proof since it follows the
same one of Theorem 23.

Theorem 25: For every c ∈ C1(n, 1, t), and two adjacent
heads of distance at least t, if there occurred some d bursts
of sticky insertions, each of length at most t − 1, then it is
possible to correct the first burst of sticky insertions in the
first head.

Finally, we can conclude with the following corollary.
Corollary 26: The code C1(n, 1, t) can correct d bursts of

sticky insertions each of length at most t − 1 using d + 1
heads while the distance between adjacent heads is at least t.
Specifically, for t = �log(n)� + 1, the redundancy of the code
is approximately 0.36 bits.

Remark 1: In the classical model of insertions and dele-
tions it is known that correcting deletions is equivalent to
correcting insertions. However, correcting sticky insertions is
no longer equivalent to correcting deletions and indeed this
is a significantly easier problem [6], [18]. This is also the
case in our study and indeed correcting sticky insertions is
also shown to be an easier problem than correcting deletions.
We observe that C3(n,� d, t1) ⊂ C1(n, 1, t1), where the for-
mer code is used to correct d deletions, while the latter can
correct d bursts of sticky insertions, and both codes use d + 1
heads. Furthermore, recall that our model is a special model
of Levenshtein’s reconstruction problem. In the reconstruction
problem, Levenshtein [12], [13] and recently Sala et al. [20]
showed that the solution of the reconstruction problem for
insertions is not equivalent to the one for deletions. Lastly,
in our model, we also observe that it is much more difficult
to correct the two types of errors, that is, deletions and sticky
insertions. In next section, we investigate this problem in more
detail.

VII. CODES CORRECTING COMBINATION OF DELETIONS

AND STICKY INSERTIONS

In this section, we tackle the more difficult problem of con-
structing m-head d-position-error-correcting codes in which
position errors can be deletions or sticky insertions. If both
deletions and sticky insertions occur, we can determine the
difference between the number of deletions and number of
sticky insertions. Thus, if there exists only a single position
error, we can determine whether that position error is a dele-
tion or sticky insertion. Moreover, we already proved that the
code C1(n, 1, t) is a two-head single-deletion-correcting code
if the distance between two heads is at least t , and under
this setup from Theorem 23, the code C1(n, 1, t) is also a
two-head single-sticky-insertion-correcting code since it can
correct a burst of sticky insertions. Therefore, we obtain the
following result.

Theorem 27: The code C1(n, 1, t) is a two-head single-
position-error-correcting code if the distance between the two
heads is at least t.

Our next step is to construct a three-head two-position-
error-correcting code.

Theorem 28: The code C3(n,� 2, t1) is a three-head two-
position-error-correcting code if the distance between adjacent
heads is at least t = 3t1 − 2.

Proof: Let d1 be the number of deletions and d2 be the
number of sticky insertions. Since there are at most 2 position
errors which can be deletions or sticky insertions, we obtain
(d1, d2) ∈ {(0, 0), (0, 1), (1, 0), (0, 2), (2, 0), (1, 1)}. Recall
that we always know what the different between d1 and d2 is.
Since most of the cases have already been proved in previous
sections, it is enough to consider the case that d1 − d2 = 0,
that is, (d1, d2) can be (0, 0) or (1, 1).

Let c = (c1, . . . , cn) ∈ C3(n,� 2, t) be the stored code-
word, and let c1, c2, c3 ∈ {0, 1}n be the output from the first,
second, third head, respectively. In case the i1-th bit is deleted
and the i2-th bit is repeated at the first head we get that
c1 = c(δi1 , γi2 ), c2 = c(δi1+t , γi2+t ), c3 = c(δi1+2t , γi2+2t ),
in which c(δi , γ j ) is a vector obtained from c by deleting
ci and repeating c j . Note that we did not assume here that
i1 < i2.

We prove the theorem by explicitly showing how to decode
the stored codeword c. This will be done in the following three
steps:
Step 1: Determining whether c1 = c.
Step 2: Determining whether the first error in the first head

is a deletion or sticky insertion.
Step 3: Correcting two position errors to recover the stored

codeword.
We start with the first step.

Step 1: In the next claim we present a necessary and sufficient
condition to determine whether c1 = c.

Claim 29: c = c1 if and only if one of the following two
conditions holds:

1) c1 = c2, or
2) c1 �= c2 and c1[ j1] = c3[ j1] �= c2[ j1], where j1 is the

leftmost index that c1 and c2 differ.
Proof: We know that c = c1 if and only if there is no

error or there are two position errors in the first head which
are a deletion in the i1-th bit and a sticky insertion in the i2-th
bit but ci1 and ci2 are in the same run in c.

Let us assume that c = c1, then one of the two following
cases happens.

(i) Case 1: There is no error, that is, c1 = c2 = c.
(ii) Case 2: There are two errors in the first head which are

a deletion in the i1-th bit and a sticky insertion in the
i2-th bit but ci1 and ci2 are in the same run in c. Then,
in the second head, the bit ci1+t is deleted and the bit
ci2+t is repeated.
• If ci1+t and ci2+t are also in the same run in c, then

c2 = c. Thus c1 = c2 = c.
• If ci1+t and ci2+t are not in the same run in c,

then c2 �= c. Thus c1 �= c2. Hence, there exists j1
such that c1[ j1] �= c2[ j1] and c1[ j ] = c2[ j ] for all
j < j1. We now consider the following two cases
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to prove that j1 � min{i1 + t + t1, i2 + t + t1} <
min{i1 + 2t, i2 + 2t}.
– Case 1: The first error is the deletion, that is, i1 <

i2. If c1[1, i1+ t+ t1] = c2[1, i1+ t+ t1] then the
substring c[i1 + t, i1 + t + t1] is a run of length
t1 + 1 since ci1+t and ci2+t are not in the same
run. It is a contradiction as the length of any run
of c is at most t1. Therefore, c1[1, i1 + t + t1] �=
c2[1, i1 + t + t1], that is, j1 � i1 + t + t1.

