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Abstract—Although prone to fabrication error, the nanowire crossbar is a promising candidate component for next-generation

nanometer-scale circuits. In the nanowire crossbar architecture, nanowires are addressed by controlling voltages on the mesowires.

For area efficiency, we are interested in the maximum number of nanowiresNðm; eÞ that can be addressed by m mesowires in the face

of up to e fabrication errors. Asymptotically tight bounds on Nðm; eÞ are established in this paper. In particular, it is shown that

Nðm; eÞ ¼ �ð2m=meþ1=2Þ. Interesting observations are made on the equivalence between this problem and the problem of constructing

optimal error-correcting and all unidirectional error-detecting (EC/AUED) codes, superimposed distance codes, pooling designs, and

diffbounded set systems. Results in this paper also improve upon those in the EC/AUED code literature.

Index Terms—EC/AUED codes, fault tolerance, nanowire crossbar, nanowire decoder, Sperner families.

Ç

1 INTRODUCTION

THE semiconductor industry today relies on photolitho-
graphy techniques to transfer design patterns onto silicon

wafers. Chips with 90-nm features are now in mass
production, and NAND flash memories with feature size of
40 nm are about to debut. However, feature sizes need to get
smaller to ensure the continuation of Moore’s Law. Ulti-
mately, the limits of photolithography, which industry
consensus holds to be around 30 nm, will be reached. New
methods for growing and assembling nanometer-scale wires
(nanowires) are therefore pursued to extend Moore’s Law
beyond the limits of photolithography [1], [2], [3], [4], [5].

One promising technology in this direction is that of
nanoarray architecture, notably, the nanowire crossbar. The
small size and high density of these structures make them
favorable candidates for future high-density interconnect,
computation, and information storage devices [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18]. Furthermore, the
nanowire crossbar is the only nanoscale architectural
component that has been fabricated to date [5], [15], [19].

A nanowire crossbar consists of two orthogonal sets of
parallel nanowires separated by a molecular layer. Within
this layer, molecules at the crosspoints of pairs of
orthogonal nanowires can switch their conductivity under
the application of large positive and negative electric fields
[9], [20], [21], [22]. The conductivity at crosspoints can also
be sensed without changing it by the application of smaller
electric fields.

A fundamental challenge in crossbar architectures is
providing a reliable means of controlling individual

nanowires in each dimension. A circuit that provides this
control is called a nanowire decoder. Current state of art
requires that nanowire decoders be implemented in CMOS
technologies. A nanowire decoder addresses the nanowires
through an interface of a small set of mesowires—wires of
mesoscale feature size (100-500 nm). Since mesowires are
considerably larger and take up more area, the objective is
to maximize the number of nanowires that can be
addressed by a given set of mesowires. While it is obvious
that m mesowires can generate 2m states, the character-
istics of nanowire crossbars prevent us from achieving this
limit. Furthermore, the process of nanowire crossbar
fabrication is error prone. There is a need, therefore, to
build in redundancy to tolerate such faults [23]. In a series
of papers, Rachlin and Savage [24], [25] have established
criteria and bounds on fault-tolerant nanowire decoders.
However, their bounds become weaker when the ability to
assemble nanowire crossbars become more deterministic
(see Section 8.1 for a more precise statement and
comparison).

In this paper, we give the first provably tight bound (up
to a constant factor) on Nðm; eÞ, the maximum number of
nanowires that can be addressed by a nanowire decoder
with m mesowires in the face of up to e fabrication errors.
We achieve this by casting the problem in the language of
extremal set systems and observing its equivalence to many
other well-studied problems, including error-correcting and
all unidirectional error-detecting (EC/AUED) codes, super-
imposed distance codes, pooling designs, and diffbounded
set systems. Exact values of Nðm; eÞ are also obtained for
some parameter sets ðm; eÞ, including an infinite family
based on Hadamard designs.

We note that in practice, the assembly of nanowire
decoders is a random process [26], [27]. The mesowires that
control a nanowire cannot be specified in advance. Hence,
our bounds and exact values of Nðm; eÞ set upper limits on
the number of independently addressable nanowires.

