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Abstract

Turdn-type problems are those which ask for the maximum number of blocks in a set
system of a given order, which avoids a given set of configurations. We study the problem
of designing low complexity nonadaptive algorithms for group testing, and the problem
of constructing efficient erasure-resilient codes for large disk arrays, and frameproof codes
for digital fingerprinting. These three problems are shown to yield a common treatment
as Turdn-type problems. The goal of this thesis is to develop bounds as well as to
characterize optimal solutions to these problems. For the former, we focus on giving
bounds that are at least asymptotically optimal, that is, optimal up to constant factors.

We obtain characterizations of optimal r-cover-free k-uniform set systems for (7, k) €
{(2,3),(3,4),(4,5)}. When k = r+ 1 or k = 1 (mod 2), we exhibit bounds that are
stronger than previous ones of Erdés, Frankl, and Fiiredi.

Next, weakly union-free twofold triple systems are shown to be equivalent to optimal
nonadaptive algorithms for a certain group testing problem requiring only approximate
identification. We investigate the spectrum of these set systems, and prove that the

elementary necessary conditions are also sufficient for their existence, except perhaps for



a small finite number of cases. This settles a conjecture of Frankl and Fiiredi in the
affirmative.

We also study a category of set systems arising from fault-tolerant nonadaptive group
testing algorithms. Optimal solutions are obtained for all compositions of block sizes
in {1,2,3}. In the process, we complete the spectrum of a class of designs (called qua-
sidesigns) introduced by Frankl and Fiiredi.

The next application area we investigate is the design of erasure-resilient codes for disk
arrays. We prove general upper and lower bounds on the maximum size of such codes.
The lower bound comes from a construction based on expander graphs. By studying set
systems associated with (k,[}-erasure-resilient codes, asymptotically optimal bounds for
such codes are established for all £ <1 < 2k — 1, when k£ = 3 and 4. We then study the
problem of controlling group sizes in erasure-resilient codes, which leads to resolvability
properties of the associated set systems. All these results improve, generalize, and/or
extend previous results of Hellerstein, Gibson, Karp, Katz, and Patterson. It is also
shown that erasure-resilient codes can be used to construct r-difference-free set systems,
which correspond to nonadaptive group testing algorithms for the parity model. We prove
asymptotically optimal bounds for 2-difference-free 3-uniform set systems.

The final results of this thesis concern r-frameproof codes. These codes can be used
to fingerprint digital data so that unauthorized use and copying of a piece of data can be
traced back to its user. Moreover, no coalitions of at most r users can frame other users
of unauthorized actions. We give improved bounds on 2-frameproof codes, and exhibit
for every r, the first explicit family of r-frameproof codes whose rate is bounded away
from zero.

The results of this thesis indicate the pertinent role of Turdan-type problems in group

testing, erasure-resilient codes, and frameproof codes.
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CHAPTER 1

Introduction

The investigation of the structure of finite set systems constitutes a large part of the
development of combinatorics. Several approaches have been taken, but the one that is
oldest and yet continues to yield deep insights and a rich source of interesting problems,
has come to be known as the branch of Turan-type problems. In a Turdn-type problem,
we are given a class G of set systems, and an invariant g (usually the number of blocks)
for another class H of set systems. The problem is to determine the maximum of p over
all set systems in H that contain none of the elements in G as a subsystem. Turédn-type
problems are not merely mathematical curiosities. Many of them correspond naturally to
problems of practical interest. In this dissertation, we study several Turdn-type problems
that arise from three areas of computer science and engineering which have received much
attention recently: group testing, erasure-resilient codes for disk arrays, and frameproof
codes for digital fingerprinting. Our goal is to construct nonadaptive group testing al-
gorithms, erasure-resilient codes, and frameproof codes that are as efficient as possible.
The nonadaptive group testing algorithms, erasure-resilient codes, and frameproof codes

that we build are improvements on previous results. Characterizations of some classes of



9 Introduction

optimal nonadaptive group testing algorithms are also obtained.

1.1 Group Testing

The concept of group testing was introduced to deal with a laborious and expensive pro-
cess in clinical medicine. During World War II, the United States Public Health Service
and the Selective Service System found it necessary to sieve out syphilitic Americans
who were inducted into military service. A sample of blood drawn from each prospective
inductee was subjected to a laboratory analysis which revealed the presence or absence of
syphilitic antigen. The presence of syphilitic antigen was taken as an indication of infec-
tion. Instead of performing such a test on each blood sample, it was proposed that blood
samples be pooled in groups and analyzed. If a pool showed no trace of syphilitic antigen,
then all the individuals contributing to that pool could be assumed to be uninfected. If,
however, syphilitic antigen was detected in a pool, then each individual contributing to
that pool must be tested again. The merit of this proposal is that while a test is wasted
when the pool contains blood samples of one or more infected individuals, many tests
can be saved if the pool turns out to be free from syphilitic antigen. This idea is usually
attributed to Dorfman, who wrote the first paper [46] in the area. However, it seems that
Rosenblatt is the first to suggest the idea. More interesting history can be found in a
recent book of Du and Hwang [48].

A number of industrial inspection problems share many similarities with the blood

testing problem described above:
1. Detecting gas leakage in devices [135].
2. Testing electronic components for faults [135].

3. Locating electrical shorts [35, 67, 132).
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The same technique of pooling several objects in groups and inspecting them collectively
can be used to reduce the cost of these inspection processes. The phrase “group testing”
is coined by Sobel and Groll [135] to describe this general technique.

More recently, group testing has found new applications in network communication,
In a multiple access channel, there are two or more users sending information to a com-
mon receiver using the channel. Such channels provide a way for a large number of
geographically dispersed stations t-o communicate. They have many attractive features,
including low cost and potential for high bandwidth. An example of this channel is a
satellite receiver with many independent ground stations. One problem with multiple ac-
cess channels surfaces when two or more users transmit simultaneous‘ly. A common model
[114] for multiple access channels assumes that the transmissions interfere destructively.
A simple protocol that resolves such conflicts is time division multiplexing (TDM).In a
TDM protocol, the time horizon is divided into units called slots, such that any message
of unit length can be transmitted in one slot. If there are n users, we define a step to be a
period of n slots. During each step, the TDM protocol allocates a slot to each user during
which the user can send any message of unit length. The step is then repeated. Time
division multiplexing can be highly inefficient since slots are allocated even to users who
do not wish to transmit. To overcome this drawback, Hayes [77] suggested that users who
wish to transmit should first be identified and then allotted slots. We are thus faced with a
set of users from which we want to identify those who wish to transmit. The role of group
testing is now evident. A group test comprises a poll to a subset of users to determine if
any of them wishes to transmit. How these subsets of users are to be constructed to allow
fast identification is addressed by many researchers [14, 28, 29, 30, 36, 71, 77, 87, 144].

