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Distributed oblivious transfer (DOT) was introduced by Naor and Pinkas (2000) [31], and
then generalized to (k, �)-DOT-

(n
1

)
by Blundo et al. (2007) [8] and Nikov et al. (2002) [34].

In the generalized setting, a (k, �)-DOT-
(n

1

)
allows a sender to communicate one of n

secrets to a receiver with the help of � servers. Specifically, the transfer task of the sender
is distributed among � servers and the receiver interacts with k out of the � servers
in order to retrieve the secret he is interested in. The DOT protocols we consider in
this work are information-theoretically secure. The known (k, �)-DOT-

(n
1

)
protocols require

linear (in n) communication complexity between the receiver and servers. In this paper,
we construct (k, �)-DOT-

(n
1

)
protocols which only require sublinear (in n) communication

complexity between the receiver and servers. Our constructions are based on information-
theoretic private information retrieval. In particular, we obtain both a specific reduction from
(k, �)-DOT-

(n
1

)
to polynomial interpolation-based information-theoretic private information

retrieval and a general reduction from (k, �)-DOT-
(n

1

)
to any information-theoretic private

information retrieval. The specific reduction yields (t, τ )-private (k, �)-DOT-
(n

1

)
protocols of

communication complexity O (n1/�(k−τ−1)/t�) between a semi-honest receiver and servers
for any integers t and τ such that 1 � t � k−1 and 0 � τ � k−1−t. The general reduction
yields (t, τ )-private (k, �)-DOT-

(n
1

)
protocols which are as communication-efficient as the

underlying private information retrieval protocols for any integers t and τ such that
1 � t � k − 2 and 0 � τ � k − 1 − t.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In an oblivious transfer protocol a sender sends information to a receiver such that the sender is oblivious to the informa-
tion it sends. Specifically, in a one-out-of-n oblivious transfer, denoted by

(n
1

)
-OT, the sender has n secrets W1, . . . , Wn , the

receiver has an index i ∈ [n], and the sender communicates W i to the receiver such that the receiver learns no information
about the remaining secrets and the sender knows nothing about i. The notion of oblivious transfer was introduced by
Rabin [36] and then redefined in the form of

(2
1

)
-OT by Even et al. [19] and

(n
1

)
-OT by Brassard et al. [10], respectively. The(2

1

)
-OT,

(n
1

)
-OT and Rabin’s OT have been shown equivalent to each other [9,17]. As an important cryptographic primitive,

oblivious transfer has found fundamental applications in cryptographic studies and protocol design [23,24,30,11,15,25].
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Fig. 1. DOT-related models.

Oblivious transfer has been implemented under a variety of assumptions [36,19,7,32,1,22,26,29]. However, these imple-
mentations are computationally secure and involve heavy public-key operations. Naor and Pinkas [31] introduced distributed
oblivious transfers (DOT) which are information-theoretically secure and computationally efficient. Specifically, their (k, �)-
DOT-

(2
1

)
protocols [31] are based on polynomial interpolation and only involve arithmetic operations over finite fields.

Subsequently, the (k, �)-DOT-
(2

1

)
was generalized to (k, �)-DOT-

(n
1

)
for any positive integer n by Blundo et al. [8] and Nikov

et al. [34]. Informally, a (k, �)-DOT-
(n

1

)
(see Fig. 1) involves a sender D who has n secrets W1, . . . , Wn , a receiver U who

has an index i ∈ [n], and � servers S1, . . . ,S� . It consists of a setup stage when the sender D distributes the secrets among
the � servers by sending to each server Sh a message, and an oblivious transfer stage when the receiver U contacts k out
of the � servers to compute the secret W i . It is required that D learns no information on i and U learns no more in-
formation except W i . More precisely, a (t, τ )-private (k, �)-DOT-

(n
1

)
protocol should satisfy: (I) after the oblivious transfer

stage, any coalition of up to t servers learns no information on i; (II) before the oblivious transfer stage, the receiver
learns no information on the sender’s secrets, even if it colludes with up to τ servers; (III) after the oblivious trans-
fer stage, a malicious receiver is able to obtain at most one of the n secrets, even if it colludes with up to τ malicious
servers.

Distributed oblivious transfers have important applications in the privacy preserving architecture of Naor et al. [33]. The
architecture involves an auction issuer, several auctioneers and numerous bidders. Typically, in privacy preserving auctions, the
auctioneers publish the details of the auctions they are organizing, receive both encrypted bids from the bidders and garbled
programs from the auction issuer, and then compute and publish the auctions. The privacy of the bidders is preserved as
long as the auction issuer and auctioneers do not collude. Let the auction issuer play the roles of sender and servers and the
auctioneer play the role of receiver in the DOT model. Then any DOT protocol provides a solution for the privacy preserving
auction problem. The known (k, �)-DOT-

(n
1

)
protocols require the receiver to communicate Ω(n) bits with the contacted

servers for retrieving one secret. The communication cost is unaffordable whenever n is large. Therefore, for a DOT-based
privacy preserving auction, the auctioneers necessarily communicate a large number of bits with the auction issuer in order
to compute and publish an auction. In the described scenario, communication-efficient DOT protocols, in which the receiver
and servers exchange a much smaller number of bits, are preferred.

In this work, we construct communication-efficient DOT protocols. We propose both a specific reduction from
communication-efficient (k, �)-DOT-

(n
1

)
to polynomial interpolation-based information-theoretic private information retrieval

(PIR) [14,5,38] and a general reduction from communication-efficient (k, �)-DOT-
(n

1

)
to any information-theoretic PIR. The

specific reduction yields DOT protocols of sublinear communication complexity between the receiver and servers. The gen-
eral reduction yields extremely communication-efficient DOT protocols due to the recent progress in the research of PIR and
locally decodable codes (LDCs) [39,18].

1.1. Related work

Private information retrieval (PIR). A t-private k-server information-theoretic private information retrieval protocol [14]
allows a user U to retrieve a data item W i from k servers S1, . . . ,Sk , each of which has a copy of the database
W = W1, . . . , Wn , such that any coalition of up to t servers learns no information on i. The efficiency of a PIR protocol
is measured by its communication complexity, i.e., the total number of bits exchanged between the user and servers. Chor
et al. [14] proved that in a single-server information-theoretic PIR protocol, the user has to exchange Ω(n) bits for retrieving
one data item. On the other hand, if there are k � 2 non-communicating servers, then the communication complexity can
be as small as O (n1/k). There are numerous constructions [14,2,6,5,38,39,18,28,12] of PIR protocols. The most efficient 1-
private 2-server and 3-server PIR protocols are of communication complexity O (n1/3) [14] and exp(O (

√
log n log log n)) [18],

respectively. For k > t > 1, the t-private PIR protocols [5,38] are of communication complexity O (n1/�(2k−1)/t�). To compare
with (k, �)-DOT-

(n
1

)
, one may think that there is a dummy sender D who distributes the database W to servers in any k-

server PIR protocol (see Fig. 1). In this comparative PIR model, the secrets of D are completely disclosed to the servers and,
furthermore, the user is not prevented from obtaining more information than what he is interested in (e.g., an execution of
the 2-server PIR protocol of [14] reveals O (n1/3) secrets to U ).

Symmetrically private information retrieval (SPIR). In a t-private k-server symmetrically private information retrieval [21],
a user U is allowed to retrieve a data item W i from k-servers S1, . . . ,Sk , each of which has a copy of the database W ,
such that any coalition of up to t-servers learns no information on i and U learns no more information except W i . Gertner
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et al. [21] proposed both general reductions and specific reductions from SPIR to PIR in the common random string model
(i.e., all servers share a common random string X ). In particular, their reductions preserve the asymptotic communication
complexity of the underlying PIR protocols and require the use of a small number of additional auxiliary servers. One may
think that there is a dummy sender D who distributes W and X to all servers in an SPIR protocol (see Fig. 1). In this
comparative SPIR model, the secrets of D are completely disclosed to the servers. Therefore, SPIR does not provide solutions
for DOT.

