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ABSTRACT

A (2, k, v) covering design is a pair (X, #") such that X is a n-element set and !F is a family of fc-element
subsets, called blocks, of X with the property that every pair of distinct elements of X is contained in at
least one block. Let C(2, k, v) denote the minimum number of blocks in a (2, k, v) covering design. We
construct in this paper a class of (2, k, v) covering designs using number theoretic means, and determine
completely the functions C(2,6,6"-28) for all n ^ 0, and C(2,6,6" • 28 - 5) for all n ^ 1. Our covering
designs have interesting combinatorial properties.

1. Introduction

A t-covering design, or more specifically a (/, k, v) covering design, of order v and
block size k, is a pair (X, #") such that X is a y-element set and !F is a family of k-
element subsets, called blocks, of X, with the property that every /-element subset of
X occurs in at least one block.

Let C(t, k, v) denote the minimum number of blocks in a (/, k, v) covering design.
A (t, k, v) covering design (X, #") with |#"| = C(t, k, v) is called a minimum covering
design. The problem of evaluating C(t,k,v) is a generalization of the existence

problem for Steiner systems, since C(t,k,v) = I )/( I if and only if there exists a

Steiner system S(t, k, v).
Let

•fcr)~[t[r'i[-[r'.+'i1-
Schonheim [10] proved that C(t,k,v)^ L(t,k,v) for all v^k^t^X. Fort and
Hedlund [3] have shown that C(2,3,v) = L(2,3,v) for all v ^ 3. Recently, a simple
proof of this was provided by Stanton and Rogers [12]. Mills [8, 9] has proved
that C(2,4,v) = L(2,4,v) for all v>4 and v${7,9,10,19}, and that C(2,4,i>) =
L(2,4,v)+ 1 for v = 7, 9 and 10, and C(2,4,19) = L(2,4,19) + 2. The problem of
determining C{2,k,v) has not been completely solved for any k ^ 5 . Recently,
progress on the problem for k = 5 has been made by Lamken, Mills, Mullin and
Vanstone [6] who showed that C(2,5, v) can be determined for v = 1 and 2
modulo 4 if y ^ 13449.

We are concerned in this paper with the construction of 2-covering designs and the
evaluation of C(2,6, v) for some values of v.

2. Projective spaces over rings

Let R be a commutative ring with unity and let Sk be the set of all (k+ l)-tuples
(a0,... ,ak) of elements of R such that ao,...,ak generate R, that is, <#„,..., afc> = R.

Received 3 November 1991; revised 31 March 1992.

1991 Mathematics Subject Classification 05B40, 11A99.

Bull. London Math. Soc. 25 (1993) 231-239



232 YEOW MENG CHEE AND SAN LING

We define the projective k-space over R, denoted Pk(R), to be a pair {V, 0&), such that
both V and 31 are the sets of equivalence classes of elements of Sk under the
equivalence relation given by

(a0,...,ak) ~ (b0,...,bk)

if and only if there exists X e Rx such that at = kbt for 0 ^ / ^ k, where Rx denotes the
set of all units of R.

If Pk(R) = (-V,$}), we call the elements of "V points and the elements of @l
hyperplanes (or lines in the case k = 2). To differentiate between elements of y and
88 in notation, we denote a point Pei^ by (aQ:...:ak) if (ao,...,ak) lies in the
equivalence class P, and we denote a hyperplane He $8 by [xQ:...: xk] if (x0, . . . , xk) lies
in the equivalence class H.

The point-hyperplane incidence relation in Pk(R) is defined as follows. A point
(a0:...:ak) lies on the hyperplane [x0:...:xk] if and only if

aoxo+ ...+akxk = 0.

We remark that this definition of Pk(R) satisfies the principle of duality.
In the remainder of this section, we establish some properties of ¥k(R).

Throughout this paper, p denotes a prime and <p denotes Euler's totient function.

PROPOSITION 2.1. The number of points (and hence the number of hyperplanes) in
Pk(Z/nZ) is

Proof A (k+ l)-tuple (a0, ...,ak) gives rise to a point in P*(Z/«Z) if and only if
gcd (a0,..., ak, ri) — 1. The number of such (&+l)-tuples is, by the principle of
inclusion and exclusion,

z f r 2 ( r n (
Taking the action of (Z//iZ)x into consideration, the number of points in Pk(Z/nZ)

n ( + . , . +

p \ n \ P P I

We now compute the number of points on a hyperplane in Pk(Z/nZ).

