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New Constant-Weight Codes From Propagation Rules
Yeow Meng Chee, Senior Member, IEEE, Chaoping Xing, and Sze Ling Yeo

Abstract—This paper proposes some simple propagation rules
which give rise to new binary constant-weight codes.

Index Terms—Constant-weight codes, cosets, -ary codes.

I. INTRODUCTION

T HE ring is denoted . We endow with the
Hamming distance metric : for

is the number of positions where and differ. A ( -ary)
code of length is a subset . The elements of
are called codewords, and the size of is the number of
codewords it contains. The minimum distance of a code is

. We often denote by -code
a -ary code of length and minimum distance at least .

The weight, , of is its distance from the origin,
that is, . For , the ( -ary) Johnson
space is the set of all elements of having weight ,
that is, . A ( -ary) con-
stant-weight code of length , distance , and weight , denoted

-code, is a code such that .
We adopt the convention throughout this paper that if is

not specified, then we assume . Hence, for example, an
-code refers to an -code, and refers to

.
Binary constant-weight codes have been extensively studied

for more than four decades due to their fascinating combinato-
rial structures and applications [1]–[19]. Given , and , the
central problem of interest in binary constant-weight codes is in
the determination of , the largest possible size of an

-code. Exact values of are known only for
a few infinite families of parameters , and , and in some
other sporadic instances (see, for example, [3], [4]). In light of
the difficulty of determining exactly, various bounds
have also been developed. There are two online tables devoted
to bounds on : one maintained by Rain and Sloane
[20] and the other by Smith and Montemanni [21]. While the
former table considers codes of lengths not exceeding 63, the
latter table focuses mainly on codes for lengths between 29 and
63, having small weights.
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In this paper, we present simple propagation rules for bi-
nary constant-weight codes through -ary codes. It turns out that
some good binary constant-weight codes can be obtained from
these propagation rules. In particular, we improve on a number
of bounds in the online tables of Rain and Sloane [20], and Smith
and Montemanni [21].

We remark that the table of Smith and Montemanni [21] was
created because the table of Rains and Sloane [20] had not been
updated for many years. For code parameters that are not cov-
ered by Smith and Montemanni [21], we have checked against
recent literature, to the best of our efforts, in ascertaining that
our results here do indeed improve upon existing results.

II. PROPAGATION RULES

In this section, we present some simple propagation rules for
binary constant-weight codes from -ary codes. We begin with
a simple observation.

Let . For , we denote by the coset of

We also embed into . It is evident that is
a binary constant-weight code of weight and size

. Since the minimum distance of is
at least and must be even, it follows that .
Thus, we have the following.

Theorem 2.1: Let . If there exists an -code
, then there exists an -code of size ,

where

A simple bound on the size of the constant-weight codes in The-
orem 2.1 can be obtained by considering the average size of the
cosets.

Theorem 2.2: Let . If there exists an -code
of size , then

Proof: Let be an -code of size . Let
denote all the elements of , and let
denote all the elements of . Define

if
if .
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For each , there are elements such
that contains (to see this, note that if and
only if for some ). Thus

Hence, there exists at least one , such that

The theorem now follows by noting that the size of
is precisely , and we have seen above that

is an -code.

Next, we consider binary constant-weight codes of length
from -ary codes of length .

Theorem 2.3: Let . Suppose there exists an
-code of size . Then,

i) there exists an -code of size ,
where

ii)

Proof:
i) Let such that

achieves the maximum size . It is clear that
is an -code, where each

codeword has weight either or . To each codeword
, append a new coordinate which takes on value one

if and value zero if . The set of
resulting codewords is an -code.

ii) Using the same arguments as in the proof of Theorem 2.2,
we get an -code of size , in
which the weight of every codeword is either or .
By appending a new coordinate to every codeword as in
(i) above, we get an -code of the
required size.

III. EXAMPLES

We provide some examples where the propagation rules
given by Theorems 2.2 and 2.3 lead to improved bounds on

.
In the tables of this section, a bold entry indicates that the size

of the code constructed here is larger than any known codes of
the same parameters, and a entry superscripted by an asterisk in-
dicates that the size of the code constructed here is of the same
size as the best known code of the same parameters. de-
notes the lower bound on given by Theorems 2.1 or

TABLE I
SOME CONSTANT-WEIGHT CODES OF DISTANCE EIGHT

2.3(i), and denotes the lower bound on given
by Theorems 2.2 or 2.3(ii). denotes the lower bound on

in the tables of Rains and Sloane [20].

Example 3.1: Let be the Goethals -code of size
[22] (see [23, Ch. 5] for the structure of this code).

• Theorems 2.2 and 2.3(ii) give

The implications of these bounds are given in Table I.
• Shortening at the last positions, , results in a

-code of size . It follows from Theorem 2.2

that there exists a -code of size .

In particular, when , this implies

(1)

(2)

(3)

The three lower bounds (1)–(3) improve those in [21] (the
corresponding lower bounds given there are
and , respectively, obtained by Smith et al. [13]).

Example 3.2: Let be the Preparata -code of size
[24] (see [23, Ch. 5] for the structure of this code). Theorems
2.2 and 2.3(ii) give

We also found via computation cosets of achieving the
maximum in Theorems 2.1 and 2.3(i). The results are given in
Tables II and III.

Example 3.3: Let be the (linear) -code of size
constructed by Grassl [25].

• We found via computation cosets of achieving the max-
imum in Theorems 2.1 and 2.3(i). The results are given in
Table IV.

• Shortening at the last two positions results in a (linear)
-code of size . We found, via computation, cosets
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TABLE II
LOWER BOUNDS ON ����� �� ��

TABLE III
LOWER BOUNDS ON ����� �� ��

TABLE IV
SOME CONSTANT-WEIGHT CODES OF DISTANCE 10

of this shortened code achieving the maximum in Theorem
2.3(i). This gives . Lower bounds on

are previously not known.

Example 3.4: Let be the (linear) BCH -code of size
[26], [27] (see [23, Ch. 8] for the structure of this code).

• We found, via computation, cosets of achieving the max-
imum in Theorems 2.1 and 2.3(i). The results are given in
Table V.

• Shortening at the last positions, , results in a
-code of size . We found, via computation,

cosets of these shortened codes achieving the maximum in
Theorems 2.1 and 2.3 (i). These provide the lower bounds

TABLE V
SOME CONSTANT-WEIGHT CODES OF DISTANCE 12

Previously, no lower bounds are known on for
these parameter sets.

Example 3.5: Let be the (linear) -code of size
constructed by Grassl [25]. We found, via computation, cosets
of achieving the maximum in Theorem 2.3(i). These provide
the lower bounds

Lower bounds on , are previously
not known.

Example 3.6: Let be the (linear) Reed–Muller
-code of size , and let be the code obtained

from by puncturing it at the last position. Then is a
-code of size . We found, via computation, cosets of

achieving the maximum in Theorems 2.1 and 2.3(i). These
provide the lower bounds

for . Lower bounds on are previously
not known for these parameters.
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