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Optimal Index Codes With Near-Extreme Rates
Son Hoang Dau, Vitaly Skachek, Member, IEEE, and Yeow Meng Chee, Senior Member, IEEE

Abstract— The min-rank of a digraph was shown to represent
the length of an optimal scalar linear solution of the correspond-
ing instance of the Index Coding with Side Information (ICSI)
problem. In this paper, the graphs and digraphs of near-extreme
min-ranks are studied. Those graphs and digraphs correspond to
the ICSI instances having near-extreme transmission rates when
using optimal scalar linear index codes. In particular, it is shown
that the decision problem whether a digraph has min-rank two is
NP-complete. By contrast, the same question for graphs can
be answered in polynomial time. In addition, a circuit-packing
bound is revisited, and several families of digraphs, optimal
with respect to this bound, whose min-ranks can be found in
polynomial time, are presented.

Index Terms— Index coding, network coding, side information,
broadcast.

I. INTRODUCTION

BUILDING communication schemes which allow partic-
ipants to communicate efficiently has always been a

challenging yet intriguing problem for information theorists.
Index Coding with Side Information (ICSI) ([1], [2]) is a com-
munication scheme dealing with broadcast channels in which
receivers have prior side information about the messages to
be transmitted. By using coding and exploiting the knowledge
about the side information, the sender may significantly reduce
the number of required transmissions compared with the
straightforward approach. As a consequence, the efficiency
of communication over this type of broadcast channels could
be dramatically improved. Apart from being a special case
of the well-known (non-multicast) Network Coding problem
([3], [4]), the ICSI problem has also found various potential
applications on its owns, such as audio- and video-on-demand,
daily newspaper delivery, data pushing, and opportunistic
wireless networks ([1], [2], [5]–[8]).
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TABLE I

CHARACTERIZATIONS OF GRAPHS AND DIGRAPHS WITH

NEAR-EXTREME MIN-RANKS

Fig. 1. The forbidden subgraph F.

In the work of Bar-Yossef et al. [5], the optimal transmission
rate of scalar linear index codes for an ICSI instance was
neatly characterized by the so-called min-rank of the side
information digraph (i.e., directed graph, see Section II for
definitions) corresponding to that instance. The concept of
min-rank of a graph (i.e., undirected graph, see Section II
for definitions) goes back to Haemers [9]. Min-rank serves
as an upper bound for the celebrated Shannon capacity of a
graph [10]. This upper bound, as pointed out by Haemers,
although is usually not as good as the Lovász bound [11],
is sometimes tighter and easier to compute. It was shown
by Peeters [12] that computing the min-rank of a general
graph (that is, the Min-Rank problem) is a hard task. More
specifically, Peeters showed that deciding whether the min-
rank of a graph is smaller than or equal to three is an
NP-complete problem.

The work of Bar-Yossef et al. [5] has stimulated the interest
in the Min-Rank problem. Exact and heuristic algorithms
for finding min-ranks over the binary field of digraphs were
developed in the work of Chaudhry and Sprintson [13].
The min-ranks of random digraphs were investigated by
Haviv and Langberg [14]. A dynamic programming approach
was proposed by Berliner and Langberg [15] to compute min-
ranks of outerplanar graphs in polynomial time. Algorithms
to approximate min-ranks of graphs with bounded min-ranks
were studied by Chlamtac and Haviv [16].

In this paper, we study graphs and digraphs that have near-
extreme min-ranks. In other words, we study ICSI instances
with n receivers for which optimal scalar linear index codes
have transmission rates 1, 2, n−2, n−1, or n. In particular, we
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show that deciding whether a digraph has min-rank two over
the binary field is an NP-complete problem. Very recently,
it was found by Maleki et al. [17] that the same problem
for digraphs over sufficiently large field can be solved in
polynomial time. By contrast, a graph has min-rank two over
any finite field if and only it is not a complete graph and its
complement is bipartite, a condition which can be verified in
polynomial time (see, for instance, West [18, p. 495]).

The characterizations of graphs and digraphs with near-
extreme min-ranks are summarized in Table I. The star mark
“∗” indicates that the result is established in this paper.
The dagger mark “†” indicates that the result is proved only
for the binary field.

The near-extreme cases are of significant interest from both
theoretical and practical points of view. On the theoretical
side, it is desirable to understand, which values of the min-
rank in the range between 1 and n are easy to verify, and
for which values it is hard. In particular, it is known that the
Min-Rank problem is NP-hard [12] (minrkq(G) = 3 is hard
to verify). On the other hand, min-rank values of 1 and n
are easy to verify in polynomial time for both graphs and
digraphs. Therefore, there should exist threshold values of
min-rank between 1 and n, for which the difficulty of the
verification problem for the min-rank of a (di-)graph changes
from easy to hard or vice versa. For graphs, such threshold
values are 3 and some integer smaller than n− 2 (not exactly
known). By contrast, for digraphs, the thresholds are 2 (proved
in this work) and n − 1 (conjectured).

From the practical point of view, the use of length-one index
codes in wireless communications has already been proposed
(for instance, see COPE [7], [20], [21]), due to their simplicity
and efficiency. However, the variety of scenarios where an
index code of length one is applicable is limited (each client
must know all except one message). An index code of length
two is obviously the next potential candidate to be used. Thus,
for index coding scenarios, where the corresponding min-rank
is small, it is desirable that the sender could identify that
efficiently, and employ an optimal index code if needed.

So far, families of graphs and digraphs whose min-ranks
are either known or computable in polynomial time are the
followings. For graphs, they are odd holes and odd anti-
holes [19], perfect graphs [19], outerplanar graphs [15], and
graphs with simple tree structure [22]. For digraphs, they are
acyclic digraphs [19]. In this work, we point out several new
families of digraphs for which the circuit-packing bound [23]
is tight. For such families of digraphs, min-ranks can be found
in polynomial time.

In the context of index coding, we only study min-ranks
of digraphs over a finite field Fq . However, all of our results,
except Theorem 4.7, Corollary 4.8, and Theorem 5.2, still hold
for an arbitrary field F. This is because the characteristic of
the field does not play any role in their proofs.

The paper is organized as follows. Basic notation and
definitions are presented in Section II. The ICSI problem
is formulated in Section III. Section IV is devoted to the
characterizations of graphs and digraphs of near-extreme min-
ranks. We prove the hardness of the Min-Rank problem for
digraphs in Section V. Families of digraphs that attain the

circuit-packing bound [23] are discussed in Section VI. We
conclude the paper in Section VII.

II. NOTATION AND DEFINITIONS

Let [n] denote the set of integers {1, 2, . . . , n}. Let Fq

denote the finite field of q elements and F
∗
q = Fq \ {0}.

The support of a vector u ∈ F
n
q is defined to be the set

supp(u) = {i ∈ [n] : ui �= 0}. For an n × k matrix M ,
let M i denote the ith row of M . For a set E ⊆ [n], let ME

denote the |E| × k sub-matrix of M formed by rows of M
which are indexed by the elements of E. For any matrix M
over Fq, we denote by rankq(M ) the rank of M over Fq (or
the q-rank of M ). We use ei to denote the unit vector, which
has a one at the ith position, and zeros elsewhere.