THEOREM 2.1 ([5, Theorem 6.2]). A necessary and sufficient condition for the
congruence

a1x1+ ... +amxm + b = 0 mod n

to have a solution (xv ..., xm) is that gcd (als ...,am,n)\b. If this condition is satisfied,
then the number of incongruent mod n solutions is

nm-lgcd(a1,...,am,n).
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COROLLARY 2.1. The number of points on a hyperplane in P*(Z/wZ) is

+ V +
p\ P P

By the principle of duality, this is also the number of hyperplanes passing through a
point.

Proof. Let [x0:...: xk] be a fixed hyperplane in Pfc(Z/«Z). A point (a0:...: ak) in
Pk(Z/nZ) lies on [;c0:...: xk] if and only if

aoxo + ... +alcxk = Omodn. (1)

From Theorem 2.1, the number of solutions (ao,...,ak) to (1) is nk. However,
(a0:...:ak) is a point if and only if gcd(aQ,...,ak,n) = \. Hence, by the principle
of inclusion and exclusion, the number of (fc+l)-tuples (ao,...,ak) such that
gcd(ao,...,ak,n)= 1 is

Therefore the number of points on a line [JC0 :...: xk] is

3. A family ofl-covering designs

In this section, we prove that the projective 2-space over Z/nZ, that is,
P2(Z/wZ) = (TT, #), is a 2-covering design (X, F) if we take X = V and J^ = (BH)HeM,
where BH = {Pei^: P lies on the line / /} . Henceforth, when we talk about
P2(Z/«Z) as a covering design, we are actually referring to the ordered pair (X, 3F).

THEOREM 3.1. Let (a:b:c) and(d:e:f) be two points ofP2(Z/prZ). If gcd (ae — bd,
af—cd,bf—ce,pr) =pa,(X. ^ r, then the number of lines passing through both points is

(ii) p*ifa< r.

Proof If there is a line in P2(Z//?r Z) passing through (a:b:c) and (d: e:/), then
let it be [x:j>:z]. Without loss of generality, we may assume that a is a unit in
Z/prZ. By the definition of P2(Z/// Z), we have

ax + by + cz = 0 mod//, (3)

dx + ey +fz = 0 mod//. (4)

Eliminating x, we obtain

(ae -bd)y + (af- cd)z = 0 mod/ . (5)

Suppose gcd (ae — bd, af— cd,pr) = //, a < /? ^ r. We have //1 — c(ae—bd) + b(af— cd),
that is, pP\a{bf-ce). Since pjfa, we have that pp\{bf—ce). Therefore, gcd(ae — bd,
af— cd, pr) = pa = gcd (ae — bd, af— cd, bf— ce, pr).

Case (/). If a = r, then any y, z will satisfy (5). Note that if/? | y and /? | z, then (3)
implies that/?|x. Hence, in order to find triples (x,y,z) such that gcd(x,y,z,n) = 1,
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we need to have p X y or p X z (or both). The number of (y, z) (and hence (x, y, z), since
x is uniquely determined by y,z) satisfying this condition is p2r —p2r'2. Hence the
number of lines [x:^:z] through these two points is

Case (II). If a < r, (5) results in

fae — bd\
s / ( }

Without loss of generality, we may assume that /?a||(ae — fo/), and hence
gcd(p,(ae — bd)/p*) = 1. Note that if p\z, then p\y, and, by (3), p\x. Therefore we
need p X z in order to find triples (x, y, z) such that gcd (x, y, z, n) = 1. The number
of such (x, y, z) mo&pr is given as follows. For a given z, there is a unique ymodpr~a

satisfying (6), hence pa such y modpr satisfying (5). For pXz, there are <fi(pr) choices
for z. The value of x is uniquely determined by (y,z). Hence, the number of
(x, y,z) mod pr satisfying gcd (x,y,z,n) = 1 is <p(pr)-pa. Therefore the number of lines
[x:7:z] through these two points is

(Pr)7>*
p'

THEOREM 3.2. Let (a:b:c) and (d:e\f) be two points of P2(Z/«Z). If n = Y\pTp

and gcd (ae — bd,af—cd,bf—ce,n) = YIP"P>
 a

P ^ r
v ifor a^ P\n)> tnen tne number of

lines passing through both points is

n p*p- n p-'-'ip+v-
p\n:ap<rp p\n:ap-rp

Proof This follows immediately from Theorem 3.1 by applying the Chinese
Remainder Theorem.

COROLLARY 3.1. The P2(Z/«Z) constructed is a 2-covering design for all n> 1.

COROLLARY 3.2.

p\ \ P P II p\n\ P P

for all n> 1.

COROLLARY 3.3. Any two points in P2(Z/pZ) lie on one and only one line.

