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A hill-climbing algorithm s proposed for the construction of cyelic
Steiner triple systems. This hill-climbing algorithm s coupled with a fast
quadrilateral-detecting algorithm to generate c¢yelic quadrilateral-free
Steiner triple systems of small orders. As a result, we are able to construct
quadrilateral-free Steiner triple systems for orders 31 and 37, whose
existence was previously not known.

1. INTRODLCTION

A Steiner iriple system of order v, denoted STS(»), is a pair (X, &),
where X is a finite set of v elements called points, and B is a family of
3-subsets of X called triples, such that every 2-subset of X is contained in
precisely one triple. It is well-known that an STS(») exists if and only
ife=1o0r3(mod6) (see, eg., (1]). An auiomorphism of an STS(v),
say (X, &), is a bijection #: X — X such that {x,y, 2l e B implies
tm(x), 7(¥), 7(2)} € B. A cyelic STS(v) is one that admits a permutation
consisting of a cycle of length » as an automorphism. The existence of
cyclic STS(¥)’s has been completely settled by Peltesohn [6] who proved
that there exists a cyclic STS(¢) for every v =1 or 3 (mod 6) except
v= 9,

A gquadriluteral (also known as fragment or Pasch configuration) in an
STS{v) Is a subset of four triples whose union contains exactly six points,
A quadrilateral must have the following configuration: {a, b, ¢}, {a, 4, e}
{48, dL {f, e, e}, An STS(v) containing no quadrilaterals is said to be
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guadrilateral-free, and is denoted by QFSTS{v). A cyclic STS(2) contain-
ing no quadrilaterals is referred to as a cyclic quadrilateral-free STS(v},
and is denoted by CQFSTS(x).

The existence of QFSTS(z)’s has been previously studied. Robinsen {7]
proved that if v =19 (mod 24), and v is prime, then there exists a
QFSTS(»). Brouwer [2] established that there exists a QFSTS(z) for all
s = 3 (mod 6), and showed that if¢ =1 (mod ), and v = p*, p prime,
then there exists a QFSTS(z) whenever =0 (mod2) or p=1 or
3 (mod ), Tt was also shown by Grannell, Griggs, and Phelan [4] that
there exists a QFSTS(z) whenever the order of —2 (mod p) is congruent
to 2 (mod 4) for every prime divisor p of ¥ - 2. Recently, two recursive
constructions of QFSTS(v)’s were given by Stinson and Wei [9]:

(iy If there exist QFSTS(y) and QFSTS(w), then there exists a

QFSTS(vw).

(1i) ¥f there exists a QFSTS{¢), v =1 (mod 4}, and » has an odd

divisor exceeding 3, then there exists a QFSTS(3v-2).

Recursive constructions are generally useful in settling asymptotic
cxistence of designs. However, the ingredients required for Stinson and
Wei’s constructions are QFSTS(x)'s of small orders. The status of the
existence of QFSTS(u)’s; for v = 1 (mod 6), ¢ < 30 prior to this paper is
givan in the table below:

TABLE 1
QFSTS(e)'s WITH v = 1 (mod 6}, v < 50

Existence Reference
7 No [21
13 No [2]
19 Yes f2]
25 Yes [2]
3l 1
37 ?
43 Yes [7]
45 Yes 12]

In this paper, we consider cyelic STS(v)'s as a possible source of these
small QFSTS(zy’s. A hill-climbing algorithm is used to generate random
eyelic STS(»)’s which ave then checked for the existence of quadrilaterals.
As a result, we are able to prove the existence of CQESTS(v)'s for

v =31 and 37.
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2. ConsTrUCTION OF CycLic STS(v)'s

The construction of eyelic STS(v)’s was investigated by Heffter (5] in
the context of cyclic decompositions of complete graphs, He made the
observation that thes construction of a cyclic STS(¥), v=6r4+ 1, is
equivalent to partitioning the set {l1,2,....3r} into triples with the
property that in each triple, (2.1} the sum of two of the numbers is equal
to the third, or (2.2} the sum of all three numbers is equal to v.
This is called Heffrer’s first difference problem for r, and we denote
the problem by HDP(r). In the case when v = 67 4 3, the construction
Is equivalent to a partition of the set {1, 2,...,3r + I}\{2r + 1} with
the same properties (2.1} or (2.2). This is called Heffrer's second difference
problemt for ¢, and is denoted by HDP:{1).