Even more recently, applications of group testing have come a full circle. From its
initial inception in a clinical problem, group testing is now widely used in several efforts

of the Human Genome Project. The goal of the Human Genome Project is to analyze the
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Noise

Figure 1.1: A communication system.

structure of human DNA and to determine the location of the estimated 10° human genes.
Much of the current effort of this project involves screening large libraries of recombinant
DNA in order to isolate clones containing a particular DNA sequence. The experimental
test used is known as polymerase chain reaction. This screening is an important prelimi-
nary to disease-gene mapping and large scale clone mapping [109]. The isolation of clones
containing DNA sequences of interest is a tedious process and has been done using the
idea of group testing to reduce the amount of work involved [10, 25]. Group testing has
also been considered for sequencing by hybridization [112].

In each of the applications discussed above, the objective is always to minimize the
number of tests used while still being able to identify those objects with the desired

property.

1.2 Erasure-Resilient Codes

In Shannon’s seminal work on information theory [130], the transfer of digital information
from a source to a sink is modeled mathematically by a communication system depicted in
Figure 1.1. A source signal is a vector X, where its components belong to a finite set called
the source alphabet. The encoder transforms X to another vector Y with components
also from a finite set called the channel input alphabet. This vector Y, called a codeword,

is then transmitted through the channel which is occasionally corrupted by noise. At the
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1 b1
l1-p

Figure 1.2: Binary symmetric channel.

end of the channel, the decoder trie_;s to reconstruct the source signal from the received
signal ¥. Such a communication system is known as a discrete channel.

It is necessary that enough redundant information be added by the encoder if the de-
coder is to be able to reconstruct the source signal from the distorted received signal. The
fundamental problem in coding theory [130] is how to construct for a given channel with
a specified noise function, an encoder/decoder pair so that even if part of the transmitted
codeword is distorted by noise in the channel, the decoder can nevertheless deduce what
the source signal is. The objective here is for the encoder to introduce as little redundant
information as possible, and for the decoder to tolerate as much distortion as possible.
We cannot, of course, fulfil both of these conditions at the same time. The problem is
how good we can reconcile these aims.

The theory of error-correcting codes (see [96]) addresses this problem for a discrete
channel whose noise function may distort a codeword by replacing some of its components
with other symbols in the channel input alphabet. A distorted component is called an
error. The most frequently studied channel in the theory of error-correcting codes and
information theory is the binary symmetric channel (Figure 1.2), where the channel input
alphabet is {0,1}, and input symbols are complemented with probability p. The theory
of error-correcting codes is well developed and Spielman’s recent breakthrough [139] gives
an asymptotically good family of error-correcting codes that can be encoded and decoded

in linear time.
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The binary erasure channel is illustrated in Figure 1.3. In this channel, the channel
input alphabet is also {0, 1}, but the noise function changes any symbol in {0,1} to
a special symbol ‘4’ with probability p. This has the effect of erasing symbols in a
codeword. An erased symbol is called an erasure. Hence, in a binary erasure channel, we
know exactly where erasures have occurred just by looking at the received vector Y, but
we receive no values for those erased components. The binary erasure channel is also well
analyzed in information theory but work on the coding-theoretic aspect of this channel has
begun only recently [7, 79, 115]. There are two main reasons for this. Firstly, any error-
correcting code that tolerates up to e errors also tolerates up to e erasures. So it seems
more important that we understand and develop first the theory of error-correcting codes.
Secondly, most of the communication systems in use during the inception of coding theory
behave more like binary symmetric channels. This is no longer true. Today’s packet-
switched networks (the Internet, for example) face applications that generate bursty
traflic, causing congestions and buffer overflows that can lead to unpredictable losses
[3]. This is undesirable for real-time multimedia applications. A substantial part of the
Priority Encoding Transmission (PET) project [3] at the International Computer Science
Institute in Berkeley focuses on developing erasure-resilient codes for packet-switched

networks.

Another manifestation of binary erasure channels involves viewing storage devices as
communication channels. The requirement for high-performance, highly available storage
for file servers and supercomputing systems led to the development of Redundant Arrays
of Inexpensive Disks (RAID) [111]. The reliability of a large array of disks can be an issue,
even if each disk in the array is highly reliable. A recent survey of 6zden, Rastogi, and
Silberschatz [110] gives the design of fault-tolerant disk arrays as a significant research
area in multimedia applications. The failure of any disk in a disk array corresponds to an

erasure of data stored on that disk. Erasure-resilient codes for handling failures in disk
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1

Figure 1.3: Binary erasure channel.

arrays thus become an important study.

There are essentially two approaches to measuring the performance of a code. The
first is an average-case analysis, which gives the performance of a code in terms of its
error probability, that is, the probability that an error cannot be corrected. The second
approach is a worst-case analysis which measures the performance of a code by the number
of errors appearing in any codeword which can be corrected with certainty. Although the
two measures are closely related, it is usually more convenient to describe a code by its

worst-case performance [133]. This is also the approach adopted in this dissertation.

1.3 Frameproof Codes

The goal of cryptography is to solve the problem of communication in the presence of
adversaries [121]. In this dissertation, we focus on the problem of protecting digital
data against unauthorized use or copying. Here, the user of the data plays the role of the
adversary, and the data tries to communicate to its distributor whether any unauthorized
use or copying has taken place. For nondigital products, this problem is often solved by

physically incorporating an identifier, called a fingerprint, into each product. These
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identifiers help to trace the products back to their users, and hence act as a deterrent of
unauthorized use.