A simple graph is a pair G = (V(G), E(G)) where V(G) is
the set of vertices of G and E(G) is a set of unordered pairs of
distinct vertices of G. We refer to E(G) as the set of edges of G.
A typical edge of G is of the form {u, v} where u ∈ V(G),
v ∈ V(G), and u �= v. If e = {u, v} ∈ E(G) we say that u and
v are adjacent. We also refer to u and v as the endpoints of e.

A simple digraph is a pair D = (V(D), E(D)) where V(D)
is the set of vertices of D, and E(D) is a set of ordered pairs
of distinct vertices of D. We refer to E(D) as the set of arcs
(or directed edges) of D. A typical arc of D is of the form
e = (u, v) where u ∈ V(D), v ∈ V(D), and u �= v. The
vertices u and v are called the endpoints of the arc e.

Simple graphs and digraphs have no loops and no par-
allel edges and arcs, respectively. In the scope of this
paper, only simple graphs and digraphs are considered.
Therefore, we simply refer to them as graphs and digraphs
for succinctness.

The number of vertices |V(D)| is called the order of D,
whereas the number of arcs |E(D)| is called the size of D.
The complement of a digraph D, denoted by D, is defined as
follows. The vertex set is V(D) = V(D). The arc set is

E(D) =
{
(u, v) : u, v ∈ V(D), u �= v, (u, v) /∈ E(D)

}
.

Analogous concepts are also defined for graphs.
A digraph D is called symmetric if it satisfies the property

that (u, v) ∈ E(D) if and only if (v, u) ∈ E(D). A symmetric
digraph can be viewed as a graph, and vice versa. A complete
graph is a graph that contains all possible edges. A complete
digraph is a digraph that contains all possible arcs.

A collection of subsets V1, V2, . . . , Vk of a set V is said to
partition V if ∪k

i=1Vi = V and Vi ∩ Vj = ∅ for every i �= j.
In that case, [V1, V2, . . . , Vk] is referred to as a partition of V ,
and Vi’s (i ∈ [k]) are called parts of the partition.

A graph G is called bipartite if V(G) can be partitioned into
two subsets U and V such that for every edge {u, v} ∈ E(G),
it holds that u ∈ U and v ∈ V , or vice versa.

A subgraph of a graph G is a graph whose vertex set V is
a subset of that of G and whose edge set is a subset of that of
G restricted to the vertices in V . Let V be a subset of vertices
in V(G). The subgraph of G induced by V is a graph whose
vertex set is V , and edge set is {{u, v} : u ∈ V, v ∈ V,
{u, v} ∈ E(G)}. We refer to such a graph as an induced
subgraph of G. A subgraph and induced subgraph of a digraph
can be defined in a similar manner.
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A path in a graph G is a sequence of distinct vertices
(v1, v2, . . . , vr), such that {vs, vs+1} ∈ E(G) for all
s ∈ [r − 1]. A directed path in a digraph D is a sequence of
distinct vertices (v1, v2, . . . , vr), such that (vs, vs+1) ∈ E(D),
for all s ∈ [r − 1].

A circuit in a digraph D is a sequence of pairwise distinct
vertices

C = (v1, v2, . . . , vr),

where (vs, vs+1) ∈ E(D) for all s ∈ [r − 1] and (vr, v1) ∈
E(D) as well. A digraph is called acyclic if it contains no
circuits.

A graph is called connected if there is a path from each
vertex in the graph to every other vertex. The connected
components of a graph are its maximal connected subgraphs.
Similarly, a digraph is called strongly connected if there is
a directed path from each vertex in the graph to every other
vertex. The strongly connected components of a digraph are
its maximal strongly connected subgraphs.

If (u, v) is an arc in a digraph D, then v is called an out-
neighbor of u in D. The set of out-neighbors of a vertex u
in a digraph D is denoted by ND

O (u). We simply use NO(u)
whenever there is no potential confusion. We also denote by
NG(u) the set of neighbors of u in a graph G, namely, the set
of vertices adjacent to u in G.

An independent set in a graph G is a set of vertices of G
with no edges connecting any two of them. An independent
set in G of largest cardinality is called a maximum independent
set in G. The cardinality of such a maximum independent set
is referred to as the independence number of G, denoted by
α(G). We also use α(D) to denote the size of a maximum
acyclic induced subgraph of a digraph D for the following
reason. For a symmetric digraph D, α(D) is equal to the
size of a maximum independent set if D is regarded as a
graph.

A clique of a graph is a set of vertices that induces a
complete subgraph of that graph. A clique cover of a graph is
a set of cliques that partition its vertex set. A minimum clique
cover of a graph is a clique cover with the minimum number
of cliques. The number of cliques in such a minimum clique
cover of a graph is called the clique cover number of that
graph. Similar concepts are defined for digraphs. We denote
by cc(G) the clique cover number of a graph G and cc(D) the
clique cover number of a digraph D.

III. THE INDEX CODING WITH SIDE

INFORMATION PROBLEM

The ICSI problem is formulated as follows. Suppose a
sender S wants to send a vector x = (x1, x2, . . . , xn),
where xi ∈ Σt for all i ∈ [n], Σ is some alphabet, to n
receivers R1, R2, . . . , Rn. Each Ri possesses some prior side
information, consisting of the blocks xj , j ∈ Xi � [n], and
is interested in receiving a single block xi. The sender S
broadcasts a codeword E(x) ∈ Σκ, where κ is some positive
integer, that enables each receiver Ri to recover xi based on its
side information. Such a mapping E : Σnt → Σκ is called an
index code. We refer to t as the block length and κ as the length

of the index code. The ratio κ/t is called the transmission rate
of the index code. The objective of S is to find an optimal
index code, that is, an index code which has the minimum
transmission rate. The index code is called linear if Σ = Fq

for some prime power q and E is a linear mapping. The index
code is called scalar if t = 1 and block if t > 1. The length
and the transmission rate of a scalar index code (t = 1) are
identical.

Each instance of the ICSI problem can be described by the
so-called side information digraph [5]. Given n and Xi, i ∈
[n], the side information digraph D = (V(G), E(D)) is defined
as follows. The vertex set V(D) = {u1, u2, . . . , un}. The edge
set E(D) = ∪i∈[n]

{
(ui, uj) : j ∈ Xi

}
. Sometimes we simply

take V(D) = [n] and E(D) = ∪i∈[n]

{
(i, j) : j ∈ Xi

}
.

If D is a symmetric digraph, we can regard D as a graph,
and refer to D as the side information graph.

Definition 3.1 ([9]): Let D =
(V(D), E(D)

)
be a digraph

of order n, where V(D) = {u1, u2, . . . , un}.
1) A matrix M = (mui,uj ) ∈ F

n×n
q (whose rows and

columns are labeled by the elements of V(D)) is said to
fit D if

{
mui,uj �= 0, i = j,

mui,uj = 0, i �= j, (ui, uj) /∈ E(D).

2) The min-rank of D over Fq is defined to be

minrkq(D) �= min
{

rankq(M ) : M ∈ F
n×n
q and M fits D}

.

Since a graph can be viewed as a symmetric digraph, the above
definitions also apply to a graph.

Theorem 3.2 ([5], [24]): The length of an optimal scalar
linear index code over Fq for the ICSI instance described by
D is minrkq(D).

