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A deniable secure key exchange protocol allows two parties to agree on a common secret 
while achieving two seemingly contradictory functionalities: authentication and deniability. 
The former requires each party to confirm the identity of the other while the latter 
requires any attacker (e.g., participant or eavesdropper) be unable to prove to a third 
party an honest party’s participation. Designing an efficient secure key exchange with 
deniability is a challenging problem. In this paper, we first formalize the deniability 
model by requiring information theoretic deniability with an eavesdropping attack. The 
information theoretic deniability has the advantage that it can hold forever without any 
computational assumption. An eavesdropping attack (Di Raimondo et al., CCS’06) allows 
an attacker to apply eavesdropped transcripts into an active attack session. This gives an 
attacker more power to make the victim undeniable as he does not know the randomness 
of the transcript. We then propose an efficient, provably deniable secure framework of key 
exchange. Our deniability holds non-adaptively in the eavesdropping model. However, if we 
consider a model without an eavesdropping attack (which is practical in many scenarios), 
then our framework is proven adaptively deniable. This is important since no previous key 
exchange protocols can satisfy our adaptive and information theoretical deniability. We 
give a concrete realization for our framework that is more efficient than SKEME (Krawczyk, 
NDSS’96).

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Key exchange is a procedure that allows two parties to share a secret, with which the subsequent communication is pro-
tected. The first protocol was proposed by Diffie-Hellman [18]. Since then, it has been extensively studied in the literature. 
With the popularity of computer networks, many businesses and transactions have moved onto the Internet. Accordingly, 
people’s security concerns have gone beyond the basic confidentiality. Privacy, such as identity or location anonymity, de-
niability and non-repudiation, is now being seriously considered. In this paper, we study the deniability issue. Deniability 
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intuitively means that when one party has participated in a conversation, he can later deny the fact of communication 
against any malicious adversary (e.g., the other communicant or an eavesdropper). That is to say, nobody can form any 
convincing evidence regarding his participation in the communication. This allows him to avoid any trace that might lead 
him to undesirable consequences (e.g., a bad reputation, a lawful responsibility or annoying disturbance). The importance of 
deniability has now been realized by many authors (e.g. the Internet draft [25]). Deniable authentication can be achieved by 
setting up a common message authentication key between two communicants. However, a physical key setup is not always 
practical and possible. A natural solution seemingly is to let parties run a key exchange protocol. In this case, it requires the 
key exchange protocol to be deniable. Note that for a key exchange protocol to be secure, each party must be authenticated. 
That is, each participant should confirm that his partner indeed sits at the other side jointly running the protocol with 
him. Hence, a deniable secure key exchange protocol must satisfy two seemingly contradictory properties: deniability and 
authentication.

1.1. Related work

Deniable authentication was first considered by Dolev et al. [20] and formally investigated by Dwork et al. [21], in 
which deniability was formulated in the zero knowledge sense [24]: whatever computable through an interaction can be 
computed by an adversary alone. In terms of deniability, when an adversary presents a proof about a party’s participation in 
a communication procedure, the latter can deny it since the adversary can generate the proof alone. Deniability under this 
formulation has attracted a considerable amount of attention [22,21,30,37]. Deniable key exchange was informally studied 
by Mao and Paterson [36]. The formal treatment was first due to Di Raimondo et al. [17]. They presented a non-adaptive 
deniability model with eavesdropping attacks, where an eavesdropped message is provided to the adversary through an 
auxiliary input. They showed that SKEME [32] is deniable if the underlying encryption scheme is strongly plaintext aware 
(i.e., PA2) and IND-CPA secure. A PA2 secure encryption can be realized by Cramer-Shoup [11] (where the PA2 property 
was proven by Dent [14]) or Kurosawa-Desmedt [35] (where the PA2 property was proven by Jiang and Wang [29]). Partial 
deniability was also studied in the literature. Dwork et al. [21] formulated the partial deniable authentication as follows. 
The sender agrees having authenticated something to some receiver but he doe not agree that the authenticated message 
is what the adversary claims. They realized this formulation under a timing assumption. For the key exchange problem, 
Di Raimondo et al. [17] defined the partial deniability in a related manner: an honest party admits having run the key 
exchange with somebody but he does not agree that this ‘somebody’ is the adversary. They showed that a signature based 
key exchange protocol SIGMA [33] is partially deniable. As mentioned in [17], whether the partial deniability is satisfactory 
still depends on the specific application. In this paper, we only consider the deniability in the zero knowledge sense (instead 
of partial deniability discussed here). Dodis et al. [19] considered an on-line deniable authentication under the generalized 
UC model [6,9]. Their model is very strong so that an adaptive deniable authentication in the PKI model is impossible. They 
also formulated a weak form of deniable key exchange termed key exchange with incriminating abort (KEIA). Intuitively, 
KEIA guarantees deniability as long as the protocol terminates successfully; once a shared key is established, deniability is 
guaranteed. However, the deniability under this formulation is not always satisfactory. For instance, Unger and Goldberg 
[42,43] adopted this model and constructed several protocols. Their protocol XZDH starts with the first message:

I→ R: msg1, Sig(P K I , S K I , msg2),
where msgi does not involve any long-term secret and Sig(P K I , S K I , msg2) is the signature on msg2 using I’s long-term 
secret S K I with respect to public key P K I . Intuitively, with this message, the sender is not deniable. Actually, in our 
understanding, their provable deniability seems more related to the partial deniability discussed above (especially because 
msg2 is random). Similar issues in terms of ring signatures occur in other protocols in [42,43]. A random oracle [5] is an 
efficient tool for practical constructions. However, the deniability under the random oracle model is not guaranteed [39]. 
Non-programmable random oracle (that enables deniability) based key exchange protocols were proposed in [28,45]. In this 
paper, we only consider a deniable secure key exchange without a random oracle. One may also wish to apply a deniable 
message transmission authenticator [15,16] to a deniable key exchange protocol in the authenticated model [2]. However, 
the resulting key exchange protocol will be inefficient. Also the deniable authenticators [15,16] assume a timing assumption 
when considering the deniability in the concurrent model. It turns out the resulting key change protocol also needs this 
assumption. Jiang [27] constructed a deniable key exchange from a timed encryption which in turn is based on the timing 
assumption. In this paper, we will study schemes without this assumption. Deniability was also studied in the quantum 
setting [1,40], where the deniability was formulated in the spirit of deniable encryption [7,38,8].

1.2. Our work

In this paper, we study the deniable security of a key exchange protocol, where the secrecy model is from Bellare-
Rogaway [4] and the deniability model is revised from Di Raimondo-Gennaro-Krawczyk [17]. We require the deniability to 
hold information theoretically while [17] only requires computational deniability. The information theoretical deniability has 
the advantage that it can hold forever without any computational assumption. Similar to [17], we require the deniability 
to capture an eavesdropping attack by allowing an adversary to access some properly distributed protocol transcripts. In 
our (deniability or secrecy) model, all the events are arbitrarily scheduled by the adversary. Especially, the adversary can 
concurrently and adaptively schedule his attacks. If an adversary makes all the party corruptions at the beginning, then 
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his attack is non-adaptive; otherwise, it is adaptive. We stress that here the non-adaptivity is only with respect to the 
corruption strategy. This has no effect on his adaptive scheduling on other attacks (e.g., an impersonation attack). We 
construct a new efficient deniable secure key exchange framework using an extractable hash proof system. We show that 
our framework is non-adaptively deniable with an eavesdropping attack and adaptively secret and authenticated. We notice 
that the eavesdropping attack is meaningful only if the adversary has an evidence that the eavesdropping transcript is 
indeed obtained by eavesdropping (instead of by simulation). When such an evidence is not available, it is still important to 
consider the model without an eavesdropping attack. If this is the case, we show that our framework is adaptively deniable. 
This is important since no previous key exchange protocols can satisfy our adaptive and information theoretic deniability. 
We realize our framework using a hash proof system in [35,12]. Each party in the realization needs 6 exponentiations and 
is more efficient than SKEME, where the latter needs 8 exponentiations.

2. Preliminaries

Notations. For a set S , x ← S samples x from S randomly; A|B is a concatenation of A with B . negl : N → R is a
negligible function: for any polynomial p(n), limn→∞ negl(n)p(n) = 0. Statistical distance of random variables A, B over a 
finite alphabet � is defined as dist[A, B] = 1

2

∑
v∈� | Pr[A = v] − Pr[B = v]|. PPT stands for probabilistic polynomial time. In 

this paper, κ denotes the security parameter. For a number a, |a| denotes its bit-length.

2.1. Diffie-Hellman assumptions

Let p = 2q + 1 be a safe prime (thus q a prime). G is the subgroup of Z∗
p of order q. Let g be a random generator of G.

Decisional Diffie-Hellman Assumption. Let DH = (g, gx, g y, gxy), Rand = (g, gx, g y, gz), for x, y, z ← Zq . The decisional 
Diffie-Hellman (DDH) assumption is to say DH and Rand are indistinguishable.

Extended Diffie-Hellman Knowledge (DHK∗) Assumption. Diffie-Hellman Knowledge (DHK) assumption [3,13] essentially 
states that given g, A ∈ G, any adversary, who produces (gt , At) must know t . The extended DHK assumption (denoted 
by DHK∗ assumption) requires that the awareness of t holds even if the attacker can access to additional oracles. We now 
formally present DHK∗ assumption and describe DHK assumption as a special case of DHK∗ .

For any PPT adversary H, there exists a PPT algorithm (called extractor) H∗ such that the following experiment outputs 
1 with only a negligible probability.

Challenger T takes a ← Zq and computes A = ga . He samples r, r∗ ← {0, 1}∗ as a random tape for H and H∗ , 
respectively. Let ℵ = {}. T runs H with input (p, g, A, r) and H∗ with input (p, g, A, r, r∗). The experiment rules are 
as follows.

i. H can issue any query (B, C) to H∗ who will return some b ∈Zq. If Ba = C but B �= gb, then the experiment terminates 
with output 1; otherwise, it continues.

ii. H can issue any sampling query to T . Upon this, T takes u1, u2 ← Zq and returns U = gu1 Au2 to both H and H∗ . 
Finally, T updates ℵ = ℵ ∪ {(u1, u2, U )}.

iii. H can issue any reverse-sampling query U to T . Upon this, if (u1, u2, U ) ∈ ℵ for some (u1, u2), T provides (u1, u2, U ) to 
H and H∗; otherwise, he ignores the query.

If the experiment does not terminate when H halts, it terminates with 0.

Diffie-Hellman Knowledge (DHK) Assumption. DHK assumption is a special case of DHK∗ , where H does not make a 
sampling query or a reverse-sampling query.

Remark. Compared with the DHK assumption, although H in a DHK∗ game has an extra access to two types of queries, 
DHK∗ does not seem stronger than DHK, since in items (ii)(iii) in DHK∗ , H does not get more information than purely 
random elements in Zp or in Z2

q . This certainly does not help the attacker create (gx, Ax) with an unknown x. However, 
these unimportant queries are useful later in proving the adaptive deniability of our protocol.

2.2. Simulatable random variable

We introduce a notion of simulatable random variable. Let Z be a random variable over a finite set V . For � ∈ N , let 
� : {0, 1}� → V be an efficiently computable deterministic function and �∗ : V → {0, 1}� be an efficiently computable 
probabilistic function. Then, we say that Z is simulatable by (�, �∗), if dist[Z , �(U�)] = negl(κ) for U� ← {0, 1}� and 
dist[�∗(z), U�(z)] = negl(κ) for any z ∈ V , where U�(z) is uniformly distributed over 

{
u | �(u) = z, u ∈ {0, 1}�

}
. Fact 1 below 

shows that �∗(Z) and U� are statistically close (see Appendix F for proof). Hence, we can sample Z using Z = �(U�), and 
recover the randomness of Z by computing �∗(Z).
3
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Fact 1. If Z is simulatable by (�, �∗), then �∗(Z) and U� are statistically close.

We now present two useful simulatable random variables. Let q, p = 2q + 1 be two large primes and G be the subgroup 
of Z∗

p of order q. Note that G in fact is the set of all quadratic residues in Z∗
p . We show that u ←Zq and u ←G are both 

simulatable.

u ←Zq is simulatable.

Algorithm �. To simulate u ← Zq , simply take v ← {0, 1}2|q| and output v (mod q). Denote this output by (v)q . It is 
statistically close to uniform by Fact 2.

Fact 2.
∑

u∈Zq
| Pr[(v)q = u] − 1/q| ≤ 1/q.

Algorithm �∗(a). For any a ∈ Zq , we need to sample v ← {a, a + q, · · · , a + q · (Ba − 1)} for Ba = 1 + � 22|q|−1−a
q � (Ba

is the maximum i such that a + q · (i − 1) < 22|q|). To sample �∗(a), take b ← {0, 1}2|q| and output a + q · (b)Ba . Notice 
2|q| ≤ Ba < 2|q|+1 and thus |Ba| = |q|. Similar to Fact 2, 

∑Ba−1
u=0 | Pr[(b)Ba = u] − 1/Ba| ≤ 1/q.

u ←G is simulatable.

We first note that a simple one-one and onto mapping between G and Zq exists (see [10]). Denote it by | · |p :G →Zq . 
Hence, sampling u ← G can be done by sampling a ← Zq and outputting u = |a|∗p , where |a|∗p is the reverse mapping of 
| · |p (i.e., |a|∗p is defined as u that satisfies |u|p = a).

Since G and Zq are one-one correspondent, when the context is clear, we assume u ←Zp and for u ←G are simulat-
able by the same (�, �∗) above. This algorithm is more efficient than Dent [14], where the latter requires |q| ·�(1) random 
bits while we only need 2|q| random bits.

2.3. Hash proof system

We introduce the hash proof system by Cramer and Shoup [12]. To cater our use, we make some changes. The projec-
tive hash family (PHF) is presented only with a hinge to a hard subset membership problem. The ε-universal2 projective 
hash family (PHF) is replaced by the computational universal2 PHF [26]. A new notion of α-extractability/extractability is 
proposed for a hard subset membership problem, in order to prove the deniability for our protocol.

