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New Constant-Weight Codes From Propagation Rules
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Abstract—This paper proposes some simple propagation rules
which give rise to new binary constant-weight codes.

Index Terms—Constant-weight codes, cosets, g-ary codes.

I. INTRODUCTION

HE ring Z/qZ is denoted Z,. We endow Z7 with the

Hamming distance metric A: for u,v € Z7,A(u,v)
is the number of positions where u and v differ. A (g-ary)
code of length n is a subset C C Zp. The elements of C
are called codewords, and the size of C is the number of
codewords it contains. The minimum distance of a code C is
A(C) = miny yec,uv A(u, v). We often denote by (n, d),-code
a g-ary code of length n and minimum distance at least d.

The weight, wt(u), of u € 27 is its distance from the origin,
that is, wt(u) = A(u,0). For 0 < w < n, the (g-ary) Johnson
space J'(w) is the set of all elements of Z; having weight w,
that is, J;'(w) = {u € Z7 : wt(u) = w}. A (g-ary) con-
stant-weight code of length n, distance d, and weight w, denoted
(n,d,w)q-code, is a code C C J;'(w) such that A(C) > d.

We adopt the convention throughout this paper that if g is
not specified, then we assume g = 2. Hence, for example, an
(n, d, w)-code refers to an (n, d, w)-code, and J" (w) refers to
J3(w).

Binary constant-weight codes have been extensively studied
for more than four decades due to their fascinating combinato-
rial structures and applications [1]-[19]. Given n, d, and w, the
central problem of interest in binary constant-weight codes is in
the determination of A(n,d,w), the largest possible size of an
(n,d,w)-code. Exact values of A(n,d,w) are known only for
a few infinite families of parameters n, d, and w, and in some
other sporadic instances (see, for example, [3], [4]). In light of
the difficulty of determining A(n, d, w) exactly, various bounds
have also been developed. There are two online tables devoted
to bounds on A(n,d,w): one maintained by Rain and Sloane
[20] and the other by Smith and Montemanni [21]. While the
former table considers codes of lengths not exceeding 63, the
latter table focuses mainly on codes for lengths between 29 and
63, having small weights.
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In this paper, we present simple propagation rules for bi-
nary constant-weight codes through g-ary codes. It turns out that
some good binary constant-weight codes can be obtained from
these propagation rules. In particular, we improve on a number
of bounds in the online tables of Rain and Sloane [20], and Smith
and Montemanni [21].

We remark that the table of Smith and Montemanni [21] was
created because the table of Rains and Sloane [20] had not been
updated for many years. For code parameters that are not cov-
ered by Smith and Montemanni [21], we have checked against
recent literature, to the best of our efforts, in ascertaining that
our results here do indeed improve upon existing results.

II. PROPAGATION RULES

In this section, we present some simple propagation rules for
binary constant-weight codes from g-ary codes. We begin with
a simple observation.

LetC C ZZ}. Foru € ZZ}, we denote by u + C the coset of C

{u+c:cecC}.

We also embed Z into Z,,. It is evident that (u 4+ C) N J™(w) is
a binary constant-weight code of weight w and size N = |(u +
C)NJ™(w)]. Since the minimum distance d’ of (u+C)NJ™(w) is
at least d and d’ must be even, it follows that d’ > 2[(d+1)/2].
Thus, we have the following.

Theorem 2.1: Let 0 < w < n. If there exists an (n, d),-code
C, then there exists an (n,2|(d + 1)/2],w)-code of size N,
where

N = max |(u+C) N J"(w)].
uezy

A simple bound on the size of the constant-weight codes in The-
orem 2.1 can be obtained by considering the average size of the
cosets.

Theorem 2.2: Let 0 < w < n. If there exists an (n, d)4-code
of size M, then

A(n,2(d+1)/2],w) > {%w .

Proof: Let C be an (n,d)s-code of size M. Let
Ui, Ug,...,usn denote all the elements of ZZI‘, and let

Vi V2, V() denote all the elements of .J"(w). Define
S5 — 1, ifv;eu; +C
©1 70, if v; gu; +C.
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For each v; € J"(w), there are M elements u; € 27 such
that u; + C contains v; (to see this, note that v; € u; 4 C if and
only if u; = v; 4+ c for some c € C). Thus

Y Oy 5i,j:M<g).