The results in this paper also improve upon results in the
EC/AUED code literature.
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2 THE NANOWIRE CROSSBAR

We begin by reviewing the nanowire crossbar. The model
takes the form in Fig. 1.

Current methods of nanowire production results in two
types of nanowires:

1. Undifferentiated nanowires. These nanowires are all
identical. Methods for producing undifferentiated
nanowires include superlattice nanowire pattern trans-
fer (SNAP) [4], porous membranes [28], and on-chip
catalysts [29].

2. Differentiated nanowires. To differentiate nanowires,
dopant molecules are added to a gaseous mixture as
they grow. As a result, nanowires are heavily and
lightly doped over their lengths, depending on the
exposure time (see Fig. 2). The two primary methods
of doping are axial (or modulation) doping [30], [31],
[32], [33], [34] and radial doping [35], [36].

Lithographically produced pairs of ohmic contacts are
attached to both ends of a set of parallel nanowires. This
allows a potential to be applied across all nanowires
attached to a pair of ohmic contacts. Each pair of ohmic
contacts can provide voltage control over sets of about 10 to
20 nanowires. Ohmic contacts can be reliably controlled
using standard CMOS circuitry.

When a pair of ohmic contacts applies a potential across
a set of parallel nanowires, two nanowires in the set carry

the same current unless their resistances are different.

Different resistances can be created on the nanowires via

several methods, depending on whether differentiated or

undifferentiated nanowires are used:

1. Creating resistance on differentiated nanowires. The
resistance of a lightly doped silicon nanowire
significantly increases in the presence of a suffi-
ciently strong electric field. If a lithographically
produced mesowire is laid down across a set of
lightly doped nanowires, the nanowires only con-
duct when the mesowire is not producing an electric
field. In this way, the mesowire forms a field-effect
transistor (FET) with each nanowire [30]. If each
mesowire forms an FET with only some of the
nanowires, multiple mesowires can be used simul-
taneously to gain fine-grained control over nanowire
resistances. For example, some nanowires may
contain lightly doped regions under some meso-
wires and heavily doped regions under others (see
Fig. 3). If a subset of the mesowires all produce an
electric field simultaneously, all nanowires with a
lightly doped region under any one of those
mesowires will have a high resistance.

2. Creating resistance on undifferentiated nanowires. Con-
tact between a mesowire and a nanowire is made by
depositing impurities such as gold particles at the
contacts [10] or depositing a high-K dielectric at the
contacts. To create resistance between a mesowire
and a nanowire, we prevent the deposition of such
impurities at their contact.

3 NANOWIRE DECODERS

A voltage differential must be established across a pair of
orthogonal nanowires in order to change or sense the state
of molecules at their intersection. As discussed earlier, a
pair of ohmic contacts provide the voltage control across a
set of nanowires. Together with the mesowires across the set
of nanowires, this is called a simple nanowire decoder [24]. A
collection of multiple simple nanowire decoders controlling
sets of nanowires in the same dimension is called a composite
nanowire decoder [24] (see Fig. 4). It suffices to study simple
nanowire decoders since in a composite nanowire decoder,
the constituent simple nanowire decoders address disjoint
sets of nanowires.
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Fig. 1. The nanowire crossbar. Shown here with two orthogonal sets of

parallel nanowires controlled by mesowires. Ohmic contacts are made

at the ends of each set of parallel nanowires. Data is stored in the

programmable molecules at the intersections of orthogonal nanowires.

Fig. 2. Doped nanowire.

Fig. 3. Nanowires containing lightly doped and heavily doped regions.
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More precisely, a simple nanowire decoder possesses the
following properties:

1. m mesowires control n nanowires, which are tightly
packed and aligned in the same direction but are not
in electrical contact with each other.

2. A pair of ohmic contacts applies a voltage across all
nanowires simultaneously. In the absence of meso-
wires, all nanowires conduct, effectively behaving
like a single wire.

3. Each mesowire provides control over some subset of
nanowires. A mesowire controls a nanowire if its
resistance increases substantially when that meso-
wire carries a voltage.