Let βt(D) denote the length of an optimal block index
code of block length t over Σ = {0, 1} for an ICSI instance
described by a digraph D. Note that we do not require
the index codes to be linear. Alon et al. [25] defined the
broadcast rate β(D) of the corresponding ICSI instance to
be limt→∞ βt(D)/t (see also Blasiak et al. [26]). In words,
the broadcast rate is the average minimum communication cost
per symbol in each block xi (for long blocks). The reciprocal
of β(D) is also referred to as the capacity of the ICSI
instance described by D (see Langberg and Sprintson [27]).
Theorem 3.3 demonstrates an intuitive fact that in terms of
transmission rates, block index codes are at least as good as
scalar index codes, which in turn are at least as good as scalar
linear index codes.

Theorem 3.3 ([5], [9], [19], [25]): For any digraph D we
have

α(D) ≤ β(D) ≤ β1(D) ≤ minrk2(D) ≤ cc(D).

The same inequalities hold for graphs.
Similarly, we also have the following inequalities consid-

ering index codes over Σ = Fq. The last inequality in this
proposition is called the clique-covering bound for min-ranks.

Proposition 3.4: For any digraph D we have

α(D) ≤ minrkq(D) ≤ cc(D).

The same inequalities hold for graphs.
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IV. DIGRAPHS OF NEAR-EXTREME MIN-RANKS

Some of the results presented below are folklore. However,
we include them for the sake of completeness.

A. (Strongly) Connected Components and Min-Ranks

Lemma 4.1 (Folklore): Let G = (V(G), E(G)) be a graph.
Suppose that G1,G2, . . . ,Gk are subgraphs of G that satisfy
the following conditions

1) The sets V(Gi), i ∈ [k], partition V(G);
2) There is no edge of the form {u, v} where u ∈ V(Gi)

and v ∈ V(Gj) for i �= j.

Then

minrkq(G) =
k∑

i=1

minrkq(Gi).

In particular, the above equality holds if G1,G2, . . . ,Gk are all
connected components of G.

The proof follows from Definition 3.1.
Lemma 4.2 (Folklore): Let D = (V(D), E(D)) be a

digraph. If D1,D2, . . . ,Dk are all strongly connected com-
ponents of D, then

minrkq(D) =
k∑

i=1

minrkq(Di).

The proof of this lemma appears in the Appendix.
These two lemmas suggest that it is sufficient to study

the min-ranks of connected graphs and strongly connected
digraphs, respectively.

B. Digraphs of Min-Rank One

The following results are known for (di-)graphs of min-rank
one.

Proposition 4.3 (Folklore): Let D = (V(D), E(D)) be a
digraph. Then minrkq(D) = 1 if and only if D is a complete
digraph. The same statement holds for a graph.

Corollary 4.4 follows by applying Theorem 3.3 and
Proposition 4.3.

Corollary 4.4: Let D = (V(D), E(D)) be a digraph. Then
β(D) = 1 if and only if D is a complete digraph. The same
statement holds for a graph.

C. Digraphs of Min-Rank Two

In this section, only the binary alphabet is considered. We
first introduce the following concept of a fair coloring of a
digraph. Recall that a k-coloring of a graph G = (V(G), E(G))
is a mapping φ : V(G) → [k] which satisfies the condition that
φ(u) �= φ(v) whenever {u, v} ∈ E(G). We often refer to φ(u)
as the color of u. If there exists a k-coloring of G, then we
say that G is k-colorable.

Definition 4.5: Let D = (V(D), E(D)) be a digraph. A fair
k-coloring of D is a mapping φ : V(D) → [k] that satisfies
the following conditions:

(C1) If (u, v) ∈ E(D) then φ(u) �= φ(v);
(C2) For each vertex u of D, it holds that φ(v) = φ(ω) for

all out-neighbors v and ω of u.

If there exists a fair k-coloring of D, we say that we can color
D fairly by k colors, or, D is fairly k-colorable.

We refer to the condition (C2) as the fairness of the
coloring, since this condition guarantees that all out-neighbors
of each vertex share the same color.

Lemma 4.6: A digraph D = (V(D), E(D)) is fairly
3-colorable if and only if there exists a partition of V(D)
into three subsets A, B, and C that satisfy the following
conditions

1) For every u ∈ A: either NO(u) ⊆ B or NO(u) ⊆ C;
2) For every u ∈ B: either NO(u) ⊆ A or NO(u) ⊆ C;
3) For every u ∈ C: either NO(u) ⊆ A or NO(u) ⊆ B.

Proof: If D is fairly 3-colorable, let A, B, and C respec-
tively be the sets of vertices of D that share the same color.
Then clearly A, B, and C partition V(D). Moreover, since all
out-neighbors of each vertex must have the same color, the
three conditions above are obviously satisfied. Conversely, if
those conditions are satisfied, then φ : V(D) → [3], defined
by

φ(u) =

⎧
⎪⎨

⎪⎩

1, u ∈ A

2, u ∈ B

3, u ∈ C,

is a fair 3-coloring of D.
Theorem 4.7: Let D = (V(D), E(D)) be a digraph. Then

minrk2(D) ≤ 2 if and only if D, the complement of D, is
fairly 3-colorable.

Proof:
The ONLY IF direction:
By the definition of min-rank, minrk2(D) ≤ 2 implies the
existence of an n×n binary matrix M of 2-rank at most two
that fits D. There must be some two rows of M that span its
entire row space. Without loss of generality, suppose that they
are the first two rows of M , namely, M1 and M2 (these
two rows might be linearly dependent if minrk2(D) < 2).
Let A, B, and C be disjoint subsets of V(D) such
that

supp(M 1) = A ∪ B, supp(M2) = B ∪ C.

Hence,

supp(M1) ∩ supp(M 2) = B.

Since the binary alphabet is considered and the matrix M has
no zero rows, for every u ∈ V(D), one of the following must
hold: (1) Mu = M1; (2) Mu = M2; (3) Mu = M1 +M2.
Hence for every u ∈ V(D)

u ∈ supp(Mu) ⊆ A ∪ B ∪ C.

This implies that A ∪ B ∪ C = V(D).
Suppose that u ∈ A. Then either Mu = M 1 or Mu =

M1 + M2. The former condition holds if and only if
supp(Mu) = A∪B, which in turns implies that (u, v) ∈ E(D)
for all v ∈ A∪B \ {u}. In other words, (u, v) /∈ E(D) for all
v ∈ A∪B. Here D = (V(D), E(D)) is the complement of D.
The latter condition holds if and only if supp(Mu) = A∪C,
which implies that (u, v) /∈ E(D) for all v ∈ A ∪ C. In
summary, for every u ∈ A we have
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1) (u, v) /∈ E(D), for all v ∈ A;
2) Either (u, v) /∈ E(D) for all v ∈ B, or (u, v) /∈ E(D)

for all v ∈ C;

In other words, for every u ∈ A, either ND
O (u) ⊆ B or

ND
O (u) ⊆ C. Analogous conditions hold for every u ∈ B

and for every u ∈ C as well. Therefore, by Lemma 4.6, D is
fairly 3-colorable.
The IF direction:
Suppose now that D is fairly 3-colorable. It suffices to find an
n × n binary matrix M of rank at most two that fits D. By
Lemma 4.6, there exists a partition of V(D) into three subsets
A, B, and C that satisfy the following three conditions

1) For every u ∈ A: either ND
O (u) ⊆ B or ND

O (u) ⊆ C;
2) For every u ∈ B: either ND

O (u) ⊆ A or ND
O (u) ⊆ C;

3) For every u ∈ C: either ND
O (u) ⊆ A or ND

O (u) ⊆ B.