– Case 2: The first error is the sticky insertion, that
is, i1 > i2. Similarly as in the previous case,
we can also show that j1 � i2 + t + t1.

Let us consider the output of the third head, we see
that c3[1, j1] = c[1, j1] = c1[1, j1] since in the
third head there is no error in first min{i1+ 2t, i2+
2t} > j1 positions. Hence c1[ j1] = c3[ j1] �=
c2[ j1].

Therefore, if c = c1 then one of the above two conditions
holds.

Now we assume that c �= c1. Then there are two errors in
the first head which are a deletion in the i1-th bit and a sticky
insertion in the i2-th bit but ci1 and ci2 are not in the same run
in c. Let j1 be the leftmost index that c and c1 differ. Using
the same argument as in the previous case, we obtain that j1
exists and j1 � min{i1+ t1, i2+ t1} < min{i1+ t, i2+ t}. Thus,
c1[ j1] �= c2[ j1] = c3[ j1]. Therefore, if c �= c1 then none of
the claim’s conditions holds, which verifies the correctness of
the claim.

If one of the two conditions in Claim 29 holds, then c =
c1, and so we can recover the stored codeword by just taking
the first vector c1. Otherwise, there are one deletion and one
sticky insertion in the first head. However, we do not know
which error occurs first.
Step 2: When reaching this step we know that c1 �= c and
as a result of Claim 29 c1 �= c2 and ci1 and ci2 are not in
the same run of c. Let j1 be the leftmost index that c1 and c2
differ and let c′1 be the vector obtained by inserting c2[ j1] into
the j1-th location of c1. We next present a condition which
determines whether the first error occurred is a deletion or a
sticky insertion.

Claim 30: The first position error is determined to be a
deletion or a sticky insertion according to the following two
decision rules:

1) If c′1[1, j1+ 2t1 − 2] = c2[1, j1+ 2t1 − 2] then the first
error in the first head is a deletion.

2) If c′1[1, j1 + 2t1 − 2] �= c2[1, j1 + 2t1 − 2] then let c′′1
be the vector obtained by deleting the j2-th bit in c′1 in
which j2 is the leftmost index that c′1 and c2 differ.

• If c′′1[1, j1 + 2t1 − 2] = c2[1, j1 + 2t1 − 2] then the
original vector c = c′′1.

• If c′′1[1, j1 + 2t1 − 2] �= c2[1, j1 + 2t1 − 2] then the
first error in the first head is a sticky insertion.

Proof: We first describe the possible outcomes in case the
first position error is a deletion or a sticky insertion. Based on
these observations, we will then verify the correctness of the
conditions in the claim.

1) Case 1: The first error is a deletion, that is, i1 < i2,
so the outputs from the first two heads are:

c1 = (c1, . . . , ci1−1, ci1+1, . . . , ci2 , ci2 , ci2+1 . . . , cn),

c2 = (c1, . . . , ci1−1, ci1 , . . . , ci1+t−1, ci1+t+1, . . . ,

ci2+t , ci2+t , ci2+t + 1, . . . , cn).

Then c′1 is the vector obtained after correcting the first
deletion in the first head, that is,

c′1 =(c1, . . . , ci1−1, ci1 , ci1+1, . . . , ci2 , ci2 , ci2+1 . . . , cn).

Note that since j1 is the left most index that c1 and c2
differ, we have that

ci1 = ci1+1 = · · · = c j1−1 = c j1 (6)

and so inserting the bit c2[ j1], which is the bit c j1 , in the
j1-th position of c1 is equivalent to inserting the bit ci1
in the i1-th position of c1. According to (6), the subvec-
tor c[i1, j1] is a run and thus j1 < i1 + t1. Therefore,
we have that j1 + 2t1 − 2 < i1 + 3t1 − 2 = i1 + t .
Thus, c2[1, j1 + 2t1 − 2] = c[1, j1 + 2t1 − 2] since
the first error happens in the second head at position
i1 + t > j1 + 2t1 − 2.
• If c′1[1, j1+2t1−2] = c2[1, j1+2t1−2] = c[1, j1+

2t1 − 2] then we know that in the first j1 + 2t1 − 2
bits in the first head, i.e. in c1, there is only a sin-
gle deletion which is corrected in c′1. In this case,
the second error is at least 2t1 − 2 positions apart
from the first error. That is, i2 − i1 > 2t1 − 2.

• If c′1[1, j1+2t1−2] �= c2[1, j1+2t1−2] = c[1, j1+
2t1 − 2] then we know that the position of the sec-
ond error in the first head, which is a sticky inser-
tion, is within the first j1 + 2t1 − 2 bits, i.e., i2 �
j1+2t1−2. Therefore, c′′1 is the vector obtained by
correcting both of the errors. In this case

c′′1[1, j1 + 2t1 − 2] = c2[1, j1 + 2t1 − 2] (7)

and furthermore, c′′1 provides us with the original
codeword c.

2) Case 2: The first error is a sticky insertion, that
is, i2 < i1. Then, the outputs from the first two heads
are:

c1 = (c1, . . . , ci2 , ci2 , . . . , ci1−1, ci1+1, . . . , cn),

c2 = (c1, . . . , ci2 , ci2+1, . . . , ci2+t , ci2+t , . . . , ci1−1+t ,

ci1+1+t , . . . , cn).