4. When multiple mesowires carry a voltage, the
resistance of a nanowire under the control of those
mesowires is the sum of the resistance of that
nanowire under the control of each mesowire.

If a nanowire has high resistance when a voltage is applied
on a mesowire, the nanowire is said to be controlled by that
mesowire. A configuration of voltage application on the set
of all mesowires is called an activation pattern. A nanowire
that has low resistance under some activation pattern is said
to be addressed.

Let S be the set of all nanowires of a simple nanowire
decoder and T � S. Then, T is said to be addressable if there
exists some activation pattern under which all nanowires in
T are addressed and all nanowires not in T are not
addressed. In a simple nanowire decoder, only those
nanowires i 2 S for which fig is addressable is useful, in
order to change or sense the state of a single molecular
element at the crosspoints. We call such nanowires
independently addressable [24].

The process of fabricating nanowire crossbars is subject
to error. A mesowire i may end up with unpredictable
control over a nanowire j. This is due to the error-prone
process of doping nanowires and the deposition of impu-
rities or high-K dielectric at the contacts. In such a situation,
we want to avoid activating mesowire i when addressing
nanowire j [24].

The problem of interest is in the determination of the
limit of a fault-tolerant simple nanowire decoder: What is
the maximum number of nanowires that can be indepen-
dently addressed by a simple nanowire decoder (with
m mesowires) in the presence of up to e errors?

This problem is made more precise in Section 5. We begin
by reviewing some necessary mathematical background.

4 MATHEMATICAL PRELIMINARIES

4.1 Codes

The Hamming n-space is the set HðnÞ ¼ f0; 1gn endowed
with the Hamming distance dH defined as follows: for u,
v 2 HðnÞ, dHðu; vÞ is the number of positions where u and
v differ. The Hamming weight of a vector u 2 HðnÞ is the
number of positions in u with nonzero value and is
denoted wHðuÞ. The ith component of u 2 HðnÞ is
denoted ui. The support of u 2 HðnÞ, denoted suppðuÞ,
is the set fi : ui ¼ 1g.

A subset of HðnÞ is called a code of length n. A constant-
weight code of length n and weight w is any subset of
Hðn;wÞ ¼ fu 2 HðnÞ : wHðuÞ ¼ wg. The elements of a code
are called codewords. Let C � HðnÞ be a code. The size of C
is jCj, the number of codewords in the code. A code C is
said to have distance d if dHðu; vÞ � d for all distinct u,
v 2 C. A code of distance at least 2eþ 1 is said to be
e-error-correcting.

The maximum size of a code of length n and distance d is
denoted Aðn; dÞ, while the maximum size of a constant-
weight code of length n, weight w, and distance d is denoted
Aðn; d; wÞ.

4.2 Set Systems

For n, a positive integer, let ½n� denote the set
f1; 2; . . . ; ng. For a finite set X and positive integer k,
we define 2X ¼ fA : A � Xg and X

k

� �
¼ fA 2 2X : jAj ¼ kg.

We say that A is a k-subset of X if A 2 X
k

� �
. Two sets A

and B are incomparable if A 6� B and B 6� A.
A set system of order n is a pair ðX;AÞ, where X is a finite

set of n points and A � 2X. The elements of A are called
blocks. A set system is said to be k-uniform if A � X

k

� �
. The

size of a set system ðX;AÞ is jAj, the number of blocks. The
dual of a set system ðX;AÞ is the set system ðY ;BÞ, where
Y ¼ A, and B ¼ [x2XffA 2 A : x 2 Agg.

An antichain is a set system ðX;AÞ such that for any
distinct A, B 2 A, A and B are incomparable. Alternatively,
an antichain may be defined as a set system ðX;AÞ in which
jA nBj � 1 for all distinct A, B 2 A.