Random server model for private information retrieval (RPIR). In the PIR and SPIR models, the database W is replicated among
multiple non-communicating servers. This data replication problem may be serious because each server could be broken
into or sell the database behind the legitimate database owner’s back. Gertner et al. [20] suggested that the database owner
secret-shares W among random servers instead of simply replicating W among non-communicating servers. A PIR protocol
in this random server model consists of a setup stage when the database owner D shares W among the random severs and
an on-line stage when the user U retrieves a data item W i by interacting with the random servers (see Fig. 1). Gertner et al.
[20] proposed a general reduction from RPIR to PIR. Specifically, in order to preserve the asymptotic communication com-
plexity of the underlying PIR protocols, their reduction requires a large number of random servers. As most PIR protocols,
the RPIR protocols cannot prevent a user from obtaining more information than what he is interested in.

Locally random reduction (LRR). A (t,k)-locally random reduction [4] allows a user to evaluate a function f at a private input
i with the help of k servers, each of which has a reduced form of the function f , such that any coalition of up to t servers
learns no information on i. As PIR and RPIR, LRR cannot prevent the user from learning more information on f than f (i).

Commodity-based private information retrieval (cbPIR). A commodity-based private information retrieval [16] involves a user
who wants to retrieve W i of a database W , a number of database servers which have W and commodity severs which
send off-line messages (called commodities). A cbPIR consists of an off-line commodity stage when the commodity servers
send commodities to the user and database servers and an on-line retrieval stage when the user retrieves W i by interacting
with the database servers. Although the commodity servers do not have any information on the database, the messages
they send in the off-line commodity stage dramatically reduce the overall communication involving the user in the on-line
retrieval stage. As PIR, RPIR and LRR, a cbPIR cannot prevent the user from obtaining more information on W than what he
is interested in.

Private information storage (PIS). A private information storage [35] allows users to privately read and write into a database
W which is shared among a number of non-communicating servers such that each individual server learns absolutely no
information on which location the users are reading or writing, and what the users are writing into the database. Ostrovsky
et al. [35] built their PIS schemes on information-theoretic PIR. Specifically, they proposed a reduction from PIS to PIR which
requires only one additional server and a polylogarithmic overhead in communication. As the previous models, PIS does not
provide any privacy against malicious users.

Other models. Rivest [37] considered oblivious transfers in the trusted initializer model. A
(n

1

)
-OT in this model involves a

sender who has n secrets, a receiver who wants to learn one of the n secrets and a trusted initializer. It consists of a setup
stage when the trusted initializer sends private information to the sender and receiver, and a request–reply stage when the
receiver learns one secret by interacting with the sender. OT in this model is different from DOT because all secrets are
completely disclosed to the sender (playing the role of servers in DOT model) who participates in the on-line request–reply
stage and obliviously communicates one secret to the receiver.

1.2. Our results

In this work, we propose both a specific reduction from (k, �)-DOT-
(n

1

)
to polynomial interpolation-based information-

theoretic PIR and a general reduction from (k, �)-DOT-
(n

1

)
to any information-theoretic PIR.

Specific reduction from (k, �)-DOT-
(n

1

)
to polynomial interpolation-based PIR. We obtain a non-black-box construction of (t, τ )-

private (k, �)-DOT-
(n

1

)
from any polynomial interpolation-based t-private (k − τ )-server PIR for semi-honest receivers. The

DOT protocols we obtain have sublinear communication complexity between the receiver and servers. Specifically, we have
that (due to Theorem 1):

– For any integers t , τ , k, � such that 1 � t � k − 1, 0 � τ � k − 1 − t , and t + τ + 1 � k � �, there is a (t, τ )-private
(k, �)-DOT-

(n
1

)
protocol of communication complexity O (n1/�(k−1−τ )/t�) between a semi-honest receiver and servers.

Our specific reduction yields (t, τ )-private (k, �)-DOT-
(n

1

)
for a wide range of values of t , τ , k and �. It shows a tradeoff

between the receiver–server communication complexity and privacy.
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General reduction from (k, �)-DOT-
(n

1

)
to PIR. We obtain a black-box construction of (t, τ )-private (k, �)-DOT-

(n
1

)
from any

information-theoretic t-private (k − t − τ )-server PIR. Specifically, we have that (due to Theorem 3):

– For any integers t , τ , k, � such that k � �, 1 � t � k − 2, and 0 � τ � k − 1 − t , if there is a t-private (k − t − τ )-server
PIR protocol of communication complexity γ (n), then there is a (t, τ )-private (k, �)-DOT-

(n
1

)
protocol of communication

complexity O (γ (n)) between the receiver and servers.

Applying the general reduction to the polynomial interpolation-based PIR protocols of [5,38], we have that (due to Corol-
lary 1):

– For any integers t , τ , k, � such that 1 � t � k − 2, 0 � τ � k − 1 − t , and 3t+1
2 + τ � k � �, there is a (t, τ )-private

(k, �)-DOT-
(n

1

)
protocol of communication complexity O (n1/� 2(k−t−τ )−1

t �) between the receiver and servers.

The general reduction allows us to obtain DOT protocols of extremely small receiver–server communication complexity due
to the recent progress in the research of PIR and LDCs. Applying our general reduction to the t-private 3t -server PIR protocols
of communication complexity exp(O (

√
log n log log n)) (which are implied by [3,18]), we have that (due to Corollary 2):

– For any integers t , τ , � such that �� 3t +t +τ , there is a (t, τ )-private (3t +t +τ , �)-DOT-
(n

1

)
protocol of communication

complexity exp(O (
√

log n log log n)) between the receiver and servers.

For small values of t , τ , the above DOT protocols have extremely small communication complexity between the receiver and
servers. For instance, for t = τ = 1 and � � 5, there is a (1,1)-private (5, �)-DOT-

(n
1

)
protocol of communication complexity

exp(O (
√

log n log logn)) between the receiver and servers such that: (I) after the oblivious transfer stage, each individual
server learns absolutely no information about which secret the receiver is interested in; (II) before the oblivious transfer
stage, the receiver learns no information about the secrets, even if it colludes with any single server; (III) after the oblivious
transfer stage, a malicious receiver is able to obtain at most one of the secrets, even if it colludes with one malicious
server.

For some settings of the parameters � and k, our reductions are inefficient in terms of setup complexity, i.e., each server
may receive O (

(
�−1
k−1

)(k−1
t

)
n + (

�
k

)(k
t

)
) field elements in the setup stage. However, this complexity becomes reasonable if � = k

and t is a constant less than k. Note that DOT protocols in a setting where � = k have been considered by Cheong et al. [13].
Our reductions are efficient for that setting.

1.3. Organization

In Section 2, we provide both an informal and a formal definition of (t, τ )-private (k, �)-DOT-
(n

1

)
, and develop several

related information equalities; in Section 3, we present our specific reduction from DOT to polynomial interpolation-
based information-theoretic private information retrieval; in Section 4, we present our general reduction from DOT to
any information-theoretic private information retrieval; in Section 5 we give an evaluation of both reductions; finally, in
Section 6, we conclude the paper.

2. Preliminaries

In this section, we define (t, τ )-private (k, �)-DOT-
(n

1

)
protocols and develop related information equalities which ef-

fectively simplify our security proofs. Our definition follows the vein of [8] and has the strongest requirement for
sender’s privacy which is called sender’s privacy II in our definition. The (k − 1,0)-private (k, �)-DOT-

(n
1

)
protocols achiev-

ing sender’s privacy II have been called strongly private in [8] and are necessarily multi-round. However, our construc-
tions in Sections 3 and 4 do yield one-round (t, τ )-private (k, �)-DOT-

(n
1

)
protocols achieving sender’s privacy II when

(t, τ ) �= (k − 1,0).

