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The PBD-Closure of Constant-Composition Codes
Yeow Meng Chee, Alan C. H. Ling, San Ling, and Hao Shen

Abstract—We show an interesting pairwise balanced design
(PBD)-closure result for the set of lengths of constant-composition
codes whose distance and size meet certain conditions. A con-
sequence of this PBD-closure result is that the size of optimal
constant-composition codes can be determined for infinite families
of parameter sets from just a single example of an optimal code.
As an application, the size of several infinite families of optimal
constant-composition codes are derived. In particular, the problem
of determining the size of optimal constant-composition codes
having distance four and weight three is solved for all lengths
sufficiently large. This problem was previously unresolved for odd
lengths, except for lengths seven and eleven.

Index Terms—Constant-composition codes, group divisible de-
signs, pairwise balanced designs (PBD), PBD-closure.

I. INTRODUCTION

ONE generalization of constant-weight binary codes as
we enlarge the alphabet from to is the

concept of constant-composition codes. The class of constant-
composition codes includes the important permutation codes
and has attracted recent interest due to its numerous applica-
tions, such as in determining the zero error decision feedback
capacity of discrete memoryless channels [1], multiple-access
communications [2], spherical codes for modulation [3], DNA
codes [4], [5], powerline communications [6], [7], and fre-
quency hopping [8].

While constant-composition codes have been used since the
early 1980s to bound error and erasure probabilities in decision
feedback channels [9], their systematic study only began in late
1990s with Svanström [10]. Today, the problem of determining
the maximum size of a constant-composition code constitutes a
central problem in their investigation [6], [7], [11]–[19].

A -ary code of length is a set . The Hamming dis-
tance between two codewords is denoted by .
A code is said to have distance if for all

. The weight of a codeword is the number of
nonzero components of . If every codeword in has weight ,
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then is said to be of (constant) weight . The composition of
a codeword is the tuple such that

contains exactly occurrences of . A -ary
code has (constant) composition if every codeword in
has composition . A -ary code of length , distance , and
composition is referred to as an -code. The max-
imum size of an -code is denoted and the

-codes achieving this size are called optimal. Note that
the following operations do not affect distance and weight prop-
erties of an -code:

i) reordering the components of , and
ii) deleting zero components of .

Consequently, throughout this paper, we restrict our attention to
those , where .

We note that our notation for constant-composition codes dif-
fers from that in the literature in that we do not explicitly specify

, the number of occurrences of zero in each codeword. The
reason is that can be inferred from and , so
there is no need to specify . Besides the advantage of being
more succinct, our notation for constant-composition codes
seems more natural and convenient for the investigation of their
combinatorial properties.

Our starting point is the problem of determining the size of
optimal ternary constant-composition codes of distance four and
weight three, that is, the determination of . This
problem was first investigated by Svanström [11], who deter-
mined for all even as well as for and

. The value of remains unknown for all
other odd . In this paper, we develop a technique for deter-
mining for all but a finite set of values of odd .
We do this by showing that the set of lengths of constant-com-
position codes satisfying certain size and distance constraints is
pairwise balanced design (PBD) closed.

It turns out this PBD-closure property is a general result
applicable to the determination of beyond the case
of ternary constant-composition codes of weight three. It allows
us to bring to bear Wilson’s powerful theory of PBD-closure
[20]–[22], which has been a cornerstone in the development
of modern combinatorial design theory. One consequence is
that for any fixed and satisfying certain conditions,

can be determined for infinitely many from just a
single example of an optimal -code. We illustrate the
applicability of our PBD-closure result by also determining the
size of several infinite families of optimal constant-composition
codes.

II. PBD-CLOSURE AND RECURSIVE CONSTRUCTIONS

For a positive integer, the set is denoted .
The th component of a vector is denoted . All vectors
considered in this paper have components indexed from zero,
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meaning . The support of a vector is the set
.