Let ð½n�;AÞ be a set system. The incidence vector of a block

A 2 A is the vector �ðAÞ 2 HðnÞ, where

�ðAÞi ¼
1; if i 2 A;
0; otherwise:

�

There is a natural correspondence between the Hamming
n-space and the complete set system of order n ð½n�; 2½n�Þ: the
positions of vectors in HðnÞ correspond to points in ½n�, a
vector u 2 HðnÞ corresponds to the block suppðuÞ, and
dHðu; vÞ ¼ jsuppðuÞ�suppðvÞj, where � denotes symmetric
difference. From this, it follows that there is a bijection
between the set of all codes of length n and the set of all set
systems of order n. Therefore, we may speak of the set
system of a code or the code of a set system.

4.3 Designs

A t-design, or more specifically, a t-ðv; k; �Þ design, is a

k-uniform set system ðX;AÞ of order v such that each

t-subset of X is contained in precisely � blocks of A. For any

s � t, a t-ðv; k; �Þ design is also an s-ðv; k; �sÞ design, where

�s ¼ � v�s
t�s
� �

= k�s
t�s
� �

. Hence, a t-ðv; k; �Þ design has size
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Fig. 4. Nanowire decoders.
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�0 ¼ � v
t

� �
= k

t

� �
, and every point in a t-ðv; k; �Þ design is

contained in exactly �1 ¼ � v�1
t�1

� �
= k�1

t�1

� �
blocks.

A t-ðv; k; 1Þ design is called a Steiner system and is often
denoted Sðt; k; vÞ.

A 2-ðv; k; �Þ design is also commonly called a
ðv; k; �Þ-balanced incomplete block design (BIBD). A
ðv; k; �Þ-BIBD ðX;AÞ is symmetric if jAj ¼ v. The dual of a
symmetric ðv; k; �Þ-BIBD is again a ðv; k; �Þ-BIBD, so that
every two blocks in a symmetric ðv; k; �Þ-BIBD intersect in
exactly � points.

A Hadamard matrix H of order n is an n� nf�1g-matrix
such that HHT ¼ nI. A necessary condition for a
Hadamard matrix of order n to exist is n ¼ 1, 2, or n 	 0
(mod 4). The existence of Hadamard matrices has not been
completely settled and constitutes a major problem in
combinatorics. Nevertheless, much is known concerning
their existence.

A symmetric ð4nþ 3; 2nþ 1; nÞ-BIBD has been called a
Hadamard design: it exists if and only if a Hadamard matrix
of order 4ðnþ 1Þ exists.

An ðr; �Þ-design is a set system ðX;AÞ where every point
of X is contained in exactly r blocks and every 2-subset of X
is contained in exactly � blocks.

A ð1; qÞ-poolingdesign (called ð1; qÞ-solutionby Balding and
Torney [37]) is a set system ðX;AÞwhose dual ðY ;BÞ satisfies
jB1 nB2j > q for all distinct B1, B2 2 B. ð1; qÞ-pooling designs
are used for group testing one defective element in the
presence of up to q errors [37], [38].

The reader is referred to [39], [40], [41], [42], [43], [44],
[45], and [46] for more information on the designs described
in this section.

5 MATHEMATICAL MODEL

5.1 A Model for Simple Nanowire Decoders

Rachlin and Savage [24] model a simple nanowire decoder
using codes. We model a simple nanowire decoder using
set systems here. Although equivalent to the coding-
theoretic model of Rachlin and Savage through the
correspondence between codes and set systems described
earlier, we find that the set system formulation is more
natural, the proofs based on set systems are often simpler,
and existing results on extremal set systems can be brought
to bear. Now, we describe a mathematical model of a simple
nanowire decoder in terms of set systems.

A simple nanowire decoder with m mesowires and
n nanowires is denoted ðm;nÞ-SND. For an ðm;nÞ-SND D,
let ½m� denote the set of all mesowires and ½n� denote the set
of all nanowires. For each nanowire i 2 ½n�, let Ai be the set
of all mesowires controlling i and A ¼ fAi : i 2 ½n�g. Then,
D is completely specified by ð½m�;AÞ. Hence, we represent
an ðm;nÞ-SND by a set system of order m and size n. Note
that we may identify the nanowire i with the block Ai 2 A.
An activation pattern is simply a set V � ½m� such that for
i 2 ½m�, we have i 2 V if and only if mesowire i carries a
voltage. Hence, the following holds:

1. A nanowire A 2 A is addressed under an activation
pattern V if A \ V ¼ ;.

2. A nanowire A 2 A is independently addressable if there
exists an activation pattern V such that A \ V ¼ ;
and B \ V 6¼ ; for all B 2 A and B 6¼ A.