We construct an n × n matrix M = (mu,v) as follows. For
each u ∈ A, if ND

O (u) ⊆ B then let

mu,v =

{
1, v ∈ A ∪ C

0, v ∈ B.

Otherwise, if ND
O (u) ⊆ C then let

mu,v =

{
1, v ∈ A ∪ B

0, v ∈ C.

For u ∈ B and u ∈ C, Mu can be constructed analogously.
It is obvious that M fits D. Moreover, each row of M can
always be written as a linear combination of the two binary
vectors whose supports are A ∪ B and B ∪ C, respectively.
Therefore, rank2(M) ≤ 2. The proof is complete.

The following corollary characterizes the digraphs of min-
rank two over F2.

Corollary 4.8: A digraph D has min-rank two over F2 if
and only if D is fairly 3-colorable and D is not a complete
digraph.

For a graph G, it was proved by Blasiak et al. [26] that
β(G) = 2 if and only if G is bipartite and G is not a complete
graph. A characterization of digraphs D with β(D) = 2 was
also obtained therein. More specifically, it was shown that
β(D) = 2 if and only if D does not contain a subgraph iso-
morphic to an almost alternating cycle. The almost alternating
(2m + 1)-cycle (m ≥ 1) is defined as follows. Its vertex set
consists of all integers between −m and m, inclusive, and
there is an edge from i to j if and only if j− i ∈ {m, m+1}.
Based on this characterization, a polynomial time algorithm to
recognize a digraph D with β(D) = 2 was also derived in [26].
Hence, the question whether an optimal block index code of
length two exists for an ICSI instance described by a digraph
can be answered in polynomial time. For scalar linear index
codes, the same question turns out to be hard. We prove later
in Section V that the decision problem whether minrk2(D) = 2
is NP-complete.

D. Digraphs of Min-Ranks Equal to Their Orders

We start with the following definition.
Definition 4.9: A matching in a graph is a set of edges

without common vertices. A maximum matching is a matching

Fig. 2. A star graph.

that contains the largest possible number of edges. The number
of edges in a maximum matching in G is denoted by mm(G).

Proposition 4.10 (Maximum-matching bound): For
any graph G of order n, it holds that minrkq(G) ≤ n−mm(G).

The proof follows from the clique-covering bound.

Proposition 4.11 (Folklore): Let G be a graph of order n.
Then minrkq(G) = n if and only if G has no edges.

Proposition 4.12 (Follows from [19]): Let D be a digraph
of order n. Then minrkq(D) = n if and only if D is acyclic.

It follows from Proposition 4.12 that the decision problem
whether a digraph has min-rank equal to its order can be solved
in polynomial time.

By Theorem 3.3, Proposition 4.11, and Proposition 4.12,
the following corollary is straightforward.

Corollary 4.13. For a digraph D, β(D) = |V(D)| if and
only if D is acyclic. For a graph G, β(G) = |V(G)| if and
only if G has no edges.

E. Graphs of Min-Ranks One Less Than Their Orders

In this section, we consider (undirected) graphs. The corre-
sponding case for digraphs is open. For a connected graph G
of order at least two, it is easy to see that mm(G) = 1 if and
only if it is a star graph (for an example, see Fig. 2), which
is defined as follows.

Definition 4.14. A graph G = (V(G), E(G)) is called a star
graph if |V(G)| ≥ 2 and there exists a vertex v ∈ V(G) such
that E(G) =

{{u, v} : u ∈ V(G) \ {v}}.
It is straightforward to see that if mm(G) = 1 then α(G) =

n − 1, as G is a star graph.
Proposition 4.15. Let G be a connected graph of order

n ≥ 2. Then minrkq(G) = n−1 if and only if mm(G) = 1 (or
equivalently, G is a star graph).
Proof: We first suppose that minrkq(G) = n − 1. By the
maximum-matching bound, n−1 = minrkq(G) ≤ n−mm(G).
Therefore, mm(G) ≤ 1. However, as minrkq(G) �= n, by
Proposition 4.11 we have mm(G) �= 0. Hence, mm(G) = 1.

Conversely, assume that mm(G) = 1. By the maximum-
matching bound, minrkq(G) ≤ n − 1. By Proposition 3.4,
minrkq(G) ≥ α(G) = n − 1. Thus, minrkq(G) = n − 1.

Corollary 4.16. Let G be a connected graph of order n ≥ 2.
Then β(G) = n − 1 if and only if mm(G) = 1 (G is a star
graph).
Proof: Suppose β(G) = n − 1. Then either minrk2(G) =
n − 1 or minrk2(G) = n. However, by Proposition 4.11,
minrk2(G) = n implies that G has no edge. As a consequence,
β(G) ≥ α(G) = n, which contradicts our assumption.
Hence, minrk2(G) = n − 1. According to Proposition 4.15,
mm(G) = 1.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:29:38 UTC from IEEE Xplore.  Restrictions apply. 



1520 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

Fig. 3. The subgraph F′.

Conversely, suppose that mm(G) = 1. According to
Proposition 4.15, we have

n − 1 = α(G) ≤ β(G) ≤ minrk2(G) = n − 1.

Hence, β(G) = n − 1.

F. Graphs of Min-Ranks Two Less Than Their Orders

In this section, we consider (undirected) graphs. The corre-
sponding case for digraphs is open. Here we also employ the
matching language to characterize graphs of min-ranks two
less than their orders.

Theorem 4.17. Suppose G is a connected graph of order
n ≥ 6. Then minrkq(G) = n − 2 if and only if mm(G) = 2
and G does not contain a subgraph isomorphic to the graph F
depicted in Fig. 1.

The proof of this theorem appears in the Appendix.
Corollary 4.18. If mm(G) = 2 and G contains a subgraph

isomorphic to F (Fig. 1) then minrkq(G) = |V(G)| − 3.
Proof: Suppose F′ (Fig. 3) is a subgraph of G that is
isomorphic to F.

As G does not have a matching of size three, each
of the vertices c, f , and g is not adjacent to any ver-
tex in V(G) \ V(F′). Moreover, no pairs of vertices in
V(G) \ V(F′) are adjacent for the same reason. Therefore,
{c, f, g} ∪ (V(G) \ V(F′)) is an independent set of size
|V(G)| − 3 in G. Hence, minrkq(G) ≥ α(G) ≥ |V(G)| − 3.
As mm(G) = 2, by the maximum-matching bound,
minrkq(G) ≤ |V(G)|−2. As G contains F′, which is isomorphic
to F, by Theorem 4.17, minrkq(G) �= |V(G)| − 2. Thus,
minrkq(G) = |V(G)| − 3.

Corollary 4.19. Theorem 4.17 holds verbatim if we replace
minrkq(·) by β(·).
Proof: Suppose that β(G) = n−2. Then minrk2(G) ∈ {n−2,
n − 1, n}. By Proposition 4.11, Proposition 4.15, and their
corollaries, for κ ∈ {n − 1, n}, minrk2(G) = κ if and only
if β(G) = κ. Therefore, minrk2(G) = n − 2. According to
Theorem 4.17, mm(G) = 2 and G does not contain a subgraph
isomorphic to F.