The design of fingerprinting mechanisms is much harder for digital data, since these
can be processed and manipulated easily. Many procedures which are infeasible for users
to perform on nondigital products are simply accomplished for digital ones. For example,
the ability of the users to collude and compare every bit of a digital data allows them to
detect the position of the fingerprints, and subsequently to modify them. If the design of
fingerprints is not careful, it is also possible for users to collude and produce legitimate
fingerprints, allowing them to frame another user (not in the collusion) of unauthorized
actions.

The problem of constructing fingerprints that are tolerant to the adversarial behaviour
of users discussed above has been addressed recently by Boneh and Shaw [19]. They
introduced a class of codes, called frameproof codes, that would prevent collusions of
users from framing other users. Frameproof codes are an interesting deterrent of software

piracy, and warrant investigation.

1.4 Organization of This Thesis

We begin in Chapter 2 with an introduction to some basic notation, terminology, and
results in analysis, combinatorics, algebra, and number theory that are used in this dis-
sertation.

Chapter 3 is devoted to formalizing group testing models and group testing problems.
The purpose is to provide a formal context for the results in subsequent chapters. The
chapter ends with a section containing a list of problems that are of interest in this
dissertation.

In Chapter 4, we show how Turdn-type problems arise from nonadaptive group test-
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ing problems. In particular, we see the applications of r-union-free and r-cover-free set
systems in nonadaptive group testing problems where exact identification of the target
set is required.

Chapter 5 is devoted to the study of uniform r-cover-free set systems. We present a
characterization of several classes of optimal r-cover-free uniform set systems. In some
other situations where we did not manage to achieve such characterizations, new upper
bounds on the number of blocks are obtained. These improve on previous bounds of
Erdss, Frankl, and Fiiredi {57, 58].

Chapter 6 deals with the existence problem for weakly union-free twofold triple sys-
tems. This problem was first studied by Frankl and Fiiredi [62] as a generalization of an
old result of Erdds [54] on graphs. We show that this Turan-type problem arises naturally
in a certain nonadaptive group testing problem where only an approximate identification
of the target set is required. We solve the existence problem for weakly union-free twofold
triple systems completely except for a small finite number of cases, thus settling a conjec-
ture of Frankl and Fiiredi in the affirmative. We also determine completely those orders
for which there exists a twofold triple system that avoids all twofold triple systems of
smaller order.

The theme of Chapter 7 is fault-tolerant group testing. We study nonadaptive group
testing algorithms that can identify target sets of size at most two even in the presence of
an erroneous test, subjecting each of the elements to no more than three tests. It is found
that the nonadaptive algorithm with the lowest test complexity involves each element in
precisely three tests. The 2-union-free 3-uniform set systems constructed by Frankl and
Fiiredi [62] is found to have the desired properties. We also complete the spectrum of a
class of designs introduced by Frankl and Fiiredi.

We shift our attention in Chapter 8 to the problem of designing erasure-resilient

codes for large disk arrays. It turns out that the problem can be expressed equivalently
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as a Turdn-type problem. We provide a general lower bound obtained from a construc-
tion based on expanders. Viewing the design of erasure-resilient codes as a Turén-type
problem, we improve on this lower bound for some parameter situations by constructing
erasure-resilient codes that are better than any presently known. The results we obtain
here are optimal up to a constant factor. In this respect, we make heavy use of techniques
from design theory. Often, looking at the associated Turdn-type problem gives extremely
simple and direct proofs of existing results (and even their improvements). This gives
evidence that perhaps treating Turdn-type problems is the right approach to the design
of erasure-resilient codes for large disk arrays. The chapter also contains an application of
erasure-resilient codes to the nonadaptive group testing problem where the test function
used is the MOD, test function.

In Chapter 9 we consider yet another area in which Turén-type problems arise nat-
urally. Very recently, Boneh and Shaw have considered cryptographic techniques for
protecting unauthorized use and copying of digital data, with the requirement that we
be able to trace unauthorized actions back to their originators, and no coalitions below
a certain size can frame other users. Special codes, known as r-frameproof codes, can be
used to solve the problem. Stinson and Wei have observed that the problem of designing
r-frameproof codes is equivalent to a Turdn-type problem. We give a probabilistic con-
struction of 2-frameproof codes, improving earlier bounds. We also exhibit for every r, the
first explicit constructible family of r-superimposed codes, and hence also 7-frameproof
codes, whose rate is bounded away from zero.

The final chapter summarizes the results of this dissertation and discusses some of its

ramifications.



CHAPTER 2

Mathematical Preliminaries

This chapter summarizes mathematical background material from analysis, combina-
torics, coding theory, algebra, and number theory used in this thesis. The definitions and

results listed are mainly meant for reference.

2.1 Basic Notation

By R (Z, N) we denote the set of real (integral, natural) numbers. The set N of natural
numbers does not contain zero. Ry (Z.) denotes the nonnegative real (integral) numbers.

Let M be a set. For n € N, we denote by M™ the set of vectors with n components
(or n-dimensional vectors) with entries in M. We sometimes call a vector in M™ an

M -vector.

Definition 2.1.1 The weight of a vector v = (v1,s, ... ,v) € {0,1}", denoted wt(v), is

n
the number Zvi.

=1
Definition 2.1.2 The support of a vector v = (v1, %2, . . - , Un) € {0,1}", denoted supp(v),

is the set {¢ | v; = 1}.

11
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Definition 2.1.3 Given a vector v = (v1,v2,...,%,) € R", and a set I = {41,%3,...,%m}
C {1,2,...,n}, such that 4; <5 < -+ <'im, the restriction of v to I, denoted v|y, is the
vector (Ui, Uiz, - -+ 1+ Vip )-

Definition 2.1.4 A vector u = (uy,Us, ..., Us) € R™ is said to precede another vector

v = (v1,0s,...,v,) € R?, and we write u < v, if u; < foralli e {1,2,...,n}.

The j-th unit vector in R™, whose j-th component is one while all other components
are zero, is denoted by e;. The zero vector is denoted by 0 and the vector of all ones is
denoted by 1.

The component-wise Boolean sum of two {0, 1}-vectors u and v is written uV v.