A set system is a pair , where is a finite set and
. The members of are called points and the members

of are called blocks. The order of is the number of points
, and the size of is the number of blocks . A set is

called a set of block sizes for if for all . is
-uniform if is a set of block sizes for .
A pairwise balanced design (PBD) is a set system

such that every -subset of is contained in exactly one
block. A PBD of order with set of block sizes is denoted
PBD . A set of positive integers is PBD-closed if the
existence of a PBD implies that . Given a set of
positive integers, the PBD-closure of is the set

there exists a PBD

Let be a positive real number and define

Theorem 1: Let and .
The set is PBD-closed, provided .

Proof: Suppose is a PBD . We
construct an -code as follows. For each block ,
we put an -code of size at least on

: the codewords are length vectors so that every position
has value zero, and when restricted to the positions

, the codewords form an -code of size at least
. An -code of size at least

exists since . We claim that the resulting code
is an -code. Indeed, any two codewords arising from
the same block in the PBD are distance at least apart. So we
need only check the distance between codewords arising from
different blocks. Since any two blocks intersect in at most one
point, the supports of two codewords arising from two different
blocks intersect in at most one point. So these two codewords
must be at least distance apart. Since , the
resulting code is an -code. It remains to compute the
size of this code.

Let denote the number of blocks of size in . Since every
-subset of is contained in exactly one block, we have

(1)

Now, on each block of size , we placed a code of size at least
. So the size of the resulting code we constructed is at

least

By comparing with (1), we see that this quantity is equal to
. Consequently, . Hence,

is PBD-closed.

For a positive constant , and , the con-
struction in the proof of Theorem 1 still yields a constant-
composition code, although its size cannot be determined
without more precise knowledge of the number of blocks of each
size in the PBD. To have this additional knowledge, we focus
on PBDs coming from the class of group divisible designs.

Let be a set system and let be a
partition of into subsets, called groups. The triple
is a group divisible design (GDD) when every -subset of not
contained in a group appears in exactly one block, and

for all and . We denote a GDD by
-GDD if is a set of block sizes for . The type of a

GDD is the multiset . When more
convenient, we use the exponentiation notation to describe the
type of a GDD: a GDD of type is a GDD where there
are exactly groups of size .

PBDs and GDDs are intimately related. A PBD is
a -GDD of type . Given a -GDD of type

, we can treat it as a PBD , where
, by considering the groups also as

blocks.
We now extract the construction in the proof of Theorem 1

and apply it to GDDs.

Theorem 2: Suppose there is a -GDD of type
containing blocks of size . Let ,

, and . Then

provided .

III. USING PBD-CLOSURE TO DETERMINE

The PBD-closure result of Theorem 1 is particularly useful
in determining of the form , for some
positive constant .

Theorem 3: Let and
. Suppose for some constant

. Then whenever we can find a set such that there
exists a -code of size for each , we
have for all .

Proof: By Theorem 1, there exists an -code of
size at least for each . This combined
with the upper bound implies that

.

The usefulness of Theorem 3 lies in Wilson’s theory of asymp-
totic existence of PBDs, which essentially says that the obvious
necessary conditions for the existence of a PBD are asymptoti-
cally sufficient. More formally, we have the following.

Theorem 4 (Wilson [22]): Let be a set of positive integers.
Define

Then there is a constant such that for all
satisfying

and

we have .
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TABLE I
NECESSARY CONDITIONS FOR THE EXISTENCE OF f5g-GDD OF TYPE g

Hence, from a small finite number of examples of optimal
codes, we can derive infinite families of optimal codes. The fol-
lowing Johnson-type bound has been proven for constant-com-
position codes.

Lemma 1 (Svanström et al. [12]):

When , we have

so that the inequality in Lemma 1 takes the form

(2)

When and , by applying Lemma 1,
we obtain

But , so that the inequality
in Lemma 1 takes the form

(3)

Hence, the PBD-closure result of Theorem 1 is potentially
applicable to the determination of
when and , and when

, since under these conditions, the upper
bound on has the form
for some positive constant . We provide details below for the
determination of several infinite families of . The

-GDDs and -GDDs are used extensively to arrive at the
results. So we state their existence below for easy reference.

Theorem 5 (Ge and Rees [23]): There exists a -GDD of
type with if and only if and

.