(a) Hard subset membership problem. A hard subset membership problem essentially is a problem, in which one can 
efficiently sample a hard instance. More formally, a subset membership problem I is a collection {In}n∈N , where In is a 
probability distribution for a random variable �n that is efficiently sampleable by a polynomial time algorithm as follows.

• Generate a finite non-empty set Xn, Ln ⊆ {0, 1}poly(n) s.t. Ln ⊂ Xn , and a distribution D(Ln) over Ln and a distribution 
D(Xn\Ln) over Xn\Ln .

• Generate a witness set Wn ⊆ {0, 1}poly(n) and a NP-relation Rn ⊆ Xn × Wn such that x ∈ Ln if and only if there exists 
w ∈ Wn s.t. (x, w) ∈ Rn . There exists a polynomial time algorithm that samples x according to D(Ln) and outputs 
a witness w ∈ Wn s.t. (x, w) ∈ Rn . We use x w← D(Ln) to denote this procedure and will omit w when there is no 
confusion. Further, there exists a polynomial time algorithm that samples x according to D(Xn\Ln).

Finally denote �n = 〈Xn, Ln, Wn, Rn, D(Ln), D(Xn\Ln)〉. I = {In}n is called a hard subset membership problem if x ← D(Ln)

and y ← D(Xn\Ln) are indistinguishable for 〈Xn, Ln, Wn, Rn, D(Ln), D(Xn\Ln)〉 ← In .

(b) α-extractability and extractability.

α-extractability. Now we introduce a new notion of α-extractability for I . A hard subset membership problem I = {In}n

is called α-extractable if for any PPT adversary A, there exists a PPT extractor A∗ such that the following experiment 
terminates with 1 only negligibly.

Challenger T takes � = 〈X, L, W , R, D(L), D(X\L)〉 ← In . Let desc(�) be the description of �; α : K → S is a de-
terministic function with sets K and S specified using desc(�). T samples r, r∗ ← {0, 1}∗ as a random tape for A
and A∗ , respectively. He runs A with (desc(�), desc(α), r) and A∗ with (desc(�), desc(α), r, r∗), where desc(α) is 
the description of α. Let ϒ = {}. The experiment is described as follows.

• A can issue query x ∈ X to A∗ . A∗ responds with some w ∈ W ∪ {⊥} to A. If x ∈ L but (x, w) /∈ R, then the experiment 
terminates with 1; otherwise, it continues.

• A can issue α-query to T . Upon this, T takes k ← K and provides α(k) to both A and A∗ . He then updates ϒ = ϒ ∪
{(k, α(k))}.

• A can issue α-reverse-query D to T . Upon this, if (k, D) ∈ ϒ for some k, then T provides (k, D) to both A and A∗; 
otherwise, he ignores the query.

If A halts before the experiment terminates, the experiment outputs 0.
4
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Extractability. We also consider the plain extractability (or simply extractability) without involving α function. The notion 
of extractability is defined by removing α-queries and α-reverse-queries from the α-extractability. Of course, under this 
change, the input desc(α) to A and A∗ is no longer needed.

(c) Projective hash functions. Let � = 〈X, L, W , R, D(L), D(X\L)〉 be sampled from a subset membership problem In . 
Consider 〈H, K, X, L, G, S, α〉 that is described by desc(�) and λ ← {0, 1}n , where G, S, K are finite, non-empty sets, H =
{Hk | k ∈ K} is a set of hash functions from X to G and α : K → S is a deterministic function. Here K is called a key space, 
k ∈ K is called a projection key; S is called the projection space of α. We call 〈H, K, X, L, G, S, α〉 a projective hash family
(PHF) for �, if Hk(x) for x ∈ L, is uniquely determined by α(k) and x. We call it an efficient PHF, if α(k) and Hk(x) are 
polynomially computable from (k, x) and Hk(x) also is polynomially computable from (x, w, α(k)) for (x, w) ∈ R . In this 
paper, by PHF, we mean an efficient PHF.

Definition 1. Let I = {In}n be a hard subset membership problem. Take

� = 〈X, L, W , R, D(L), D(X\L)〉 ← In.

Assume � = 〈H, K, X, L, G, S, α〉 is a PHF for � with desc(�) = (λ, desc(�)) for λ ← {0, 1}n . Then, � is said compu-
tational universal2 if any PPT A only has a negligible advantage in the following game. For k ← K, run A with input 
(λ, desc(�), α(k)).

- A can adaptively issue an Evalu query with any x ∈ X , where Evalu oracle first checks if x ∈ L (maybe in exponential 
time). If yes, it returns Hk(x); otherwise, it returns ⊥.

- Throughout the game, A can come up with two distinct x1, x2 ∈ X\L (unnecessarily at the same time or in the same 
order). For query x1, he receives Hk(x1); for query x2, he receives Kb , where b ← {0, 1}, K0 = Hk(x2) and K1 ←K.

At the end of game, A outputs a guess bit b′ for b. He succeeds if b′ = b.

Remark. In the above definition, after queries x1 and x2, A can still query any x to Evalu oracle. There is no restriction 
on x (especially, x = x1 or x2 is allowed). But since x1, x2 /∈ L, queries x1, x2 will be answered with ⊥. We notice that in 
our definition, x1 is generated by attacker, while x1 in [26] is sampled randomly by challenger. However, we find that after 
this change, the result [26, Lemma 6.3] still holds except that a target collision hashing h should be modified to a collision 
resistent hashing. Hence, later we still use their lemma without a proof.

(d) F -indistinguishability for a computational universal2 PHF.

Now we prove a property (called F -indistinguishability) for a computational universal2 PHF. This property essentially as-
serts that the adversary can not distinguish a set of projective hash values from uniformly random values, even if he can 
adaptively request to evaluate Hk(x) for any x as long as he knows partial information about Hk(x).

Definition 2. Let � = 〈X, L, W , R, D(L), D(X\L)〉 ← Iκ where {Iκ }κ is a hard subset membership problem. Assume � =
〈H, K, X, L, G, S, α〉 is a projective hash family for � with G = {0, 1}2κ and desc(�) = (λ, desc(�)). Let F be a message 
authentication code from {0, 1}∗ to {0, 1}κ with a key space {0, 1}κ . We say that � is F -indistinguishable if any PPT 
adversary A only has a negligible advantage in the following game. For k ← K and c ← {0, 1}, challenger CH runs A with 
(α(k), λ, desc(�)) and answers his adaptive queries as follows. Let � = {}.

• Challenge Query. Upon this, CH takes x w← D(L), sets (a0, s0) = Hk(x), (a1, s1) ← {0, 1}2κ and then returns (x, ac, sc)

to A. He updates � = � ∪ {(x, ac, sc)}.
• Compute Query ξ = (x, σ , m). Upon this, if (x, a′, s′) ∈ � for some a′, s′ , let a = a′, s = s′; otherwise, let (a, s) = Hk(x). 

If σ = Fa(m), CH returns (a, s); he returns ⊥ otherwise.

At the end of the game, A outputs a guess bit c′ for c. He is successful if c′ = c.

The following lemma asserts that any computational universal2 HPF is F -indistinguishable (see Appendix E for a proof).

Lemma 1. Let {Iκ }κ be a hard subset membership problem, � be computational universal2 for �, F be an existentially unforgeable 
message authentication code. Then, � is F -indistinguishable. Further, if we use E to denote an event in Compute Query (x, σ , m), 
where σ is valid but x /∈ L, then E for a given c ∈ {0, 1} occurs only with a negligible probability.

3. Security model

In this section, we introduce the security model of a key exchange protocol, including a secrecy model from Bellare-
Rogaway [4] and a deniability model revised from Di Raimondo-Gennaro-Krawczyk [17]. Assume there are n parties 
5
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P1, · · · , Pn . Pi and P j might jointly execute a key exchange protocol � to agree on a common secret key (called a ses-
sion key). We will use the following notations.

- �
�i
i . Pi can execute many copies of � (with possibly different parties). Each copy is called an instance or a session. 

We use ��i
i to represent the �ith instance in Pi .

- F lowi . This is the ith message flow in protocol �.
- sid�i

i . This is the session identifier of ��i
i . It will be specified when analyzing the protocol security. Supposedly, two 

communicating instances should share the same session identifier.
- pid�i

i . It is the party that ��i
i presumably interacts with.

- stat�i
i . This is the internal state of ��i

i and will be updated after each activation of ��i
i . The internal state does not 

include the long term secret of Pi .
- sk�i

i . This is the session key defined by ��i
i after a successful execution of �.

- initiator and responder. If ��i
i sends out the first message F low1, we say that Pi is an initiator; if ��i

i is a receiver of 
F low1, we say that Pi is a responder.

Partnering. Sessions ��i
i and �� j

j are partnered if (1) pid�i
i = P j and pid

� j

j = Pi ; (2) sid�i
i = sid

� j

j . Intuitively, two sessions 
are partnered if they are jointly executing �.

Adversarial Model. Now we present a formal adversary model. Essentially, we would like to capture the concern that 
the adversary can fully control the network and launch a concurrent attack. In particular, he can inject, modify, block and 
delete messages at will. He can also corrupt some users and obtain their secret keys and internal states. He is also able to 
collect some session keys. Finally, � is secure if the session key of any adversely chosen instance remains computationally 
random, where of course the adversary is assumed not to compromise this session key in an obvious way (e.g., through a 
party corruption or a session key request).

The security model is presented in terms of a game between a challenger T and an attacker A. T maintains a set 
of oracles that represent events during protocol executions. Adversarial capabilities are modeled as a sequence of adaptive 
queries to these oracles. The arbitrary choices of queries also imply the full concurrency of the attack. That is, A could 
simultaneously keep a polynomial number of instances running through a proper sequence of queries and can choose to 
activate any of them at any time. The protocol is initialized with a function I . Initially, T executes I(1κ ) to sample the 
system parameters params and for each Pi , generates a public key P Ki and a private key S Ki . He provides params, {P Ki}i

to A and maintains oracles as follows.

Send(d, i, �i, M). When this oracle is called, message M is sent to instance ��i
i as F lowd . By default, when d = 0, it is 

assumed that this query is to start a new instance as an initiator in Pi . In this case, M = “ke : j” is a key exchange invocation 
request with pid�i

i = j. When d = 1, this query is to start a new instance at Pi as a responder. The fact that A triggers the 
oracle with d = 0 or 1 essentially means that the key exchange events for honest parties are completely scheduled by A. 
Upon a Send query, the oracle follows the specification of � to process M .

Reveal(i, �i). Upon this, it outputs sk�i
i if sk�i

i is defined; otherwise, it outputs ⊥. This oracle call reflects a session key 
loss attack.

Corrupt(i). Upon this query, Pi is corrupted. His secret key S Ki and internal states are available to A. Further, Pi is no 
longer active and his future action will be taken by A.

Test(i, �i). This is a security test. A can query it only once. The queried session must have successfully completed and 
should not be compromised (see below for the definition). Upon this, the oracle flips a coin b and provides αb to A, where 
α0 = sk�i

i and α1 ← K and K is the space of sk�i
i . A then tries to output a bit b′ . He is informed of success if b′ = b; 

otherwise, fail.

�
�i
i is said compromised if a Reveal query was issued to ��i

i or its partnered session, or if Pi or pid�i
i was corrupted.

The choice of a test session is arbitrary as long as it is not compromised. Especially, it could be one session involving two 
honest parties. In this case, the test is to examine the session key security under a passive attack. Note that it is important 
not to compromise the test session; otherwise, the adversary can easily learn the test session key and win the test. Such a 
success does not reflect any flaw of the protocol.

Now we are ready to define the protocol security. It contains four conditions: correctness, secrecy, authentication and 
deniability.

Correctness. If ��i
i and �� j

j successfully complete and are partnered, then sk�i
i = sk

� j

j .

Secrecy. Let Succ(A) denote the success of A in the Test query. The secrecy property requires that A should not be able 
to correctly guess b with probability significantly better than 1/2. That is, Pr[Succ(A)] < 1 + negl(κ).
2
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Authentication. Essentially, the authentication is to require that when ��i
i successfully completes, pid�i

i indeed attended 
the joint execution. Formally, consider event Non-Auth on the test session ��i

i : either ��i
i does not have a partner session 

or its partner session is not unique. Then � is said to be authenticated if Pr[Non-Auth(A)] is negligible. Note in [4], the 
authentication is defined with respect to any ��i

i (not just a test session as here). This has no essential difference from 
ours since the security definition requires both secrecy and authentication. Thus, if a successfully completed session does 
not have a partner session, then choosing it as the test session will result in breaking the authentication. This version of 
definition is from [28] and can simplify the proof of the authentication.

Deniability. Deniability [21] intuitively states that the adversary’s view in the interaction can be simulated by himself 
(i.e., without an interaction), where the view of an entity consists of his random tape and the data received externally. 
Applying to our key exchange model, this means that for any adversary A with access to oracles above, there exists a 
simulator S that can simulate the view of A without access to these oracles. To check if the view of A has been simulated, 
we quantify it through the statistical distance between the real view of A and the simulated view, and require it to be 
negligible. However, a few concerns arise.

1. The same as A, simulator S will be provided with input (params, {P Ki}i). Evidently, it is necessary that S would 
simulate based on this public information. But be careful! S can simulate a new params′ , {P K ′

i , S K ′
i }i , with which, the 

view of A can be perfectly simulated (by invoking A). This certainly is not a deniable simulation. To avoid this, the 
variable for computing the statistical distance that quantifies the deniability, should include the (simulated) view of A
jointly with (params, {P Ki}i). Under this, the simulated view of A (by S) uses the provided (params, {P Ki}i) (from T ), 
as the real view of A does it.