Conversely, as shown in the proof of Theorem 4.17 (the IF
direction), α(G) = minrk2(G) = n − 2. Therefore, β(G) =
n − 2 by Theorem 3.3.

V. THE HARDNESS OF THE MIN-RANK

PROBLEM FOR DIGRAPHS

In this section, we first prove that it is an NP-complete
problem to decide whether a given digraph is fairly k-colorable
(see Definition 4.5), for any given k ≥ 3. The hardness of
this problem, by Lemma 4.3 and Corollary 4.8, leads to the
hardness of the decision problem whether a given digraph has
min-rank two over F2. The fair k-coloring problem is defined
formally as follows.

Fig. 4. Gadget Di for each vertex i of G.

Fig. 5. An example of the graph G.

Problem: FAIR k-COLORING
Input: A digraph D, an integer k
Output: True if D is fairly k-colorable, False otherwise

Theorem 5.1. The fair k-coloring problem is NP-complete
for k ≥ 3.
Proof: This problem is obviously in NP, as the algorithm
can guess a candidate for the fair coloring and verify that
the candidate is indeed a fair coloring in polynomial time.
For NP-hardness, we reduce the k-coloring problem to the
fair k-coloring problem. Recall that the k-coloring problem
is the decision problem whether a given graph is k-colorable.
Suppose that G = (V(G), E(G)) is an arbitrary graph. We aim
to build a digraph D = (V(D), E(D)) so that G is k-colorable
if and only if D is fairly k-colorable. Suppose that V(G) = [n].
For each vertex i ∈ [n], we build the following gadget, which
is a digraph Di = (Vi, Ei). The vertex set of Di is

Vi = {i} ∪ {
ωi,j : j ∈ NG(i)

}
,

where ωi,j are newly introduced vertices. We refer to ωi,j

as a clone (in Di) of the vertex j ∈ [n]. The arc set of
Di is

Ei =
{
(ωi,j , i) : j ∈ NG(i)

}
.

Let NG(i) = {i1, i2, . . . , ini}. Then Di can be drawn as in
Fig. 4.

Additionally, we also introduce n new vertices
p1, p2, . . . , pn. The digraph D = (V(D), E(D)) is built
as follows. The vertex set of D is

V(D) =
( ∪n

i=1 Vi

) ∪ {p1, p2, . . . , pn}.
Let

Qi =
{
(pi, i)

} ∪ {
(pi, ωi′,i) : i′ ∈ [n], i ∈ NG(i′)

}

be the set consisting of (pi, i) and the arcs that connect pi and
all the clones ωi′,i of i. The arc set of D is then defined to be

E(D) =
( ∪n

i=1 Ei

) ∪ ( ∪n
i=1 Qi

)
.

For example, if G is the graph in Fig. 5, then D is the
digraph in Fig. 6.
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Fig. 6. The digraph D built from the graph G in Fig. 5.

Our goal now is to show that G is k-colorable if and only
if D is fairly k-colorable.

Suppose that G is k-colorable and φG : [n] → [k] is a
k-coloring of G. We consider the mapping φD : V(D) → [k]
defined as follows

1) For every i ∈ [n], φD(i) �= φG(i);
2) If i ∈ NG(i′) then φD(ωi′,i)

�= φD(i) = φG(i), in other
words, clones of i have the same color as i;

3) For every i ∈ [n], φD(pi) can be chosen arbitrarily, as
long as it is different from φD(i).

We claim that φD is a fair k-coloring for D. We first verify
the condition (C1) (see Definition 4.5). It is straightforward
from the definition of φD that the endpoints of each of the arcs
of the forms (pi, i) for i ∈ [n], and (pi, ωi′,i) for i ∈ NG(i′),
have different colors. It remains to check if i and ωi,j for
j ∈ NG(i) have different colors. On the one hand, ωi,j is a
clone of j, and hence has the same color as j. In other words,

φD(ωi,j) = φD(j) = φG(j).

On the other hand, since j ∈ NG(i), we obtain that

φG(j) �= φG(i) = φD(i).

Therefore, φD(ωi,j) �= φD(i) for all i ∈ [n] and j ∈ NG(i).
Thus, (C1) is satisfied.

We now check if (C2) (see Definition 4.5) is also satisfied.
The out-neighbors of pi are i and its clones ωi′,i (i ∈ NG(i′)).
These vertices have the same color in D, namely φG(i), by
the definition of φD . Thus (C2) is also satisfied. Therefore φD
is a fair k-coloring of D.

Conversely, suppose that φD : V(D) → [k] is a fair k-
coloring of D. Condition (C2) guarantees that all clones of
i have the same color as i, namely, φD(ωi′,i) = φD(i) if
i ∈ NG(i′). Therefore, by (C1), if {i, j} ∈ E(G), that is,
j ∈ NG(i), then

φD(i) �= φD(ωi,j) = φD(j).

Hence, if we define φG : [n] → [k] by φG(i) = φD(i) for all
i ∈ [n], then it is a k-coloring of G. Thus G is k-colorable.

Finally, notice that the order of D is a polynomial with
respect to the order of G. More specifically, |V(D)| =
2|V(G)|+ 2|E(G)| and |E(D)| = |V(G)|+ 4|E(G)|. Moreover,
building D from G, and also obtaining a coloring of G from
a coloring of D, can be done in polynomial time with respect

to the order of G. Since the k-coloring problem (k ≥ 3) is
NP-hard [28], we conclude that the fair k-coloring problem is
also NP-hard.

According to Theorem 5.1 and the work by
Blasiak et al. [26] (see the discussion after Corollary 4.8),
we obtain the following.

Theorem 5.2. Let D be an arbitrary digraph. Then the
decision problem whether minrk2(D) = 2 is NP-complete.
However, the decision problem whether β(D) = 2 can be
solved in polynomial time.

Recall that by contrast, for a graph G, it was observed
by Peeters [12] that G has min-rank two if and only if G
is a bipartite graph and G is not a complete graph, which
can be verified in polynomial time (see, for instance, West
[18, p. 495]). Note that a graph is bipartite if and only if
it is 2-colorable. This fact can also be derived by applying
Theorem 4.7 to the digraph obtained from G by replacing each
edge of G by two arcs of opposite directions.

VI. CIRCUIT-PACKING BOUND REVISITED

In this section, we discuss a circuit-packing bound [23] for
the min-rank of a digraph. We investigate families of digraphs,
whose min-ranks attain the bound and are computable in
polynomial time.

A. The Bound

Let ν0(D) be the circuit packing number of D, namely,
the maximum number of vertex-disjoint circuits in D. Below,
we reproduce an upper bound on min-ranks of digraphs, which
uses the circuit packing number. This bound was first presented
by Chaudhry et al. in [23].

Proposition 6.1 (Circuit-packing bound, [23]): The fol-
lowing holds for every digraph D of order n:

minrkq(D) ≤ n − ν0(D).

Whereas for graphs the clique-cover bound is the best
known bound, for digraphs that are not symmetric, this is
not the case. The worst scenario for the clique-cover bound
is when the digraph has no two arcs of opposite directions.
For such a digraph, this bound becomes trivial, as the size of
the smallest clique cover is equal to the order of the digraph.
The following example emphasizes the fact that for certain
digraphs, the circuit-packing bound can be significantly tighter
than the clique-cover bound.