Here we have that (ci2 , ci2+1, . . . , c j1−1) is a run
and therefore j1 � i2 + t1 < i2 + t , so there
are no errors in the first j1 bits of c2. Hence,
c′1[1, j1 + 1] = (c1, . . . , ci2 , ci2 , . . . , c j1−2, c j1, c j1−1).
Note that j1 � i1 since ci1 and ci2 are not in the same
run in c. We consider two more cases here.
• Case 2.1: Assume c[ j1 − 1, i1 + 1] = (c j1−1, . . . ,

ci1+1) is a subvector with period 2. Then, i1 � j1+
t1 − 3 since c ∈ C(n,� 2, t1). Furthermore, since
j1 � i2 + t1 we conclude that

i1+t1+1� j1+t1−3+t1+1� i2+t1+2t1−2 = i2+t,
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and therefore c2[1, i1 + t1 + 1] = c[1, i1 + t1 + 1].
In this case, we claim that the following two sub-
vectors,

c′1[1, i1+t1+1]= (c1, . . . , c j1−1, c j1, c j1−1,

c j1, . . . , ci1−1, ci1+1, . . . , ci1+t1),

c2[1, i1+t1+1]= (c1, . . . , c j1−1, c j1, c j1+1,

c j1+2, . . . , ci1+1, ci1+2, . . . ,

ci1+t1+1)

are not the same. Assume the contrary, then the sub-
vector c[i1+ 1, i1+ t1+ 1] is a run of length t1+ 1,
which is a contradiction. Furthermore, since i1 +
t1 + 1 � j1 + 2t1 − 2, we conclude that

c′1[1, j1 + 2t1 − 2] �= c2[1, j1 + 2t1 − 2]. (8)

Hence, if j2 is the leftmost index that c′1 and c2
differ then j2 � i1 + t1 + 1. Let us consider
the vector c′′1 obtained by deleting the j2-th bit
in c′1. We have c′′1[1, j2 − 1] = c′1[1, j2 − 1] =
c2[1, j2 − 1] = c[1, j2 − 1] since j2 is the leftmost
index that c′1[1, i1+t1+1] and c2[1, i1+t1+1] differ.
Since we assumed here that (c j1−1, . . . , ci1+1) is a
subvector with period 2, we get that c′1[1, i1+ 1] =
c2[1, i1 + 1], and thus we deduce that j2 > i1 + 1,
which provides that c′′1[ j2, n] = c[ j2, n]. Together
we conclude that c′′1 = c and in particular

c′′1[1, j1 + 2t1 − 2] = c2[1, j1 + 2t1 − 2], (9)

since j1 + 2t1 − 2 � i2 + t . In this case, although
our guess is wrong we can still recover the original
vector.

• Case 2.2: Assume c[ j1 − 1, i1 + 1] = (c j1−1, . . . ,
ci1+1) is not a subvector with period 2. First we
deduce from this condition that c′1[ j1+ 1, i1+ 1] �=
c2[ j1 + 1, i1 + 1]. Furthermore, in this case we get
that c′1[ j1+ 1, j1+ t1 − 1] �= c2[ j1+ 1, j1+ t1 − 1]
since otherwise c[ j1− 1, j1+ t1 − 1] is a subvector
with period 2 of length t1+1, which is a contradic-
tion. Thus,

c′1[1, j1 + 2t1 − 2] �= c2[1, j1 + 2t1 − 2] (10)

since j1+ t1−1 � j1+2t1−2. So, if j2 is the left-
most index that c′1 and c2 differ then j2 � min{ j1+
t1 − 1, i1 + 1}.
Now, we consider the following two more cases:

– Case 2.2.1: c[ j2 − 1, i1] = (c j2−1, . . . , ci1 ) is a
run of length i1 − j2 + 2. Then i1 � j2 + t1 − 2.
Since j2 � j1 + t1 − 1 and j1 � i2 + t1 we get
that

i1 � j2 + t1 − 2 � j1 + t1 − 1+ t1 − 2

� i2 + t1 + 2t1 − 3 < i2 + t .

In this case, the following two subvectors

c′′1[1, i1] = (c1, . . . , c j1−1, c j1, c j1−1, . . . , c j2−3,

c j2−1, . . . , ci1−1),

c2[1, i1] = (c1, . . . , c j1−1, c j1, c j1+1, . . . , c j2−1,

c j2, . . . , ci1 )

are the same. That is, c′′1[1, i1] = c[1, i1] since
in the second head, there is no error in first i1 <
i2+ t bits. Moreover, c′′1[i1+ 1, n] = c[i1+ 1, n]
since in the first head, there is no error in last
n − i1 − 1 bits. Therefore, c′′1 = c and c′′1[1, j1+
2t1 − 2] = c2[1, j1 + 2t1 − 2]. We recovered the
original vector already.

– Case 2.2.2: c[ j2−1, i1] = (c j2−1, . . . , ci1 ) is not
a run. In this case since j2+ t1 − 1 � j1+ 2t1 −
2 � i2+ t , we first have that c2[1, j2+ t1− 1] =
c[1, j2+ t1−1], that is, there are no errors in the
first j2 + t1 − 1 bits of c2. Furthermore, c′′1[ j2 −
1, j2+ t1 − 1] �= c2[ j2− 1, j2+ t1 − 1] = c[ j2−
1, j2 + t1 − 1] since otherwise there is a run of
length t1 + 1 in c. Together we conclude that

c′′1[1, j1 + 2t1 − 2] �= c2[1, j1 + 2t1 − 2]. (11)

It is a contradiction since in first i2 + t bits, there
is no error in the second head and there are at most
2 errors in the first head. Therefore, we know that
our guess is wrong and the first error in the first
head is actually the sticky insertion.

Now we are ready to prove the correctness of the two deci-
sion rules. According to (8) and (10) we see that if a sticky
insertion occurs then c′1[1, j1+ 2t1− 2] �= c2[1, j1+ 2t1− 2].
Therefore, in case there is equality between these two sub-
vectors then the first position error is necessarily a deletion.
As for the second decision rule, we first assume that c′1[1, j1+
2t1−2] �= c2[1, j1+2t1−2]. For the deletion case, according
to (7), we see that if c′′1[1, j1+2t1−2] = c2[1, j1+2t1−2] then
we successfully correct the original codeword c by the vec-
tor c′′. Similarly for the sticky insertion case, according to (9),
we see that if c′′1[1, j1+2t1−2] = c2[1, j1+2t1−2], again we
successfully correct the original codeword c to be c′′. Lastly,
we assume that c′1[1, j1+2t1−2] = c2[1, j1+2t1−2]. Here,
we showed in (7) that if a deletion occured and c′1[1, j1 +
2t1 − 2] �= c2[1, j1 + 2t1 − 2] then necessarily c′′1[1, j1 +
2t1 − 2] = c2[1, j1 + 2t1 − 2], which verifies this
condition.