2. We want to capture an eavesdropping attack in [17], where an adversary can eavesdrop the transcripts aux between 
honest parties, the randomness of which is unknown to him. Then, he can use these transcripts to attack some party’s 
deniability. As the attacker does not know the randomness in these transcripts, the victim might be provably unde-
niable. To capture this concern, we provide aux as an auxiliary input to the attacker. Similar to the case above for 
(params, {P Ki}i), we must prevent S from simulating the view of A using his own aux′ (where S knows the ran-
domness in aux′). Toward this, the variables in computing the statistical distance for the deniability need to include 
the provided aux, jointly with the view of A and (params, {P Ki}i). We emphasize that the model of an eavesdropping 
attack is meaningful only if an attacker has an external evidence that aux is obtained by eavesdropping (instead of 
by simulation). Such an evidence might be a witness or the server cache. In this paper, we do not consider how such 
evidences are obtained and simply assume they already exist.

3. Initially, S Ki is not provided to S (the same as for A). But A might later issue a Corrupt query. To answer this query, 
S should be granted to issue Corrupt query as well. However, we must be careful. S could corrupt all parties, under 
which the real view of A can be easily simulated. This of course is not a deniable simulation. To prevent this, the 
variable in computing the statistical distance for deniability is expanded to include the corrupted parties C (recorded 
by T ), besides the (simulated) view of A and (params, {P Ki}i, aux). Under this, the set of corrupted parties in the 
simulated view of A must equal to that recorded by T , as this is the case for the real view of A. Thus, S can only 
corrupt parties that A does.

4. Finally, as the Test oracle is only used to test the session key secrecy, there is no need to include it in the deniability 
model.

With the above discussion, we can now formally define the deniability. This is achieved through the following two games.

Game �rea . T prepares params and {P Ki, S Ki}n
i=1, aux, where aux is a collection of complete transcripts between honest 

parties. Then, he runs A with (params, {P Ki}i, aux). T maintains Send, Reveal and Corrupt oracles. A can adaptively query 
to these oracles.

Game �sim . T prepares params, {P Ki, S Ki}n
i=1, aux, and runs S with (params, {P Ki}i, aux). In addition, he maintains Cor-

rupt oracle (but not Send and Reveal oracles). S can adaptively query to Corrupt oracle. Finally, S generates an output 
out(S, �sim).

Let the view of an entity consist of his random tape and all the data received externally. Let view(A, �rea) denote the 
view of A in game �rea . By allowing A to adaptively query the oracles, we essentially allow many protocol instances 
concurrently running. Under this formulation, the deniability in our model has the full concurrency. Finally, protocol � is 
said deniable if for any PPT adversary A, there exists a PPT simulator S such that

dist[χ |C0|view(A,�rea),χ |C1|out(S,�sim)] = negl(κ), (1)

where χ = (params, {P Ki}i, aux) and C0 (resp. C1) is the set of corrupted parties by A in �rea (resp. S in �sim).
If Eq. (1) holds when all party corruptions are made before the game starts, then � is said non-adaptively deniable. It 

should be noted that this non-adaptivity only corresponds to the corruption strategy. In �rea , A can still adaptively query 
to Send and Reveal oracles. If Eq. (1) holds when aux is removed, then � is (adaptively) deniable without an eavesdropping 
attack.

We summarize the security definition into the following.
7
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Definition 3. A key exchange protocol � is said deniable secure if for any PPT adversary A, the following holds:

- Correctness.
- Secrecy. Pr[Succ(A)] ≤ 1

2 + negl(κ).
- Authentication. Pr[Non-Auth(A)] = negl(κ).
- Deniability. For any PPT adversary A in �rea , there exists a PPT simulator S in �sim such that Eq. (1) holds.

Remark. Information theoretical deniability can hold forever without any computational assumption. With the time going 
on, any computational assumption can become insecure. This occurs especially when the assumption reaches its expira-
tion. If the indistinguishability of deniable simulation relies on a computational assumption, then the deniability could be 
broken after its expiration. That is to say, information theoretical deniability is advantageous over computational one. But 
information theoretical deniability is not easy to achieve. In fact, to our knowledge, no existing schemes are information 
theoretically deniable.

Remark. As discussed in the introduction, the deniability has been studied in the literature. It is necessary to discuss the 
relations between our model and theirs.

1. The deniability in [17] requires that the session key can be simulated and (upon query) provided to an attacker. This 
requirement is captured in our model because we have a Reveal oracle, from which the adversary can obtain the 
session key of any successfully completed session. We stress that this is easy for general key exchange model (without 
deniability), as the simulator usually knows almost every long-term secret. But it is not easy for deniability model as a 
simulator does not know any honest party’s long-term secret.

2. Our definition of deniability is different from [17] in the following.
(a). We consider an auxiliary input aux (representing an eavesdropping attack) that is a list of properly distributed 
complete transcripts while aux in [17] can be an arbitrary string and especially can be partial transcripts. But their 
deniability theorems only consider a list of (complete or partial) transcripts (which is not an arbitrary string). The 
partial transcript aux is still strictly stronger than our complete transcript aux. In fact, under a non-adaptive corruption, 
our protocol in this paper is deniable in the complete transcript model but undeniable in the partial transcript model; 
see Remark (6) in Section 4 for details. Our restriction to a complete transcript is reasonable as a protocol execution 
can be finished in seconds. The scenario that an eavesdropper can not obtain a complete transcript is rare (at least it is 
hard for an attacker to find an external evidence to convince a judge that he has only obtained a partial transcript).
(b). Our model requires information theoretic deniability, while [17] only requires computational deniability. Information 
theoretical deniability has the advantage that it can hold forever without any computational assumption.

3. In the deniable authentication model [15,16], Di Raimondo et al. considered the forward deniability: if the sender reveals 
his secret key at some moment, then the execution before this moment remains deniable. That is, the simulation for the 
deniability remains indistinguishable even if the distinguisher is provided with the sender’s secret key. Especially, the 
receiver is deniable even if the sender changes his mind at some moment and tries to break the receiver’s deniability. 
Di Raimondo et al. noticed that a computational deniability based on a computational zero-knowledge (ZK) proof is 
unlikely to have the forward deniability. Thus, they formalized the forward deniability as the information theoretical 
indistinguishability between the simulated and real adversary views. Carrying it to the key exchange, this is the deni-
ability without an eavesdropping attack in our model. However, one might wish to consider the forward deniability in 
its basic form: the simulated adversary view is computationally indistinguishable from the real one even if the distin-
guisher is additionally given all uncorrupted parties’ secret keys. We call this computational forward deniability. It might 
be interesting to make clear how much gap exists between the computational forward deniability and the information 
theoretical deniability. Toward this, one might wish to consider a non-adaptive or adaptive model, with or without an 
eraser, with or without an eavesdropping attack, etc. It is clear that in any case the information theoretical deniability 
implies the computational forward deniability, as an information theoretical distinguisher can obtain uncorrupted par-
ties’ long-term secrets himself. However, we are unclear whether the other direction is also true. Although it is unlikely, 
finding counter examples do not seem easy.

4. Dodis et al. [19] defined on-line deniability under a generalized universal compositional (GUC) model. The main feature 
of this model is that the distinguisher (an online Judge, which is the environment in the GUC model) can interact with 
an adversary in order to decide whether the protocol execution is real or simulated. A protocol is deniable if the ideal 
process adversary can simulate the execution with only the knowledge of the real adversary. The deniability under 
this model is very strong. Especially, it guarantees the deniability when the protocol runs concurrently within a large 
network that may share some state information (e.g., public keys or parameters) with this protocol. However, it is very 
strong: the adaptive deniable authentication in the PKI model provably does not exist; SKEME [17] and pRO-KE [28]
are not deniable even in the non-adaptive model. The protocol proposed in this paper suffers from the same attack. 
Our model only guarantees a concurrent self-composable deniability (instead of in the GUC model) and hence seems 
weaker. However, we require information theoretical deniability while they require computational deniability. Further, 
the (adaptive or non-adaptive) information theoretical deniability is impossible in their model. Indeed, without loss 
of generality, assume that F low2 is the first message that needs the secret key of its sender. Then, a judge can send 
8
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Pi(di) P j(d j)

x0
w0←− D(L)

(k00,k01) = Hd j (x0) using w0

ζ = Pi |P j |x0, τ0 = Fk00 (ζ )

Pi |x0|τ0

(k′
10,k′

11) = Hdi (x1) using di

ω = Pi |P j |x0|x1, τ1
?= Fk00 (ω)

μ0
?= Fk′

10
(ω), μ1 = Fk′

10
(ω|1)

sk = k′
11

(k′
00,k′

01) = Hd j (x0) using d j

ζ = Pi |P j |x0, τ0
?= Fk′

00
(ζ )

x1
w1←− D(L), ω = Pi |P j |x0|x1

(k10,k11) = Hdi (x1) using w1
τ1 = Fk′

00
(ω), μ0 = Fk10 (ω)

P j |x1|τ1|μ0

μ1|k00 μ1
?= Fk10 (ω|1),k00

?= k′
00

sk = k11

Fig. 1. Our Deniable Key Exchange Protocol HPS-KE (details in the bodytext).

F low1 to one party (through instructing the adversary to deliver the message). After receiving F low2, he just outputs 
F low2, his random tape and public keys. Since F low2 needs the secret key of its sender, the ideal process output is 
not information theoretically consistent (due to the fake F low2) while the real process output is. The reason that S
above can not compute a real F low2 is that S is in fact jointly executing the protocol with the judge exactly as two 
honest parties in the real world. But he need to do this without any honest party’s secret which is of course impossible 
as F low2 needs the sender’s secret. In our deniability model, when S interacts with A that sends F low1, he might 
manage to compute F low2 without a secret. Using our protocol as example, this can be roughly justified as follows. 
Essentially, S invokes A with a random tape rA and answers his oracle queries. If F low1 is sent by adversary A in
Send query, then S can provide rA to an extractor to extract a certain witness of F low1, with which, F low2 can be 
computed without any secret. Under the GUC model, S can not invoke A as A’s attack is scheduled by the Judge, while 
GUC requires the security holds for any Judge (when S is given); see further details in remark (5) after the protocol 
description in Section 4. Thus, our model is not completely weaker than the GUC model.

4. Our framework for key exchange

We now present our protocol. Let I = {Iκ }κ be a hard subset membership problem. Take � = 〈X, L, W , R, D(L), D(X\L)〉
← Iκ . Assume ℘ = 〈H, K, X, L, G, S, α〉 is a projective hash family for �, described by a random string λ ← {0, 1}κ and 
desc(�), where G = {0, 1}2κ . The system parameter params is defined as params = (λ, desc(�)). For each user Pi , take 
di ← K and compute Di = α(di). Pi ’s public key is Di and his private key is di . Our framework for key exchange HPS-KE
between Pi and P j is defined as follows (also see Fig. 1).

1. Pi takes x0
w0←− D(L) and computes (k00, k01) = Hd j (x0) using the tuple (x0, w0, D j). Let ζ = Pi |P j|x0. He derives 

τ0 = Fk00 (ζ ) and sends Pi |x0|τ0 to P j . Intuitively, τ0 is a proof that Pi knows w0.

2. Upon Pi |x0|τ0, P j computes (k′
00, k

′
01) = Hd j (x0) using (d j, x0). Let ζ = Pi |P j |x0. He verifies τ0

?= Fk′
00

(ζ ). If no, he 

rejects; otherwise, he does the following. He takes x1
w1←− D(L) and computes (k10, k11) = Hdi (x1) using (x1, w1, Di). 

Let ω = Pi |P j |x0|x1. He computes τ1 = Fk′
00

(ω), μ0 = Fk10 (ω). Finally, he sends P j|x1|τ1|μ0 to Pi .

3. Upon P j |x1|τ1|μ0, Pi computes (k′
10, k

′
11) = Hdi (x1) using (di, x1), verifies if τ1

?= Fk00 (ω) and μ0
?= Fk′

10
(ω) for ω =

Pi |P j|x0|x1. If no, he rejects; otherwise, he computes μ1 = Fk′
10

(ω|1) and sends μ1|k00 to P j . Finally, he defines sk = k′
11.

4. Upon μ1|k00, if μ1=Fk10 (ω|1) and k00=k′
00, P j defines sk = k11; otherwise, he rejects.

In the protocol, we assume that x0, x1 ∈ X have been checked by the respective recipient. It usually will incur a cost. In 
Section 7, we will see that for a class of X this check can be avoided.

Remark. Some comments are necessary.
(1) One may think of defining sk = k01 ⊕ k11. However, k01 under this definition can be obtained by an adversary A. 

Indeed, let sk = k01 ⊕ k11 be defined with respect to a transcript Pi |x0|τ0|P j |x1|τ1|μ0|μ1|k00. Seeing this transcript, A can 
first corrupt another party P z and then send P z|x0|τ ′

0 to P j (say, precisely ��∗
j ), where τ ′

0 is normally computed using k00. 
After receiving P j ’s reply, A uses dz to normally compute μ′

1. Let sk�∗
j = k01 ⊕ k∗

11. Finally, A asks to reveal sk�∗
j . Since A

can compute k∗ using dz , k01 is derived.
11

9
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(2) Releasing k00 in F low3 is important. This provides deniability against an eavesdropping attack. Indeed, if k00 is 
removed from F low3, a (non-adaptive) deniability attacker can do the following. Given aux = Pi |x0|τ0|P j|x1|τ1|μ0|μ1, the 
attacker in �rea can issue a query Send(1, j, � j, Pi |x0|τ0) and receive message P j |x′

1|τ ′
1|μ′

0 in �rea . To be deniable, the 
simulator in �sim should be able to generate this reply too. However, he is unable to do this. Indeed, he can not define 
x′

1 = x1 as this is different from the view of an attacker in �rea (where x′
1 is uniformly random in L). On the other hand, the 

simulator can not set x′
1 different from x1, as he does not know d j and can not compute k00 and hence can not generate a 

valid τ ′
1. So the deniability simulation fails. Besides k00, we will see that τ0 and μ0 are also used to maintain the deniability. 