2.1. Informal description of (t, τ )-private (k, �)-DOT-
(n

1

)
Let t , τ , k, �, and n be nonnegative integers. A one-round (t, τ )-private (k, �)-DOT-

(n
1

)
protocol P involves:

– a sender D who has n secrets W = W1, . . . , Wn , which are typically n elements of a finite field F;
– a receiver U who has an index i ∈ [n] and wants to retrieve W i ;
– additional � servers S1, . . . ,S�;

and consists of two stages:
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– a setup stage when D sends to each server Sh a message Dh = D(h, W , X) in a secure way, where h ∈ [�] and X is the
random input of D;

– an oblivious transfer stage when U interacts with k out of the � servers, say SK = {Sh: h ∈ K } where K ⊆ [�] and |K | = k,
sends to each server Sh a query Q h = Q(n, i, K , Y )h and receives the answer Ah = Sh(Dh, Q h), where Y is the random
input of U ,

such that the following requirements are satisfied:

– Correctness: The receiver U is able to correctly determine W i after the oblivious transfer stage;
– Receiver’s privacy: A coalition of up to t servers learns no information on i after the oblivious transfer stage;
– Sender’s privacy I: A coalition of U and up to τ servers learns no information on W before the oblivious transfer stage;
– Sender’s privacy II: Given the transcript of communication with k servers, a coalition of U and up to τ malicious servers

learns at most one secret.

2.2. Formalization of correctness and privacy

Let Ū and S̄h be the corrupted U and Sh . We define the related random variables as follows:

– W and I: the sequence of n secrets held by D and the index held by U , respectively;
– X and Y: the random inputs of D and U respectively;
– Dh: the message sent to Sh by D during the setup stage;
– Qh: the query sent to server Sh by U during the oblivious transfer stage;
– Ah: the answer sent to U by server Sh during the oblivious transfer stage;
– Ch: the transcript of communication between U and Sh during the oblivious transfer stage, i.e., Ch = (Qh,Ah);
– Q̄h: the query sent to server Sh by Ū during the oblivious transfer stage;
– Āh: the answer sent to U by S̄h or sent to Ū by Sh during the oblivious transfer stage;
– C̄h: the transcript of communication between (S̄h,U) or (Sh, Ū) during the oblivious transfer stage, i.e., C̄h = (Q̄h, Āh).

Let U j be a random variable for every j ∈ N. For any J ⊆ N, we denote by U J = (U j: j ∈ J ) the sequence of random
variables U j indexed by j ∈ J . Let H(U) = −∑

u Pr[U = u] log Pr[U = u] be the binary entropy of U. Let U′ be a random
variable. We denote by Pr[U = u | u′] the conditional probability that U = u given that U′ = u′ .

Assumptions: As in [34,8], our formal definitions and security proofs are based on the following assumptions (1)–(8):

– The random input of U is truly random and independent of the inputs of D, i.e., it holds that:

H(Y | W,X) = H(Y); (1)

– The random input of D is truly random and independent of the inputs of U , i.e., it holds that:

H(X | I,Y) = H(X); (2)

– The private input of U is independent of any other data in the setup stage, i.e., it holds that:

H(I) = H(I | W,X,D[�],Y); (3)

– Every index i ∈ [n] will be the choice of U with positive probability, i.e., it holds that:

Pr[I = i] > 0 for every i ∈ [n]; (4)

– The secrets are all totally independent of each other, i.e., for every K , K ′ ⊆ [n] such that K ∩ K ′ = ∅:

H(WK ′ | WK ) = H(WK ′)3; (5)

– For every K ⊆ [�], the messages sent to SK = {Sh: h ∈ K } are determined by the inputs of D:

H(DK | W,X) = 0; (6)

– For every K ⊆ [�], the queries sent to SK are determined by the inputs of U :

H(QK | I,Y) = 0; (7)

3 The sender’s n secrets are assumed to be implication-free in Section 4.1 of [8], i.e., H(Wi | W j) > 0 whenever i �= j. However, it is pointed out in
Section 4.1 of [8] that the secrets are usually independent.
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– For every K ⊆ [�], the answers of SK are determined by the queries and messages it received:

H(AK | QK ,DK ) = 0.4 (8)

Correctness: The protocol P is said to be correct if for every i ∈ [n] and K ⊆ [�] such that |K | = k,

H(Wi | I = i,Y,CK ) = 0. (9)

Privacy: The protocol P is said to be (t, τ )-private if the following requirements are satisfied:

– Receiver’s privacy: For every T ⊆ [�] such that |T | � t and corrupted servers S̄T ,

H(I | DT ,QT ) = H(I); (10)

– Sender’s privacy I: For every T ⊆ [�] such that |T | � τ and corrupted receiver Ū ,

H(W | I,Y,DT ) = H(W); (11)

– Sender’s privacy II: For every K , T ⊆ [�] such that |K | = k, |T | � τ , index i, random input Y and Ū ,

H(W | I = i,Y = Y , C̄K ,DT ,Wi) = H(W | Wi).
5 (12)

2.3. Related information equalities

In this section, we shall prove several information equalities on the random variables defined in Section 2.2. These
equalities capture the essence of our definition of privacy and simplify the security proofs.

The first equality (see Lemma 1) shows that a set of corrupted servers can learn information on what the receiver is
interested in only from the queries they may obtain from the receiver. Intuitively, this is true because the messages the
corrupted servers may obtain are from either the sender or the receiver. However, the messages from the sender convey no
information on what the receiver is interested in.

Lemma 1. In a one-round (k, �)-DOT-
(n

1

)
protocol, for every T ⊆ [�], it holds that

H(I | DT ,QT ) = H(I | QT ). (13)

Proof. Since H(I | QT ) − H(I | DT ,QT ) = H(DT | QT ) − H(DT | QT , I), it is equivalent to show that H(DT | QT ) = H(DT | QT , I).
Due to (7), we have H(QT | I,Y) = 0 and therefore H(DT ) � H(DT | QT ) � H(DT | QT , I) � H(DT | Y, I). Hence, it suffices to
show that H(DT ) = H(DT | Y, I). Due to (3), we have that H(DT | Y) − H(DT | Y, I) = H(I | Y) − H(I | Y,DT ) = 0 and therefore
H(DT | Y, I) = H(DT | Y). Hence, we turn to show that H(DT ) = H(DT | Y). Due to (6) and (1), we have that H(Y) � H(Y |
DT ) � H(Y | W,X) = H(Y), which implies H(DT ) − H(DT | Y) = H(Y) − H(Y | DT ) = 0 and completes the proof. �

The second equality (see Lemma 2) shows that before the oblivious transfer stage any coalition of the receiver and a set
of corrupted servers can learn information on the secrets of the sender only from what the corrupted servers may obtain
from the sender during the setup stage. Intuitively, this is true because the input and random input of the receiver convey
no information on the sender’s secrets.

Lemma 2. In a one-round (k, �)-DOT-
(n

1

)
protocol, for every T ⊆ [�], it holds that

H(W | I,Y,DT ) = H(W | DT ). (14)

Proof. Due to (3), we have H(W | Y,DT ) − H(W | I,Y,DT ) = H(I | Y,DT ) − H(I | W,Y,DT ) = 0. Therefore, H(W | I,Y,DT ) =
H(W | Y,DT ). It suffices to show H(W | Y,DT ) = H(W | DT ). Since H(W | DT ) − H(W | Y,DT ) = H(Y | DT ) − H(Y | DT ,W), we

4 Following Section 2.2 of [8], we suppose that for every h ∈ [�] the message Dh contains the random bits needed by Sh in an execution of the protocol
and, without loss of generality, the server Sh is deterministic.

5 We are analyzing unconditionally secure protocols. Therefore, following Section 2.2 of [8], we can suppose that the corrupted receiver is deterministic.
For simplicity, we suppose that i is the fixed input actually contributed by Ū and Y is the fixed random input used by Ū , respectively. In case i is not in
{1,2, . . . ,n}, Eq. (12) should be interpreted as H(W | I = i,Y = Y , C̄K ,DT ) = H(W), i.e., the receiver Ū learns nothing.
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need to show H(Y | DT ) = H(Y | DT ,W). Actually, due to (6) and (1), we have that H(Y) � H(Y | DT ) � H(Y | DT ,W) � H(Y |
W,X) = H(Y), which implies the desired equality. �

The last equality (see Lemma 3) shows that given the transcript of the communication between the receiver and the
servers labeled by a k-subset K ⊆ [�], any coalition of the receiver and a set of corrupted servers labeled by T ⊆ [�] can
learn more information on the sender’s secrets only from the messages that ST may obtain from the sender and the
answers that the receiver may obtain from the servers SK\T . Intuitively, this is true because the servers are assumed to be
deterministic and the answers of the servers SK∩T could have been computed by themselves using the messages from both
the sender and the receiver.