We remark that Corollary 3.3 implies that our definition of J*2(R) gives the
classical projective plane when R is a finite field with p elements.

An imbrical design ID (v, k, b) is a (2, k, v) covering design (X, SF) with \SF\ = b
such that for every Be IF, there exists a pair {x, y) £ B that is contained in no other
elements of 3P, that is,
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Imbrical designs are introduced by Mendelsohn and Assaf in [7], where they studied
the spectrum

Spec (v, k) = {b: there exists an ID (v, k, b)}

for k = 3 and 4. Our next result establishes an infinite family of imbrical designs.

THEOREM 3.3. P2(Z/«Z) is an imbrical design for all n> 1.

Proof. By Corollary 3.1, we need only show that for every line H in P2(Z/«Z),
there exist two (distinct) points Px and P2 lying on H such that no other line passes
through both Px and P2.

Let [x.y.z] be a fixed line in P2(Z/«Z). Without loss of generality, assume
x = \modpr, wherepr \\ n. Let a = —y,b = \,c = 0,d — —z,e = Oand/= 1. Then (3)
and (4) are satisfied, and

gcd(ae-bd,af-cd,bf-ce,pr) = gcd(z, -y, \,pr)
= 1.

It then follows from Theorem 3.1 that there is one and only one line in P2(Z///Z)
passing through these two points. This can be done similarly to all the prime divisors
of n. By the Chinese Remainder Theorem, one obtains two points (a:b:c) and (d:e:/)
of P2(Z/«Z) and gcd (ae — bd,af—cd,bf—ce,ri) = 1. By Theorem 3.2, these can be
chosen as our desired P1 and P2.

COROLLARY 3.4.

A ) p ( n f
i P p2) \ iiiV p p \

for all n> 1.

4. Minimum covering designs
The results in the previous sections show that P2(Z/4Z) gives a (2,6,28) covering

design (X, 3?) with 28 blocks. Since L(2,6,28) = 28, this covering design is a
minimum (2,6,28) covering design. If we take X = {0,1,..., 27}, then the 28 blocks of
this covering design can be given as follows.

12 59 12 15 024 8 1114 0 13 7 10 13 2 13 18 23 24 27
114 16 22 24 26 0 15 17 22 23 25 13 14 15 19 20 21 2 10 12 17 2126
19 1117 2127 0 8 12 16 20 27 2 7 1116 20 25 18 10 18 19 25
0 79 18 1926 2 36 19 22 27 14 6 202326 056212425
4 9 10 20 22 24 5782122 23 3 1112 19 23 24 6 1112 13 18 22

6 9 10 14 16 23 67 8 15 1724 4 5 13 16 17 19 3 5 14 17 18 20

3 4 15 16 18 21 5 10 1115 26 27 4 7 12 14 25 27 3 89 13 25 26

We record this result as the following.

LEMMA 4.1. C(2,6,28) = 28.

An orthogonal array OA(u, k) is a v2 x k array, stf, of symbols from a y-element set
X which satisfies the following property: for any two columns i and j of srf, and for
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any (x,y)eXxX, there is a unique row r such that (stf(r,i),jtf(r,j)) = (x,y). The
following generalization of the quadrupling construction of Stanton, Kalbfleish and
Mullin [11] was obtained by Gardner [4]. We include its proof here for completeness.

THEOREM 4.1 (fc-tupling construction). Let (X,^) be a (2,k,v) covering design
and let 0 ^ a ^ v. If there exists an orthogonal array OA(v — a,k), then there exists a
(2,k,kv — (k—l)a) covering design with k\^\+(v — a)2 blocks.

Proof. We form k copies of the (2, k, v) covering design on the sets Xt =
{1,2,... ,a,xi a+1,x{ a+2,...,xt v}, 1 ̂  / ^ k. We denote the corresponding family of
blocks by SF^. Now take an orthogonal array OA(v — a,k), sf, on the set of symbols
{a+\,a + 2,...,v}. In this array stf, we replace s/(r,i) by xt ^(r t) for all rows r and
columns /. The rows of the array are now taken as a set 3 of blocks. It is straight-
forward to verify that (t_Jf_i Xt, & U (Uf-i*^)) 1S a (2, k, kv — (k — 1) a) covering
design.

Let OA(k) = {v: there exists an OA(v,k)}. We require the following result
(see [1]).

LEMMA 4.2. If t > 4 andt${6,10,14,18,22,26,30,34,38,42,44}, then teOA(6).

We now prove the two main results of this section.

THEOREM 4.2. For any nonnegative integer n,

C(2,6,6».28)^6°"( 8 4 0 + ; 8 4 ( 6 ° - 1 ) ) .