Isisa™1<5<(h)
Hence, there exists at least one /,1 < £ < ¢™, such that
M n
>tz M)
1<5<(2) !
The theorem now follows by noting that the size of (uy + C) N

J"(w) is precisely 3, . ;- (ny 0¢,j, and we have seen above that
(ug 4+ C) N J*(w) is an (n, 2] (d + 1)/2], w)-code. O

Next, we consider binary constant-weight codes of length n+
1 from g-ary codes of length n.

Theorem 2.3: Let 0 < w < n. Suppose there exists an
(n,d)q-code C of size M. Then,
i) there exists an (n + 1,2|(d + 1)/2], w)-code of size N,
where

N = max |(u+C) N (J*(w — 1) U J"(w))|;

uezy
ii)

M () +(2)

qTL

Aln+1,2((d + 1)/2),w) >

Proof:

i) Letu € Zy such that |(u+C) N (J"(w — 1) U J"(w))|
achieves the maximum size N. It is clear that C' = (u +
C)N(J"(w—1)U J™(w)) is an (n, d)-code, where each
codeword has weight either w— 1 or w. To each codeword
c € ', append a new coordinate which takes on value one
if wt(c) = w — 1 and value zero if wt(c) = w. The set of
resulting codewords is an (n+1,2[(d+ 1) /2], w)-code.

ii) Using the same arguments as in the proof of Theorem 2.2,
we get an (n, d)-code of size M ((,",) + (1)) /q". in
which the weight of every codeword is either w — 1 or w.
By appending a new coordinate to every codeword as in
(i) above, we getan (n+1,2[(d+1)/2]), w)-code of the
required size.

O

III. EXAMPLES

We provide some examples where the propagation rules
given by Theorems 2.2 and 2.3 lead to improved bounds on
A(n,d,w).

In the tables of this section, a bold entry indicates that the size
of the code constructed here is larger than any known codes of
the same parameters, and a entry superscripted by an asterisk in-
dicates that the size of the code constructed here is of the same
size as the best known code of the same parameters. M. de-
notes the lower bound on A(n, d, w) given by Theorems 2.1 or
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TABLE 1
SOME CONSTANT-WEIGHT CODES OF DISTANCE EIGHT

Lower Bounds on A(63, 8, w) Lower Bounds on A(64, 8, w)

w A4évg Mrs w A4évg Mgs
7 8443 7182 7 9480 8064
8 59096 50274 8 67538 57456
9 361141 - 9 420236 -
10 1950158 - 10 2311298
11 9396214 - 11 11346372
12 40716926 - 12 50113140
13 | 159735632 - 13 | 200452558
14 | 570484400 - 14 | 730220032

2.3(i), and M, denotes the lower bound on A(n,d,w) given
by Theorems 2.2 or 2.3(ii). MRs denotes the lower bound on
A(n,d,w) in the tables of Rains and Sloane [20].

Example 3.1: Let C be the Goethals (63, 7)-code of size 247
[22] (see [23, Ch. 5] for the structure of this code).
* Theorems 2.2 and 2.3(ii) give

2] (8)/]
sz [((2)+(2)) /2]

The implications of these bounds are given in Table .
* Shortening C at the last ¢ positions, 1 < ¢ < 46, resultsin a
(63 —1,7)-code of size 247" It follows from Theorem 2.2

that there exists a (63 — i, 8, 7)-code of size ( 637_ 'y /216,
In particular, when ¢ € {1, 2,3}, this implies
A(62,8,7) > 7505 )
A(61,8,7) > 6657 )
A(60,8,7) > 5894. 3)

The three lower bounds (1)—(3) improve those in [21] (the
corresponding lower bounds given there are 6693, 6223,
and 5770, respectively, obtained by Smith ez al. [13]).

Example 3.2: Let C be the Preparata (63, 5)-code of size 252
[24] (see [23, Ch. 5] for the structure of this code). Theorems
2.2 and 2.3(ii) give

w2 (2)/]
oz [((2)+(2)) /2]

We also found via computation cosets of C achieving the
maximum in Theorems 2.1 and 2.3(i). The results are given in
Tables II and III.