For any set M, we denote by M™*™ the set of m X n matrices with entries in M. The
identity matrix is denoted by I. The transpose of a matrix 4 is denoted by AT.

For a real number «, the symbol |«| denotes the largest integer not larger than o,
and [a] denotes the smallest integer not smaller than .

For two sets M and N, we write M \ N for the set-theoretic difference {z € M |z ¢
N}, MAN for the symmetric difference (M \ N) U (¥ \ M), and 2M for the set of all
subsets of M. If k € Z, a k-subset of M is a set N C M such that |N| = k. The set of
all k-subsets of M, {N C M | |N| = k}, is denoted by (Ff) If MNN = @, the expression
M U N is often used in place of M U N to emphasize that the two sets are disjoint.

The discrete probability measure is denoted by Pr and E[X] denotes the expectation

of a random variable X.

2.2 Analysis

We use the classical notations for asymptotic analysis. Let f,g: R — R,.
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(i) We say that f(n) = O(g(n)) if there exist positive numbers ¢ and N such that, for

all n> N, f(n) < cg(n).

(ii) We say that f(n) = Q(g(n)) if there exist positive numbers c and N such that, for
alln > N, f(n) > cg(n).

(iii) We say that f{n) = ©(g(n)) ii-' f(n) = O(g(n)) and f(n) = Q(g(n)) both hold.

iv e sa a n) = o(g{n)) i imm=
(iv) We say that f(n) = olg(m) if Jim 75 = 0.

The natural logarithm is denoted by “In” while “log” denotes the logarithm to base

two. We use “exp” to denote the exponential function.

2.3 Combinatorics

Definition 2.3.1 Let X be a finite set. A set system or configuration is a pair (X, A),
where A C 2X. The order of the set system is | X |. The elements of X are called points and

the elements of A are called bfocks.

Our definition of a set system precludes repeated blocks. A set system (X, A) is rep-
resented diagrammatically by a set of points corresponding to the elements of X and
each block A € A is drawn as a continuous curve passing through precisely those points

comprising A.

Example 2.3.1 Consider the set system (X, A), where X = {1,2,3,4} and A = {{1,2},

{1,3,4}, {2,3,4}}. This set system is represented diagrammatically as follows.

1 2



14 Mathematical Preliminaries

Definition 2.3.2 A set system (X, A) is k-uniform if A C (},f)

We sometimes say that a set system is uniform if it is k-uniform for some k.

Definition 2.3.3 Two set systems {X,A) and (Y, B) are isomorphicif there exists a bijec-

tion, called an isomorphism, w : X — Y such that A € A if and only if {w(a) | a € A} € B.

Definition 2.3.4 If (X, A) and (Y, B) are set systems such that Y C X and B C A, we
say that (Y, B) is a subsystem of (X, A).

Definition 2.3.5 A set system (X,A) is said to contain a configuration (Y, B) if there

exists a subsystem of (X, A) that is isomorphic to (Y, B).

Definition 2.3.6 A set system (X, A) avoids a configuration (Y, B) if (X, A) does not
contain (Y, B). In this case, we also say that (Y, B) is a forbidden configuration of (X, A).

The following definitions pertain to group actions on set systems.

Definition 2.3.7 An automorphism of a set system (X, A) is an isomorphism from (X, A)

onto itself.

Definition 2.3.8 The set of all automorphisms of a set system forms a group I, called its
full automorphism group, under functional compaosition. Any subgroup of I is simply referred

to as an automorphism group.

Definition 2.3.9 Let I' be a group acting on a set X. For S C X, the development of S
with T', denoted devp(S), is the set {{y(s)|s € S} |y €eT}.

Definition 2.3.10 A collection of starter blocks for a set system (X, A), with automorphism

group T, is a subset A’ C A such that A = U devp(4).
AEA!
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2.4 Coding Theory

A code, or more specifically a g-ary code of length n, is any subset C C {0,1,...,¢4— 1}

The elements of C are called codewords. An important parameter of a code is its Hamming

distance.
Definition 2.4.1 The Hamming distance between two codewords u = (uy, 4z, . . . , Up) and
v = (vy,s,...,v,) is the quantity dist(u, v) = |{7 | u; # v}

Definition 2.4.2 The minimum distance of a code € is

d(C) = “12136 dist(u, v). %

uFv
Definition 2.4.3 The relative minimum distance of a code € of length n is §(C) = d(C)/n.

Another important parameter in coding theory is the rate of a code. This is defined

as follows.

Definition 2.4.4 The rate of a g-ary code, €, of length n is Rate(C) = l—cf%’;ﬁ.

We define a family of codes to be an infinite sequence of codes that contain at most

one code of any length.

Definition 2.4.5 A family of codes, {€;}32,, is said to have rate R if Rate(C;) > R for all
7.

2.5 Algebra and Number Theory

The finite field with ¢ elements, where ¢ is a prime power, is denoted by GF(g). Zn

represents the ring of integers modulo n.
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If ¢ is a permutation, the group generated by o is denoted (7).

The following result on the gap between consecutive primes is useful.

Theorem 2.5.1 (Mozzochi [101]) Let p, denote the n-th prime. Then p,i1—p, =

O(p};osl/lgzl_}'e), for any € > 0.



CHAPTER 3

Models of Group Testing

3.1 A Group Testing Game

Consider the one-player simple group testing game. The object of the game is to identify
an unknown subset U of a finite set X, where |U| < 7. We shall call U the target set.
The player receives information about U only through the following process. The player
chooses an arbitrary subset P of X and is told whether P contains at least one element
of U or no elements of /. We call P a pool and the process of obtaining information a
test on P. We often view a test on P as the evaluation of some test function fy : 2% — R
on P. The appearance of the subscript U is to remind the reader that U is generally
a parameter of the test function. We usually write f instead of fy7, unless we find it
necessary to emphasize the dependency on U. In this game, R can be taken to be {0,1}.

The goal of the player is to use as few tests as possible, and as little computation
as possible, to pick a set U’ which is a “close” approximation to U/. To motivate the
group testing game, consider Dorfman’s blood testing application explained in Section

1.1. We can express this application as an instance of the game. The set X comprises all

17
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blood samples, and the target set U comprises those blood samples that contain syphilitic
antigen. A subset P of X is a positive pool if and only if P contains at least one blood
sample showing presence of syphilitic antigen. The objective here is to identify exactly
the set U.