Essentially, they serve as a proof that the generating party knows the witness w0 or w1.
(3) A careful reader might think of substituting ω in computing τ1 with ζ |1 to avoid the simulation problem for x′

1 �= x1
in item (2) (where we remove k00 from F low3), as in this case the simulator can simply define τ ′

1 = τ1. However, this 
change will break the authentication property. Indeed, when honest Pi sends Pi |x0|τ0 to honest P j , P j will reply with 
P j |x1|τ1|μ0. In this case, A can change the message of P j to P j |x′

1|τ1|μ′
0, where x′

1 is sampled normally with a known 
witness w ′

1 and hence he can compute a valid μ′
0. It turns out that Pi will accept A’s message while there does not exist a 

partner session in P j for Pi (because partnered sessions must see the same x1 in order to compute the same k11, no matter 
how session identifier is defined)!

(4) Since the release of k00 does not compromise the protocol security, one may think to also release k10. But this will 
not work since in this case A can derive k11 too. Indeed, assume A eavesdrops Pi |x0|τ0|P j |x1|τ1|μ0|k10|k00. Later, when 
Pi sends F low1 = Pi |x′

0|τ ′
0 to a corrupted party P z , A can reply with P z|x1|τ ′

1|μ′
0 normally using dz and k10. Pi then 

will accept. Since sk for the new instance in Pi is still k11, A can obtain it by Reveal query and so the secrecy of the 
eavesdropped session is broken.

(5) Although later we will see that this framework is deniable in our model, it is not non-adaptively deniable under PKI 
in the GUC model of Dodis et al. [19] (see the end of the last section for a brief introduction of their model) since Judge 
can compute F low1 without di and then request the adversary (either A in �rea or S in �sim) to send it to P j and ask him 
to forward F low2 back. Judge then can decide whether F low2 is simulated by checking the validity of τ1, as no one except 
Judge and P j can compute τ1 (especially S can not compute it). Notice that since F low2 forwarded by A in �rea has a 
valid τ1, Judge can realize that he is interacting with A, not S . This attack is in the non-adaptive model as no corruption is 
made at all. In our model, there is no online judge and F low1 is generated by A. To simulate the view of A, S in �sim can 
run A with a known random tape rA . When A sends out F low1, S can run an extractor of L (with rA as part of his input) 
to extract the witness w0 of x0 in F low1. With this w0, S can easily generate F low2.

The above attack separates GUC and our model in the sense of deniability. One might wonder why our protocol with 
online judge has the simulation difficulty while it does not under our model. To see this, notice that our model says that for 
any A there exists S . That is, S can depend on A. In the GUC model, Judge can instruct a dummy real adversary how to 
attack and is the actual adversary. However, a deniability simulator S can not run Judge because GUC security model states 
that “for any A, there exists simulator S such that for any Judge (environment),....”. That is, a valid simulator should work 
for any Judge. Now if S runs a specific Judge, then the description of S should include the description of this Judge. Since 
this Judge can be arbitrary, S can not be described using a valid Turing machine.

(6) Our protocol is not deniable under the partial transcript eavesdropping attack. In the partial transcript eavesdropping 
model, it is possible that aux = F low1|F low2. Then, an attacker can send F low1 in aux to P j as a new session, who then 
will generate F low ′

2. Since F low2 and F low ′
2 are correlated with the same secret key k00 (unknown to attacker), P j is 

undeniable. Our deniability model requires that aux is the complete transcript and hence k00 (in F low3) is included in aux. 
Under this, F low ′

2 is simulatable and so the above attack does not work.

5. Security analysis

In the following, we analyze deniability and secrecy. We define the session id for two partnered sessions �
�i
i

and �
� j

j to be sid�i
i = sid

� j

j = Pi |P j|x0|x1. We define the session state for the protocol execution as follows. For any

Send(d, i, �i, M) query, if ��i
i rejects in its reply, then we define stat�i

i =⊥ as in this case the instance terminates and 
nothing needs to keep. If a Send oracle does not reject, then stat�i

i can be updated according to different cases. Specif-

ically, after Send(0, i, �i, “ke: j”) query, define stat�i
i = Pi |P j |x0|k00; after Send(1, j, � j, Pi |x0|τ0) query, define stat

� j

j =
Pi |P j |x0|x1|k′

00|k10|k11; after Send(2, i, �i, F low2) query, define stat�i
i = Pi |P j |k′

11; after Send(3, j, � j, F low3) query, define 
stat

� j

j = Pi |P j|k11.

5.1. Non-adaptive deniability with an eavesdropping attack

For the non-adaptive deniability with an eavesdropping attack, S receives {Di}i /∈C, {di}i∈C (for a corrupt set C) and an 
auxiliary input aux. In �rea , A can adaptively query Send and Reveal oracles and obtain the replies. Thus, S in �sim must 
also be able to simulate such oracle replies. The main difficulty is that S does not know dt for t /∈ C and hence can not 
compute τ1 in Send(1, t, �t, Pi |x0|τ0) oracle or μ1 in Send(2, t, �t, P j |x1|τ1|μ0) oracle. To resolve the problem, we design 
10
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S to consist of two algorithms: an extractability adversary E for L and its extractor E∗ . The actual oracle simulation is 
actually done by E . Specifically, E invokes A and tries to answer his oracle queries. Whenever E needs to compute Hdt (x), 
he requests E∗ to extract the witness w for x ∈ L, with which, Hdt (x) can be easily computed. But there is a syntax issue 
here. On the one hand, as a simulator for A, E needs to know {Di}i /∈C, {di}i∈C , aux and (λ, desc(�)). On the other hand, 
as an extractability adversary for L, he can only get an input desc(�) and random tape rE . To resolve this issue, we encode 
{Di}i /∈C, {di}i∈C, aux, λ into a pseudorandom string and feed to E as part of its random tape. Further, since E∗ will receive 
rE as part of his input, this also resolves the similar issue for E∗ . Now we slightly detail the idea for E to simulate Send
and Reveal oracles without {dt}t /∈C . This is outlined as follows.

Notice that d j for j /∈ C is only used in computing (ku0, ku1) = Hd j (xu) in Send oracle for u = 0, 1. Specifically, when 
u = 0, E needs to verify τ0 and compute τ1 in Send(1, j, � j, Pi |x0|τ0) oracle. If k00 appears in aux, then the computation 
is easy. Otherwise, if x0 ∈ L, then Hd j (x0) can be computed (without d j ) using the witness w0 of x0. E can obtain w0 by 
sending x0 to E∗ as the extraction query. However, the simulation is valid only if E∗ can always extract the witness w0
when x0 ∈ L. But this is not always true. In our design of E , if E∗ fails to extract w0, then E simply rejects τ0. Of course, this 
decision might be wrong. We denote this event by Bad. We will show through a sequence of game technique that P (Bad)

is negligible. Intuitively, if x0 /∈ L, then τ0 is provably invalid by reducing to the F -indistinguishability of H and hence τ0
can be safely rejected. The case u = 1 is similar. Finally, simulating the Reveal oracle is easy as in this case the session 
key has already been defined through some Send oracles. This completes our deniability idea. We now state the deniability 
theorem; see Appendix B for a formal proof.

Theorem 1. Assume I = {Iκ }κ is an extractable hard subset membership problem. Let � = 〈X, L, W , R, D(L), D(X\L)〉 ← Iκ . Let 
℘ = 〈H, K, X, L, G, S, α〉 be a computational universal2 PHF for �, where G = {0, 1}2κ and desc(℘) = (λ, desc(�)) for λ ← {0, 1}κ . 
Let F be a pseudorandom function family from {0, 1}∗ to {0, 1}κ with key space {0, 1}κ . Assume x ← D(X) is simulatable by (�0, �∗

0)

and D ← S is simulatable by (�1, �∗
1) and d ← K is simulatable by (�2, �∗

2). Then, HPS-KE is non-adaptively deniable with an 
eavesdropping attack.

5.2. Adaptive deniability without an eavesdropping attack

We outline the idea of the adaptive deniability without an eavesdropping attack. Similar to the non-adaptive deniability 
above, we still design a deniability simulator S to consist of two algorithms: α-extractability adversary E and its extractor 
E∗ . As an eavesdropping attack is removed, the task to pack aux into the random tape of E is no longer needed. The input 
to S is PK, λ, desc(�). Now E can receive (λ, desc(�)) as his input and rE as his random tape. Further, E can obtain 
P K1, · · · , P Kn through α-queries. In the oracle simulation, E can obtain di through an α-reverse-query (if A corrupts Pi ). 
For Send oracles, E can still use the strategy in the non-adaptive case. Mainly, he needs to verify τ0 and compute τ1
in Send(1, j, � j, Pi |x0|τ0) oracle and to verify μ0 and compute μ1 in Send(2, i, �i, P j |x1|τ1|μ0) oracle. W.O.L.G., consider 
Send(1, ·) oracle only. In this case, E can send x0 to E∗ and in turn receive the witness w0 of x0. Now since E is a legal 
extractability adversary, E∗ fails to extract a witness w0 for x0 ∈ L only with a negligible probability (which we ignore). 
Thus, an invalid witness w0 (returned by E∗) implies that x0 /∈ L. On the other hand, when x0 /∈ L, τ0 is valid if and only if 
an event E occurs in a F -indistinguishability game, which is negligible. Thus, S can safely reject τ0 whenever w0 from E∗
is invalid. Therefore, Send(1, · · · ) query can be smoothly handled. Send(2, ·) can be answered similarly. This completes our 
simulation idea. We state the result formally in the following theorem (see a detailed proof in Appendix C).

Theorem 2. Let I = {Iκ }κ be an α-extractable hard subset membership problem and � = 〈X, L, W , R, D(L), D(X\L)〉 ← Iκ . Let 
℘ = 〈H, K, X, L, G, S, α〉 be a computational universal2 PHF for � with G = {0, 1}2κ . Assume F is a pseudorandom function from 
{0, 1}∗ to {0, 1}κ , with key space {0, 1}κ . Then, HPS-KE is adaptively deniable without an eavesdropping attack.

5.3. On the possibility for adaptive deniability with an eavesdropping attack

We have proved that our framework is non-adaptively deniable with an eavesdropping attack and adaptively deniable 
without an eavesdropping attack. An immediate question is whether our protocol is adaptively deniable with an eavesdrop-
ping attack. Especially, one may think that the proof for the adaptive deniability without an eavesdropping attack can be 
extended to this setting. However, this seems difficult. Essentially, this is because our strategy for the deniability theorems 
uses the extractability assumption of L to extract the witness w0 in x0 (or w1 in x1), in order for the simulator to simu-
late Send oracles without an uncorrupted party’s private key. To make use of this extractability, we have to construct an 
adversary E in the extractability game who sends x0 (or x1) to an extractor E∗ to extract w0 (or w1). Since E is internally 
interacting with A, he especially needs to know the input of �rea , which is λ, desc(�), {P Ki}i and aux. However, as an ex-
tractability adversary, the input of E is (λ, desc(�)) and a random tape rE . In addition, E can obtain P K1, · · · , P Kn through 
a sequence of α-queries. However, providing aux to E is not easy. If A is non-adaptive, then S can encode aux into a pseu-
dorandom binary string and provide to E as a part of his random tape rE . Since A has a non-adaptive corruption, then this 
encoded pseudorandom string remains pseudorandom throughout the simulation. For adaptive corruption, the situation is 
different. If party i is corrupted later, then the encoded aux is no longer pseudorandom. Specifically, as in Theorem 2, at the 
11
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beginning, aux is compressed into a list of x0|x1|μ0|μ1|k00 and then encoded into pseudorandom strings and feeded to E
as part of his random tape. Assume x0|x1|μ0|μ1|k00 corresponds to the record between Pi, P j . If later A corrupts Pi , then 
di will be provided to E (as the α-reverse query). However, given di , x0|x1|μ0|μ1|k00 is no longer pseudorandom as μ0 is 
efficiently computable from d0, x0|x1|Pi |P j . It follows that E is no longer a legal α-extractability adversary. Consequently, 
the performance of E∗ can not be guaranteed. That is to say, we can not use our old strategy. It is very interesting if we 
can find a different proof strategy (maybe under a new assumption) so that our protocol is adaptively deniable with the 
eavesdropping attack.

5.4. Secrecy

Now we outline the secrecy idea of HPS-KE. If the test session is ��
z , we need to show that sk�

z is indistinguishable from 
a random number. We only consider the case where ��

z is an initiator (the responder case is similar). Assume pid�
z = P z∗ . 

In the nutshell, our proof relies on the F -indistinguishability of the projective hash family ℘ . With this property, we can 
replace (k00, k01) in any �

�z
z with pid�z

z = P z∗ by a random number and replace (k10, k11) in any �
�∗

z
z∗ with pid

�∗
z

z∗ = P z (i.e., 
the party under the test) by a random number.

Then, we show that the test session ��
z has a unique partner session ��∗

z∗ (so they have the same view on P z|P z∗ |x0|x1). 
The idea of this uniqueness is as follows. Firstly, there is at most one such P �∗

z∗ since otherwise two instances in P z∗ sample 
the same x1(negligible!). Secondly, such ��∗

z∗ exists; otherwise, as the attacker knows neither w0 (in x0) nor di , he can not 
create a valid τ1 and hence ��

z will reject F low2 and can not be chosen as a test session. So we can assume that ��
z has 

the same view on k∗
00|k∗

01|k∗
10|k∗

11|x∗
0|x∗

1 as his unique partner ��∗
z∗ . To prove the theorem, it suffices to prove that no instance 

other than ��
z and ��∗

z∗ defines a session key as k∗
11. Since k∗

11 is modified as uniformly random, any ��i
i defines a session 

key k∗
11 only if (1) i = z and ��i

i (initiator) accepts F low2 that contains x∗
1, or (2) ��i

i (responder) samples x1 = x∗
1 in F low2. 

(2) is impossible since it samples the same x∗
1 as ��∗

z∗ (negligible!). (1) is impossible since k∗
10 is random and hence μ0 in 

F low2 will be rejected by ��z
z . As a summery, k∗

11 is a session key only for ��
z and ��∗

z and hence cannot be revealed. So 
an adversary can not distinguish it. The detailed proof is put in Appendix D.

Theorem 3. Let F be pseudorandom from {0, 1}∗ to {0, 1}κ , I be a hard subset membership problem and ℘ be computational 
universal2 PHF. Then, HPS-KE satisfies the adaptive secrecy.