Example 3.3: Let C be the (linear) (31, 9)-code of size 23
constructed by Grassl [25].

* We found via computation cosets of C achieving the max-
imum in Theorems 2.1 and 2.3(i). The results are given in
Table IV.

* Shortening C at the last two positions results in a (linear)
(29,9)-code of size 2**. We found, via computation, cosets
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TABLE II

LOWER BOUNDS ON A(63, 6, w)

w ]uavg Mmax MRgs
5 3433 3906* 3906
6 33177 37758* 37758
7 270152 270468 264771
8 1891062 1893276 1853397
9 11556490 11594310* 11594310
10 62405042 62609274* 62609274
11 300678837 300700062 300496392
12 1302941625 1302990507 1302151032
13 5111540218 5112164988* 5112164988
14 | 18255500778 | 18257732100* 18257732100
TABLE III
LOWER BOUNDS ON A(64,6, w)
w A[avg Mmax MRs
5 3723 3906 -
6 36609 41664* 41664
7 303329 303354 -
8 2161214 2163744 2118168
9 13447552 13447707 -
10 73961530 74203584* 74203584
11 363083878 363105666 -
12 1603620460 1603680624 1602647424
13 6414481842 6414487191 -
14 | 23367040996 | 23369897088* | 23369897088
TABLE IV

SOME CONSTANT-WEIGHT CODES OF DISTANCE 10

Lower Bounds on A(31, 10, w) Lower Bounds on A(32, 10, w)

W | Mmax Mrs W | Mmax Mrs
I 387 - I 585 -
12 612 - 12 953 -
13 872 - 13 | 1443 -
14 | 1106 - 14| 1923 -

of this shortened code achieving the maximum in Theorem
2.3(i). This gives A(30,10,12) > 390. Lower bounds on
A(30,10,12) are previously not known.

Example 3.4: Let C be the (linear) BCH (31, 11)-code of size
211 126], [27] (see [23, Ch. 8] for the structure of this code).

¢ We found, via computation, cosets of C achieving the max-
imum in Theorems 2.1 and 2.3(i). The results are given in
Table V.

* Shortening C at the last 4 positions, i € {1, 2}, results in a
(31—1,11)-code of size 2''~%. We found, via computation,
cosets of these shortened codes achieving the maximum in
Theorems 2.1 and 2.3 (i). These provide the lower bounds

A(29,12,11)
A(29,12,12)
A(29,12,13) >
and
A(30,12,10
A(30,12,11
A(30,12,12

(

(

> 76
> 114
140

A(30,12,13
A(30,12,14

—_— = ~— ~— —
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TABLE V
SOME CONSTANT-WEIGHT CODES OF DISTANCE 12

Lower Bounds on A(31,12,w) Lower Bounds on A(32,12,w)

w Mmax Mgrs w Mmax Mgs

9 40 - 9 40 -
10 87 - 10 122 -
11 186 - 11 186 -
12 310 - 12 496 -
13 400 - 13 400 -
14 510 - 14 900 -

Previously, no lower bounds are known on A(n, 12, w) for
these parameter sets.

Example 3.5: Let C be the (linear) (31, 13)-code of size 27
constructed by Grassl [25]. We found, via computation, cosets
of C achieving the maximum in Theorem 2.3(i). These provide
the lower bounds

A(32,14,12) > 29
A(32,14,13) > 42.

Lower bounds on A(32,14,w), w € {12,13}, are previously
not known.

Example 3.6: Llet Cy be the (linear) Reed-Muller
(32,16)-code of size 2°, and let C be the code obtained
from Cy by puncturing it at the last position. Then C is a
(31, 15)-code of size 2°. We found, via computation, cosets of
C achieving the maximum in Theorems 2.1 and 2.3(i). These
provide the lower bounds

A(n,16,13) > 16
A(n,16,14) > 21
A(n,16,15) > 31

for n € {31,32}. Lower bounds on A(n, 16, w) are previously
not known for these parameters.
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