Example 6.2. Let Dk be the digraph of order n = 3k
depicted in Fig. 7. As there are no arcs of opposite directions,
all cliques in Dk are of cardinality one. Therefore, the clique-
cover bound gives minrkq(Dk) ≤ 3k. On the other hand, as Dk

contains k vertex-disjoint circuits, namely Ci = (3i + 1, 3i +
2, 3i + 3) for i = 0, 1, . . . , k − 1, the circuit-packing bound
yields minrkq(Dk) ≤ 2k = 3k − k. The gap between the two
bounds is one third of the order of the digraph.

B. Digraphs Attaining Circuit-Packing Bound

In this subsection, we present several new examples of
families of digraphs that attain the circuit-packing bound.
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Fig. 7. Example where the circuit-packing bound is tighter than the clique-cover bound.

A feedback vertex (arc, respectively) set of D is a set of
vertices (arcs, respectively) whose removal destroys all circuits
in D. Let τ0(D) (τ1(D), respectively) denote the minimum size
of a feedback vertex (arc, respectively) set of D. Then it is
clear that α(D) = n − τ0(D).

Corollary 6.3. If ν0(D) = τ0(D) then

minrkq(D) = n − ν0(D) = n − τ0(D). (1)

Proof: By Proposition 3.4 and Proposition 6.1 we have

n − τ0(D) ≤ minrkq(D) ≤ n − ν0(D).

Hence, the proof follows.
When D satisfies ν0(D) = τ0(D), we say that D satisfies

the min-max vertex equality. In that case, the circuit-packing
bound is tight. Similarly, let ν1(D) denote the maximum
number of arc-disjoint circuits in D. We say that D satisfies
the min-max arc equality if ν1(D) = τ1(D).

An example of digraphs that satisfy the min-max vertex
equality is the connectively reducible digraphs [29]. This
family of digraphs contains both the family of fully reducible
flow digraphs [30] and the family of cyclically reducible
digraphs [31] as special cases. A polynomial time algorithm
was provided by Szwarcfiter [29] to recognize a member of
this family and subsequently find a maximum set of vertex-
disjoint circuits as well as a minimum feedback vertex set.
Therefore, by Corollary 6.3, (1) holds for a connectively
reducible digraph D. Moreover, minrkq(D) can be found in
polynomial time.

Another example of digraphs for which the circuit-packing
bound is tight are the digraphs that pack [32]. A digraph packs
if the min-max vertex equality holds for all of its subgraphs.
The digraphs in this family are exactly ones that have no minor
isomorphic to an odd double circuit or F7, a special digraph of
order 7 (interested readers may refer to [32] for more details,
also for a structural characterization of this family of digraphs).
For instance, strongly planar digraphs [32] belong to this
family. As far as we know, there are no known polynomial
time algorithms to find a minimum feedback vertex set of a
digraph that packs.

Other examples of digraphs for which the circuit-packing
bound is tight are the line digraphs of planar digraphs,
of fully reducible flow digraphs, and of (special) Eulerian
digraphs [33].

Definition 6.4. Let D = (V(D), E(D)) be a digraph. Then
the digraph L = (V(L), E(L)) with V(L) = E(D) and

E(L) =
{
(e, e′) : e = (u, v) ∈ E(D), e′ = (v, w) ∈ E(D)

}
,

is called the line digraph of D. We denote the line digraph of
D by L(D). The digraph D is called a root digraph of L(D).

Lemma 6.5. ν0(L(D)) = ν1(D).

The proof of this lemma appears in the Appendix.

Lemma 6.6. τ0(L(D)) = τ1(D).
The proof of this lemma appears in the Appendix.

Proposition 6.7. Let D be a digraph. If ν1(D) = τ1(D)
then ν0(L(D)) = τ0(L(D)) and

minrkq(L(D)) = |E(D)| − ν1(D).

Proof: Suppose that ν1(D) = τ1(D). By Lemma 6.5 and
Lemma 6.6, ν0(L(D)) = τ0(L(D)). Therefore, by applying
Corollary 6.3 to L(D) we obtain

minrkq(L(D)) = |V(L(D))| − ν0(L(D)) = |E(D)| − ν1(D).

Definition 6.8. A digraph that can be drawn on a plane in
such a way that its (arcs) edges intersect only at their endpoints
is called planar.

It is known that the min-max arc equality is satisfied for
planar digraphs [34], for fully reducible flow digraphs [35],
and for a special family of Eulerian digraphs [33]. Therefore,
by Proposition 6.7, the min-max vertex equality is satisfied
for the line digraphs of the members of these families. In
summary, we have the following.

Corollary 6.9. The circuit-packing bound is tight for
the following families of digraphs: connectively reducible
digraphs, digraphs that pack, line digraphs of planar digraphs,
line digraphs of fully reducible flow digraphs, and line
digraphs of special Eulerian digraphs.

Consider the ICSI instances described by digraphs D with
minrk2(D) = α(D). By Theorem 3.3, minrk2(D) = β(D).
Hence, for such instances, scalar linear index codes are
as good as block index codes, in terms of transmission
rates. Thus, for the ICSI instances described by families of
digraphs listed in Corollary 6.9, scalar linear index codes
achieve the best possible transmission rates. Previously, only
perfect graphs and acyclic digraphs were known to have this
property [19].

Definition 6.10. A digraph is called partially planar if all
of its strongly connected components are planar.

Proposition 6.11. There is a polynomial time algorithm to
recognize the line digraph of a partially planar digraph and
subsequently determine its min-rank.

Proof: We present an algorithm as claimed. It consists of
two phases.

1) Recognition Phase: To determine whether a given
digraph L is the line digraph of a partially planar
digraph, it suffices to determine whether each of its
strongly connected components Li (i ∈ [k]) is the line
digraph of a planar digraph. All strongly connected
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components of a digraph can be found in time linear
in the number of edges [36].
For each i ∈ [k], we can efficiently determine whether
Li is a line digraph of a digraph [37]. If yes, the
algorithm outputs a digraph D′

i, which is a root digraph
of Li and is strongly connected.
Suppose L = L(D), where D is a digraph. Let Li =
L(Di), where Di’s, i ∈ [k], are all strongly connected
components of D of order � 2. By [38, Theorem 3],
D′

i and Di are isomorphic, i ∈ [k]. To complete the
Recognition Phase, one tests the planarity of D′

i for
every i ∈ [k]. This can be done in time linear in the
size of D [39].

2) Min-Rank Computation Phase: If L is the line digraph
of a partially planar digraph, then minrkq(L) can be
computed efficiently. Indeed, by Lemma 4.2, it suffices
to show that minrkq(Li) for i ∈ [k] can be found in
polynomial time.
Since D′

i (which is isomorphic to Di) is planar, as
it is shown in [34], ν1(D′

i) = τ1(D′
i). Therefore, by

Proposition 6.7,

minrkq(Li) = |E(D′
i)| − ν1(D′

i),

where ν1(D′
i) can be computed efficiently ([40]).

Therefore, minrkq(L) can be computed efficiently.
In summary, we have the following result.
Corollary 6.12. There are polynomial time algorithms to

recognize a member and subsequently determine the min-rank
of that member of the following families of digraphs: connec-
tively reducible digraphs (which includes fully reducible flow
digraphs and cyclically reducible digraphs), and line digraphs
of partially planar digraphs.