After step 2, we are either able to recover the original vec-
tor or are able to determine whether a deletion or a sticky
insertion occurs first.
Step 3: Now, we are ready to recover the original vector,
in case it was not done in Step 2, where we know whether
the first error is a deletion or a sticky insertion. We first con-
sider the deletion case. According to Claim 30, in this case
c′1[1, j1 + 2t1 − 2] = c2[1, j1 + 2t1 − 2]. Thus, we know that
the second error is at least 2t1 − 2 positions apart from the
first error, and this holds also for the second head. In this case
we apply the same procedure for the second and third heads
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to obtain the vector c′2 after correcting the first deletion in c2.
Lastly, all we need is to correct a single sticky insertion in c′1
and c′2, which can be done by using Theorem 23.

The case of sticky insertion is proved in a similar way.
First we remove the j1-th bit from c1 to obtain the vector c′1.
We apply the same rule on the second and third heads to obtain
the vector c′2 that corrects the first sticky insertion in c2, and
we complete the decoding task by correcting a single deletion
in c′1 and c′2, which can be done by using Theorem 2.

We observe that the proof of Theorem 28 also provides an
efficient decoding algorithm to recover the stored codeword
in C3(n,� 2, t1) using three heads. The following example
demonstrates this decoding procedure.

Example 8: Let n = 20, t1 = 3, t = 7 and

c = (1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0)

is a stored codeword in C3(n,� 2, t1). Assume that the out-
puts from the three heads are:
Head 1 ::: c1 = c(γ2, δ5)

= (1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0)

Head 2 ::: c2 = c(γ9, δ12)

= (1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0)

Head 3 ::: c3 = c(γ16, δ19)

= (1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0)

In Step 1, we see that the condition in Claim 30 does not hold
since c1[3] �= c2[3] = c3[3], and therefore we conclude that
c �= c1. In Step 2, we determine whether the first error is a
deletion or a sticky insertion. It is easy to see that j1 = 3 and
thus we construct the vector
c′1 = (1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0).

Since j1 + 2t1 − 2 = 7 and c′1[1, 7] �= c2[1, 7], we find the
leftmost index that c′1 and c2 differ, which is j2 = 4. Hence,
we construct the vector

c′′1 = (1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0).

Since c′′1[1, 7] �= c2[1, 7], we deduce that the first posi-
tion error in the first head is a sticky insertion. In Step 3,
we use the first two vectors c1 and c2 to correct the first
sticky insertion in the first head to obtain the vector c(δ5) =
(1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0). Then, we use
the last two vectors c2 and c3 to correct the first sticky inser-
tion in the second head to obtain the vector c(δ12) =
(1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0). Lastly,
we correct the last deletion to recover the stored codeword
c = (1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0). �

The cardinality of the code C3(n,� 2, t1) is provided in
Lemma 15. Hence, similarly to Corollary 16, we conclude
with the following corollary.

Corollary 31: There exists a three-head two-position-error-
correcting code with approximately log(e)/4 ≈ 0.36 bits of
redundancy when the distance between adjacent heads is at
least t = 3(�log(n)� + 2)− 2.

Lastly, we present another construction with a decoding
algorithm in case the distance between consecutive posi-
tion errors is large enough. This will be proved in the next
theorem.

Theorem 32: The code C3(n,� 2, t1) is a two-head
d-position-error-correcting codes for all d if the distance
between any two consecutive heads is at least t = 2t1 − 1
and the distance between any two consecutive position errors
is at least 2t .

Proof: Let c = (c1, . . . , cn) ∈ C3(n,� 2, t1) be a stored
codeword. Assume that the index set I = {i1, i2, . . . , ir } in
which i1 < i2 < · · · < ir is the set of r locations where the
position errors occur in the first head. We also assume here
that for all � ∈ [r − 1], i�+1 − i� � 2t . The set of loca-
tions where the position errors occur in the second head is
given by I + t = {i1 + t, i2 + t, . . . , ir + t}. As before, c1, c2
is the read vector by the first, second head respectively.

If the first error is a deletion then the first i1 + t1 − 1 bits
read by the two heads are

c1[1, i1 + t1 − 1] = (c1, . . . , ci1−1, ci1+1, ci1+2 . . . , ci1+t1),

c2[1, i1 + t1 − 1] = (c1, . . . , ci1−1, ci1 , ci1+1, . . . , ci1+t1−1).

We claim that c1[1, i1+ t1−1] �= c2[1, i1+ t1−1]. Otherwise,
we get that (ci1 , . . . , ci1+t1) is a run of length t1 + 1, which
results with a contradiction since c ∈ C3(n,� 2, t1).

In a similar way it is possible to show that if the first error
is a sticky insertion then again c1[1, i1 + t1 − 1] �= c2[1, i1 +
t1−1]. Let j1 be the leftmost index that the vectors c1 and c2
differ, so j1 � i1 + t1 − 1.

Since we do not know whether the first position error is a
deletion or a sticky insertion, we guess that it is a deletion
and correct this error by inserting the j1-th bit of the second
vector c2 into the j1-th position of the first vector c1, and we
denote this vector by c′1.

If the first position error is indeed a deletion, that is,
we guess correctly, then the first j1 + t1 − 1 bits in the two
vectors c′1 and c2 are the same, i.e., c′1[1, j1 + t1 − 1] =
c2[1, j1 + t1 − 1]. However, if the first error is a sticky
insertion, that is, we did not guess correctly, then the first
j1 + t − 1 bits in the two vectors c′1 and c2 become:

c′1[1, j1 + t1 − 1] = (c1, . . . , ci1 , ci1 , . . . , c j1−2, c j1, c j1−1,

c j1 . . . , c j1+t1−3)

c2[1, j1 + t1 − 1] = (c1, . . . , ci1 , ci1+1, . . . , c j1−1, c j1, c j1+1,

c j1+2 . . . , c j1+t1−1).