5.5. Authentication

Theorem 4. Let F be pseudorandom from {0, 1}∗ to {0, 1}κ , I be a hard subset membership problem and ℘ be computational 
universal2 PHF. Then, Pr[Non-Auth(A)] is negligible.

Proof. We regard the secrecy game �0 as an experiment. It outputs 1 if Non-Auth occurs. We summarize the proven results 
in proofs of Lemmas in Theorem 3. view(A, �i) and view(A, �i+1) for i = 2, 3 are negligibly close and thus Non-Auth events 
in each pair of them are negligibly close too. Non-Auth differs in �1 and �2 only if it occurs after 〈P z or P z∗ is corrupted 
or ��

z is revealed〉 and before the Test query. However, Non-Auth is defined only for the Test session (see the authentication 
model in Section 3). So it can only occur after the test session is chosen. So Pr[Non-Auth(�1)] = Pr[Non-Auth(�2)]. Further, by 
Lemma 2 (Eq. (A.1)), Pr[Non-Auth(A, �0)] and Pr[Non-Auth(A, �1)] are either both negligible or both non-negligible. Finally, 
by Lemma 12, Pr[Non-Auth(A, �4)] is negligible. Therefore, Pr[Non-Auth(A, �0)] = negl(κ). �
6. Concrete schemes

We can realize our key exchange protocol using a hash proof system [35,12].

- Description of Ik . Sample a large prime p = 2q + 1 where q is also a large prime. Let G be the prime group of Z∗
p of 

order q. Take g1, g2 ←G. The set X = {(gr1
1 , gr2

2 ) | r1, r2 ∈Zq}. Language L is defined as L = {(gr
1, g

r
2) | r ∈Zq}. D(L) is 

defined as taking r ←Zq and outputting (gr
1, g

r
2). Similarly define D(X\L). I is a hard subset membership problem by 

the DDH assumption in G.
- Description of ℘ . Let S = G and G = {0, 1}2κ . Let key space K = {(a1, a2, b1, b2) | a1, a2, b1, b2 ∈ Zq}. D = α(d) =

(D1, D2) = (ga1
1 ga2

2 , gb1
1 gb2

2 ) for d = (a1, a2, b1, b2) ∈ K. Let hλ be a collision resistant hash function, indexed by λ ←
{0, 1}κ . For (u1, u2) ∈ X , define Hd(u1, u2) = KDF(ua1+b1τ

1 ua2+b2τ
2 ), where τ = hλ(u1, u2). If (u1, u2) = (gr

1, g
r
2), then

Hd(u1, u2) = KDF(ua1+b1τ
1 ua2+b2τ

2 )

= KDF((ga1+b1τ ga2+b2τ )r) = KDF((D1 Dτ )r),
1 2 2

12
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where KDF is a key derivation function (e.g., the least half bits of the input) and is not used in the original HPS [35,12]. 
This is a projective hash family for I . Further, it is computational universal2 [26, Lemma 6.3]. desc(�) = (p, g1, g2). 
Based on the DHK assumption, I is an extractable hard subset membership problem. desc(℘) = (λ, p, g1, g2). Besides, 
D1, D2 and x ←Zq are simulatable (see Dent [14] or a more efficient algorithm in Section 2.2).

Denote a HPS-KE protocol using the above HPS by DHK-KE. We have

Corollary 1. Assume that hλ is collision-resistant and F is pseudorandom. Under DDH and DHK assumptions, DHK-KE is non-
adaptively deniable with an eavesdropping attack, adaptive secrecy and authenticated.

Notice that the α-extractability assumption for HPS in DHK-KE is actually the DHK∗ assumption. We therefore have the 
following result.

Corollary 2. Assume hλ is collision-resistant and F is pseudorandom. Then, under DDH and DHK∗ assumptions, DHK-KE is adaptively 
deniable without an eavesdropping attack, adaptive secrecy and authenticated.

Remark. We can realize our framework using HPS [26] from a n-linear assumption. Let g1, · · · , gn, h be generators of prime 
group G of order q in Zp for p = 2q + 1. Then a n-linear assumption is to say that (gr1

1 , · · · , grn
n , hr1+···+rn ) is indistin-

guishable from (gr1
1 , · · · , grn

n , K ) for K ←G, ri ←Zq . Define X = {(gr1
1 , · · · , grn

n , hr) | ri, r ∈Zq}. By the n-linear assumption, 
a language L for X can be defined as a subset of X where r = r1 + · · · + rn . To guarantee this HPS has an extraction prop-
erty, we need to introduce a new assumption, called a n-linear knowledge assumption, which essentially states that, given 
(g1, · · · , gn, h), if an adversary comes up with (gr1

1 , · · · , grn
n , hr1+···+rn ), then there exists an extractor to extract (r1, · · · , rn). 

When n = 1, this is the DHK assumption. It is easy to prove that a n-linear knowledge assumption implies a (n − 1)-linear 
knowledge assumption. The formal definition can be obtained similarly as for the DHK assumption. Similar to DHK∗ , we 
can also define the n-linear∗ knowledge assumption. Again, a n-linear∗ knowledge assumption implies a (n − 1)-linear∗
knowledge assumption. Based on these assumptions, we can realize our framework with a n-linear assumption based HPS 
[26]. The resulting protocol is non-adaptively deniable with an eavesdropping attack if the n-linear knowledge assumption is 
assumed; it is adaptively deniable without an eavesdropping attack if a n-linear∗ knowledge assumption is assumed. Details 
are omitted.

7. Improving DHK-KE: how to avoid checking group membership

A valid membership of prime group G of order q in Z∗
p is important to maintain the security for many protocols [31,34]. 

To check whether a ∈ G, we usually verify if aq = 1 (mod p). This adds a price of one exponentiation to the protocol for 
the verification of each element and significantly degrades the protocol efficiency. Now we show how to avoid this using 
a price of just one squaring. The idea is simple: whenever we need to compute and send an element X = gx for a known
x, we instead first compute x′ = x/2, compute X ′ = gx′

, X = X ′2 (mod p), process normally for the remaining computation 
but finally send X ′ (instead of X). Receiving X ′ , the receiver first computes X = X ′2 (mod p) and then proceeds normally. 
Now we use DHK-KE as an example to show how this works.

The system setup is as in DHK-KE. Let (2−1)q := 2−1 (mod q) = (q + 1)/2. Pi has public key Di = (Di1, Di2) =
(gai1

1 gai2
2 , gbi1

1 gbi2
2 ) and private key di = (ai1, ai2, bi2, bi2). System parameter params = (g1, g2, λ, p). Then the key exchange 

between Pi and P j is as follows.

1. Pi takes x ←Zq , computes

x′ = x · (2−1)q, c′
1 = gx′

1 , c′
2 = gx′

2 , c1 = c′
1

2
, c2 = c′

2
2
, ζ = Pi |P j |c1|c2

σ0 = hλ(ζ ), (k00, k01) = KDF(Dx
j1 Dσ0x

j2 ), τ0 = Fk00 (ζ ).
Finally he sends to P j message Pi |c′

1|c′
2|τ0. Essentially, instead of sending Pi |c1|c2|τ0, Pi sends Pi |√c1|√c2|τ0 to P j .

2. Receiving Pi |c′
1|c′

2|τ0, P j computes c1 = c′
1

2
, c2 = c′

2
2
, ζ = Pi |P j |c1|c2, σ0 = Hλ(ζ ) and (k′

00, k
′
01) = KDF(c

a j1+σ0b j1
1

c
a j2+σ0b j2
2 ). Verify whether τ0 = Fk′

00
(ζ ). If valid, he takes y ←Zq , computes

y′ = y · (2−1)q, f ′
1 = g y′

1 , f ′
2 = g y′

2 , f1 = f ′
1

2
, f2 = f ′

2
2
,

ω = Pi|P j| f1| f2|c1|c2, σ1 = hλ(ω|1),

(k10,k11) = KDF(D y
i1 Dσ1 y

i2 ), τ1 = Fk′
00

(ω|1), μ0 = Fk10(ω).

Finally, send P j| f ′ | f ′ |τ1|μ0 to Pi . Essentially, P j sends to Pi message P j |
√

f1|
√

f2|τ1|μ0.
1 2

13
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3. Upon P j | f ′
1| f ′

2|τ1|μ0, Pi computes

f1 = f ′
1

2
, f2 = f ′

2
2
, ω = Pi |P j| f1| f2|c1|c2,

σ1 = hλ(ω|1), (k′
10,k′

11) = KDF( f ai1+σ1bi1
1 f ai2+σ1bi2

2 ),

verifies whether τ1 = Fk00 (ω|1) and μ0 = Fk′
10

(ω). If both are valid, send μ1 = Fk′
10

(ω|1) and k′
00 to P j and define 

session key sk = k′
11.

4. Verify whether μ1 = Fk10 (ω|1). If valid, define session key sk = k11; otherwise, reject.

Denote the modified protocol DHK-KE′ . Notice that for any z = 2z1 + z0 for z0 ∈ {0, 1}, z × (2−1)q = z1 + z0 · q+1
2 . So 

in contrast to DHK-KE, each party in DHK-KE′ uses the cost of 4 squaring to avoid 2 group membership verifications. The 
following theorem states that they are equivalent in all security properties.

Theorem 5. Let hλ be collision resistent and F be pseudorandom. Then under DHK (resp. DHK∗) and DDH assumptions, DHK-KE′ is 
non-deniable (resp. adaptive deniable) and adaptively secret and authenticated.

Proof. For any A′ against DHK-KE′ , we construct an attacker A against DHK-KE with the same success probability. Note 
for any X ∈G, 

√
X = X (q+1)/2. The strategy of A is to forward the query from A′ to his own challenger and relay the reply 

from the latter back to A′ , except

- In Send(0, i, �i, ·) oracle, Pi |c1|c2|τ0 is changed to Pi |√c1|√c2|τ0 before forwarding to A′ .
- A similar change is made to Send(1, ·) oracle.

Since the view of A′ is identical to the real execution, A′ ’s breaking deniability or secrecy or authentication in DHK-KE′
implies A’s breaking the respective property in DHK-KE. By Theorems 1–4, the conclusion follows. �
Efficiency. Each party in DHK-KE′ protocol needs 6 exponentiations, 4 squarings, 4 F values, 2 hashes and 2 KDFs. 
Computation of KDF, F and hashes can be negligible. For instance, take the least 2κ bits for KDF; use SHA-1 for hash; use 
a collision-resistant hashing followed by super pseudorandom permutation (e.g., use AES) for F or alternatively use GGM 
[23] with pseudorandom generator [41] or simply RFC 4402 [44]. So DHK-KE′ needs essentially 6 exps for each party. In 
contrast, SKEME using Kurosawa-Desmedt [35], if using the technique here to avoid a group membership check, has 8 exps 
for each party, 2F , 2 MACs, 2 hashes and 8 squarings.
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Appendix A. Abortion lemma

Let Exp be an experiment with output o ∈ {0, 1}. Assume that E1, · · · , En are n disjoint events that might occur in Exp
and Pr[∨n

i=1Ei] = 1.
Let Exp∗ be a variant of Exp: take i ← {1, · · · , n} and then run Exp. If E j occurs in Exp for some j �= i, abort with output 

0, 1 randomly; otherwise, normally execute Exp and finally outputs whatever it does.
Let X be a binary random variable defined in Exp. Define a random variable X∗ in Exp∗ as follows. If X is well-defined 

before the abortion of Exp in Exp∗ , X∗ def= X ; otherwise, X∗ def= 0.

Lemma 2. Assume that X is a binary random variable in Exp and o(Exp∗) (resp. o(Exp)) is the output of Exp∗ (resp. Exp). Then,

Pr[X∗ = 1] ≤ Pr[X = 1] ≤ n Pr[X∗ = 1], (A.1)

Pr[o(Exp) = 1] − 1/2 = n(Pr[o(Exp∗) = 1] − 1/2). (A.2)
14
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Proof. Since Pr[∨kEk] = 1 and E1, · · · , En are disjoint, each instance of Exp will have exactly one E j occurring. If i = j, then 
X∗ = X as Exp in Exp∗ never aborts in this case. Thus, Pr[X∗ = 1 ∧ i = j] = Pr[X = 1 ∧ i = j]. Hence,

Pr[X∗ = 1] = Pr[X∗ = 1 ∧ i = j] + Pr[X∗ = 1 ∧ i �= j]
= Pr[X = 1 ∧ i = j] + Pr[X∗ = 1 ∧ i �= j]. (A.3)

By definition of X∗ , X∗ = 1 when i �= j, only if X is realized with 1 before E j occurs (denoted by event Good). Thus,

Eq. (A.3) = Pr[X = 1 ∧ i = j] + Pr[X = 1 ∧ i �= j ∧ Good]. (A.4)

Thus, Eq. (A.4) implies that Pr[X∗ = 1] ≤ Pr[X = 1]. In addition, notice that i and Exp are independent. So i is independent 
of ( j, X). Thus, Pr[i = j] = 1

n and Pr[X = 1 ∧ i = j] = 1
n Pr[X = 1]. Hence, Eq. (A.4) is lower bounded by 1

n Pr[X = 1]. This 
gives Eq. (A.1).