Lemma 3. In a one-round (k, �)-DOT-
(n

1

)
protocol, for every i ∈ [n], Y and K , T ⊆ [�] such that |K | = k, it holds that

H(W | I = i,Y = Y ,CK ,DT ,Wi) = H(W | I = i,Y = Y ,AK\T ,DT ),

H(Wi | I = i,Y = Y ,AK\T ,DT ) = 0. (15)

Proof. Due to (9) and (8), we have that H(W | I = i,Y = Y ,CK ,DT ,Wi) = H(W | I = i,Y = Y ,CK ,DT ) and H(AK∩T |
QK∩T ,DK∩T ) = 0. It follows that H(W | I = i,Y = Y ,CK ,DT ) = H(W | I = i,Y = Y ,QK\T ,QK∩T ,AK\T ,AK∩T ,DT \K ,DK∩T ) =
H(W | I = i,Y = Y ,QK ,AK\T ,DT ). Due to (7), we have that H(W | I = i,Y = Y ,QK ,AK\T ,DT ) = H(W | I = i,Y = Y ,AK\T ,DT ),
which implies the first equality of (15). Similarly, the second equality of (15) holds. �
3. Reducing (k, �)-DOT-

(n
1

)
to polynomial interpolation-based PIR

In this section, we first develop a framework for polynomial interpolation-based information-theoretic PIR and then
present a specific reduction from (k, �)-DOT-

(n
1

)
to polynomial interpolation-based information-theoretic PIR in the presence

of semi-honest receivers.

3.1. PIR based on polynomial interpolation

Let S1, . . . ,Sk be k servers, each of which has a copy of the database W = W1, . . . , Wn . Let U be a user who has an
index i ∈ [n] and wants to retrieve W i from the servers without revealing i. A t-private k-server polynomial interpolation-
based private information retrieval protocol (see Protocol 1) is an (n + 1)-tuple P = (E; P1, . . . , Pn), where E : [n] → F

m
q

is an encoding of the indices and each function P j : Fm
q → {0,1} is an m-variate polynomial of degree at most d = � k−1

t �
such that P j(E(a)) = δ j,a for all j,a ∈ [n], where Fq is the finite field of order q > k and δ j,a is equal to 1 if j = a and 0
otherwise. Each server Sh encodes W as an m-variate polynomial P (Z1, . . . , Zm) = ∑n

j=1 W j · P j(Z1, . . . , Zm) of degree at
most d and is associated with a field element λh , where λ1, . . . , λk ∈ Fq \ {0} are distinct. To retrieve W i , the user U picks
t random vectors V 1, . . . , Vt ∈ F

m
q and sends to each server Sh a query Q h = E(i) + λh V 1 + · · · + (λh)t Vt . The server Sh

replies with Ah = P (Q h). At last, U interpolates the univariate polynomial G(λ) = P (E(i) + λV 1 + · · · + λt Vt) of degree at
most k − 1 and outputs G(0) = P (E(i)) = W i . The polynomial interpolation-based PIR protocols of [5,38] are summarized
in Appendix A.

Protocol 1. Polynomial interpolation-based PIR

Input of Sh: the database W = W1, . . . , Wn ∈ F
n
q .

Input of U : the index i ∈ [n].
U : choose V 1, . . . , Vt ∈ F

m
q uniformly and send Q h = E(i) + λh V 1 + · · · + (λh)t Vt to Sh for every h ∈ [k];

Sh: send P (Q h) to U , where P (Z1, . . . , Zm) = ∑n
j=1 W j · P j(Z1, . . . , Zm);

U : interpolate G(λ) = P (E(i) + λV 1 + · · · + λt Vt) and output G(0).

3.2. Reduction in the presence of semi-honest receivers

Let P = (E; P1, . . . , Pn) be a t-private (k − τ )-server polynomial interpolation-based PIR protocol. Protocol 2, described
below, converts P to a (t, τ )-private (k, �)-DOT-

(n
1

)
protocol. During the setup stage, the sender D shares the secrets using

Shamir’s τ -private threshold sharing scheme (TSSS) with every k-subset of the � servers. During the oblivious transfer stage,
the receiver U invokes P with k out of the � servers.
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Protocol 2. (k, �)-DOT-

(n
1

)
based on polynomial interpolation-based PIR

Input of D: n secrets W = W1, . . . , Wn ∈ F
n
q .

Input of U : an index i ∈ [n].
Setup stage

D: choose polynomials B0(λ) = ∑k−1
a=0 B0,aλ

a ∈ Fq[λ] and B j(λ) = ∑τ
a=0 B j,aλ

a ∈ Fq[λ] uniformly such that B0(0) +
B j(0) = W j for every j ∈ [n];
D: define F (λ, Z1, . . . , Zm) = B0(λ) + ∑n

j=1 B j(λ) · P j(Z1, . . . , Zm);

D: for any k-subset K ⊆ [�], choose (XK ,h: h ∈ K ) ∈ F
k
q uniformly such that

∑
h∈K XK ,h = 0;

D: send {{XK ,h: h ∈ K ⊆ [�] and |K | = k}, F (λh, Z1, . . . , Zm)} to Sh for every h ∈ [�].
Oblivious transfer stage

U : choose k servers, say SK = {Sh: h ∈ K }, where K ⊆ [�] and |K | = k;
U : choose V 1, . . . , Vt ∈ F

m
q uniformly and send K , Q h = E(i) + ∑t

a=1(λh)a Va to Sh for every h ∈ K ;

Sh: send Ah = F (λh, Q h)
∏

j∈K\{h}
−λ j

λh−λ j
+ XK ,h to U , where h ∈ K ;

U : output
∑

h∈K Ah .

Lemma 4. Protocol 2 satisfies the correctness requirement.

Proof. The univariate polynomial G(λ) = F (λ, E(i) + λV 1 + · · · + λt Vt) is of degree at most max{k − 1, τ + dt} � k − 1. Due
to Lagrange polynomial interpolation, we have that∑

h∈K

Ah =
∑
h∈K

[
F
(
λh, E(i) + λh V 1 + · · · + (λh)

t Vt
) ∏

j∈K\{h}

−λ j

λh − λ j

]
= G(0) = W i .

Hence, the receiver is able to determine the value of W i by interacting with k servers. �
Referring to Protocol 2, let K be the collection of all k-subsets of [�]. For every K ∈ K and h ∈ K , we denote by XK ,h

the random variable representing XK ,h . For every h ∈ [�] and j ∈ {0,1, . . . ,n}, we denote by B j(λh) the random variable
representing B j(λh). Let

Xk,h = (XK ,h: h ∈ K ∈ K), XB,h = (
B0(λh), . . . ,Bn(λh)

)
, Fh = B0(λh) +

n∑
j=1

B j(λh)P j(Z1, . . . , Zm). (16)

Then the random variable representing the messages sent to Sh by D is

Dh = (Xk,h,Fh). (17)

For every h ∈ [�], let Qh be the random variable representing the query Q h sent to Sh by U . Then we have that

Ah =
∏

j∈K\{h}

−λ j

λh − λ j

[
B0(λh) +

n∑
j=1

B j(λh)P j(Qh)

]
+ XK ,h (18)

is the random variable representing the answer of Sh on receiver’s query Qh and sender’s message Dh . For every h ∈ [�], we
define

D∗
h = (Xk,h,XB,h). (19)

Let T be the collection of all τ -subsets of [�]. Following the notations in Section 2.2, for any T ∈ T , the definitions of the
random variables Xk,T , XB,T , FT , DT , AT and D∗

T are straightforward. It is not hard to see that DT is a function of D∗
T and

therefore H(DT | D∗
T ) = 0.

Let B = (B0,0, . . . ,Bn,τ ) be a random vector describing the coefficient vector B = (B0,0, . . . , Bn,τ ) of the random polyno-
mials B0(λ), . . . , Bn(λ). For a specific τ -subset T = {1,2, . . . , τ } ∈ T , we define

Λ′ =

⎡
⎢⎢⎢⎣

1 λ1 · · · λk−1
1

1 λ2 · · · λk−1
2

...
...