There are a number of features of the simple group testing game that are essential to

any model of group testing. We highlight them before delving into the general definitions.

e The goal of the group testing game is to identify an unknown target set. The target

set is not arbitrary, but contains at most 7 elements of X.
o Finding a solution occurs through performing tests on pools.
o The solution supplied by the player must satisfy a specified criterion.

o We are interested in a player who is efficient: not many questions need to be asked

to obtain the solution.

Our intent is to state a metamodel of group testing that shares and formalizes the

properties listed above. We begin by developing and motivating the necessary definitions.

3.2 Definition of the Metamodel

Many models of group testing have been proposed (see [48]). Unfortunately, these differ-
ent proposals seem rather ad hoc. It is possible, however, to describe them as derivations
of a common metamodel. Treating them in this view provides us with a formal setting
to discuss various results in group testing.

Let X be a finite set called the object space, and let 7 be a positive integer called the
a priori guaraniee of X. A target set of X is just a subset I/ C X such that |U] < 7. The

test function employed is f : 2X — R. Qur group testing algorithm (corresponding to the
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player of our simple group testing game) is an XPRAM, a model introduced by Valiant
[148, 149] for parallel computation.

An XPRAM is a machine that consists of a number of processors, each one with a local
memory. Each processor is a universal sequential machine with its local instruction set
which can access words from the local memory. In addition, there is a set of global parallel
instructions that allow accesses by_processes to the memories of other processors. The
main global instructions are reads and writes, which enable processors to simultaneously
read from or write to places in the whole memory space. Each processor is assumed to
execute its own, possibly unique, program. An XPRAM executes operations in steps. In
each step, each processor may execute any number of local instructions, and access other
memories using globa! reads and writes. The processors know whether or not a step is
completed at the end of every period of a specified length. Within such a period, there
is no synchronization among the processors.

In addition to the above defining properties of an XPRAM given by Valiant, we allow
each processor to have access to an oracle. We call such a machine an oracle XPRAM.
We think of the oracle as a procedure ¢(-) that implements the test function f : 2% — R.
When presented with a pool P C X, the oracle O performs a test on P, that is, it returns
f(P). Other than the oracle, the XPRAM knows, X, », and the solution criterion, but
has no other knowledge.

For formality, the solution criterion is specified as a predicate II(¢) containing a
variable ¢. The solution U’ is said to satisfy the solution criterion if II(U’) is true. The
predicate II(y) will, in general, involve U and possibly .

Let us now take a moment to see how an oracle XPRAM with p processors, numbered
one to p, plays the simple group testing game. The oracle in this case implements the
function f: 2% — {0,1} such that f(P)=1if [PNU| > 1 and f(P) = 0 otherwise. The

global communication pattern of the p processors is in the form of a star network (Figure
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Figure 3.1: Star network.

3.1). Processor one, called the center, communicates with the other p ~ 1 leaf processors
via global reads and writes. The other p — 1 processors do not communicate with each

other. In each step, the processors work as follows.

Center: Depending on results from previous steps, either output a solution and halt, or
compute p pools of X, P, P,, ..., P,. Using global writes, write P; into the local
memory of processor %, for 2 < ¢ < p. Now present P; to the oracle. Check local

memory for results written by the leaf processors.

Leaf processor 2: read local memory for P; written by the center. Present F; to the
oracle. Using global write, write the answer supplied by the oracle to the local

memory of the center.

Up to now, we have not mentioned how the complexity of the group testing algorithm
is measured. Valiant [149] gives a formula for the running time of an XPRAM without
oracles. In most applications of group testing, the cost of performing a test (calling the
oracle) far exceeds the cost of gathering results of tests and distributing the tests to be
performed (global reads and writes). Inferring the final solution or what subsequent pools
to test based on the results of previous tests is not a simple process, but is usually not as
tedious as performing the tests. Hence, it has been common practice in the group testing

literature (see [48]) to assume that the most important factor is the -number of tests
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performed. The time complexity of the inference procedure is of secondary importance.
This is also the view we take throughout this dissertation. The test complezity of an
oracle XPRAM is defined to be the total number of calls made to the oracles.

We are now ready to give a definition for the group testing metamodel.

Definition 3.2.1 (Group Testing Metamodel) Let X be a finite set with a priori guar-
antee 7, f : 2X 5 R be a test function, and TI(¢) be a solution criterion. Let O be an oracle
implementing f. For positive integers p and t, we say that (X, f, I, p, s) is t-group testable
if there exists a p-processor s-step group testing algorithm with access to O having test
complexity at most ¢, that outputs a solution P’ such that II(P’) is true. The hextuple

(X,r, f,11,p,s) is called a group testing problem.

Given a group testing problem (X, , f,II, p, s), the objective is to determine the min-
imum ¢ such that the problem is t-group testable. A dash “—” is used to indicate that
a parameter is unconstrained. In the literature, a (X,», f,1I,1, —) problem is called se-
quential, and a (X,r, f,II,—, 1) problem is called nonadaptive. Hence, in a sequential
problem, the algorithm has only one processor and at each step, its query to the oracle
can depend on the results of all previous queries. In contrast, an algorithm for a non-
adaptive problem must specify all its queries in one step. Since the values of both p and
s are implied, sequential and nonadaptive problems are simply defined by a quadruple
(X, 7, f,II). Also, by a sequential or nonadaptive algorithm, we mean an algorithm for a

sequential or nonadaptive problem, respectively.

3.3 Some Interesting Models

Various models of group testing can be derived from the metamodel (Definition 3.2.1) by

specifying f and II in different ways. Let us briefly discuss some of the most important
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types.