Since Eq. (A.3) does not depend on how X∗ is defined after the abortion and also i is independent of ( j, Exp),

Pr[o(Exp∗) = 1] = Pr[o(Exp) = 1]Pr[i = j] + Pr[o(Exp∗) = 1 ∧ i �= j]. (A.5)

Since Pr[i = j] = 1
n and Pr[o(Exp∗) = 1|i �= j] = 1/2, Eq. (A.2) follows. �

Appendix B. Proof of Theorem 1

Proof. Let A be a non-adaptive deniability adversary for a corrupt set C . Then, S (in �sim) needs to simulate the view of A
(in �rea). Initially, T will prepare �, ℘ and {(Di, di)}n

i=1 with desc(℘) = (λ, desc(�)) for λ ← {0, 1}κ . Let PK = (D1, · · · , Dn)

and SK = (d1, · · · , dn). Let SKC be the set of secret keys of parties in C . Then, T will invoke S with λ, desc(�), PK, SKC , 
auxiliary input aux. In our construction, S consists of an extractability adversary E (to be specified) and the corresponding 
extractor E∗ . Note that E∗ is well defined by the extractability assumption once E is specified. Hence, the code of S
consists of E, E∗ and how E, E∗ will be used. We will delay the specification of E and first specify how E and E∗ will be 
used. Toward this, we denote the random tape of S as three parts rA, r′

E , rE∗ . The code for S to use E, E∗ is as follows.

i. W.O.L.G., assume each honest pair (Pi, P j) has μ transcripts in aux (the case that aux contains a different number of 
transcripts for each pair (Pi, P j) can be covered in this setting because A or S can just ignore the extra transcripts). 
So S can encode aux into a string of (n − |C|)(n − |C| − 1) portions (denoted by aux∗), where the portion (i, j) is 
a concatenation of the μ segments of x0|x1|μ0|μ1|k00. Here identities Pi and P j are not included in the coding as 
they are implicitly implied by the portion id (i, j). Also τ0, τ1 are not included in the coding as they are redundant 
(given k00). By our theorem assumption, aux∗ can be further coded as aux∗ , where the portion (i, j) consists of μ
segments of (�∗

0(x0)|�∗
0(x1)|μ0|μ1|k00). Further, by our theorem assumption, Di, di can be coded as �∗

1(Di) and �∗
2(di). 

Let the coding result for PKC (res. SKC ) be PKC (resp. SKC). So the input to S by T can be re-formatted as 
(λ, desc(�), aux∗, PKC, SKC). S then define rE = (λ, aux∗, PKC, SKC, rA, r′

E). Finally, he invokes E with input desc(�)

and random tape rE , and invokes E∗ with input desc(�), rE and random tape rE∗ .
ii. In the specification of E later, E will run A with input λ, desc(�), PK, SKC and aux (decoded from part of his rE ) and 

random tape rA . Then, E will interact externally with E∗ and internally with A, until the termination of E . During this 
process, S only observes the messages exchanged between E and A. At the end of the simulation, S will output the 
view of A (including rA , the initial input and messages between E and A).

Now it remains to specify E . Continuing with item (ii) above, we only need to specify how E maintains the oracles for 
A. The details are as follows.

Send(0, i, �i, ·). In this case, di is not required. E generates F low1 normally.

Send(1, j, � j, Pi |x0|τ0). In this case, if x0 occurs in some F low1 of aux with receiver P j , then E takes the corresponding 
k00 from aux and proceeds normally; otherwise, he sends x0 as an extraction query to E∗ . In turn, he will receive w0. If w0
is the witness for x0 ∈ L, then he computes (k′

00, k
′
10) using w0 and proceeds normally; otherwise, he rejects.

Send(2, i, �i, P j |x1|τ1|μ0). E uses k00 from Send(0, i, �i, ·) to verify τ1 normally. Then, he verifies μ0 and computes μ1, 
similar to the case for (τ0, τ1) in Send(1, ·) oracle above.

Send(3, j, � j, μ1|k′
00). In this case, (k00, k01, k10, k11) has been defined by Send(1, j, � j) oracle. E proceeds normally.

Reveal(t, �t ) oracle. E proceeds normally as Send oracles above have computed k11 when ��t
t successfully completes.

Finally, S outputs the view of A. Since A’s view consists of the input, random tape rA and the messages between A and 
E , it follows that S can see and collect it. This completes the description of S and �sim . Information theoretical deniability 
requires to show that (λ, desc(�))|PK|aux|C|view(A, �sim) is statistically close to (λ, desc(�))|PK|aux|C|view(A, �rea). In 
our code of E , (λ, desc(�))|PK|aux|C| is already in the view of A. Hence, it suffices to show that the view of A in �sim is 
statistically close to that in �rea . From the code of E (in S), the views of A in �sim and �rea have the following differences.
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- In Send(1, j, � j, Pi |x0|τ0) oracle, if x0 is not in some F low1 in aux with receiver exactly P j , E will request E∗ to extract 
the witness w0 of x0 (no matter it exists or not). If w0 �=⊥, k00, k01 is computed and τ0 is verified; otherwise, τ0 is 
rejected. However, in �rea , (k00, k01) is computed by evaluating Hd j (x0) using d j . Denote the event that the decision 
of E in verifying τ0 is wrong by Bad1. We remark that for the case where x0 is in F low1 of aux with receiver P j , the 
verification of E using k00 from aux is correct, as this k00 is from Hd j (x0).

- In Send(2, i, �i, P j|x1|τ1|μ0) oracle, when x1 is not in some F low1 in aux (as x̃0) with receiver exactly Pi , E will 
request E∗ to extract the witness w1 of x1 (no matter it exists or not). If w1 �=⊥, k10, k11 is computed and μ0 is 
verified; otherwise, μ0 is rejected. However, in �rea , (k10, k11) is computed by evaluating Hdi (x1) using di . Denote the 
event that the decision of E in verifying μ0 is wrong by Bad2. As in the previous case, we remark that for the case 
where x1 is in F low1 of aux (as x̃0) with receiver Pi , the verification of E using k10 = k̃00 from aux is correct, as this 
k̃00 is from Hdi (x̃0).

Define Bad = Bad1 ∨ Bad2. To prove the theorem, we only need to show that Pr[Bad(�sim)] = negl(κ), v = 1, 2. This is done 
by a sequence of game technique. Let �0 = �sim .

Game �1. We modify �0 = �sim to �1 s.t. (ku0, ku1) = Hdt (xu) in generating aux is re-defined (by T ) as (ku0, ku1) ←
{0, 1}2κ . T records (t, xu, ku0, ku1) into a list L (initially empty).

Lemma 3. Pr[Bad(�0)] = Pr[Bad(�1)] + negl(κ).

Proof. Let n′ = n − |C|. W.O.L.G., assume d1, · · · , dn′ are the uncorrupted secret keys. Define �z
1 to be a variant of �1 such 

that when t ≤ z, defining (ku0, ku1) ← {0, 1}2κ (as in �1) for (t, xu, ku0, ku1) ∈L while for t > z, defining it as in �0. It is clear 
that �n′

1 = �1 and �0
1 = �0. So if the lemma is violated by adversary A, there exists z such that Pr[Bad(�z

1)] − Pr[Bad(�z−1
1 )]

is non-negligible. We construct an adversary D to break the F -indistinguishability of ℘ . Given pk = (α(k), desc(℘)), D plays 
the role of T to prepare the setup of �z

1, except that Dz = α(k) (dz = k unknown) and that (xu, ku0, ku1) w.r.t. dz (toward 
computing aux) is obtained through his Challenge Query. Then, he runs S to simulate �z

1 for A. Note since the code of S
(including E, E∗) does not use dz , the simulation is normal. Note if the challenge bit c for D is 0, then the simulation of D
is exactly �z−1

1 ; otherwise, it is �z
1.

We call Send(1, z, �z, ·|x0|τ0) (or Send(2, z, �′
z, ·|x1| · |μ0)) query irregular, if x0 (or x1) was not in F low1 in aux with 

receiver P z and further w0 (or w1) from E∗ is ⊥. D picks a random irregular query (say, Send(1, z, �z, Pi |x0|τ0)) in the 
simulation and sends (x0, τ0, Pi |P z|x0) to his challenger for a Compute query. In turn, he will receive (a, s). If (a, s) �=⊥, D
outputs 1; otherwise, he outputs 0. Note since (a, s) =⊥ if and only if τ0 is invalid, it follows that D outputs 1 if and only 
if the picked irregular query is a Bad event. If the total number of irregular queries is μ, the picked irregular query is Bad
with probability Pr[Bad(�z−1+c

1 )]/μ, which is also the probability that D outputs 1. Thus, D has a non-negligible advantage. 
This contradicts Lemma 1. �
Game �2. We modify �1 to �2 such that x0, x1 in aux is taken as x0, x1 ← D(X) (instead of from D(L)). By reduction 
to the hardness of I (where a distinguisher plays the role of T to pick d1, · · · , dn in order to verify a Bad event), we 
immediately have

Lemma 4. Pr[Bad(�1)] = Pr[Bad(�2)] + negl(κ).

Game �3. We modify �2 to �3 such that for each Pi |P j|x0|x1|μ0|μ1|k00 in aux, T computes μ0, μ1 using a random 
function Rk10 () (instead of Fk10 ()), where k10 is extracted from ( j, x1, k10, k11) ∈ L. Since this k10 is uniformly random in 
{0, 1}κ and is only used by T to compute μ0, μ1 in aux, the following immediately follows from the pseudorandomness of 
F .

Lemma 5. Pr[Bad(�2)] = Pr[Bad(�3)] + negl(κ).

It is left to bound Pr[Bad(�3)]. To do this, we separate Bad event into two sub events. If x0 ∈ L (or x1 ∈ L) in a Bad event, 
we denote this event by Bad′; otherwise, we denote it by Bad′′ . It suffices to show that both Bad′ and Bad′′ are negligible.

Lemma 6. Pr[Bad′(�3)] = negl(κ).

Proof. Since xu ← D(X), μ0, μ1 ← {0, 1}κ and (ku0, ku1) ← {0, 1}2λ in aux, it follows that aux∗ in �3 is statistically 
close to a uniformly random binary string. Further, �∗

1(Di), �2(di) are uniformly random binary strings. Thus, rE =
rA |r′

E |aux∗|PKC |SKC |λ is statistically close to uniform. Hence, under the extractability assumption for L, E∗ can not extract 
a valid witness wu when E queries xu ∈ L, is negligible. The conclusion follows. �

In the following lemma, we further analyze Bad′′ event.
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Lemma 7. Pr[Bad′′(�3)] = negl(κ).

Proof. Our strategy is to reduce P (Bad′′) to event E in F -indistinguishability game with challenge bit c = 0. Specif-
ically, if the conclusion is violated by adversary A, then an adversary B that causes a non-negligible E event in F -
indistinguishability can be constructed as follows. Given pk = (α(k), desc(℘)), B takes j∗ ← {1, · · · , n}\C and plays as the 
deniability challenger T to generate {Di, di}n

i=1 and aux, except that (D j∗ , d j∗ ) = (α(k), k(unknown)). Then, he invokes S
with desc(℘), {Di}i /∈C, {di}i∈C and aux. At the end of simulation, B checks whether an event E occurs w.r.t. d j∗ . Toward this, 
B can ask Compute query to his challenger for help. Specifically, for each Send(1, j∗, � j∗ , Pi |x0|τ0) such that x0 not in aux
with receiver P j∗ and that E does not receive a valid witness w0 for x0, B sends a Compute Query (x0, τ0, Pi |P j∗ |x0) to his 
challenger. In turn, he will receive (a, s). In this case, if (a, s) =⊥, then τ0 must be invalid; otherwise, τ0 is valid. Since E
fails to extract a witness for x0 ∈ L is negligible (by Lemma 6 and ignore it), it follows that x0 /∈ L. Thus, an E event occurs 
if and only if (a, s) �=⊥. That is, B can detect event E w.r.t. x0 from Send(1, ·) query. Similar, he can detect E w.r.t. x1 from 
Send(2, ·) query.

When Bad′′ occurs, it must occur w.r.t. some j. As P ( j∗ = j) = 1/(n − |C|), it follows P (Bad′′) ≤ (n − |C|)P (E) = negl(κ), 
contradicting the non-negligibility of P (Bad′′). �
Finishing Theorem 1. From Lemmas 6 and 7, P (Bad(�3)) = negl(κ). Further, from Lemmas 3–5, Pr[Bad(�0)] = Pr[Bad(�sim)] =
negl(κ). Since view(A, �sim) and view(A, �rea) differs only Bad occurs in �sim , the theorem follows. �
Appendix C. Proof of Theorem 2

Proof. Let A be an adversary against the adaptive deniability without aux. We need to construct a simulator S in �sim who 
generates an output out such that Eq. (1) holds. In �sim , T normally generates �, λ and {(Di, di)}n

i=1 with λ ← {0, 1}κ . Let 
PK = (D1, · · · , Dn) and SK = (d1, · · · , dn). T then runs S with PK, λ, desc(�). In our simulator design, S will consist of 
two algorithms: an α-extractability adversary E and its extractor E∗ (by the α-extractability assumption). It remains how to 
specify E and how S will use E and E∗ . Toward this, S simply takes rE , rE∗ ← {0, 1}∗ and invokes E with random tape rE
and input (desc(�), λ) (by our definition it describes (�, α)), and invokes E∗ with rE , rE∗ and input (λ, desc(�)). Then, S
will play the α-extractability challenger for E and E∗ . Inside S , E will first use α-queries to obtain P K1, · · · , P Kn from S . 
Then, E will internally invoke A with PK, λ, desc(�) to simulate �rea , and externally interact with E∗ . For simplicity, we 
assume that if the witness w extracted by E∗ for query x is not ⊥, then it is valid (this is for simplicity only, as whether 
(x, w) ∈ L can be easily verified and so an invalid w can be redefined to ⊥). Finally, the output of S is the view of A in the 
simulated �rea of E . It remains to specify how E maintains the Send, Reveal and Corrupt oracles for A. This is detailed as 
follows.

Send(0, i, �i, ·). In this case, no di is required and so E generates F low1 normally.

Send(1, j, � j, Pi |x0|τ0). In this case, E sends x0 as an extraction query to E∗ and in turn receives w0 from the latter. If 
w0 =⊥, S rejects; otherwise, by our convention, w0 is a valid witness for x0 ∈ L and so E normally processes this query 
with w0. The simulation output differs from �rea only if the rejection is wrong when w0 =⊥ (denote by event Bad1).

Send(2, i, �i, P j |x1|τ1|μ0). Similar to Send(1, ·), E sends x1 as an extraction query to E∗ and in turn receives w1 from 
the latter. If w1 =⊥, E rejects; otherwise, by our convention, w1 is a valid witness for x1 ∈ L and so E normally processes 
this query with w1. The simulation output differs from �rea only if the rejection is wrong when w1 =⊥ (denote by event 
Bad2).