We assume throughout this paper that the simple
nanowire decoders we consider contain only nanowires
that are independently addressable. Those nanowires that
are not independently addressable can be thrown out since
they do not perform any useful function.

5.2 A Model for Fault-Tolerant Simple Nanowire
Decoders

Consider an ðm;nÞ-SND D ¼ ð½m�;AÞ. An error during the

fabrication of D can be modeled as follows: The control of

a nanowire A 2 A by mesowire j 2 ½m� becomes unpre-

dictable. This unpredictability renders mesowire j useless

as a control over nanowire A. We can never rely on j to

control A. This is equivalent to deleting the element j

from A. We call an ðm;nÞ-SND fault-tolerant if all the

nanowires remain independently addressable in the

presence of up to e errors and denote such a decoder by

ðm;n; eÞ-FTSND. Note that an ðm;nÞ-SND is equivalent to

an ðm;n; 0Þ-FTSND.
For any given m and e, the maximum n such that there

exists an ðm;n; eÞ-FTSND is denoted Nðm; eÞ.

6 THE LIMIT OF NANOWIRE DECODERS WITHOUT

ERRORS

We begin by characterizing those nanowires that are

independently addressable by D.

Proposition 1. Let D ¼ ð½m�;AÞ be an ðm;nÞ-SND. A nanowire

A 2 A is independently addressable if and only if B 62 A for

all B 6¼


A.

Proof. Suppose A 2 A is independently addressable and

suppose that B 2 A for some B 6¼


A. Then, there exists an

activation pattern V such that A \ V ¼ ;. But this implies

B \ V ¼ ;, which contradicts the assumption that A is

not independently addressable. Therefore, B 62 A for

all B 6¼


A.

Next, suppose that B 62 A for all B 6¼


A. Let

V ¼ ½m� nA. Then, A is independently addressable since
A \ V ¼ ; and B \ V 6¼ ; for all B 2 A and B 6¼ A.

This completes the proof. tu
Corollary 1. D is an ðm;nÞ-SND if and only if it is an antichain

of order m and size n.

The problem of determining the maximum size of an

antichain of order m is the prototype problem in the

combinatorics of finite sets and has been solved by

Sperner [47].

Theorem 1 (Sperner’s Theorem). The maximum size of an

antichain of order m is m
bm=2c

� �
. The set system ð½m�; ½m�

bm=2c

� �
Þ

achieves the maximum size.

Corollary 2. Nðm; 0Þ ¼ m
bm=2c

� �
.

There are many proofs of Sperner’s Theorem (see [48]
and [49]). Rachlin and Savage [24] were apparently
unaware of Sperner’s Theorem and provided a proof of
Sperner’s Theorem using exactly the same shifting technique
as in Sperner’s original proof [47].
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7 THE LIMIT OF FAULT-TOLERANT NANOWIRE

DECODERS

We begin with a characterization of fault-tolerant simple

nanowire decoders.

Proposition 2. Let D ¼ ð½m�;AÞ be a set system of order m

and size n. Then, D is an ðm;n; eÞ-FTSND if and only if

jA nBj � eþ 1 for all distinct A, B 2 A.

Proof. Suppose D can tolerate up to e errors and suppose

that jA nBj � e for some distinct A, B 2 A. Consider

the (up to e) errors that result in the deletion of

elements in A nB from A. Then, the resulting set

system is not an antichain, and hence, not all nanowires

are independently addressable. This contradicts the

assumption that ð½m�;AÞ can tolerate up to e errors.