3.3.1 Test Functions

An n-ary test function is a function f : 2X — R, where |R| = n. The most popular
models for group testing have binary or ternary test functions [48]. Among these, binary
test functions form the majority. Nonadaptive problems with binary test functions also
give rise to interesting Turan-type problems, which are the subject of this dissertation.
We therefore restrict ourselves to binary test functions here and in subsequent chapters.
Without loss of generality, we assume that the range of each test function is {0,1}.
Another assumption we make concerns a particular property of tests. In all applica-
tions of group testing encountered, one can observe that adding an element not in the
target set cannot change the test result of a pool from zero to one. For example, in
Dorfman’s blood testing application, the addition of a nonsyphilitic blood sample to a
pool which shows no trace of syphilitic antigen cannot render the pool syphilitic. We

formalize this property as follows.

Definition 3.3.1 Let X be a finite set and U C X. A function f : 2% — {0,1}is
coherent with respect to U if f(@) = 0 and whenever P C X such that f(P) = 0, we have
f(Pu{z})=0forallz ¢ X\U.

Henceforth, we assume that the test functions for our group testing problems are all
coherent with respect to the target sets.

The test function that is most frequently studied in group testing is

1, f|PNU[>1;
f(P)= (8.1)

0, otherwise.
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A useful generalization of (3.1) is the 7-threshold function

1, #[PNU|>T;
f(P) = (3.2)

0, otherwise.

To motivate the definition of this test function, let us refer back to Dorfman’s blood
testing application in Section 1.1. The precision of any test has a limit. Hence, a test
cannot detect the presence of syphilitic antigen in a blood pool, unless the number of
syphilitic blood samples it contains exceeds a certain threshold. The function in (3.2)
models this situation. It is also possible that the precision of the test depends on the
concentration of syphilitic antigen in the pool, and not on the minimum amount of antigen

that would trigger the test. This scenario gives rise to the test function

1, #]PNU| 24P
£(P) = (3.3)

0, otherwise.

Another test function with potential applications is the MOD,, function,

1, if |PNU|=1 (mod m};
F(P) = FoI=1 modm) (3.4)

0, otherwise.

Suppose that a factory produces inverters (Figure 3.2), which may suffer from faults.
Instead of inverting its input, a faulty inverter simply outputs its input. The factory would
like to sieve out those faulty inverters before putting its inverters out on the market. A
possible group test for inverters is to construct pools, each consisting of several inverters
connected in series. A test comprises inputing a bit to a pool and observing its output.

It is not hard to verify that a pool produces an incorrect output if and only if the pool
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0/1‘D0— 1/0

Figure 3.2: An inverter.

contains an odd number of faulty inverters. The groﬁp test just described corresponds to
a MOD, test function.
The three test functions (3.2), (3.3), and (3.4) we introduce do not appear to have

been studied before.

3.3.2 Solution Criteria

The most important solution criterion is the ezact identification criterion:

I{g) = (p=0). (3.5)

In some situations, it may be sufficient to find a reasonably small set containing U. This

leads to the following a-approzimate identification criterion:
I(¢) = (p2U and [p|<ar), (3.6)

where 7 is the a priori guarantee,

3.3.3 Restrictions

Further restrictions are often imposed on group testing algorithms. Typical restrictions

are:

o There is a given set L, and for every pool P, we must have |P| € L.
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e For each z € X, the number of tests involving = must not exceed some number k.

The first restriction is motivated by applications in which the test kit is manufactured
only with sizes in L. The second restriction is appropriate in situations when there is
insufficient material for test, or when the quality of the object degrades with each test.
For example, in Dorfman’s blood testing application, each blood sample may be enough
for only k tests. In some applications, it is also desirable that the number of tests involving
cach ¢ € X is constant. We call a group testing problem k-restricted if each z € X is

involved in exactly k tests.

3.4 A List of Group Testing Problems

We end this chapter with a list of group testing problems that are of interest in this
dissertation. Each problem is parametrized by the a priori guarantee r which appears at
the end of the name of the problem in parentheses. All the problems are nonadaptive.
We therefore only specify the test function, solution criterion, and restrictions (if any)

for each problem.

UNRESTRICTED NONADAPTIVE EXAcT IDENTIFICATION PROBLEM(r)

TEST FUNCTION: 1-threshold function.

SOLUTION CRITERION: (¢ = U).

k-RESTRICTED NONADAPTIVE EXACT IDENTIFICATION PROBLEM(r)

TEST FUNCTION: l-threshold function.
SOLUTION CRITERION: (p = U).

RESTRICTIONS: Every object is tested exactly k times.
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k-RESTRICTED NONADAPTIVE o-APPROXIMATE IDENTIFICATION PROBLEM(7)

TEST FUNCTION: 1-threshold function.
SOLUTION CRITERION: (¢ D U and [p| < ar).

RESTRICTIONS: Every object is tested exactly k& times.

k-RESTRICTED NONADAPTIVE EXACT IDENTIFICATION PARITY PROBLEM(r)

TEST FUNCTION: MOD, function.
SOLUTION CRITERION: (¢ = U).

RESTRICTIONS: Every object is tested exactly & times.



CHAPTER 4

Nonadaptive Group Testing and Turan-Type

Problems

4.1 Why Nonadaptive Group Testing?

The group testing problems that are the primary concern of this dissertation are nonadap-
tive. It is clear that the best sequential algorithm for a group testing problem (X, r, £, II)
must perform at least as well as any nonadaptive algorithm for (X, r, f,II), since a one-
processor oracle XPRAM can simulate a p-processor oracle XPRAM without increasing
the test complexity. It is therefore not surprising that most past research efforts on group
testing had focused on sequential problems. Moreover, machines with many processors
were not a reality until relatively recently.

The advent of massively parallel computers have prompted Hwang and Sés {81] to
make a case for the study of nonadaptive group testing problems. Further support of
this case is given by Knill and Muthukrishnan [85], who observed that the following three
features in the screening of clone libraries with hybridization probes strongly encourage

nonadaptive algorithms:

27
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e A set X of clones is screened many times. Each time the concept of positive clones
in X is different. The aim is to identify the positive clones, with respect to the
different concepts. During each screening, a different probe suited to a particular

concept of positivity, is used to test pools of clones.

e It is expensive to prepare a pool for testing the first time. Once a pool is prepared,

however, it can be tested many times with different probes.

e Testing one pool at a time is expensive but testing many pools in parallel with the

same probe is much cheaper per pool.

An example of a real-life screening effort can be found in [25].