Theorem 6 (Ge and Ling [24]): The necessary conditions in
Table I for the existence of a -GDD of type is also suffi-
cient, except when , and possibly when

i) ;
ii) and

a) and

b) and ;
c) and ;
d)

and

e) or with , or
and , and ;

iii) and
a) and ;
b) and ;
c) and ;
d) and ;
e) , and

;
f) , and

;
g) , and

;
h) , and

.

Lemma 2: There exists a -GDD of type .
Proof: A -GDD of type is first found by Mathon

(unpublished), arising from an elliptic semiplane. A construc-
tion is given in [25].

IV. BOUNDS

Since Theorem 1 is applicable only for codes whose size
meets bounds of a specific form, we list here upper bounds for
the size of some codes of interest in this paper. Except for the
bound on when , the bounds pre-
sented are all consequences of inequalities (2) and (3).

A. Bounds on

Svanström [11] proved that when

and when

Define

if
if
if
if

We can unify the above bounds as follows.

Lemma 3: For odd
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B. Bounds on Some Ternary Constant-Composition Codes of
Weight Four and Five

Lemma 4:

if

if

if

C. Bounds on

Lemma 5:

if
if
if

D. Refinements

Let and . We say that is
a refinement of if there is a partition of
such that for each . The following simple ob-
servation of Chu et al. [8] is sometimes useful in deriving op-
timal constant-composition codes.

Lemma 6 (Chu et al. [18]): If is a refinement of , then
.

V. SHORT CODES

The ingredients we need in order to apply the PBD-closure re-
sult and GDD-based constructions are short optimal codes. We
give the existence of some of these in this section. The methods
used to construct these codes fall into three categories.

i) Manual or exhaustive search: The really short codes can
be constructed by hand or exhaustive search.

ii) Clique-finding for cyclic codes: Here, the orbits of code-
words of length and composition are represented by
vertices of a graph . We disregard orbits that contain two
codewords having distance less than . An edge exists be-
tween two vertices if and only if the corresponding orbits
do not contain two codewords that are of distance less
than apart. The set of orbits corresponding to a clique
in then gives an -code. A maximum clique
finding program (Cliquer [26]) is used to determine
the largest cyclic -code. We then check to see if
this code is optimal.

iii) Stochastic local search where others fail: When an op-
timal cyclic code does not exist, or if the graph becomes
large, the clique-finding approach becomes inapplicable.
In this scenario, we use a stochastic local search method
to construct the code.

Our results can be summarized as follows.

Lemma 7: when
.

Lemma 8: when

Lemma 9: when

Lemma 10: when
.

Lemma 11: when
.

Lemma 12: and
.

All the optimal codes proving the lemmas above can be ob-
tained from the first author’s website at

The optimality of the codes in Lemmas 7–11 comes from the
upper bounds given in Section IV. Optimality of the codes in
Lemma 12 is established by exhaustive search (see also [15]).

VI. OPTIMAL CONSTANT-COMPOSITION CODES OF

WEIGHT AND DISTANCE

Let and .
Lemma 1 gives

Hence, when satisfies

and

we have

The case has been investigated by Svanström
[11], who established the following.

Lemma 13 (Svanström [11]):

if is even

if .

The value of remains undetermined for all odd
. We address this problem in what follows.
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TABLE II
WILSON’S FUNDAMENTAL CONSTRUCTION

A. Optimal -Codes: The Case

We know from Lemma 7 that
for . Hence, using Theorem 3, we obtain

for all . The
PBD-closure of has been determined by Hamel et al.
[27].

Theorem 7 (Hamel et al. [27]):
.

Corollary 1: for all
.

Proof: The case follows from Theorem 7.
Optimal -codes for are provided
by Lemma 7.

This solves the problem of optimal -codes com-
pletely for the case of .

B. Optimal -Codes: The Case

This case seems considerably more difficult. More tools and
additional results are required. We first consider the case

.

Lemma 14: There exists a PBD for all suf-
ficiently large .

Proof: and . So
by Theorem 4, there exists a PBD for all suffi-
ciently large satisfying and

. These congruences are satisfied if and only if

.

Lemma 15: There exists a -GDD of type for all suf-
ficiently large .