Hence, jA nBj � eþ 1.
Now, assume that jA nBj � eþ 1 for all distinct A,

B 2 A. Deletion of up to e elements from/to the blocks of
A will still result in a set system ð½m�;A0Þ in which jA n
Bj � 1 for all distinct A, B 2 A0. But this is equivalent to
saying that ð½m�;A0Þ is an antichain. Consequently, all the
nanowires remain independently addressable. Hence,
ð½m�;AÞ can tolerate up to e errors. tu

A set system ð½m�;AÞ with the property

jA nBj � eþ 1; for all distinct A;B 2 A; ð1Þ

has been called ðeþ 1Þ-diffbounded by Katona [50]. Such set

systems have been studied in attempts to further generalize

Sperner’s Theorem. They were also studied earlier under

the following guises:

1. By Pradhan in 1980 [51]. A code C � HðmÞ is
ðe-EC=AUEDÞ if and only if the set system ð½m�;AÞ
of C possesses the property (1).

2. By D’yachkov et al. in 1989 [52]. A code C � HðmÞ is a
superimposed code of distance eþ 1 if and only if the set
system ð½m�;AÞ of C possesses the property (1).

3. By Balding and Torney in 1996 [37]. A set system
ðY ;BÞ of size m is a ð1; eÞ-pooling design if and only if
its dual ð½m�;AÞ possesses the property (1).

Other related combinatorial objects include disjunct matrices

[53] and generalized cover-free families [54]. We summarize

these observations below.

Proposition 3. The following are all equivalent:

1. an ðm;n; eÞ-FTSND,
2. an ðeþ 1Þ-diffbounded set system of order m and

size n,
3. a ð1; eÞ-pooling design of order n and size m,
4. a superimposed code of length m, distance eþ 1, and

size n, and
5. an e-EC=AUED code of length m and size n.

The results on diffbounded set systems, ð1; eÞ-pooling

designs, superimposed codes, and EC/AUED codes can

now be brought to bear. In particular, we have the following

upper bound from the treatment of Balding and Torney [37]

on ð1; eÞ-pooling designs.

Theorem 2 (Balding and Torney [37]).

Nðm; eÞ � 1

Ke

m

bm=2c

� �
;

in which K0 ¼ 1 and

Ke ¼
Pe=2

s¼0
bm=2c
s

� �
dm=2e
s

� �
; if e is even;

Ke�1 þ 1
T

bm=2c
ðeþ1Þ=2

� �
dm=2e
ðeþ1Þ=2

� �
; if e is odd;

8<
:

where

T ¼ 2

eþ 1

m

2

j k	 

:

Corollary 3 (Balding and Torney [37]). If there exists an

Sðbm=2c � 1; bm=2c;mÞ, then

Nðm; 1Þ ¼ m

bm=2c � 1

� �
=bm=2c:

Corollary 3 together with the current knowledge on the
existence of Steiner systems (see [40]) then gives the
following result.

Corollary 4. We have the following:

1. Nð4; 1Þ ¼ 2.
2. Nð7; 1Þ ¼ 7.
3. Nð8; 1Þ ¼ 14.
4. Nð11; 1Þ ¼ 66.
5. Nð12; 1Þ ¼ 132.

Proof.

1. The proof follows from the trivial Sð1; 2; 4Þ.
2. The proof follows from the existence of Sð2; 3; 7Þ.
3. The proof follows from the existence of Sð3; 4; 8Þ.
4. The proof follows from the existence of Sð4; 5; 11Þ.
5. The proof follows from the existence of

Sð5; 6; 12Þ. tu
There are no Sðt; k; vÞ known for any t � 6 [40].
Proposition 3 also implies that the code of an

ðm;n; eÞ-FTSND is a code of length m, distance 2ðeþ 1Þ,
and size n. Hence, we have the following result.

Proposition 4. Nðm; eÞ � Aðm; 2ðeþ 1ÞÞ.

The Plotkin bound [55] on the size of codes then implies

the following:

Corollary 5 (Plotkin bound).