In addition to the above biological application, nonadaptive group testing is also
closely related to the theory of superimposed codes. Superimposed codes were first studied
by Kautz and Singleton [83]. These codes have applications in information retrieval [83]
and multiple access communication [11]. We refer the interested reader to [51, 52] for

more information.

4.2 The Role of Turan-Type Problems

A Turdn-type problem takes the following form. Given a family F of configurations,
determine the maximum number of blocks in a set system of order n that avoids all the
configurations in . This problem is so-named in memory of Turan, who proved one of
the most important results in the area [145, 146]. A recent survey of Fiiredi [65] provides
a good summary of work in the area. In this section, we explain the role of Turdn-type
problems in nonadaptive group testing.

Let A be any nonadaptive algorithm for a group testing problem. The only essential

factor of A is whether the pools it tests would yield enough information for the deter-



4.2. The Role of Turdn-Type Problems 29

mination of a solution. Hence, we may consider a nonadaptive algorithm A for a group
testing problem (X,r, f,II) as being completely specified by a set system & = (X,P),
where P is the set of all pools tested by A. The test complexity of A is then given by
t = |P|. § is called the primal system associated with A. It has been more natural to
consider the dual of 8, which is constructed as follows. Let Pi, P,, ..., P; be the blocks in
P. For each ¢ € X, let B, = {i| 2 € P;}. The dual of § = (X, P), denoted §*, is the set
system (Y, B), where Y = {1,2,...,t} and B = {B; | 2 € X}. A block B; € B contains
exactly all those pools in which z is involved. We call (Y, B) the dual system associated
with A. Since (8*)* is isomorphic to 8 for any set system §, a nonadaptive algorithm is

also determined by its dual system.

In the following subsections, we define for any test function f, set system (X, P), and

U C X, the set
fFU)={Pe?| fu(P)=1}

4.2.1 Exact Identification Problems

Let (X, f,r,I) be a nonadaptive group testing problem with the exact identification
criterion. Let U and U’ be two distinct subsets of X, each containing at most 7 elements.
A necessary and sufficient condition for (X, P) to be the primal system of a nonadaptive

algorithm for an exact identification problem is given in the following lemma.

Lemma 4.2.1 Let (X, 7, f,II) be a group testing problem with the exact identification
criterion (3.5). A set system (X,P) is the primal system of a nonadaptive algorithm for
(X, r, f,TI) if and only if the following condition holds. For any two distinct subsets U .and

U' of X, each containing at most 7 elements, we have f3 (U) # 3 (U").
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Proof. Necessity is easy. If f;’ )= fi',' (U"), then the algorithm cannot decide whether
U or U’ is the target set, since the tests yield the same results regardless of whether U/
or U’ is the target set.

To prove sufficiency, let S = {P € P | the result of the test on pool P is 1}. Since
Hu) # f4(U"), there exists precisely one subset U C X, |U| < r, such that ff (U) = S.

This subset is the required target set. - a

The condition in Lemma 4.2.1 can be translated into a condition for the dual system

by observing that P; = {z € X | i € B,}.

Lemma 4.2.2 Let (X, r, f,II) be a group testing problem with the exact identification cri-
terion (3.5). A set system (¥, B) is the dual system of a nonadaptive algorithm for (X, r, f, IT)
if and only if the following condition holds. For any two distinct subsets U and U’ of X, each

containing at most 7 elements, we have

GeY |fr{fee X |ieB)=1}#{ieY |fp({z € X |i€ B,})=1}.
(4.1)

In a nonadaptive group testing problem, |B|, the number of objects in X, is usually
fixed and we want to minimize the algorithm’s test complexity ¢ = |Y|. Equivalently, we
can keep the test complexity of the algorithm fixed and try to maximize the number of
objects for which we can still solve the problem. This latter view defines a Turan-type
problem. The condition (4.1) dictates which configurations are to be avoided in the dual
system. We illustrate this with the UNRESTRICTED NONADAPTIVE EXACT IDENTIFICA-

TION PROBLEM(7).
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Definition 4.2.1 A set system (X, A) is P-union-free if there do not exist A;, Ay, ..., A,

By, By, ..., B, € A, not necessarily distinct, such that

LrJ Ai = O Bi:
i=1

=1
unless {A;, As,..., A} = {By,Bs,...,B,}.
Lemma 4.2.2 gives the following.

Corollary 4.2.1 (Hwang and Sés [81]) Solving the UNRESTRIGTED NONADAPTIVE
EXACT IDENTIFICATION PROBLEM(7) is equivalent to determining the maximum number of

blocks in an r-union-free set system of order n.

Proof. For f the 1-threshold function, (4.1) reduces to

UB.# [ B. (4.2)

zelU zel!

for the dual system (Y, B), where U and U’ are distinct subsets of X , each containing at
most » elements. When |U] = |U’| = r, (4.2) is exactly the condition for the dual system

being 7-union-free. So suppose the dual system is r-union-free and U B, = U B, for
o€’ zeU’
some U and U’ distinct subsets of X, each containing at most » elements. Now increase

the multiplicity of any z € U and any 2’ € U’ until |U| = [U’| = r. It is obvious that
U B, = U B. But this contradicts the assumption that the dual system is 7-union-

celU axelU’
free. 0

From Corollary 4.2.1, the result below follows easily.

Corollary 4.2.2 Solving the k-RESTRICTED NONADAPTIVE EXACT IDENTIFICATION

PROBLEM(r) is equivalent to determining the maximum number of blocks in an r-union-free
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k-uniform set system of order n.

Let u(n, ) and u(n, k, r) denote the maximum number of blocks in an r-union-free set
system and r-union-free k-uniform set system, respectively. Not many results concerning
these two functions are known, other than those implied by r-cover-free set systems (see

Section 4.3). In general, it is known (see; [48]) that
u(n, r) Z\ (n
< .
(5)<20)
j=r
The problem of estimating u(n, 2) was raised by Erdés and Moser [61]. Frankl and Fiiredi
[63] proved

2034 < y(m,2) < 202 1

A 2-union-free 2-uniform set system is a graph without cycles of length three and cycles

of length four. Reiman [118] proved

1
7 3% < u(n, 2,2) < %ns/z.