Note that there are no new position errors within the first j1+
t1 − 1 bits since j1 + t1 − 1 � i1 + t − 1. Next we also get
that c′1[ j1 + 1, j1 + t1 − 1] �= c2[ j1 + 1, j1 + t1 − 1], since
otherwise (c j1−1, c j1 . . . , c j1+t1−1) is a vector with period 2 of
length t1+ 1. Therefore, c′1[1, j1+ t1− 1] �= c2[1, j1+ t1− 1]
and we know that our guess is wrong and the position error
is a sticky insertion. To correct this sticky insertion, we only
need to remove the j1-th bit in the first vector c1.

To conclude, we can always determine whether the first
position error is a deletion or a sticky insertion and then cor-
rect it as described above. Note that this is possible to do since
the first error in the second head and the second error in the
first head are both far apart. We then repeat this procedure to
correct the rest of the position errors.
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VIII. CODES CORRECTING COMBINATION OF

SUBSTITUTION ERRORS AND POSITION ERRORS

So far in this paper we only discussed position errors of
insertions and deletions. In this section, we consider also the
case in which there are also substitution errors and construct
a code correcting substitution and position errors.

For a length-n word u = (u1, . . . , un) ∈ F
n
2 and i ∈ [n], let

ui = 1− ui be the inverse of bit ui and←−u = (un, . . . , u1) be
the reverse of the vector u. Let us denote by u(εi ) the vector
obtained from a substitution error of the i -th bit ui , that is,
u(εi ) = (u1, . . . , ui , . . . , un). In case there are a substitution
error of the i1-th bit and a deletion (or sticky insertion) error
of the i2-th bit, we obtain the vector u(εi1 , δi2 ) (or u(εi1 , γi2 )).
That is, if i1 < i2 then

u(εi1 , δi2 ) = (u1, . . . , ui1 , . . . , ui2−1, ui2+1, . . . , un).

We note that in our model of two heads at distance t , if an error
occurs at the i -th position in the first head then a correspond-
ing error also occurs at the (i + t)-th position in the second
head. That is, if u is the original codeword and the output from
the first head is u(εi1 , δi2), then the output from the second
head is u(εi1+t , δi2+t ).

Recall that our first main result in this paper shows that the
code C1(n, 1, t1), which could be encoded with only a sin-
gle bit of redundancy, can correct a single deletion using two
heads of distance at least t1. In this section, we show that this
code is also capable of correct a combination of a single sub-
stitution error and a single position error using two heads at
distance at least t = 3t1 + 1. Note that while a substitution
error does not change the length of the codeword, a deletion
(or a sticky insertion) decreases (or increases) the length of
the codeword by one. Thus, if there are a single substitution
error and a single position error, we can determine whether
that position error is a deletion or a sticky insertion by the
length of the obtained vector. This result is proved in the next
theorem.

Theorem 33: The code C1(n, 1, t1) can correct a single
substitution error and a single position error using two heads
at distance t = 3t1 + 1.

Proof: We prove the statement in the theorem only for
the case where the position error is a deletion error since the
proof for a sticky insertion repeats the same ideas.

Let c = (c1, . . . , cn) ∈ C1(n, 1, t1) be the stored code-
word and let c1, c2 ∈ {0, 1}n−1 be the received words from
the first, second head, respectively. In case there is a substitu-
tion error of the i1-th bit and a deletion error of the i2-th bit,
the output of the first head is c1 = c(εi1 , δi2 ) and the output
of the second head is c2 = c(εi1+t , δi2+t ), where t = 3t1 + 1
is the distance between the two heads. To prove the theo-
rem, we show how to recover the stored codeword c from
the two vectors c1 and c2. Note that if we know whether
i1 < i2 or i1 > i2 then we can recover the stored codeword,
as will be shown in Claim 34. However, in our model, we do
not have this information. Hence, Claim 35 shows how to
determine whether i1 < i2 or i1 > i2 and thus it is possi-
ble to recover the stored codeword, which will complete the
proof.

Algorithm 1 decode(c1, c2)

Input: c1, c2 ∈ F
n−1
2 .

Output: c ∈ F
n
2 or 0.

1. j1← leftmost index that c1 �= c2;
2. c′1 ← c1(ε j1);
3. c′2 ← c2(ε j1+t );
4. j2← leftmost index that c′1 �= c′2;
5. c′′1 ← c′2[1, j2] ◦ c′1[ j2, n − 1];
6. j3← rightmost index that c′1 �= c′2;
7. c′′2 ← c′2[1, j3] ◦ c′1[ j3, n − 1];
if c′′1 = c′′2 then

return c = c′′1;
else

return 0;
end if

Claim 34: If i1 < i2 then Algorithm 1 successfully recovers
the stored codeword c, that is, decode(c1, c2) = c.

Proof: It i1 < i2 then the two received vectors are:

Head 1 ::: c1 = c(εi1 , δi2 )

= (c1, . . . , ci1 , . . . , ci2−1, ci2+1, . . . , cn),

Head 2 ::: c2 = c(εi1+t , δi2+t )

= (c1, . . . , ci1+t , . . . , ci2+t−1, ci2+t+1, . . . , cn).

Since c1[1, i1 − 1] = c2[1, i1 − 1] and ci1 �= ci1 , the leftmost
index such that c1 �= c2 is i1, that is j1 = i1 in Step 1 in
Algorithm 1. Since the first error is a substitution, we correct
this substitution in both heads to obtain c′1 = c1(ε j1) = c(δi2 )
and c′2 = c2(ε j1+t ) = c(δi2+t ) in Steps 2 and 3. Next we
follow the proof of Theorem 2 in Steps 4 and 5 in order to
get c = c′′1. Similarly, we obtain c′′2 = c. Therefore, the output
of Algorithm 1 is the stored codeword c.

Claim 35: If the output of Algorithm 1 is a vector c ∈ F
n
2

then i1 < i2 and c is the stored codeword. Otherwise, that is,
decode(c1, c2) = 0, then i1 > i2.