...
...

1 λτ · · · λk−1
τ

⎤
⎥⎥⎥⎦ , Λ′′ =

⎡
⎢⎢⎢⎣

1 λ1 · · · λτ
1

1 λ2 · · · λτ
2

...
...

...
...

1 λτ · · · λτ
τ

⎤
⎥⎥⎥⎦

and Λ = diag(Λ′,Λ′′, . . . ,Λ′′), where Λ′′ occurs exactly n times.
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Lemma 5. Protocol 2 satisfies the receiver’s privacy requirement.

Proof. Let ST = {Sh: h ∈ T } be any coalition of t servers, where T is a t-subset of [�]. We show that the receiver’s index is
protected, that is a coalition of t servers do not learn any information about the index. We need to show that H(I | DT ,QT ) =
H(I). Due to Lemma 1, it suffices to show that H(I | QT ) = H(I). For every i ∈ [n] and Q T = (Q h: h ∈ T ) ∈ (Fm

q )t , we have
that Pr[QT = Q T | I = i] = 1/qmt due to the privacy of Shamir’s t-private TSSS. It follows that I and QT are independent.
Hence, H(I | QT ) = H(I). �

The following lemma shows any coalition of τ servers and the user has no information about the secrets after the setup
stage.

Lemma 6. Protocol 2 satisfies the sender’s privacy I requirement.

Proof. Let ST be a set of servers colluding with U , where T ∈ T is arbitrary. For simplicity, we suppose that T =
{1,2, . . . , τ }. Due to Lemma 2, it suffices to show H(W | DT ) = H(W). It is obvious that

H
(
W

∣∣ D∗
T

) = H
(
W

∣∣ DT ,D∗
T

)
� H(W | DT )� H(W).

On the other hand, we have that H(W | XB,T ) − H(W | D∗
T ) = H(Xk,T | XB,T ) − H(Xk,T | XB,T ,W) = 0 in Protocol 2. Hence,

H(W | XB,T ) = H(W | D∗
T ). We turn to show that H(W | XB,T ) = H(W).

Let W ∈ F
n
q and XB,T = (B0(λ1), . . . , Bn(λτ )) ∈ F

(n+1)τ
q be arbitrary. For every j ∈ [n], let ρ j = (1,0, . . . ,0,1,0, . . . ,0) ∈

F
k+n(τ+1)
q be a vector with nonzero entries ρ

j
1 = 1 and ρ

j
k+( j−1)τ+1 = 1. We calculate the number of coefficient vectors B

of the random polynomials B0(λ), . . . , Bn(λ), which are chosen randomly by D in Protocol 2 and satisfy the following two
linear equation systems

(I) Λ · B =
⎡
⎣ B0(λ1)

...

Bn(λτ )

⎤
⎦ and (II) ρ · B =

⎡
⎣ρ1

...

ρn

⎤
⎦ · B =

⎡
⎣ W1

...

Wn

⎤
⎦ (20)

simultaneously. Clearly, the linear equations given by (I) and (II) ensure that XB,T = XB,T and W = W , respectively. It is

clear that the matrix
[ Λ

ρ

]
is of full rank (n + 1)τ + n and therefore (20) has exactly qk−τ solutions. On the other hand, ρ is

of full rank n and (II) have exactly qk+nτ solutions. It follows that

Pr[XB,T = XB,T | W = W ] = the number of solutions of (20)

the number of solutions of (II)
= 1

q(n+1)τ
,

i.e., XB,T | W is uniformly distributed in its domain F
(n+1)τ
q , which implies that W and XB,T are independent. Hence,

H(W | XB,T ) = H(W). �
Finally, we prove privacy after the oblivious transfer stage.

Lemma 7. Protocol 2 satisfies the sender’s privacy II requirement.

Proof. Let i ∈ [n], K ∈ K and T ∈ T be arbitrary. For simplicity, we suppose T = {1,2, . . . , τ }. Let Y = (Va: a ∈ [t]) ∈ (Fm
q )t

be the random vectors chosen by U . Due to Lemma 3, it suffices to show that

H(W | I = i,Y = Y ,AK\T ,DT ) = H(W | Wi).

Let Γ = [n] \ {i}. We have that H(W | I = i,Y = Y ,AK\T ,DT ) = H(WΓ | I = i,Y = Y ,AK\T ,DT ) due to Eq. (15) and H(W |
Wi) = H(WΓ ) due to Eq. (5). Thus, it is sufficient to show that

H(WΓ | I = i,Y = Y ,AK\T ,DT ) = H(WΓ ).

Since H(DT | D∗
T ) = 0, we have that H(WΓ ) � H(WΓ | I = i,Y = Y ,AK\T ,DT ) � H(WΓ | I = i,Y = Y ,AK\T ,D∗

T ). Hence, it is
enough to show that

H
(
WΓ

∣∣ I = i,Y = Y ,AK\T ,D∗
T

) = H(WΓ ).

Let WΓ ∈ F
n−1
q and (AK\T , D∗

T ) be such that Pr[WΓ = WΓ ] > 0 and Pr[AK\T = AK\T ,D∗
T = D∗

T | WΓ = WΓ , I = i,Y =
Y ] > 0. We want to compute the conditional probability of (AK\T , D∗

T ) when D’s secrets indexed by Γ are WΓ and U ’s
index and random input are i and Y , respectively. In other words, we want to compute

p1 = Pr
[
AK\T = AK\T ,D∗ = D∗ ∣∣ WΓ = WΓ , I = i,Y = Y

]
. (21)
T T
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Note that D∗
T = (Xk,T , XB,T ), where Xk,T and XB,T are in the domains of Xk,T and XB,T , respectively. Clearly, Xk,T is inde-

pendent of WΓ for fixed i and Y in Protocol 2. For every h ∈ T and K ∈K such that h ∈ K , the server Sh receives a random
field element XK ,h . It follows that Sh receives exactly

(
�−1
k−1

)
random field elements in an execution of Protocol 2, i.e., the

message Xk,h received by Sh contains exactly
(
�−1
k−1

)
random field elements. Therefore, the messages Xk,T received by servers

ST contain exactly τ
(
�−1
k−1

)
random field elements. Hence, we have that

Pr[Xk,T = Xk,T | WΓ , i, Y ] = 1

qτ(�−1
k−1)

. (22)

Due to Eq. (15), we have that H(Wi | I = i,Y = Y ,AK\T ,D∗
T ) � H(Wi | I = i,Y = Y ,AK\T ,DT ) = 0. Therefore, the data

(AK\T , D∗
T ) uniquely determines a secret W i ∈ Fq for fixed i and Y . Due to Eq. (5) and the choice of Xk,T in Protocol 2, we

have that Wi is independent of (Xk,T ,WΓ ) for fixed i and Y . Hence,

Pr[Wi = W i | Xk,T , WΓ , i, Y ] = Pr[Wi = W i]. (23)

The choice of XB,T in Protocol 2 should be consistent with the value of W and independent of any other data. Therefore, as
in the proof of Lemma 6, we have that

Pr[XB,T = XB,T | W i, Xk,T , WΓ , i, Y ] = Pr[XB,T = XB,T | W i, WΓ ] = 1

q(n+1)τ
. (24)

Due to Eqs. (7), (16) and (18), the tuple (XB,T , W i, Xk,T , WΓ , i, Y ) uniquely determines AT . Clearly, any valid answers
AK\T replied by servers SK\T should satisfy

∑
h∈K\T Ah +∑

h∈T Ah = W i . Therefore, the domain of AK\T is equal to AK\T =
{(a1, . . . ,a|K\T |):

∑|K\T |
h=1 ah = W i −∑

h∈T Ah}. Furthermore, it is clear that AK\T is uniformly distributed on AK\T (see step 3
in the oblivious transfer stage of Protocol 2). Hence,

Pr[AK\T = AK\T | XB,T , W i, Xk,T , WΓ , i, Y ] = 1

|AK\T | = 1

q|K\T |−1
. (25)

Due to Eq. (21), p1 is equal to the product of the left-hand sides of Eqs. (22), (23), (24) and (25). Hence, we have that

p1 = 1

qτ(�−1
k−1)

· Pr[Wi = W i] · 1

q(n+1)τ
· 1

q|K\T |−1
,

which implies that (AK\T ,D∗
T ) and WΓ are independent as long as i and Y are fixed. It follows that H(WΓ | I = i,Y = Y ,

AK\T ,D∗
T ) = H(WΓ ). �

Communication complexity. The receiver sends to each server Sh a vector Q h ∈ F
m
q and a subset K ∈ K as its query

and receives an answer Ah ∈ Fq in return. Therefore, the communication complexity between the receiver and servers
is γ (n) = k(m + 1) log q + log

(
�
k

)
. The polynomial interpolation-based PIR protocols enumerated in Appendix A require

m = O (n1/� k−τ−1
t �). Hence, we have that:

Theorem 1. Let t, τ , k, � be positive integers such that � � k � t + τ + 1. Protocol 2 is a (t, τ )-private (k, �)-DOT-
(n

1

)
protocol of

communication complexity O (n1/� k−τ−1
t �) between a semi-honest receiver and servers.