Without loss of generality, we may assume that a cyclic STS8{(x), say
(X, $), has point set X = Z,, and the cyclic automorphism is 7 — + 1
(med o), M {{x;, 35, zi} 1 1 <7 < 1} is a solution to HDP(7), then the set
of base triples {{0, x;, x; + 3} : 1 < i/ < ¢] generates a cyclic STS(6r + 1).
It is useful to note that if {x, y, 2}, x < v < 7, is a triple in a solution to
BDP.(7), then the corresponding base triple in the eyelic STS(6r + 1)
can be taken to be either {0, x, x + )} or {0, —x, —(x + »3} The set of
base triples in the cyelic STS(6¢ -+ 3) corresponding to a solution ta
HDP(¢) is the same as in HDP(¢) except with the addition of an extra
base triple {0, 2¢ + 1, 4r + 2.

3. A HirL-CLIMBING ALGORITHM FOR GENERATING CYCLIC STS(x)’s
Hill-climbing techniques have been used successfully in the construc-
tion of several combinatorial designs, notably by Dinitz aad Stinson

(3, 8]. In this section, we introduce similar techniques for the generation
of random cvclic STS(v)’s.

Preprocessing is done to identify all the possible candidates, i.e. triples
satsfying conditions (2.1) or (2.2). Hill-climbing is then carried out on
this set of candidates €. Qur algorithm works as follows:

begin
bi=0;
Bi=d;
while (& < ¢} do begin
TMP := B;

choose a triple T := {x, y, z} from C at random;

remove all triples in TMP that intersects T
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TMP := TMP U {T};
if ([TMP] = b) then begin

B == TMP;
b:='B;
end
end

end.

At termination, 8 will be a solution to Heffter’s difference problem, For
gach triple {x, ¥, z} € B, x <<y <z, we randomly decide one of
{0, %, x +» or {0, —x, —(x 4 1)} to be included as a base triple of the
associated cyelic STS(»).

This algorithm has been uscd successfully to generate random cyclic
STS(v)s with # < 100,

4, QUADRILATERAL-CHECKING IN CycLiC STS(z)'s

The task of determining the existence of quadrilaterals in cyclic
STS(»Y's is simplified owing to the transitive nature of the designs
involved. Let (X, £8) be acyclic $T8(»). For every pair of points x, ¥ < X,
there exists an automorphism = of (X, ) such that ={x} = y since (X, B)
is cvclic. Hence, we need only check if a fixed point x = X belongs to a
quadrilateral. This is easy because we only have to check if for any two
triples {x, a, &}, {x, ¢, d} & &, one of the following two situations arises:

{a, ¢,y {b.d yvie B for some y = X; (4.1)
{a, d, ¥, {byc, v} & & forsomeye= X, (4.2)
If it doss, the design is not quadrilateral-free; otherwise, the design is
quadrilateral-free.
5. CQFSTS(vy's witH v € {31, 37}

The hill-climbing algorithm described in section 3 is coupled with the
quadrilateral-checking method discussed in section 4 in a generate-and-
test fashion to yield a CQFSTS(v}-generating procedure. In this section,
we list the base triples of a CQFSTS(z) for each » & {31, 37} that we have
found using our algorithm.

TABLE 2
CQESTS(2)
© Ease triples
31 0,1,3) 40,4, 11 {0,515 {0,6,18 0,8 17}
37 {0, 4,19 {0, 1,17} 10,32,2%  {0,31,24) {0,2,12) {0, 34,26
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The triples in each design can be obtained by developing the base triples
with the cyclic automorphism f =1 4 1 (mod 2).

6. CoNCLUSION
In this paper, CQESTS(x)’s for » {31, 37} are constructed by com-
puter methods, thus settling the existence of QFSTS(2)’s of these previously
unkown parameter situations. In view of this result, the existence of
QFSTS(z)s for all ¢ < 31 has been sewtled. The smallest order for which
existence of a QFSTS(») is in doubt is now ¢ = 35. However, our algorithm
was unabie to find a CQFSTS(55) after several hours of CPU time.
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