Proof: Recall that according to Claim 34 if i1 < i2 then
the output of Algorithm 1 is decode(c1, c2) = c. We now
consider the case where i1 > i2 and show that in this case
the output of Algorithm 1 is 0, that is decode(c1, c2) = 0,
or c1 �= c2. In this case, the two received vectors are:

Head 1 ::: c1 = c(εi1 , δi2 )

= (c1, . . . , ci2−1, ci2+1, . . . , ci1 , . . . , cn),

Head 2 ::: c2 = c(εi1+t , δi2+t )

= (c1, . . . , ci2+t−1, ci2+t+1, . . . , ci1+t , . . . , cn).

First observe that c1[i1 + t − 1] = ci1+t �= ci1+t = c2[i1 +
t − 1]. Hence c1 �= c2, that is, the index j1 in Step 1 indeed
exists. Moreover, j1 � i2 since c1[1, i2 − 1] = c2[1, i2 − 1].
However, j1 may or may not be larger than i1−1. We consider
both of these cases here.

• Case 1 ( j1 < i1 − 1): In this case, j1 � i2 + t1 − 1.
Otherwise, (ci2 , . . . , ci2+t1) is a run of length t1+1 which
is a contradiction. In Steps 2 and 3, we changed the bit
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c1[ j1] in the vector c1 and the bit c2[ j1+ t] in the vector
c2 to obtain the two vectors c′1 and c′2 as follows:

c′1 = c1(ε j1)

= (c1, . . . , ci2−1, ci2+1, . . . , c j1+1, . . . , ci1 , . . . , cn),

c′2 = c2(ε j1+t )

= (c1, . . . , ci2+t−1, ci2+t+1, . . . , c j1+t+1, . . . ,

ci1+t , . . . , cn).

We again observe that c′1 �= c′2 since c′1[i1 + t − 1] =
ci1+t �= ci1+t = c′2[i1 + t − 1] and thus the indices j2
and j3 in Steps 4 and 6 exist. We can also determine that
j3 = i1+ t−1 since c′1[i1+ t, n−1] = c′2[i1+ t, n−1] =
(ci1+t+1, . . . , cn) and c′1[i1 + t − 1] �= c′2[i1 + t − 1].
However, we do not know whether j2 � i1 or not. Hence,
we consider these two cases here.

– Case 1.1 ( j2 < i1): In this case, j2 � j1 + t1. Oth-
erwise, (c j1+1, . . . , c j1+t1) is a run of length t1 + 1,
which is a contradiction. Hence, j2 � j1 + t1 �
i2+2t1−1. The concatenations in Steps 5 and 7 pro-
vide the following two vectors c′′1 and c′′2:

c′′1 = (c1, . . . , c j2, c j2+1, . . . , ci1 , . . . , cn),

c′′2 = (c1, . . . , ci2+t−1, ci2+t+1, . . . , c j1+t+1, . . . ,

ci1+t , ci1+t , . . . , cn).

Now we prove that c′′1 �= c′′2 by considering all three
possibilities of i1 as follows.

∗ Case 1.1.1 (i1 < i2 + t): Observe that c′′1[i1] =
ci1 �= ci1 = c′′2[i1]. Hence, c′′1 �= c′′2.

∗ Case 1.1.2 (i2+ t � i1 � j1+ t): Let us consider
the two following subvectors:

c′′1[i1, i1+t−1] = (ci1 , . . . , ci1+t−1),

c′′2[i1, i1+t−1] = (ci1+1, . . . , c j1+t+1, . . . , ci1+t ).

If c′′1[i1, i1 + t − 1] = c′′2[i1, i1 + t − 1] then
(ci1+1, . . . , c j1+t ), (c j1+t+1, . . . , ci1+t−1) is a run
of length j1 + t − i1, i1 − j1 − 1, respectively.
Hence, j1 + t − i1 � t1 and i1 − j1 − 1 � t1 and
thus t − 1 � 2t1, which is a contradiction since
t = 3t1 > 2t1 + 1. Therefore, c′′1 �= c′′2.

∗ Case 1.1.3 (i1 � j1 + t + 1): We observe that
c′′1[i1, i1 + t − 1] �= c′′2[i1, i1 + t − 1], where

c′′1[i1, i1 + t − 1] = (ci1 , . . . , ci1+t−1, ci1+t−1),

c′′2[i1, i1 + t − 1] = (ci1+1, . . . , ci1+t−1, ci1+t ).

Since the length-(t − 1) subvector (ci1+1, . . . ,
ci1+t−1) could not be a run, we get again that
c′′1 �= c′′2.

Thus, the output of Algorithm 1 is zero in this case.
– Case 1.2 ( j2 � i1): In this case, i1 � j1+ t1 + 1 �

i2+ 2t1 < i2+ t . Otherwise, (c j1+1, . . . , c j1+t1+1) is
a run of length t1+ 1, which is a contradiction. Fur-
thermore, j2 < i2 + t . Otherwise, (ci1 , . . . , ci2+t ) is
a run of length i2 + t − i1 since c′1[i1, i2 + t − 1] =
c2[i1, i2 + t − 1]. It is a contradiction since
i2 + t − i1 � (i2 + 3t1 + 1) − (i2 + 2t1) � t1 + 1.

Therefore, c′2[1, j2] = c[1, j2] = (c1, . . . , c j2).
Moreover, c′1[ j2, n − 1] = c[ j2 + 1, n] =
(c j2+1, . . . , cn) since j2 � i1. Concatenating
as in Algorithm 1, we obtain the vector c′′1 = c =
(c1, . . . , c j2, c j2+1, . . . , cn). Therefore, if c′′2 = c′′1
then the output is the stored codeword c and if
c′′2 �= c′′1, then the output is zero.

• Case 2 ( j1 � i1 − 1): In this case, i1 � i2 + t1. Oth-
erwise, (ci2 , . . . , ci2+t1) is a run of length t1 + 1 which
is a contradiction. Furthermore, j1 � i1 + t1. Otherwise,
(ci1 , . . . , ci1+t1) is a run of length t1 + 1 which is again
a contradiction. Hence, j1 � i2 + 2t1 and thus j1 + t1 <
i2 + t . The two obtained vectors c′1 and c′2 are:

c′1 = c1(ε j1)

= (c1, . . . , ci2−1, ci2+1, . . . , ci1 , . . . , c j1+1, . . . , cn),

c′2 = c2(ε j1+t )

= (c1, . . . , ci2+t−1, ci2+t+1, . . . , ci1+t , . . . ,

c j1+t+1, . . . , cn).