Proof We proceed by induction on n. The statement of the theorem is true for
n = 0, by Lemma 4.1. Suppose that C(2,6,6n~1-28) = (6n"2(840 + 784(6n-1-l)))/5.
Then the fc-tupling construction of Gardner (with a = 0) shows that

6n"2C840 + 784C6n"1 - IV)
C(2,6,6W • 28) < 6 • l + l ^ + (6""1 • 28)2,

thus implying

We note that all the orthogonal arrays required in the above constructions exist by
Lemma 4.2. Now,

£(2,6,6-28) =
6

and since 6" • 28 - 1 = 2 mod 5,

L(2,6,6n • 28) = 6"-1 • 28 f6"'28*2^

6n-1(840 + 784(6"-1))
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Therefore, C(2,6,6n-28) = (6n-1(840 + 784(6n-l)))/5, which completes the proof.

THEOREM 4.3. For any positive integer n,

Proof. Given any positive integer n, we use the fc-tupling construction (with
a = 1) to obtain a (2,6,6n • 28 — 5) covering design from a minimum (2,6,6n~1 • 28)
covering design (provided by Theorem 4.2) and an orthogonal array OA (6n-1 • 28 — 1,
6) (which exists by Lemma 4.2). The constructed covering shows that

(6"-1-28-l)(6"-28-3) + (6w-1

^ 5
Now,

and since 6n • 28 - 6 = 2 mod 5,

However, 6n • 28 — 3 = 15 mod 30 for all n > 0, therefore we have

5 ; 30

(6n"1-28-l)(6n-28-3) + (6n-1

This proves the theorem.

5. Regular coverings

Let (X, !F) be a (2, k, v) covering design. We can construct a multigraph G with
vertex set X such that if {x,y} c= X occurs in X blocks of #", then the edge {x,y}
appears X — \ times in G. The multigraph G is commonly called the excess of the
covering design.

In [2], Bermond, Bond and Sotteau defined a regular covering to be a (2,k,v)
covering design whose excess is regular of degree A. They call a regular covering
minimum if A is as small as possible, and posed the problem of constructing minimum
regular coverings. In this section, we establish the existence of an infinite family of
minimum regular coverings with block size 6.

The following two propositions are easy to prove.
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PROPOSITION 5.1. The degree A of the regular excess of a regular (2, k, v) covering
satisfies the following congruences:

= 0modA:- l , (7)

u(u - 1 + A) = 0 mod k(k -1). (8)

PROPOSITION 5.2. If k = 6 and v = 6n-28, n ^ 0, then A = 3 is the minimum
positive integer satisfying the congruences (7) and (8).

We show that Gardner's fc-tupling construction preserves the regularity of the
excess when a = 0.

LEMMA 5.1. If there exists a regular (2, k, v) covering with regular excess of degree
A, and there exists an orthogonal array OA (v, k), then there exists a regular (2, k, kv)
covering with regular excess of degree A.

Proof Given a regular (2, k, v) covering with regular excess G of degree A, we
construct a (2,k,kv) covering using Gardner's fc-tupling construction given in the
proof of Theorem 4.1. Each of the pairs {x u ,x ( . f } , 1 < /,/' ^k,i ^ i', 1 4,j,f < v,
appears in exactly one block of this (2, k, kv) covering and hence contributes no edge
to the excess. Consequently, the excess of this (2, k, kv) covering is a disjoint union of
k copies of G.

LEMMA 5.2. There exists a minimum regular (2,6,28) covering.

Proof The minimum (2,6,28) covering design constructed in Section 4 has an
excess that is the disjoint union of 7 K^ (and hence regular of degree 3).

It follows from Lemmas 5.1 and 5.2 by induction that there exists a regular
(2,6,6n • 28) covering for all n ^ 0. Moreover, the excess of this covering is the
disjoint union of 6n>7 KA, and hence regular of degree 3. Therefore by Proposition
5.2, this regular (2,6,6n • 28) covering is minimum. We record this result as follows.

THEOREM 5.1. There exists a minimum regular (2,6,6n • 28) covering for all n ^ 0.
Moreover, each component of the excess is a Kr

6. Conclusion

We have provided in this paper a new number theoretic construction for 2-
covering designs. As a result of this construction, we are able to completely determine
the functions C(2,6,6n-28) and C(2,6,6n+1 • 28 - 5) for all n ^ 0, and prove the
existence of an infinite family of imbrical designs and minimum regular coverings
with block size 6.

We expect our 2-covering designs to possess many more interesting properties
which may be useful in the construction of other combinatorial configurations.
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