VII. CONCLUSION

We studied the ICSI instances whose optimal scalar linear
index codes have near-extreme transmission rates. We pre-
sented new characterizations of side-information graphs with
min-ranks n − 1 and n − 2 over a general finite field, and
of digraphs with min-rank two over the binary field. We also
showed that the decision problem whether a digraph has min-
rank two (over a general finite field) is NP-complete. Finally,
we presented several families of digraphs, whose min-ranks
can be found efficiently.

APPENDIX

Proof of Lemma 4.2: Suppose that Vi is the set of vertices
that induces Di, i ∈ [k]. Then {Vi}i∈[k] forms a partition of
V(D). By relabeling the vertices of D if necessary, we may
assume without loss of generality that for every i < j

1) u < v whenever u ∈ Vi and v ∈ Vj ;
2) There are no arcs of the form (v, u) where u ∈ Vi and

v ∈ Vj .
If M (i) is a minimum-rank matrix that fits Di (i ∈ [k]) then
the diagonal block matrix M whose diagonal blocks are M (i)

clearly fits D. Moreover,

rankq(M) =
k∑

i=1

rankq(M (i)) =
k∑

i=1

minrkq(Di).

Hence minrkq(D) ≤ ∑k
i=1 minrkq(Di). It remains to show that

minrkq(D) ≥ ∑k
i=1 minrkq(Di). Suppose that the matrix M

fits D. By the assumptions on Vi’s (i ∈ [k]) stated at the
beginning of the proof, M must be an upper-triangular block
matrix. If we let M (i) be the sub-matrix of M formed by the
rows and columns indexed by the elements of Vi, then M (i)

fits Di and hence,

rankq(M) ≥
k∑

i=1

rankq(M (i)) ≥
k∑

i=1

minrkq(Di).

Thus, minrkq(D) ≥ ∑k
i=1 minrkq(Di).

Proof of Theorem 4.17: For the ONLY IF direction, suppose
that minrkq(G) = n − 2. By the maximum-matching bound,
n− 2 ≤ n− mm(G). Hence mm(G) ≤ 2. As mm(G) ∈ {0, 1}
and |V(G)| ≥ 6 imply that either G has no edges (minrkq(G) =
n > n− 2) or G is a star graph (minrkq(G) = n− 1 > n− 2),
we deduce that mm(G) = 2. Moreover, as the graph F has
min-rank three less than its order, G should not contain any
subgraph isomorphic to F. Indeed, suppose for otherwise that
F′ is a subgraph of G and F′ is isomorphic to F.

Consider the following block diagonal matrix M with two
blocks B1 and B2. The first block B1, a 6 × 6 matrix,
corresponds to the rows and columns labeled by the vertices in
F′. Moreover, we choose B1 so that it has q-rank three. This
is possible since F′ is isomorphic to F and minrkq(F) = 3.
(Note that 3 = α(F) ≤ minrkq(F) ≤ cc(F) = 3 implies that
minrkq(F) = 3.) The second block B2 is chosen to be an
(n − 6) × (n − 6) identity matrix. It corresponds to the rows
and columns labeled by the vertices in V(G)\V(F′). Then M
fits G and moreover,

rankq(M) = rankq(B1) + rankq(B2)
= 3 + (n − 6)
= n − 3.

This implies that minrkq(G) ≤ n − 3 < n − 2, which is
impossible.

We now turn to the IF direction. Suppose that mm(G) = 2
and G does not contain any subgraph isomorphic to F.
Then by the maximum-matching bound, minrkq(G) ≤
n − 2. As α(G) ≤ minrkq(G), it suffices to show that
α(G) = n − 2.

Let {a, b} and {c, d} be the two edges of a maximum
matching M in G. Let U = {a, b, c, d} and V = V(G) \ U .
As G has at least six vertices, suppose that V = {f, g, . . .},
where f �= g. Since M is a maximum matching, V must be an
independent set in G. The idea is to show that we can always
find two nonadjacent vertices in U that are not adjacent to
any vertex in V . Such two vertices can be added to V to
obtain an independent set of size n− 2, which establishes the
proof. We refer to such a pair of vertices as an independent
pair.

For disjoint subsets I and J of V(G), let

sG(I, J) =
∣
∣{{i, j} : i ∈ I, j ∈ J, {i, j} ∈ E(G)

}∣
∣.

Based on how the vertices in U are connected to each other, we
consider the following five cases. Note that we only consider
non-isomorphic configurations.
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Fig. 8. Case 1.

Case 1: sG({a, b}, {c, d}) = 0.
There are four candidates for an independent pair, namely

{a, c}, {a, d}, {b, c}, {b, d}. All of these pairs fail to be an
independent pair if and only if either both a and b are adjacent
to some vertices in V or both c and d are adjacent to some
vertices in V . We show that either case never happens, by
contradiction.

Suppose both a and b are adjacent to some vertices in V .
(The case when both c and d are adjacent to some vertices
in V is investigated analogously.) Without loss of generality,
assume that a and f are adjacent. Then b must be adjacent
to f but not to any other vertex in V . Indeed, if b is adjacent
to h ∈ V , h �= f , then the set of three edges {a, f}, {b, h},
and {c, d} form a matching of size three, which is impossible
since mm(G) = 2. Similarly, a should not be adjacent to any
other vertex in V rather than f .

As G is connected, f must be adjacent to either c or d.
Without loss of generality, suppose f and c are adjacent. On
the one hand, since G is connected, g must be adjacent to
some vertex in U . On the other hand, g cannot be adjacent to
any vertex in U , as

• if g and a are adjacent, then {a, g}, {b, f}, and {c, d}
form a matching of size three, which is impossible;

• if g and b are adjacent, then {a, f}, {b, g}, and {c, d}
form a matching of size three, which is impossible;

• if g and c are adjacent, then G has a subgraph isomorphic
to F (see Fig. 8), which is impossible;

• if g and d are adjacent, then {a, b}, {c, f}, and {d, g}
form a matching of size three, which is impossible.

We obtain a contradiction.
Case 2: sG({a, b}, {c, d}) = 1. Without loss of generality,

suppose that {b, c} is the only edge that connects {a, b} and
{c, d}.

There are three candidates for an independent pair, namely
{a, c}, {a, d}, and {b, d}. All of these three pairs fail to be
an independent pair only if at least one of the pairs {a, b},
{a, d}, and {c, d} has both vertices adjacent to some vertices
in V . We show below that this scenario cannot happen.

1) Assume that both a and b are adjacent to some vertices
in V .
Suppose without loss of generality that a and f
are adjacent. Then the same argument as in Case 1
establishes that b must be adjacent to f but not to any
other vertex in V . On the one hand, as G is connected,
g must be adjacent to some vertex in U . On the other
hand, as mm(G) = 2, g should not be adjacent to any
vertex among a, b, and d. Moreover, g and c cannot
be adjacent, for otherwise G would contain a subgraph
isomorphic to F (see Fig. 9). We obtain a contradiction.

Fig. 9. Sub-case 1.

Fig. 10. Sub-case 2.

Fig. 11. Case 3, a possible arrangement of edges.

2) Assume that both a and d are adjacent to some vertices
in V (Fig. 10). Suppose without loss of generality that
a and f are adjacent. As there are no matchings of
size three in G, d is adjacent to f but not to any other
vertex in V . Also, g is not adjacent to any vertex in U .
However, this would imply that g is an isolated vertex
of G, which is impossible as G is connected.