Nðm; eÞ � 2 2ðeþ1Þ
4ðeþ1Þ�m

j k
; if m < 4ðeþ 1Þ;

8ðeþ 1Þ; if m ¼ 4ðeþ 1Þ:

(

7.1 Further Exact Values of Nðm; eÞ
In this section, we establish some more exact values of

Nðm; eÞ.
Proposition 5. Nðm; eÞ ¼ 1 if m � 2eþ 1.
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Proof. If Nðm; eÞ > 1, then there are two distinct blocks A
and B such that jA nBj � eþ 1 and jB nAj � eþ 1.
Hence, m � jA [Bj � jA nBj þ jB nAj � 2eþ 2. tu

Proposition 6. Nðm; eÞ ¼ 2 if 2eþ 2 � m � 3eþ 2.

Proof. The Plotkin bound gives Nðm; eÞ � 2 when
m � 3eþ 2. When m � 2ðeþ 1Þ, taking two disjoint
blocks, each containing eþ 1 elements gives an ðeþ 1Þ-
diffbounded set system. The proposition then follows. tu

Proposition 7. If there exists a Hadamard matrix of order
4ðeþ 1Þ, then Nð4eþ 2; eÞ ¼ 2eþ 2.

Proof. Suppose there exists a Hadamard matrix of order
4ðeþ 1Þ. Then, there exists a Hadamard ð4eþ 3;
2eþ 1; eÞ-BIBD ðX;AÞ. This design is symmetric so that
any two blocks intersect in exactly e points. Hence,
ðX;AÞ is ðeþ 1Þ-diffbounded.

Now, pick any x 2 X and cons ide r B ¼
fA 2 A : x 62 Ag. Then, ðX n fxg;BÞ is a set system of
order 4eþ 2 and size 2eþ 2 since the number of
blocks in A containing x is 2eþ 1. Furthermore, ðX;BÞ
is still ðeþ 1Þ-diffbounded since B � A. This shows
that Nð4eþ 2; eÞ � 2eþ 2. The Plotkin bound gives
Nð4eþ 2; eÞ � 2eþ 2. Hence, we conclude that
Nð4eþ 2; eÞ ¼ 2eþ 2. tu

Proposition 8. If there exists an ðr; �Þ-design of order n and
size m, then Nðm; r� �� 1Þ � n.

Proof. Let ðX;AÞ be an ðr; �Þ-design of order n and size m.
Then, its dual ðY ;BÞ is an r-uniform set system of order m
and size n such that every two blocks intersect in exactly
� points. Hence, ðY ;BÞ is ðr� �Þ-diffbounded, and the
proposition follows. tu

Corollary 6. Nð6; 1Þ ¼ 4, and Nð20; 5Þ ¼ 6.

Proof. Apply Proposition 8 on the complete set system

ð½n�; ½n�
k

� �
Þ, which is a ð n�1

k�1

� �
; n�2

k�2

� �
Þ-design of order n and

size n
k

� �
, to obtain

N
n

k

� �
;
n� 2

k� 1

� �
� 1

� �
� n:

When ðn; kÞ ¼ ð4; 2Þ and (6, 3), this gives Nð6; 1Þ � 4 and
Nð20; 5Þ � 6, respectively. The matching upper bounds
are given by the Plotkin bound. tu

7.2 Bounds and Asymptotics

The following bounds on the size of s-diffbounded set
systems were established by Katona [50].

Theorem 3 (Katona [50]). If ðX;AÞ is an s-diffbounded set
system of order m and maximum size, then

�ðsÞ 2m

ms�1=2
� jAj � �ðsÞ 2m

ms�1=2
;

where

�ðsÞ ¼
ffiffiffi
2

�

r
1

2s
� oðmÞ;

�ðsÞ ¼
ffiffiffi
2

�

r
2s�1ðs� 1Þ!þ oðmÞ:

Corollary 7. For any fixed e, we have

Nðm; eÞ ¼ �
2m

meþ1=2

� �
:

Corollary 7 therefore determines the limit of a fault-
tolerant simple nanowire decoder up to a constant factor.
Next, we establish an explicit lower bound on Nðm; eÞ.
Proposition 9. Nðm; eÞ � maxw Aðm; 2ðeþ 1Þ; wÞ.
Proof. Any constant-weight code of length m, weight w, and

distance 2ðeþ 1Þ is ðeþ 1Þ-diffbounded. tu

Levenshtein [56] generalized the Gilbert-Varshamov
bound for general codes to constant-weight codes. We give
its proof here as it provides a recipe (though not an efficient
one) for the construction of codes achieving the bound.