We observe that c′1[ j1 + 1, i2 + t − 1] �= c′2[ j1 + 1, i2 +
t − 1]. Otherwise, (c j1+1, . . . , ci2+t ) is a run of length
i2+ t− j1 > t1 which is a contradiction. Hence, the index
j2 in Step 4 exists and j2 � i2 + t − 1. Similarly to
Case 1.2, c′′1 = c = (c1, . . . , c j2, c j2+1, . . . , cn). Thus,
if c′′2 = c′′1 then the output is the stored codeword c and
if c′′2 �= c′′1, then the output is zero.

After considering all possible outcomes, we conclude that if
c′′1 = c′′2, that is, the algorithm’s output is the vector c′′1, then
the output is the stored codeword and if c′′1 �= c′′2, that is,
the algorithm’s output is 0 (zero), then i1 > i2. In this case,
Claim 34 shows how to recover the stored codeword.

In conclusion, all we need to do in order to decode is apply
Algorithm 1 on the vectors c1 and c2. If the output is not 0 then
the stored codeword output is decode(c1, c2) and otherwise

the correct output is
←−
c′ , where c′ = decode(←−c1 ,←−c2 ). There-

fore, the code C1(n, 1, t1) can correct a single substitution
error and a single deletion error with two heads of distance at
least t = 3t1 + 1.

The following example demosntrates the decoding proce-
dure of Algorithm 1.

Example 9: Let n = 14, t = 6 and

c = (0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1)

be the stored codeword. Assume that in the first head, there
are a substitution in the 3rd bit and a deletion of the 5th bit.
Therefore, in the second head, there are a substitution in the
9th bit and a deletion of the 11th bit. The received word in
the first, second head is:

c1 = (0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1),

c2 = (0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1),

respectively. By comparing c1 and c2, we see that the leftmost
index that c1 �= c2 is j1 = 3. Hence, we obtain that

c′1 = c1(ε3) = (0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1),

c′2 = c2(ε9) = (0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1).
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By comparing c′1 and c′2, we see that j2 = 5 is the leftmost
index such that c′1 �= c′2 and j3 = 8 is the rightmost index that
c′1 �= c′2. Hence, we obtain

c′′1= c′2[1, 5] ◦ c′1[5, 13]= (0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1),

c′′2= c′1[1, 8] ◦ c′2[8, 13]= (0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1).

Lastly we get that c′′1 = c′′2, and thus we obtain c = c′′2 =
(0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1). �

IX. CONNECTIONS TO THE RECONSTRUCTION PROBLEM

Thus far in our work, we proposed a new model and cod-
ing solutions to combat position errors in racetrack memories.
As mentioned in Section I, this model falls under the frame-
work of the reconstruction problem which was first studied by
Levenshtein [12], [13], and in particular for the cases of dele-
tions and insertions. In Levenshtein’s work [12], [13], the main
problem was to study the minimum number of distinct erro-
neous versions which are needed in order to reconstruct the
original vector, while proposing efficient reconstruction algo-
rithms. While Levenshtein studied, for insertions and dele-
tions, the case of uncoded vectors, recently Sala et al. [20]
extended this study for the more general case where the trans-
mitted vector belongs to some code with a prescribed mini-
mum edit distance, and a similar study was carried for dele-
tions in [7]. We also note that in the reconstruction problem,
the assumption is that all received vectors are distinct. How-
ever, in our model of racetrack memories, we cannot have
this assumption and hence we proposed a scheme using con-
strained codes and the positions of the heads in order to guar-
antee that all received vectors are distinct.

Let us consider for the rest of this section the case of a
single deletion which was studied in Section III. Our result
showed how to decode the stored codeword by using two
heads, with at most a single bit of redundancy. On the other
hand, if we could have the same assumption as in the recon-
struction problem that the two outputs are different then it
is possible to show that no coding is necessary in order to
decode the deletion in each head. This can be accomplished
since we have the knowledge that the deletion in the first head
occurred before the deletion in the second head. However,
this knowledge is not given in the reconstruction problem.
In fact, in order to correct a single deletion in each output
the result by Levenshtein claims that 3 different outputs are
necessary and sufficient [12], [13]. Thus, we are interested in
this section to study the reconstruction problem when there
are only two different outputs. That is, each output has a sin-
gle deletion while we don’t know which output experienced
the deletion first. Hence, it is necessary to use a coding solu-
tion in order to successfully decode the codeword. Note that
a naive solution is to use a code that can correct a single
deletion so its redundancy will be roughly log(n) bits, how-
ever this code can correct the deletion from any of the two
outputs, and we are interested in better constructions that take
advantage of the two different outputs. The next construc-
tion solves this problem, while using the shifted VT codes
which were proposed recently in [23] when correcting bursts
of deletions.

Construction 36: Given positive integers n, P, and
nonnegative integers 0 � a < P, 0 � b < 2, let the shifted
Varshamov-Tenengolts (SVT) code be:

SV Ta,b(n, P)

=
{

c ∈ F
n
2 :

n∑
i=1

i · ci ≡ a(mod P),

n∑
i=1

ci ≡ b(mod2)
}
.

Then,

C(n, a, b, P) = C2(n, 2, P) ∩ SV Ta,b(n, P).

We state our contribution for the classical reconstruction
problem in the following theorem and defer the proof to
Appendix.

Theorem 37: Any codeword c ∈ C(n, a, b, P) can be
decoded from two different outputs that experienced each a
single deletion.

The result in Theorem 37 holds also for the case of a single
insertion in each output. The following corollary summarizes
the redundancy result of this construction.