3) Assume that both c and d are adjacent to some vertices
in V . This sub-case is completely similar to the first
sub-case.

Case 3: sG({a, b}, {c, d}) = 2 and the two edges that
connect {a, b} and {c, d} share one common vertex. Without
loss of generality suppose that these two edges are {b, c} and
{b, d}.

There are two candidates for an independent pair, namely
{a, c} and {a, d}. It suffices to show that a is not adjacent to
any vertex in V and either c or d is not adjacent to any vertex
in V .

Suppose that a is adjacent to a vertex, say f , in V . As
mm(G) = 2, we deduce that g is not adjacent to any vertex
among b, c, and d. Also, since G does not contain a subgraph
isomorphic to F, we deduce that g cannot be adjacent to a
(see Fig. 11). Hence g is an isolated vertex of G, which is
impossible as G is connected.

Now suppose that both c and d are adjacent to some vertices
in V . Without loss of generality, suppose that c is adjacent to
f . Then since mm(G) = 2, d must be adjacent to f but not
to any other vertex in V . Also, g cannot be adjacent to any
vertex among a, c, and d for the same reason. Moreover, as
G does not contain a subgraph isomorphic to F, we deduce
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Fig. 12. Case 3, another possible arrangement of edges.

Fig. 13. Case 4.

that g is not adjacent to b (see Fig. 12). (Indeed, if g and b
are adjacent, then the following subgraph of G is isomorphic
to F: its vertex set is {a, b, c, d, f, g}, and its edge set is{{c, d}, {d, f}, {c, f}, {c, b}, {b, a}, {b, g}}.) Therefore, g is
an isolated vertex of G. We obtain a contradiction.

Case 4: sG({a, b}, {c, d}) = 2 and the two edges that
connect {a, b} and {c, d} share no common vertices. Suppose,
without loss of generality, that these two edges are {a, d} and
{b, c} (Fig. 13).

There are two candidates for an independent pair, namely
{a, c} and {b, d}. Both of these pairs fail to be an independent
pair if and only if at least one of the four pairs {a, b}, {a, d},
{c, b}, and {c, d} has both vertices adjacent to some vertices
in V . By symmetry, it suffices to show that the scenario
when both a and b are adjacent to some vertices in V never
happens.

Suppose now that a and b are adjacent to some vertices
in V .

Suppose that a and f are adjacent. The condition that
mm(G) = 2 forces b to be adjacent to f but not to any other
vertex in V . That condition also implies that g must be an
isolated vertex in G, which is impossible as G is connected.

Case 5: sG({a, b}, {c, d}) = 3. Without loss of generality,
suppose that {a, d}, {b, c}, and {b, d} are the edges that con-
nect {a, b} and {c, d}. The only candidate for an independent
pair is {a, c}. We prove by contradiction that both a and c are
not adjacent to any vertex in V . By symmetry, it suffices to
verify this property for only one of them.

Suppose that a is adjacent to some vertex in V . Let a be
adjacent to f .

As mm(G) = 2 and G is connected, g must be adjacent
to a. However, G now contains a subgraph whose edge set
consists of {b, c}, {b, d}, {c, d}, {b, a}, {a, f}, {a, g}, which is
isomorphic to F (see Fig. 14). This contradicts our assumption.

Case 6: sG({a, b}, {c, d}) = 4. In this case, the subgraph
of G induced by {a, b, c, d} is a complete graph (Fig. 15).

Fig. 14. Case 5.

Fig. 15. Case 6.

As G is connected, both f and g must be adjacent to
some vertices in U . If f and g are adjacent to the same
vertex in U , then G contains a subgraph isomorphic to
F, which contradicts our assumption. For instance, if both
f and g are adjacent to a, then this subgraph has vertex
set {a, b, c, d, f, g} and edge set consisting of the edges
{b, c}, {c, d}, {b, d}, {b, a}, {a, f}, {a, g}. It is also easy to
verify that if f and g are adjacent to different vertices in U ,
then G contains a matching of size three. This contradicts our
assumption that mm(G) = 2. Thus, Case 6 never happens.

Proof of Lemma 6.5:
1) ν0(L(D)) ≥ ν1(D). It suffices to show that the existence

of a set of arc-disjoint circuits in D implies the existence
of a set of vertex-disjoint circuits of the same size
in L(D). Let {C1, C2, . . . , Ck} be a set of arc-disjoint
circuits in D, where Ci = (vi,1, vi,2, . . . , vi,ri), ri ≥ 2,
i ∈ [k]. Let ei,j = (vi,j , vi,j+1), for i ∈ [k] and
j ∈ [ri−1]. Moreover, let ei,ri = (vi,ri , vi,1) for i ∈ [k].
Let C′

i = (ei,1, ei,2, . . . , ei,ri) for i ∈ [k]. Then C′
i is

also a circuit in L(D) for every i ∈ [k]. Moreover, as
the circuits C1, C2, . . . , Ck share no common edges in D,
we deduce that C′

1, C′
2, . . . , C′

k share no common vertices
in L(D). Therefore, they form a set of k vertex-disjoint
circuits in L(D).

2) ν0(L(D)) ≤ ν1(D). It suffices to show that the existence
of a set of vertex-disjoint circuits in L(D) implies the
existence of a set of arc-disjoint circuits of the same size
in D. Let {C′

1, C′
2, . . . , C′

k} be a set of vertex-disjoint
circuits in L(D), where C′

i = {ei,1, ei,2, . . . , ei,ri} for
i ∈ [k]. Suppose that ei,j = (vi,j , vi,j+1) ∈ E(D) for
i ∈ [k] and j ∈ [ri], where vi,j and vi,j+1 are vertices
of D. Then vi,ri+1 ≡ vi,1 for i ∈ [k]. For each i ∈ [k],
consider the sequence of (possibly repeated) vertices

vi,1, vi,2, . . . , vi,ri+1.

Since vi,1 ≡ vi,ri+1 and (vi,j , vi,j+1) ∈ E(D) for all
j ∈ [ri], there exist j0 and j1 such that
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• 1 ≤ j0 < j1 ≤ ri;
• vi,j0 ≡ vi,j1+1;
• vi,j0 , vi,j0+1, . . . , vi,j1 are distinct.

Then Ci = (vi,j0 , vi,j0+1, . . . , vi,j1 ) is a circuit in D.
Since the circuits C′

1, C′
2, . . . , C′

k share no common ver-
tices in L(D), we obtain that the circuits C1, C2, . . . , Ck

share no common edges in D.

Proof of Lemma 6.6: Let F = {e1, e2, . . . , ek}, where ei ∈
E(D) for i ∈ [k], be an arbitrary set of arcs of D. We can also
view F as a set of vertices of L(D). It suffices to show that
F is a feedback arc set of D if and only if F is a feedback
vertex set of L(D), for every such set F .

Let D−F be the digraph obtained from D by removing all
arcs in F . Let L(D)− F be the digraph obtained from L(D)
by removing all vertices in F . Then L(D)−F = L(D−F ). As
shown in the proof of Lemma 6.5, the existence of a circuit in
D−F would result in the existence of a circuit in L(D−F )
and vice versa. Therefore, D − F is acyclic if and only if
L(D) − F is acyclic. Thus, F is a feedback arc set of D if
and only if F is a feedback vertex set of L(D).
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