Send(3, j, � j, μ1|k′
00) and Reveal(t, �t ). Note that (k10, k11, k00, k01) has been computed before these queries and hence 

the reply is normal.

Corrupt(i). In this case, E issues an α-reverse query for P Ki to his challenger S . Then, S issues Corrupt(i) query to T . 
After receiving di , S provides E with di as his answer to the α-reverse query for P Ki . E then provides di and the internal 
states of Pi to A, where internal states are well-defined by Send oracles.

This completes the description of S (including E, E∗) and �sim . At the end of simulation, S outputs view(A, �sim) in the 
simulation of E . From the code of S , view(A, �sim) differs from view(A, �rea) only if Bad = Bad1 ∨ Bad2 occurs. This has 
two cases:

(a) E∗ fails to extract w0 in Send(1, ·) when x0 ∈ L (resp. w1 in Send(2, ·) when x1 ∈ L);
(b) x0 /∈ L but τ0 is valid in Send(1, j, � j, Pi |x0|τ0) query, or,

x1 /∈ L but μ0 is valid in Send(2, i, �i, P j |x1|τ1|μ0) query.

From our description of E , the α-extractability game involving (E, E∗) and their challenger S is property defined. Hence, by 
α-extractability assumption for L, case (a) occurs negligibly. By the following claim, case (b) occurs negligibly too. Thus, our 
theorem follows. �
Claim. If ℘ is computational universal2, then case (b) occurs negligibly.
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Proof. If the claim is violated, we construct an adversary D to break computational universal2 property of ℘ . Upon pk =
(α(k), λ, desc(�)), D does as follows. He takes J ← {1, · · · , n} and plays the roles of T and S to normally simulate �sim , 
except that D J is defined as α(k) in pk and d J is unknown. The simulation of D is perfect prior to the corruption of 
P J : an uncorrupted d J is not used in the simulation of S (especially E). If P J is corrupted by A, then D aborts with 
failure. When D does not abort, then after the simulation, he can check whether Bad occurs to the public key D J by 
first finding out the set A = {x | x /∈ L, x is sent to P J } (by querying every x with receiver P J to Evalu oracle where ⊥ is 
returned if and only if x /∈ L) and then taking x∗ ← A as D’s challenge. In turn, he will receive (a, s) ∈ {0, 1}2κ , which 
is either Hk(x∗) or uniformly random. Then he uses a to verify whether Bad event occurs. If it occurs, he outputs 1; 
otherwise, he outputs 0. Note if a is uniformly random, then Bad occurs negligibly by pseudorandomness of F . Hence, D
has an advantage Pr[Bad(�sim)]/(nν) − negl(κ), non-negligible, where ν is the upper bound of |A|. This contradicts the 
computational universal2 property of I . �
Appendix D. Proof of Theorem 3

Proof. We use �0 to denote the secrecy game. We need to show that for any PPT adversary A, Pr[Succ(A, �0)] = 1/2 +
negl(κ). Toward this, we modify �0 into a sequence of games �1, · · · , �4, build a relation between Pr[Succ(A, �i)] and 
Pr[Succ(A, �i+1)] and finally bound Pr[Succ(A, �4)]. Let T be the challenger in �0.

Game �1. Let L be an upper bound on the total number of instances in a particular party. We modify �0 to �1: initially, 
T takes z ← {1, · · · , n}, � ← {1, · · · , L}, z∗ ← {1, · · · , n}\{z}; then he simulates �0 with A until Test(v, �v ). In this case, if 
v = z, �v = � and pid�

z = P z∗ , then T simulates �0 normally; otherwise, it terminates and sets Succ = 0 or 1 randomly. In 
the remaining proof, z, �, z∗ always mean the variables defined here. By Lemma 2 (Eq. (A.2)), we have

Lemma 8. Pr[Succ(A, �1)] = 1
2 + 1

L(n−1)n · {Pr[Succ(A,�0)] − 1
2

}
.

Game �2. We modify �1 to �2 such that if P z or P z∗ is corrupted or instance ��
z is revealed, then T aborts with output 

0, 1 randomly. Note when one of these conditions occurs, by definition of a test session, it is impossible for Test(v, �v) to 
satisfy v = z, �v = �, pid�

z = P z∗ . Therefore,

Lemma 9. Pr[Succ(A, �1)] = Pr[Succ(A, �2)].

Game �3. We define �3 to be �2 except that for u = 0, 1, (ku0, ku1) = Hdz∗ (xu) by P z is replaced by (ku0, ku1) ← {0, 1}2κ . 
Details follow, where the main effort is to make this change consistent. Initially, let � = {}. All the oracles are simulated as 
in �2, except for the following.

i. In Send(0, z, �z, “ke: z∗”) query, he proceeds normally, except that he defines (k00, k01) ← {0, 1}2κ (instead of taking 
(k00, k01) = Hdz∗ (x0)). Finally, he adds (x0, k00, k01) into �.
Later Send(2, z, �z, P j |∗) query is processed normally (including case j = z∗) with (k00, k01).

ii. In Send(1, z∗, �z∗ , Pi |x0|τ0) query, he first checks if (x0, a, s) ∈ � for some (a, s). If yes, he defines (k′
00, k

′
01) = (a, s); 

otherwise, he computes (k′
00, k

′
01) = Hdz∗ (x0) normally. The remaining computation for this query is normal.

iii. In Send(1, z, �z, Pi |x0|τ0) query. If i �= z∗ , it is processed normally; otherwise, T still proceeds normally, except 
(k10, k11) ← {0, 1}2κ (instead of (k10, k11) = Hdz∗ (x1)) and finally he adds (x1, k10, k11) into �.

iv. In Send(2, z∗, �z∗ , P j |x1|τ1|μ0) query, he first checks if (x1, a, s) ∈ � for some (a, s). If yes, he defines (k′
10, k

′
11) = (a, s); 

otherwise, he computes (k′
10, k

′
11) = Hdz∗ (x1) normally. The remaining computation for this query is normal.

The above simulation maintains the property: each (x, a, s) ∈ � is recorded in the execution of some ��
z and also if (a, s)

is a replacement of Hdz∗ (x), then Hdz∗ (x) in the whole simulation (i.e., all Send oracles) is replaced by (a, s). It is also worth 
noting that if each (x, a, s) ∈ � happens to satisfy (a, s) = Hdz∗ (x), then �3 is exactly �2.

Lemma 10. If ℘ is computational universal2 , then

Pr[Succ(A,�3)] = Pr[Succ(A,�2)] + negl(κ).

Proof. If the conclusion is violated by adversary A, then an attacker D can violate the F -indistinguishability of ℘ (Lemma 1) 
as follows. Upon receiving desc(�), λ and a public key D , D simulates �3 with A against it. He defines Dz∗ = D (dz∗
unknown) and defines (Di, di) = (α(ki), ki) for i �= z∗ normally by taking ki ←K. He then provides {Di}n

i=1, desc(�), λ to A
and maintains the oracles normally except for the following. Note � is maintained by D’s challenger.

i. In Send(0, z, �z, “ke: z∗”) query, he proceeds normally, except that D obtains (x0, k00, k01) through a Challenge query. 
In this query, if challenge bit c for D is 0, the simulation is perfect as in �2; otherwise, it is according to �3.
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ii. In Send(1, z∗, �z∗ , Pi |x0|τ0) query, he issues (x0, τ0, Pi |P j |x0) as a Compute query. In turn, he will receive (a, s). If 
(a, s) =⊥, he rejects; otherwise, he defines (k′

00, k
′
01) = (a, s) and proceeds normally. By the code of the Compute oracle, 

τ0 is invalid if and only if (a, s) =⊥. Thus, the simulation for this query is perfectly consistent with �2+c .
iii. In Send(1, z, �z, Pi |x0|τ0) query. If i �= z∗ , T proceeds normally; otherwise, it is still normal except for the following: 

T obtains (x1, k10, k11) through a Challenge query. The simulation is consistent with �2 if c = 0, and it is perfectly 
consistent with �3 if c = 1.

iv. In Send(2, z∗, �z∗ , P j |x1|τ1|μ0) query, he issues (x1, τ1, P z∗ |P j |x0|x1) as a Compute query and receives (a, s). If (a, s) =⊥, 
he rejects; otherwise, he defines (k′

10, k
′
11) = (a, s) and proceeds normally. The simulation for this query is consistent 

with �2+c .

This completes the description of D. At the end of the simulation, when A succeeds, D outputs 0; otherwise, he outputs 
1. From the description of D, we know that when c = 0, the simulated game is �2; otherwise, it is �3. Hence, a non-
negligible success gap of A between �2 and �3 implies a non-negligible advantage of D, contradicting Lemma 1. �
Game �4. We define �4 to be �3 except that for u = 0, 1, (ku0, ku1) = Hdz (xu) by P z∗ is replaced by (ku0, ku1) ← {0, 1}2κ . 
Details follow, where the main effort is to make this change consistent. Initially, let �′ = {}. The oracles are unchanged as 
in �3, except for the following.

i. In Send(0, z∗, �z∗ , “ke: z”) query, he proceeds normally, except that he defines (k00, k01) ← {0, 1}2κ (instead of taking 
(k00, k01) = Hdz (x0)). Finally, he adds (x0, k00, k01) into �′ .
Later Send(2, z∗, �z∗ , P j |∗) query is processed normally (including case j = z) with (k00, k01).

ii. In Send(1, z, �z, Pi |x0|τ0) query, he first checks if (x0, a, s) ∈ �′ for some (a, s). If this is true, he defines (k′
00, k′

01) =
(a, s); otherwise, he computes (k′

00, k
′
01) = Hdz (x0) normally. The remaining computation for this query is normal.

iii. In Send(1, z∗, �z∗ , P j |x0|τ0) query, if j �= z, it proceeds normally; otherwise, T still proceeds normally, except 
(k10, k11) ← {0, 1}2κ (instead of (k10, k11) = Hdz (x1)). Finally, he adds (x1, k10, k11) into �′ .

iv. In Send(2, z, �z, P j |x1|τ1|μ0) query, he first checks if (x1, a, s) ∈ �′ for some (a, s). If yes, he defines (k′
10, k

′
11) = (a, s); 

otherwise, he computes (k′
10, k

′
11) = Hdz (x1) normally. The remaining computation for this query is normal.

Similar to Lemma 10, we have that

Lemma 11. If ℘ is computational universal2,

Pr[Succ(A,�4)] = Pr[Succ(A,�3)] + negl(κ).

Now we will analyze �4. We remind that ��
z is the test session (since �1). We first show

Lemma 12. There exists a unique partnered instance ��∗
z∗ for ��

z .

Proof. We prove the conclusion in two cases. In this proof, we assume condition Normal : x ← D(L) never repeats the 
same x, which is violated only negligibly by the hardness of L. (Otherwise, given a challenge y, a distinguisher samples 
x ← D(L) and claims y ∈ L if and only if x = y. When y ∈ L, x = y occurs non-negligibly; when y /∈ L, x = y occurs with 
probability 0.)
��

z is an initiator. Let the message transcript in the view of ��
z be P z|x̄0|τ̄0|P z∗ |x̄1|τ̄1|μ̄0|μ̄1|k̄00. Then sid�

z = P z|P z∗ |x̄0|x̄1. 
We need to show that there is a unique instance ��∗

z∗ such that sid�∗
z∗ = sid�

z . First of all, there does not exist two such 
instances. Otherwise, two instances in P z∗ sample the same x̄1, violating the Normal condition! Hence, it suffices to prove 
the existence of �∗ . We claim that if �∗ does not exist, then τ̄1 will be rejected by ��

z . Reviewing the definitions of all 
oracles, we can see that k̄00 (or its identical copy k̄′

00), defined in ��
z w.r.t. (x̄0, Dz∗ ), will be used only in the following 

settings (this observation holds similarly for k00 defined in any general ��i
i ):

(1) Send(0, z, �, “ke : z∗”) oracle computes τ̄0 and Send(2, z, �, P z∗ |x̄1|τ̄1|μ̄0) verifies τ̄1 and (if τ̄1, μ̄0 valid) puts k̄00 in 
F low3.
(2) Send(1, z∗, �z∗ , Pt |x̄0|τ̃0) oracle verifies τ̃0 and (if valid) generates τ̃1; also Send(3, z∗, �z∗ , μ̃1|k̃00) oracle verifies k̄00 =
k̃00.
(3) Send(2, z∗, �′

z∗ , Pu|x′
1|τ ′

1|μ′
0) for x′

1 = x̄0 uses k̄00 to verify μ′
0 and (if valid) generates μ′

1;
(4) P z (resp. P z∗ ) is corrupted such that k̄00 in item (1) (resp. item (2)) as part of its session state is provided to A, where 
session states are defined at the beginning of Section 5.

Now we analyze these cases. First, item (4) is impossible as ��
z is a test session with pid�

z = P z∗ by our definition starting 
in �1. Hence, we focus on items (1)(2)(3). We claim that event E: equality in verifying k̄00 = k̃00 in item (2) holds before 
��

z in item (1) verifies τ̄1, is negligible. Indeed, if E occurs, then prior to its occurrence, k̄00 is only used to evaluate F ¯ (). 
k00
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So non-negligible event E can be reduced to break F (by checking Fk̃00
(M) ?= τ , where τ is the oracle reply for an arbitrary 

query M).
Therefore, ignoring event E, we know that before verifying τ̄1 in item (1), the only use of k̄00 is to evaluate Fk̄00

()

in item (1)(2)(3). We now prove that if �∗ does not exist, then τ̄1 in item (1) is invalid. By the security of F , it suffices 
to show that the simulator never evaluates Fk̄00

() with this input. In fact, the non-existence of �∗ implies that x̃1 from

Send(1, z∗, �z∗ , Pt |x0|τ̃0) must satisfy Pt |x̃1 �= P z|x̄1. So the input for τ̃1 (generated by ��z∗
z∗ ) is different from that for τ̄1. 