Corollary 38: There exists a code with at most log
(�log n� + 2) + 2 redundancy bits such that each codeword
can be decoded from two different outputs that experienced
each a single deletion (insertion).

Proof: There exist 0 � a < P, 0 � b < 2 such that
the number of redundancy bits of the code SV Ta,b(n, P) is
at most log P + 1 [23]. Let us choose P = �log n� + 2, and
according to Corollary 10, the code C2(n, 2, P) has at most a
single bit of redundancy. Hence, according to the pigeonhole
principle there exist 0 � a < P, 0 � b < 2 such that the
number of redundancy bits of the code C(n, a, b, P) is at most
log P + 2, when P = �log n� + 2.

To conclude, we hope that this result will provide more
knowledge on the reconstruction problem, and in particular
on the trade-off between the number of redundancy bits and
the number of required different outputs. It also shows a poten-
tial approach to construct codes to reconstruct the codeword
with a fewer number of outputs compared to the worst-case.

X. CONCLUSION

In this work, we studied codes correcting position errors
in racetrack memory. These errors were modeled as deletions
and sticky insertions and the main goal of the paper is to use
multiple read heads in order to correct the position errors.
We first provided an explicit construction of two-head single-
deletion-correcting code with approximately 0.36 redundancy
bits. We then extended this construction for codes correcting
burst of deletions and multiple deletions. Next, we investi-
gated codes correcting multiple bursts of sticky insertions and
any combination of two deletions and sticky insertions. Lastly,
we extended our constructions for codes correcting a combina-
tion of substitutions and position errors and concluded with a
construction in the classical reconstruction problem. While the
constructions in the paper provide several solutions for codes
correcting deletions and sticky insertions in racetrack memory,
there are still several interesting problems which remain to be
solved. These problems include in particular the construction
of codes correcting multiple position errors which can be both

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:32:37 UTC from IEEE Xplore.  Restrictions apply. 



CHEE et al.: CODING FOR RACETRACK MEMORIES 7111

deletions and sticky insertions, and the study of other errors
such as substitution errors.

APPENDIX

PROOF OF THEOREM 37

Let c = (c1, . . . , cn) be a codeword in C(n, a, b, P)
and c1, c2 be two received vectors. Let ci , c j be the deleted
bit in c1, c2, respectively. That is, c1 = (c1, . . . , ci−1,
ci+1, . . . , cn) and c2 = (c1, . . . , c j−1, c j+1, . . . , cn). We now
prove Theorem 37 by showing how to recover the original
vector c explicitly in the following two steps:

• Step 1: Determine whether i < j or i > j .
• Step 2: Correct a deletion to recover the original vector.

In the first step, the following claim provides a condition to
determine whether i < j or i > j .

Claim 39: Let j1, j2 be the leftmost, rightmost index such
that c1[ j1] �= c2[ j1], c1[ j2] �= c2[ j2], respectively. Let c∗1 be
the vector obtained by inserting the bit c2[ j1] into the j1-th
position in c1 and c∗2 be the vector obtained by inserting the
bit c1[ j2] into the j2-th position in c2.

• If c∗1 �= c∗2 then i > j .
• If c∗1 = c∗2 and c∗1 �∈ C(n, a, b, P) then i > j.
• If c∗1 = c∗2 and c∗1 ∈ C(n, a, b, P) then i < j.

Proof: We consider the following two cases.

• Case 1: If i < j then the two received vectors are

c1 = (c1, . . . , ci−1, ci+1, . . . , c j , c j+1, . . . , cn),

c2 = (c1, . . . , ci−1, ci , . . . , c j−1, c j+1, . . . , cn).

Since c1 �= c2, the two indices j1 and j2 always exist
and j1 � j2. Without loss of generality, we assume that
j1 = i and j2 = j − 1, that is ci �= ci+1 and c j �= c j−1.
In this case, we obtain c∗1 = c∗2 = c ∈ C(n, a, b, P).

• Case 2: If i > j then the two received vectors are

c1 = (c1, . . . , c j−1, c j , . . . , ci−1, ci+1, . . . , cn),

c2 = (c1, . . . , c j−1, c j+1, . . . , ci , ci+1, . . . , cn).

We also assume that j1 = j and j2 = i − 1, that is,
c j �= c j+1 and ci �= ci−1. In this case, the two obtained
vectors are

c∗1 = (c1, . . . ,c j−1, c j+1, c j , . . . ,ci−2, ci−1, ci+1, . . . , cn),

c∗2 = (c1, . . . ,c j−1, c j+1, c j+2, . . . ,ci , ci−1, ci+1, . . . , cn).

We now consider both possibilities: c∗1 = c∗2 and c∗1 �= c∗2.

– Case 2.1. c∗1 �= c∗2: We can easily distinguish this
case from Case 1.

– Case 2.2. c∗1 = c∗2: The subvector (c j , . . . , ci ) has
period two since c∗1[ j + 1, i − 1] = (c j , . . . , ci−2) =
(c j+2, . . . , ci ) = c∗2[ j + 1, i − 1]. Hence, the length
of the subvector satisfies i − j − 1 � P , since
c ∈ C(n, a, b, P) ⊆ C2(n, P). Furthermore, we note
that c∗1 �= c ∈ C(n, a, b, P) ⊆ SV Ta,b(n, P).
Assume that c∗1 ∈ SV Ta,b(n, P). Note that given
the knowledge of the location of the deleted bit to
within P consecutive positions and the received
word c1, a decoder of the code SV Ta,b(n, P) can

not distinguish between c and c∗1. That is, the code
SV Ta,b(n, P) can not correct a single deletion,
which is a contradiction. Hence, c∗1 �∈ SV Ta,b(n, P).

From all these three possible outcomes, we can conclude
that the three statements in the claim hold.

In step 2, after determining whether i < j or i > j , it is
easy to recover the original vector. In case i < j , by inserting
c2[ j1] into the j1-th position in c1 we obtain the codeword
c∗1 = c. Similarly, in the case i > j , we can also can recover
the codeword by inserting c2[ j2] into the j2-th position in c1.
In conclusion, Theorem 37 is proven.
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