4. Reducing (k, �)-DOT-
(n

1

)
to any PIR

In this section, we build communication-efficient DOT from any PIR. The privacy of any 1-private PIR protocols can
be boosted without increasing the asymptotic communication complexity due to the transformation of [3]. On the other
hand, [21] provides a method of converting any PIR to SPIR without increasing the asymptotic communication complexity.
Eventually, the reduction from DOT to SPIR (see Protocol 3) enables us to build DOT from any PIR.

Replication-based threshold secret sharing scheme. A τ -private k-participant replication-based threshold secret sharing scheme
CNFτ ,k (based on [27]) involves a dealer D who has a secret g ∈ G and k participants S1, . . . ,Sk , where G is an abelian
group. The scheme proceeds as follows: (I) The dealer D chooses

(k
τ

)
random group elements, each of which is indexed by

a τ -subset of [k], say {gT : T ⊆ [k], |T | = τ }, such that
∑

T gT = g; (II) The dealer D sends {gT : h /∈ T } to Sh for every
h ∈ [k]. The τ -privacy of CNFτ ,k follows from the fact that any τ participants ST do not know the share gT .
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Reduction from (k, �)-DOT-
(n

1

)
to SPIR. Let t , τ , k, � be positive integers such that t +τ < k � �. We reduce (t, τ )-private (k, �)-

DOT-
(n

1

)
to any t-private (k − τ )-server SPIR by the following Protocol 3. During the setup stage, the sender D distributes

the secrets W among each k-subset of servers SK using CNFτ ,k . During the oblivious transfer stage, the receiver U interacts
with k out of the � servers. Specifically, U invokes an instance of the SPIR with each subset of k − τ servers SK\T , where
T ⊆ K and |T | = τ . The receiver U receives k − τ answers from SK\T which reveal [W K ,T ]i , the i-th data item of W K ,T .

Protocol 3. (k, �)-DOT-

(n
1

)
based on SPIR

Input of D: n secrets W = W1, . . . , Wn ∈ F
n
q .

Input of U : an index i ∈ [n].
Procedure: P = (Q,A,R), a t-private (k − τ )-server SPIR protocol.
Setup stage

D: for every K ∈K, T ∈ T such that T ⊆ K , choose W K ,T ∈ F
n
q uniformly such that

∑
T W K ,T = W ;

D: send Dh = {W K ,T : K ∈K, T ∈ T , T ⊆ K , h ∈ K \ T } to each server Sh;
D: generate a random string X = {XK ,T : K ∈K, T ∈ T , T ⊆ K } and send X to each Sh .
Oblivious transfer stage

U : choose a K ∈K and a random input Y K = {Y K ,T : T ∈ T , T ⊆ K };
U : for every T ∈ T , T ⊆ K and h ∈ K \ T , send Q K ,T ,h =Q(n, i, Y K ,T )h to Sh;
Sh: send AK ,T ,h =A(n, W K ,T , Q K ,T ,h, XK ,T ) to U for every T ∈ T such that T ⊆ K , h ∈ K \ T ;
U : for every T ∈ T , T ⊆ K , compute ΦK ,T =R(i, Y K ,T , {Q K ,T ,h, AK ,T ,h: h ∈ K \ T });
U : output

∑
T : T ∈T ,T ⊆K ΦK ,T .

Let K ∈ K, T ∈ T be such that T ⊆ K . For every h ∈ K \ T , we denote by QK ,T ,h the random variable representing the
query sent to Sh by U when the P instance between U and SK\T is invoked. For any T ′ ⊆ [�], we denote by QK ,�,T ′ =
(QK ,T ,T ′∩(K\T ): T ∈ T , T ⊆ K ) = (QK ,T ,h: T ∈ T , T ⊆ K , h ∈ T ′ ∩ (K \ T )) the queries received by ST ′ during the oblivious
transfer stage. For every h ∈ K , let DK ,�,h = (WK ,T : T ∈ T , T ⊆ K , h ∈ K \ T ) be the messages received by Sh in the CNFτ ,k
instances between D and SK . For every T ′ ⊆ [�], let DK ,�,T ′ = (DK ,�,h: h ∈ T ′ ∩ K ) and DT ′ = (DK ,�,T ′ : K ∈K).

Lemma 8. Protocol 3 satisfies the correctness requirement.

Proof. Due to the correctness of P , for every T ∈ T such that T ⊆ K , it holds that ΦK ,T = [W K ,T ]i and therefore

∑
T : T ∈T , T ⊆K

ΦK ,T =
∑

T : T ∈T , T ⊆K

[W K ,T ]i =
[ ∑

T : T ∈T , T ⊆K

W K ,T

]
i
= W i . �

Lemma 9. Protocol 3 satisfies the receiver’s privacy requirement.

Proof. Let SK be the set of servers interacted by U and T ∈ T be a subset of K . Due to the user privacy of P , for every
t-subset T ′ ⊆ [�], it holds that H(I | QK ,T ,T ′∩(K\T )) = H(I). Let ST ′ ⊆ SK be any coalition of t servers. Due to Lemma 1, it
suffices to show that H(I | QK ,�,T ′) = H(I).

Let i ∈ [n] and Q K ,�,T ′ = (Q K ,T ,T ′∩(K\T ): T ∈ T , T ⊆ K ) be arbitrary. Since the instances of P are totally independent of
each other, it holds that

Pr[QK ,�,T ′ = Q K ,�,T ′ | I = i] =
∏

T : T ∈T , T ⊆K

Pr[QK ,T ,T ′∩(K\T ) = Q K ,T ,T ′∩(K\T ) | I = i].

However, we have that Pr[QK ,T ,T ′∩(K\T ) = Q K ,T ,T ′∩(K\T ) | I = j] = Pr[QK ,T ,T ′∩(K\T ) = Q K ,T ,T ′∩(K\T ) | I = i] for every j ∈ [n]
since H(I | QK ,T ,T ′∩(K\T )) = H(I). It follows that Pr[QK ,�,T ′ = Q K ,�,T ′ | I = i] = Pr[QK ,�,T ′ = Q K ,�,T ′ | I = j], i.e., QK ,�,T ′ and I
are independent. Hence, we have that H(I | QK ,�,T ′) = H(I). �
Lemma 10. Protocol 3 satisfies the sender’s privacy I requirement.

Proof. Let ST ′ be τ servers colluding with U , where T ′ ∈ T . Due to Lemma 2, it suffices to show that H(W | DT ′) = H(W).
The sender D invokes

(
�
k

)
instances of CNFτ ,k which are totally independent of each other. Let K ∈K be arbitrary. If T ′ ⊆ K ,

then the servers in ST ′ do not learn WK ,T ′ . Hence, H(W | DK ,�,T ′) = H(W). If T ′ \ K �= ∅, then Sh learns no information on
{WK ,T : T ∈ T , T ⊆ K } if h ∈ T ′ \ K or no information on {WK ,T : T ∈ T , K ∩ T ′ ⊆ T ⊆ K } if h ∈ K ∩ T ′ . Hence, we have that
H(W | DK ,�,T ′) = H(W).
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Let W ∈ F
n
q be arbitrary and DT ′ = (D K ,�,T ′ : K ∈ K) be any message tuple sent to ST ′ by D. Since the CNFτ ,k instance

are totally independent of each other, we have that Pr[DT ′ = DT ′ | W = W ] = ∏
K∈K Pr[DK ,�,T ′ = D K ,�,T ′ | W = W ]. For

every W ′ ∈ F
n
q , we have that Pr[DK ,�,T ′ = D K ,�,T ′ | W = W ] = Pr[DK ,�,T ′ = D K ,�,T ′ | W = W ′] since H(W | DK ,�,T ′) = H(W).