Further, the input for τ̄0 in item (1) and the input for τ̃0 in item (2) have formats different from that for τ̄1. Finally, the 
input format for μ′

1, μ
′
0 in item (3) is P z∗ |Pu|·, different from P z|P z∗ |· for τ̄1. Hence, the security of F implies that τ̄1 will 

be rejected. That is, the non-existence of �∗ implies that ��
z will not accept, contradicting that ��

z is a test session. Thus, 
��

z must have a partner session and the case for an initiator ��
z is proved.

��
z is a responder. This case is similar to the case ��

z is an initiator. We omit it here. �
Lemma 13. If ��

z is an initiator, assume that the transcript in his view is P z|x̄0|τ̄0|P z∗ |x̄1|τ̄1|μ̄0|μ̄1|k̄00 . Let ��u
u be any successfully 

completed instance such that sid�u
u = Pa|Pb|x̂0|x̂1 s.t. P z|x̄1 = Pb|x̂0 or Pa|x̂1 , then ��u

u = ��
z or ��∗

z∗ (where ��∗
z∗ is the unique partner 

of ��
z defined in Lemma 12).

Proof. Assume ��u
u �= ��∗

z∗ . Let the message transcript in the view of ��u
u be Pa|x̂0|τ̂0|Pb|x̂1|τ̂1|μ̂0|μ̂1|k̂00. No matter P z|x̄1 =

Pb|x̂0 or Pa|x̂1, P z is the recipient of x̄1. If Pu �= P z , then ��u
u generates x̄1. As ��

z is an initiator, its unique partner ��∗
z∗

must also have generated x̄1. Hence, by Normal condition, ��u
u = ��∗

z∗ , contradiction! Hence, we can assume z = u and ��u
u

is the recipient of x̄1. So it suffices to show �z = �.
By Normal condition, ��∗

z∗ is the unique instance that samples x ← D(L) with x = x̄1. Thus, from the definitions of oracles, 
k̄10 (with respect to x̄1 and P z) will be only used in settings:

(1) Send(1, z, �′
z, Pi |x′

0|τ ′
0) oracle with x′

0 = x̄1, verifies τ ′
0 and (if valid) generates τ ′

1 and later Send(3, z, �′
z, μ1|k̃00) verifies 

k̃00
?= k̄10;

(2) Send(1, z∗, �∗, P z|x̄0|τ̄0) oracle computes μ̄0; Send(3, z∗, �∗, μ̄′
1|k̄′

00) oracle verifies μ̄′
1

?= μ̄1;
(3) Send(2, z, �′′

z , P j |x̄1|τ ′′
1 |μ′′

0) verifies μ′′
0 and computes μ′′

1;
(4) P z or P z∗ are corrupted and k̄10 as session state in items (1)(2)(3) will be revealed.

Item (4) is impossible as ��
z is a test session with pid�

z = P z∗ . We focus on items (1)(2)(3). From the description of items 
(1)(2)(3), prior to accepting τ ′

0 in item (1) for some ��′
z

z , the only use of k̄10 is to evaluate Fk̄10
(). However, the input for 

τ ′
0 has a different format from that computed in item (2)(3). Hence, the validity of τ ′

0 implies breaking F . Thus, we can 
remove item (1). So k̄10 is only used in items (2)(3). Assume x0 in ��′′

z
z in item (3) is x′′

0. Then, by Normal condition, x′′
0 �= x̄0

if �′′
z �= �. Hence, before verifying μ′′

0 in ��′′
z for �′′

z �= �, the simulator never evaluates Fk̄10
() with input P z|P j |x′′

0|x̄1. Hence, 
acceptance of μ′′

0 implies breaking F . Therefore, the validity of μ′′
0 in item (3) implies �′′

z = �.

Since ��z
z , as a recipient of x̄1, must have used k̄10, he must use it in either item (1) or item (3). Since it has successfully 

completed, only item (3) is possible (item (1) has been removed above). Thus, ��z
z must have accepted μ′′

0. So �z = �. This 
completes the proof of the lemma. �

Similar to Lemma 13, we have the following.

Lemma 14. If ��∗
z∗ is an initiator, assume that the transcript in his view is P z∗|x̄0|τ̄0|P z|x̄1|τ̄1|μ̄0|μ̄1|k̄00 . Let ��u

u be any accepted 
instance such that sid�u

u = Pa|Pb|x̂0|x̂1 s.t. P z∗ |x̄1 = Pb|x̂0 or Pa|x̂1 , then ��u
u = ��

z or ��∗
z∗ .

Now we are ready to evaluate Pr[Succ(A, �4)].

Lemma 15. Pr[Succ(A, �4)] = 1/2.

Proof. Assume ��
z is an initiator (the responder case is similar). Let α0 = sk�

z = k̄11 and α1 ← {0, 1}κ . Let rch be all the ran-
domness in challenger T in �4, excluding α0|α1|b. Let viewt be the adversary view before the tth query Q t . We first claim 
that for any t , the response to query Q t is deterministic in (viewt , rch, αb) and that stat�i

i for ��i
i �= ��

z, ��∗
z∗ is deterministic 

in (viewt , rch, αb). Note Q t is also determined by viewt . We now verify the claim for each oracle.

Send oracles. k11 is never used in Send oracle to generate an output. Further, (α1, b) are never used in Send oracles. 
Hence, the first part of the claim remains valid after the query. We now consider the second part. For any initiator ��i
i
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with pid�i
i = P j , stat�i

i is determined by Pi |P j|x0|x1|k00|k01|k10|k11. As Pi |P j |x0|x1 is either in viewt or computed from rch , 
we consider k00|k01|k10|k11.

If j �= z∗, z, then k00|k01 = Hd j (x0), where notice that d j is determined by rch . If j = z∗ , then k00|k01 is either sampled 
from {0, 1}2κ using randomness rch or equals Hd j (x0). So in any case k00|k01 are determined by rch and viewt . The case 
j = z is similar.

If i �= z, z∗ , then k10|k11 = Hdi (x1). For i = z, if x1 �= x̄1, then (k10, k11) must be determined by viewt and rch . Further, 
if x1 = x̄1, then ��z

z will put k̄11 in the stat�z
z only if μ0 is accepted. However, by Lemma 13, this occurs only if �z = �

(contradicting ��i
i �= ��

z). For i = z∗ , k10k11 is Hdz∗ (x1) or its replacement. The randomness is independent of (α0, α1, b), as 
α0 = k̄11 is from the replacement of Hdz (∗). Further i �= z implies that this Send oracle call is not for the test session and 
hence α1, b is independent in this oracle.

So we can safely conclude that stat�z
z for �z �= � must be determined by rch and viewt .

Test(z, �). The oracle output is αb . Hence, the claim is valid.

Corrupt(i). The oracle output is di and internal states of Pi . As di is determined by rch and stat�i
i for i �= z, z∗ is deter-

mined by viewt and rch . Hence, the claim remains valid.

Reveal(i, �i). By Test restriction, ��i
i �= ��

z, ��∗
z∗ . As sk�i

i is in the stat�i
i , the claim remains valid from the analysis in Send

oracles.
Finally, since each oracle output is determined by viewt , rch, αb and view0 is the random tape rA of A, it follows that 

viewt is determined by rA, rch, αb . Since α0 and α1 are identically distributed, b is independent of (rA, rch, αb). Hence, b is 
independent of viewt and further independent of b′ as b′ is determined by viewt for some t . Thus, the conclusion follows. �
Finishing Theorem 3. From Lemmas 8-15, the theorem follows. �
Appendix E. Proof of Lemma 1

Proof. Use �c to denote the F -indistinguishability game with a challenge bit c. We show that Pr[A(�0) = 1] = Pr[A(�1) =
1] + negl(κ). Let ��

0 denote a variant of �0, where the first � Challenge queries are answered as in �1 while the 
remaining such queries are answered as in �0. Let � of Challenge queries be bounded by N . Then, �0

0 = �0 and �N
0 = �1. 

If the conclusion is wrong, then there exists � such that | Pr[A(��−1
0 ) = 1] − Pr[A(��

0) = 1]| is non-negligible. Let �̂i
0, i = � −

1, � be the variant of �i
0 such that in the �th Challenge query, x ← D(X\L) (instead of x ← D(L)), where correspondingly 

Hk(x) is computed using k. By the hardness of I , Pr[A(�i
0) = 1] = Pr[A(�̂i

0) = 1] + negl(κ). Hence, | Pr[A(�̂�−1
0 ) = 1] −

Pr[A(�̂�
0) = 1]| is non-negligible. However, if this is true, we build an adversary D to break the computationally universal2

property of �. Specifically, upon input pk = (λ, desc(�), α(k)), D invokes A with pk and simulates �̂�
0 with it as follows. 

He defines c to his own challenge bit (unknown).

•ith Challenge Query. If i �= �, D takes x w← D(L), computes (a0, s0) = Hk(x) using w and processes the query as 
in �̂�

0. If i = �, he outputs x∗ ← D(X\L) as his x2 query. In turn, he receives (a∗
c , s∗

c ). He then sends (x∗, a∗
c , s∗

c ) to A and 
updates � = � ∪ {(x∗, a∗

c , s∗
c )}.

•Compute Query (x, σ , m). If (x, a′, s′) ∈ � for some a′ , he verifies σ using a′; otherwise, he queries an Evalu query 
x to his challenger and in turn receives (a, s). If (a, s) =⊥ (in this case x /∈ L) or σ �= Fa(m), he outputs ⊥; otherwise, he 
outputs (a, s).

At the end of game, D outputs whatever A does. Note in the above simulated computational universal2 game, D defines 
x2 = x∗ and does not issue query x1.

Denote the simulated game of D with bit c by �̄�−1+c
0 . Then �̄�−1+c

0 is identical to �̂�−1+c
0 , except in the case of x /∈ L in 

Compute query. In this case, if the challenger of D returns (a, s) =⊥, D will output ⊥ directly while �̂�−1+c
0 will first verify 

σ using a in (a, s) = Hk(x) and (if valid) output (a, s). In other words, �̂�−1+c
0 differs from �̄�−1+c

0 only when event E occurs 
in �̄�−1+c

0 . Hence, | Pr[A(�̂�−1+c
0 ) = 1] − Pr[A(�̄�−1+c

0 ) = 1]| ≤ Pr[E(�̄�−1+c
0 )]. We claim that Pr[E(�̄�−1+c

0 )] = negl(κ), c =
0, 1; otherwise, the computational universal2 property of � can be broken by adversary D′ as follows. W.O.L.G, assume 
Pr[E(�̄�

0)] is non-negligible. Upon receiving pk, D′ simulates �̄�
0 by playing the role of D and the challenger of D, except 

the evaluation of Hk(x) is done under his own challenger’s help. Specifically, for the ith Challenge query for i �= �, he 
can take x ← D(L) and compute Hk(x) with w himself; for the �th Challenge query, he takes x∗ ← D(X\L) and asks 
his challenger to evaluate Hk(x∗) as the first challenge (i.e., x1 in the definition); upon a Compute query (x, σ , m), he 
issues an Evalu query x to his challenger and in turn receives (a, s), where (a, s) =⊥ if x /∈ L and (a, s) = Hk(x) otherwise. 
In case of the former, he records x into L if x �= x∗ . In any case, the remaining simulation is normal. At the end of game, 
if c = 1, he outputs 0/1 randomly; otherwise, he takes y∗ randomly from L and ask y∗ as the second challenge (i.e., x2
in the definition). In turn he will receive (a∗

b , s∗
b), where (a∗

0, s
∗
0) = Hk(y∗) or (a1, s1) ← {0, 1}2κ . Then he reviews all the

Compute queries with forms (y∗, σ , m) for any σ , m and denotes event σ = Fa∗
b
(m) by inc. In case of inc, he outputs 0; 

otherwise, he outputs 1. Note if b = 1, then inc occurs to y∗ negligibly by unforgeability of F . If b = 0, then inc event is E
event occurs to y∗ . When an E event occurs, it will occur to some x in L. Hence, inc occurs in D’s algorithm for b = 0 with 
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probability at least Pr[E(�̄�
0)]/|L|, non-negligible. The non-negligible gap of the two cases implies non-negligible advantage 

of D′ , contradiction. Hence, Pr[A(�̄�
0) = 1] − Pr[A(�̄�−1

0 ) = 1] is non-negligible. This implies that D has a non-negligible 
advantage, contradiction.

The proof that Pr(E(�c)) = negl(κ) follows almost the same line (without defining x1) as that for Pr[E(�̄�
c)] = negl(κ). 

This completes our proof of the lemma. �
Appendix F. Proof of Fact 1

Proof. Let U�(z) =
{

u� | �(u�) = z, u� ∈ {0, 1}�
}

. By definition of (�, �∗), dist[�∗(Z), U�(Z)] = negl(κ) and dist[Z , �(U�)] =
negl(κ). Then,

dist[�∗(Z), U�]
≤ dist[�∗(Z), U�(Z)] + dist[U�(Z), U�]
= negl(κ) + 1

2

∑
u∈{0,1}�

∣∣∣Pr[Z = �(u)] · |U�(�(u))|−1 − 2−�
∣∣∣

= negl(κ) + 1
2

∑
u∈{0,1}�

∣∣∣
(

Pr[Z = �(u)] − |U�(�(u))| · 2−�
)

· |U�(�(u))|−1
∣∣∣

= negl(κ) + 1
2

∑
z∈�({0,1}�)

∣∣∣Pr[Z = z] − |U�(z)| · 2−�
∣∣∣

≤ negl(κ) + 1
2

∑
z∈V

∣∣∣Pr[Z = z] − |U�(z)| · 2−�
∣∣∣

= negl(κ).

For the first “=”, Pr[U�(Z) = u] = Pr[Z = �(u)] · |U�(�(u))|−1 holds since U�(Z) = u implies Z = �(u) by definition of 
U�(Z). The third “=” holds, since �(u) = z for all u ∈ U�(z). Notice that � : {0, 1}� → V and Z is a variable over V . Hence, 
the second inequality holds. The last “=” holds since negl(κ) = dist[Z , �(U�)] = 1

2

∑
z∈V

∣∣∣Pr[Z = z] − |U�(z)| · 2−�
∣∣∣. �
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