Proof: The set

-GDD of type

where and are fixed, is well known to be PBD-closed (see,
for example, [28]). We know from
Theorem 6 and Lemma 2. So .
The required result now follows from Lemma 14.

Corollary 2: for all
sufficiently large .

Proof: Take a -GDD of type , which exists by
Lemma 15, and apply Theorem 2 with and .
The -code constructed has size

(4)

Next note that since every pair of points not contained in a group
appears in exactly one block of a GDD, we have

(5)

From (4) and (5), we derive

The matching upper bound is provided by Lemma 3.

We now consider the case or . We begin
with some definitions. A transversal design TD is a

-GDD of type , and is equivalent to the existence of
mutually orthogonal Latin squares of side .

Theorem 8 (Chowla et al. [29]): For any fixed , there exists
a constant such that a TD exists for all .

We use Wilson’s Fundamental Construction [20], described
in Table II, to construct GDDs that we require.

Theorem 9: There exist -GDDs of types and
for all sufficiently large .

Proof: Let be sufficiently large so that
a TD exists by Theorem 8. Take this TD as the
master GDD in Wilson’s Fundamental Construction and assign
weight four to all points in nine groups and assign weight zero
or four to the points in the other two groups. The ingredient
GDDs are -GDDs of types and . These ingre-
dient GDDs all exist.

1) There exists a -GDD of type [27]. Delete from
this GDD a point not in the group of size nine. By taking
the blocks through (with deleted) as groups and the
group of size nine as a block gives the required -GDD
of type .

2) The -GDDs of types and are provided by
Theorem 6.

Hence, Wilson’s Fundamental Construction gives a
-GDD of type for .

Let and . Now adjoin three ideal
points to this GDD and fill in the groups with -GDDs of
types and . These GDDs all exist by Lemma
15 since we can always choose and to be sufficiently large.
By aligning the three ideal points with the last group, we obtain
a -GDD of type . Furthermore, we can
always choose if . The
theorem now follows.
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Corollary 3: for all
sufficiently large or .

Proof: The upper bound on is given by
Lemma 3. For the lower bound, take -GDDs of types

and , which exist by Theorem 9,
and apply Theorem 2 with and . It can be
checked in a manner similar to the proof of Corollary 2 that the

-codes constructed have the required size.

We summarize the results of this section as follows.

Theorem 10: for all
odd sufficiently large.

As a consequence, the exact value of is now
known for all sufficiently large.

C. Some Optimal -Codes

Svanström et al. [12] showed that
and . Hence, using Theorem 3, we obtain

and
for all .

Lemma 16: For all sufficiently large or

Proof: By Theorem 4, contains all sufficiently
large integers or . So the values of

and are as claimed. For the
value of , note that is a refinement of

and apply Lemma 6. So .
The corresponding upper bound is from Lemma 1.

VII. OPTIMAL CONSTANT-COMPOSITION CODES OF WEIGHT

AND DISTANCE

Let , and .
Lemma 1 gives

So when satisfies

and

we have

Lemma 17: for all sufficiently
large or .

Proof: Lemma 4 gives . So
we only have to establish the lower bound. Lemma 10 gives

for .
By Theorem 3, for all

TABLE III
ELEMENTS THAT ARE NOT IN OR NOT KNOWN TO BE IN B(f4; 7; 8; 9g)

TABLE IV
ELEMENTS THAT ARE NOT IN OR NOT KNOWN TO BE IN B(f8;9; 10g) (a-b

DENOTES THE NUMBERS a; a + 1; . . . ; b)

. Now, and
. It follows from Theorem 4 that

contains all sufficiently large satisfying
and , which are

satisfied if and only if or .

Lemma 18: for all sufficiently
large or .

Proof: Lemma 4 gives .
So we only have to establish the lower bound. Lemma 11 gives

for and . By The-
orem 3, for all .
Now, and . It follows from
Theorem 4 that contains all sufficiently large sat-
isfying and , which
are satisfied if and only if or .