It follows that Pr[DT ′ = DT ′ | W = W ] = Pr[DT ′ = DT ′ | W = W ′], i.e., DT ′ and W are independent. Hence, H(W | DT ′) =
H(W). �
Lemma 11. Protocol 3 satisfies the sender’s privacy II requirement.

Proof. Let SK and ST ′ be the servers interacted by U and colluding with U respectively, where K ∈ K and T ′ ∈ T . Let T ∗
be the set of all τ -subsets of K , T ∗

1 = {T ∈ T ∗: (T ′ ∩ K ) ⊆ T } and T ∗
2 = {T ∈ T ∗: (T ′ ∩ K ) \ T �= ∅}. That is, T ∗

2 = T ∗ \ T ∗
1 .

Furthermore, τ ′ = |T ′ ∩ K | � τ and δ = |T ∗
1 | = (k−τ ′

τ−τ ′
)
. Let i ∈ [n], Y K = (Y K ,T : T ∈ T ∗) and Q K = (Q K ,T ,K\T : T ∈ T ∗) be the

fixed index, random input and query of U , respectively. For every T ∈ T ∗ , an instance of P is invoked between U and SK\T

with WK ,T as the database. We denote

AK = (
AK ,T ,K\T : T ∈ T ∗); AK ,T ∗

1
= (

AK ,T ,K\T : T ∈ T ∗
1

); AK ,T ∗
2

= (
AK ,T ,K\T : T ∈ T ∗

2

)
.

Semi-honest case. For every T ∈ T ∗ , consider the instance P between a semi-honest U and SK\T . Due to the data privacy
of P , it holds that

H(WK ,T | I = i,YK ,T = Y K ,T ,AK ,T ,K\T ) = H
(
WK ,T

∣∣ [WK ,T ]i
)
. (26)

Therefore, for every W K ,T , W ′
K ,T ∈ F

n
q such that [W ′

K ,T ]i = [W K ,T ]i and AK ,T ∈ F
k−τ
q , it holds that

Pr[AK ,T = AK ,T | W K ,T , i, Y K ,T ] = Pr
[
AK ,T = AK ,T

∣∣ W ′
K ,T , i, Y K ,T

]
. (27)

Due to (8) and (7), we have that H(AK ,T ∗
2

| I = i,YK = Y K ,DT ′) = 0. Due to (15), it suffices to show that

H(W | I = i,YK = Y K ,AK ,T ∗
1
,DT ′) = H(W | Wi). (28)

Let AK ,T ∗
1

and DT ′ be in the domains of AK ,T ∗
1

and DT ′ , where DT ′ = (W �
K ,T : K ∈ K, T ∈ T ∗, T ′ ∩ (K \ T ) �= ∅). The

secret W i = b ∈ Fq is uniquely determined by AK ,T ∗
1

and DT ′ since i, Y K are fixed. For every W ∈ F
n
q such that W i = b,

denote

pW = Pr[AK ,T ∗
1

= AK ,T ∗
1
,DT ′ = DT ′ | W , i, Y K ]. (29)

Let W ′ ∈ F
n
q be such that W ′

i = b. Due to the τ -privacy of CNFτ ,k , we have that

Pr[DT ′ = DT ′ | W , i, Y K ] = Pr
[
DT ′ = DT ′

∣∣ W ′, i, Y K
]
. (30)

For S = W or W ′ , we define ΩS = {w = (w1, . . . , wδ) ∈ F
δ×n
q :

∑δ
h=1 wh = S − ∑

T ∈T ∗
2

W �
K ,T }. For every (b1, . . . ,bδ) ∈ F

δ
q

such that
∑δ

h=1 bh = b − ∑
T ∈T ∗

2
[W �

K ,T ]i and w ∈ ΩW and w ′ ∈ ΩW ′ such that wi = w ′
i = (b1, . . . ,bδ), it is not hard to see

that

Pr[WK ,T ∗
1

= w | DT ′ , W , i, Y K ] = Pr
[
WK ,T ∗

1
= w ′ ∣∣ DT ′ , W ′, i, Y K

]
. (31)

On the other hand, due to (8), we have that

Pr[AK ,T ∗
1

= AK ,T ∗
1

| WK ,T ∗
1

= w, DT ′ , W , i, Y K ] = Pr
[
AK ,T ∗

1
= AK ,T ∗

1

∣∣ WK ,T ∗
1

= w ′, DT ′ , W ′, i, Y K
]
. (32)

Eqs. (27) and (28) imply that

Pr[AK ,T ∗
1

= AK ,T ∗
1

| DT ′ , W , i, Y K ] = Pr
[
AK ,T ∗

1
= AK ,T ∗

1

∣∣ DT ′ , W ′, i, Y K
]
. (33)

It follows that pW = pW ′ due to Eqs. (26) and (29). Hence, (AK ,T ∗
1
,DT ′) and W are independent as long as i, Y K and Wi

are fixed, i.e., (28) holds and sender’s privacy II is satisfied if U is semi-honest.

Malicious case. Let SK and ST ′ be the servers interacted by U and colluding with U respectively, where K ∈K and T ′ ∈ T .
In order to learn as much information as possible, it is not hard to see that T ′ should be a subset of K , i.e., T ∈ T ∗ . Due to
the τ -privacy of the CNFτ ,k TSSS, the coalition of Ū and server ST ′ is able to learn W as long as the share W K ,T ′ is known.
Consider the instance P between Ū and SK\T ′ . If Ū contributes no valid index, then the coalition learns no information on
W K ,T ′ and therefore it learns no information on W . If Ū contributes an index j ∈ [n], then the coalition learns at most the
secret W j due to the data privacy of the instance P between Ū and SK\T ′ and the privacy of CNFτ ,k . �
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Communication complexity. For an invocation of Protocol 3, the receiver invokes
(k
τ

)
instances of P with the interacted

servers. Let γ (n) be the communication complexity of P . Then the communication complexity between the receiver and
servers is

(k
τ

)
γ (n).

Theorem 2. If there is a t-private (k − τ )-server SPIR protocol of communication complexity γ (n), then for every integer � � k, there
is a (t, τ )-private (k, �)-DOT-

(n
1

)
protocol of communication complexity O (γ (n)) between the receiver and servers.

Gertner et al. [21] proposed a general transformation from any one-round t-private k-server PIR protocol of communica-
tion complexity γ (n) to a one-round t-private (k + t)-server SPIR protocol of communication complexity O (γ (n)). Due to
this transformation and Theorem 2, we have

Theorem 3. If there is a t-private (k − t − τ )-server PIR protocol of communication complexity γ (n), then for every integer � � k,
there is a (t, τ )-private (k, �)-DOT-

(n
1

)
protocol of communication complexity O (γ (n)) between the receiver and servers.

Applying Theorem 3 to the polynomial interpolation-based t-private k-server PIR of [5,38] gives:

Corollary 1. For any integers t, τ , k, � such that 1 � t � k − 2, 0 � τ � k − 1 − t and 3t+1
2 + τ � k � �, there is a (t, τ )-private

(k, �)-DOT-
(n

1

)
protocol of communication complexity O (n1/� 2(k−t−τ )−1

t �) between the receiver and servers.