Theorem 4 (Levenshtein bound).

Aðn; 2d; wÞ �
n
w

� �
Pd�1

i¼0
w
i

� �
n�w
i

� � :

Proof. The proof is via a greedy construction algorithm. We
start with the space S � HðnÞ of all vectors of weight w
and the empty code C � S. At each step, we take an
arbitrary vector u of weight w from S, adjoin it to C, and
remove from S the vectors of weight w contained in the
Hamming sphere of radius 2d� 1 around u. Repeat until
S is empty.

The bound then follows by noting that the initial size
of S is n

w

� �
and that the number of binary vectors of

weight w contained in the Hamming sphere of radius
2d� 1 is

Pd�1
i¼0

w
i

� �
n�w
i

� �
. tu

Corollary 8.

Nðm; eÞ �
m
bm=2c

� �
Pe

i¼0
bm=2c
i

� �
dm=2e
i

� � :

Though simple, Proposition 9 improves on the size of all
e-EC=AUED codes known (and hence also ðm;n; eÞ-FTSND
and ðeþ 1Þ-diffbounded set systems). A performance com-
parison is provided in the next section.

8 COMPARISONS AND COMPUTATIONAL RESULTS

8.1 Asymptotics

Suppose an ðm;nÞ-SND ð½m�;AÞ is constructed by a random
process as follows: For each nanowire i and mesowire j, j
controls i with probability p. An ðm;nÞ-SND so constructed
is called an ideal randomized contact decoder. Rachlin and
Savage [24, Theorem 4.1] proved the following result.

Theorem 5 (Rachlin and Savage [24]). All n nanowires of an
ideal randomized contact decoder ðm;nÞ-SND are addressable
in the presence of e errors, with probability at least 1� �, if

m �
eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ 4 lnðN2=�Þ

p� �2

4pð1� pÞ :
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Corollary 7 shows that if we have just m ¼ 4 lnðn2Þ �
ðeþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ 4 lnðn2=�Þ

p
Þ2=4pð1� pÞ mesowires, then we can

address �ðn�=polylogðnÞÞ nanowires, with probability one,
where � ¼ 8 ln 2 � 5:545. This is much larger than the
n nanowires guaranteed by Theorem 5. Of course, this
assumes that we can manufacture nanowire decoders
deterministically.

8.2 Exact Values

Given an e-EC=AUED code of length m and size n, the
number of information bits is k ¼ blog2 nc. The results in
this paper give improvements over some of the best known
e-EC=AUED codes.

The best 1-EC/AUED codes are provided in the table of
Laih and Yang [57]. Our improvements here are shown in
Table 1.

Improvements over the best 2-EC/AUED codes cur-
rently known are provided in Table 2.

In Table 3, we provide the current state of knowledge on
Nðm; eÞ, for 0 � e < m � 16. Where exact values of Nðm; eÞ
are not known, upper and lower bounds are provided. The
lower bounds are based on Proposition 9 and the upper
bounds are based on Proposition 4 (tables of the values of
Aðn; dÞ and Aðn; d; wÞ can be found in [58] and [59],
respectively). Exact values are obtained via exhaustive
search.

9 CONCLUSION

In this paper, we study a particular limit of fault-tolerant
nanowire decoders: how many nanowires can be addressed
with m mesowires in the face of e fabrication errors? By
casting this problem in the context of set systems, we
observe that it is equivalent to many problems in coding
theory and combinatorics that have been previously
investigated. This observation allows us to establish general

bounds and asymptotically tight bounds on the limit of

fault-tolerant nanowire decoders. The results obtained in

this paper also improve existing ones on EC/AUED codes.
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