VIII. OPTIMAL QUATERNARY CONSTANT-COMPOSITION

CODES OF WEIGHT THREE

A. The Case of Distance Three

From Lemma 5, for all . We
also know from Lemma 8 that
for . Hence, using Theorem 3, we obtain

for all
. The PBD-closures of and

have been determined by Mullin et al. [30], and Colbourn and
Ling [31], respectively.

Theorem 11 (Mullin et al. [30]): A PBD ex-
ists for all integers and not in Table III.

Theorem 12 (Colbourn and Ling [31]): A PBD
exists for all integers and not in Table IV.

Lemma 19: The following GDDs exist:
i) -GDD of type ;

ii) -GDD of type ;
iii) -GDD of type .

Proof: Follows from Theorem 5.

Combining the above results with Lemma 12 gives the fol-
lowing.

Corollary 4: , for all , ex-
cept for when we have
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and , and except possibly for
.

Proof: By Theorems 11 and 12,
, for all , except for

The value of for and is deter-
mined by Lemma 12, while Lemma 8 determines the value of

for

The value of for follows
from Lemma 19 and Theorem 2.

B. The Case of Distance Four

We know from Lemma 5 that
when is odd. We also know from Lemma 9 that

when . Hence,
using Theorem 3, we obtain
for all . The PBD-closure of has not
been determined precisely, but Theorem 4 gives the following.

Lemma 20: A PBD exists for all sufficiently
large integers .

The following is now immediate.

Corollary 5: For all sufficiently large integers
.

Lemma 21: For all sufficiently large integers
.

Proof: For even, is given
by Lemma 5, so we just need to exhibit a matching lower bound
for large enough.

Let be large enough so that an optimal -
code exists. This code has size by Corollary 5.
For each position , any two codewords agreeing in a nonzero
value in position must have their remaining nonzero positions
all different from each other. Hence, there are at most of
these. Since a nonzero value in position can take on three dif-
ferent values, the total number of codewords having nonzero
value in position is at most . Therefore, shortening an
optimal -code in any position results in an

-code of size at least

C. The Case of Distance Five

Lemma 22:

if
if
if
if

Proof: The cases can be easily verified. For ,
taking

together with all its cyclic shifts gives the codewords of an
-code. This together with Lemma 5 proves the

required result.

IX. SUMMARY

The following summarizes the key results obtained in this
paper.

Theorem 13: For all sufficiently large ,
i)

if or

if

ii)

iii)

iv)

It follows that the size of constant-composition codes of weight
three is now determined for all sufficiently large lengths. Previ-
ously, only was determined for even [11].

X. CONCLUSION

In this paper, we established an interesting PBD-closure
result for the set of lengths of constant-composition codes
having size of the form , for some constant , provided
its distance is not too small. As a consequence of Wilson’s
theory of PBD-closure, the size of optimal constant-composi-
tion codes can be determined for infinitely many from just
an example of an optimal code. More precise constructions
based on group divisible designs are also given, which en-
abled us to determine the size of several families of optimal
constant-composition codes. In particular, the size of optimal
constant-composition codes of weight three is determined for
all lengths sufficiently large.

The main purpose of this paper was to introduce the approach
of PBD-closure as a technique for determining the size of op-
timal constant-composition codes. The reader may notice the
following:

i) the size of optimal codes are determined only for suffi-
ciently large lengths, and

ii) coverage of the application of our approach is not
comprehensive.
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First, it is indeed possible to derive concrete bounds on the
length of codes, and often even we are able to derive a specific
finite set of possible exceptions, for which the size of optimal
codes can be determined. However, such derivations are usually
highly technical, require deep methods in combinatorial design
theory, and would present a distraction from the main method
of this paper if pursued. Second, it is impossible to be compre-
hensive in covering the application of our approach due to its
general nature. We have illustrated this by determining the size
of some families of optimal constant-composition codes. More-
over, the technique does not only work for optimal constant-
composition codes. It can also be applied to the construction of
“good” nonoptimal constant-composition codes. We are certain
that the approach taken in this paper will yield exact determina-
tion or better lower bounds of for more parameter
sets through the construction of larger classes of group divisible
designs and the discovery of more optimal constant-composi-
tion codes.
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