Note that it is required that k � 3t+1
2 + τ for obtaining sublinear communication complexity between the receiver and

servers in the above corollary.
The recent progress [39,18,28,12] in the research of LDCs yields the most efficient 1-private PIR protocols to date. Specif-

ically, 1-private 3-server PIR protocols of communication complexity exp(O (
√

logn log log n)) have been obtained. Barkol
et al. [3] proposed a transformation from any 1-private k-server PIR of communication complexity γ (n) to t-private kt -
server PIR of communication complexity O (γ (n)). Due to these results and Theorem 3, we have

Corollary 2. For any positive integers t, τ , � such that � � 3t + t + τ , there is a (t, τ )-private (3t + t + τ , �)-DOT-
(n

1

)
protocol of

communication complexity exp(O (
√

log n log log n)) between the receiver and servers.

As an example, for t = τ = 1 and any �� 5, there is a (1,1)-private (5, �)-DOT-
(n

1

)
protocol of communication complexity

exp(O (
√

logn log logn)) between the receiver and servers.

5. Evaluation of the reductions

In this section, we evaluate our reductions. Specifically, we compare them with known constructions of DOT and with
each other.

Privacy. The one-round (k, �)-DOT-
(n

1

)
protocols of [8] do not satisfy sender’s privacy II. In terms of our definition, their

(k, �)-DOT-
(n

1

)
protocols achieve (k − 1)-receiver privacy, (k − 1)-sender’s privacy I and 0-sender’s privacy II. For semi-honest

receivers, if we take t = k − 1 and τ = 0 in Protocol 2 and apply the encoding E of indices of [38] for m = n, then the
one-round (k, �)-DOT-

(n
1

)
of [8] can be obtained. The (k, �)-DOT-

(n
1

)
of [34] achieves t-receiver privacy, (k − 1 − t)-sender’s

privacy I and (k − 1 − t)-sender’s privacy II for any positive integer t < k − 1. Our specific reduction yields (k, �)-DOT-
(n

1

)
which achieves the same privacy whenever t + τ = k − 1. Hence, the specific reduction shows a tradeoff between receiver–
server communication complexity and privacy. The specific reduction is secure for semi-honest receivers. It is left open to
modify the specific reduction such that the sender’s privacy I and II can be achieved for malicious receivers. On the other
hand, our general reduction is fully secure.

Receiver–server communication complexity. Let t , τ be positive integers. It has been proved by [34] that k � t + τ + 1 in any
(t, τ )-private (k, �)-DOT-

(n
1

)
. If t +τ +1 � k � 2t +τ , then the (t, τ )-private (k, �)-DOT-

(n
1

)
obtained by the general reduction

require linear communication complexity between the receiver and servers due to Corollary 1. Hence, we prefer the specific
reduction. If k > 2t + τ , then � 2(k−t−τ )−1

t � > � k−τ−1
t � and therefore the (t, τ )-private (k, �)-DOT-

(n
1

)
obtained by the general

reduction is more efficient due to Theorem 1 and Corollary 1. Hence, we prefer the general reduction. Furthermore, for
small values of t and τ , the reduction given by Corollary 2 is much better than those given by Theorem 1 and Corollary 1
since it is based on the 3-server PIR protocols of extremely small communication complexity exp(O (

√
logn log log n)).

Number of interacted servers. For availability, the receiver should interact with a small number of servers. The specific re-
duction of Theorem 1 achieves the lower bound given by [34] and therefore is optimal in terms of the number of interacted
servers. In contrast, the general reductions of Corollaries 1 and 2 require k � 3t+1

2 +τ and k = 3t + t +τ , respectively. Hence,
they are not optimal in terms of the number of interacted servers.
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Setup complexity. The setup complexity of our reductions may be large for some settings of the parameters � and k. For
example, in the setup stage of our specific reduction, each server receives

(
�−1
k−1

)
random masks (field elements) and an

m-variate polynomial of small constant degree; in the setup stage of our general reduction from DOT to SPIR, each server
receives

(
�−1
k−1

)(k−1
t

)
shares (vectors of n field elements) of the database and

(
�
k

)(k
t

)
random masks (field elements). However,

the setup complexity becomes reasonable if � = k and t is a constant less than k. We note that the DOT protocols in a
setting where � = k have been considered by Cheong et al. [13]. Our reductions are efficient for that setting.

Independence of secrets. We assume that the sender’s secrets are totally independent in Section 2.2, i.e., Eq. (5) holds. How-
ever, our security proofs for the general reduction from DOT to SPIR in Section 4 do not depend on this assumption. On the
other hand, the assumption is necessary for our specific reduction.

6. Conclusion

In this paper, we study DOT of sublinear communication complexity between the receiver and servers. We present both
a specific reduction from DOT to polynomial interpolation-based PIR and a general reduction from DOT to any PIR. The
specific reduction yields DOT protocols which are optimal in terms of the number of interacted servers and are secure for
semi-honest receivers. The general reduction yields DOT protocols of extremely small communication complexity between
the receiver and servers and are secure for malicious receivers. The setup complexity of our reductions could be large for
some settings of the parameters. It is an open problem to reduce the setup complexity of our reductions.

Appendix A. Polynomial interpolation-based PIR protocols

We enumerate four polynomial interpolation-based PIR protocols in this appendix. Originally, the first two do not fol-
low the framework depicted by Protocol 1. However, from our point of view, they fall into the framework of polynomial
interpolation-based PIR protocols.

A.1. Beimel–Ishai–Kushilevitz PIR Protocol I [5]

– Let Ω = {v ∈ {0,1}m | wt(v) � d} ⊆ F
m
q , where wt(v) is the number of nonzero components of v . The encoding

E : [n] → Ω is a one-to-one mapping satisfying wt(E(i)) � wt(E( j)) for every i < j.
– Let S j = {a ∈ [m]: E( j)a = 1} for every j ∈ [n]. The polynomials P j are defined inductively as follows

P j(Z1, . . . , Zm) =
∏

a∈S j

Za −
∑

i: S j⊂Si

P i(Z1, . . . , Zm).

A.2. Beimel–Ishai–Kushilevitz PIR Protocol II [5]

– Let Ω = {v = v1 ◦ · · · ◦ vd | ∀a ∈ [d], va ∈ {0,1}b and wt(va) = 1} ⊆ F
m
q , where m = bd. For i ∈ [n],

E(i) = ei1+1 ◦ · · · ◦ eid+1 ∈ Ω,

where i has base-b expansion
∑

a∈[d] ia · ba−1 and eia+1 is the (ia + 1)st unit vector for every a ∈ [d].
– Identify (Z1, . . . , Zm) = (Z1,1, . . . , Z1,b; . . . ; Zd,1, . . . , Zd,b). For every j = ∑

a∈[d] ja · ba−1 ∈ [n],
P j(Z1,1, . . . , Z1,b; . . . ; Zd,1, . . . , Zd,b) = Z1, j1+1 . . . Zd, jd+1.

A.3. Beimel–Ishai–Kushilevitz PIR Protocol III [5]

– Let Ω = {ω0, . . . ,ωd}m ⊆ F
m
q , where ω0, . . . ,ωd ∈ Fq \ {0} are distinct. The encoding E : [n] → Ω is one-to-one and for

every i ∈ [n],
E(i) = (wi1 , . . . , wim ) ∈ Ω,

where
∑

a∈[m] ia � d. For any i < j and E( j) = (ω j1 , . . . ,ω jm ) ∈ Ω , it is required that
∑

a ia �
∑

a ja .
– The polynomials P j(Z1, . . . , Zm) are defined inductively as follows

r j(Z1, . . . , Zm) =
m∏

a=1

ja−1∏
h=0

Za − wh

w ja − wh
,

P j(Z1, . . . , Zm) = r j(Z1, . . . , Zm) − δ j ·
j−1∑
i=1

r j
(

E(i)
)

Pi(Z1, . . . , Zm),

where δ j = 1 if
∑

a ja = d and 0 otherwise.
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A.4. Woodruff–Yekhanin PIR Protocol [38]

– Let Ω = {v ∈ {0,1}m | wt(v) = d} ⊆ F
m
q . The encoding E : [n] → Ω is any one-to-one mapping.

– Let S j = {a ∈ [m]: E( j)a = 1} for every j ∈ [n]. The polynomials P j are defined as follows

P j(Z1, . . . , Zm) =
∏

a∈S j

Za.
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