2V2

Erdos [55] has made the conjecture that

1+0(1) 7
2v2

u(n,2,2) =

Surprisingly, the case k¥ = 3 is easier. Frankl and Fiiredi [62] established the following

exact result:

u(n, 3,2) = [”(“T_l)} : , (4.3)
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For general k, employing symmetric functions over finite fields, Frankl and Fiiredi [64]

obtained the result below.

Theorem 4.2.1 (Frankl and Fiiredi [64]) For any fixed k, there exist positive con-

stants a; and as such that
aynl 4312 < y(n, k,2) < ayn[*/31/2,

4.2.2 a-Approximate Identification Problems

Let (X, 7, f,II) be a nonadaptive group testing problem with the a-approximate identifi-

cation criterion. We have the following analogue of Lemma 4.2.1.

Lemma 4.2.3 Let (X, f,1I) be a group testing problem with the a-approximate identifi-
cation criterion (3.6). A set system (X, ?P) is the primal system of a nonadaptive algorithm
for (X,, f,11) if and only if the following condition holds. There exists a subset Z C X,
|Z] < ar, such that for any two distinct subsets U and U’ of X, each containing at most r

elements, we have either £ (U) # ff(U") or TUTU' C Z.

Proof. First we prove necessity. Suppose there does not exist such a subset Z and

f5(U) = 75 (U"). Then, one of the following two situations must occur:
(i) [TuT'| > ar;

(i) there exists U” C P such that fi(U) = f§(U") and there is no set of size ar

containing both UU U’ and U U U".

If |UUU'| > ar, then no set of size at most ar can contain both U and U’. So the
solution obtained by the algorithm can contain at most one of U and U’. We can obtain

a contradiction by taking the target set to be the one that is not contained in the solution
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given by the algorithm. For the second situation, the algorithm cannot obtain a solution
that contains both U U U’ and U U U". If the solution contains U UU’, we let the target
set be U". If the solution contains U U U"”, we let the target set be U’. In both cases we
have a contradiction.

To prove sufficiency, let S = {P € P | the result of the test on pool P is 1}. Then
there exists a subset Z C X, |Z| < ar, such that for all U C X, |U| < 7, and £} (U) = S,
we have U C Z. This subset Z is the required solution since it contains the target set

and has size at most ar. O

In Chapter 6, we shall see that Lemma 4.2.3 gives rise to a Turdn-type problem for

the 3-RESTRICTED NONADAPTIVE (3/2)-APPROXIMATE IDENTIFICATION PROBLEM(2).

4.3 r-Cover-Free Set Systems

The proof of Corollary 4.2.1 shows that every nonadaptive algorithm based on an r-union-
free set system is able to solve the (UNRESTRICTED or k-RESTRICTED) NONADAPTIVE
EXACT IDENTIFICATION PROBLEM(7). How does one actually go about finding the solu-
tion after obtaining the results for the set of pools P? This is the task of the inference
procedure. One approach is to build a table of f{;‘ (U),for all U C X, |U| < r. The table
can be sorted with respect to f;i (U) so that a search for the target set can be done in
O(log | X |} time, for constant r. However, the time and space required to build and store
the table is Q(]X|"). The tabulation of f (U) can thus be a serious bottleneck in terms
of both space and time for some applications when 7 is large, even though once built, the
table can be used over and over again. It is not known whether there is a more efficient
inference procedure of determining the target set for nonadaptive algorithms based on

r-union-free set systems [48].
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Another problem commonly encountered in practical applications is that the a priori
guarantee is often an estimate and hence can be wrong at times. Ideally, we would like
to be able to tell as soon as possible whether the a priori guarantee given is correct.
An inference procedure for a nonadaptive algorithm based on an r-union-free set system
only reveals the correctness of the a priori guarantee after having succeeded or failed the
search in the table of £ (U). This is often undesirable.

The two problems discussed above can be alleviated by nonadaptive algorithms based

on set systems that satisfy a stronger property.

Definition 4.3.1 A set system (X, A) is r-cover-free if there do not exist Ap, A1,..., A, €

A, not necessarily distinct, such that
,
AD - U Ai)
1=1

unless Ap € {4;,4,,..., A }.

Let A be a nonadaptive algorithm whose dual system (Y, B) is r-cover-free. Since every 7-
cover-free set system is also 7-union-free, A solves the (UNRESTRICTED or k-RESTRICTED)

NONADAPTIVE EXACT IDENTIFICATION PROBLEM(r) (X, r, f, II).

Lemma 4.3.1 Let U be the target set and z € X. Then U contains @ if and only if  does

not appear in any pool P C X such that f(P) = 0.

Proof. It is obvious that = € U implies that @ cannot appear in any pool P such that
f(P)=0.

So assume that every pool P containing z is such that f(P) = 1. Suppose to the
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all z € X are not marked,
fori=11tot do
if f(P) =0 then
mark z for all z € F;;
for z € X do
if ¢ is not marked then
z € U,

Figure 4.1: Inference procedure.

contrary that z ¢ U. For all ¢ € By, we have f(P;) = 1. But

{ieY | f(P)=1}= ] By,

uelU
where U is the target set. Hence
B. C | J Bu.
ugelU
This contradicts the fact that (Y, B) is r-cover-free, since ¢ ¢ U and |U| < 7. O

An inference procedure based on Lemma 4.3.1 can be developed to find the target
set given the test results. This is given in Figure 4.1. This procedure is more efficient
than the search table technique used for nonadaptive algorithms based on r-union-free set
systems. The time complexity of the procedure is easily bounded by O(t|X[). It is known
[58, 81] that there exist 7-cover-free set systems for which ¢ is as small as O(log|X|) for
unrestricted problems and O(|X|*/¥) for k-restricted problems. This gives a marked im-
provement over the Q2(|X|") time procedure employed by nonadaptive algorithms based
on r-union-free set systems. I at the end of the procedure above, we have more than 7

objects in U, then we can also conclude that the a priori guarantee is wrong. This obser-
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vation is first made by Schultz {129]. Since the property of being r-cover-free is stronger
than the property of being r-union-free, the tradeoff here is between the test complexity
of the nonadaptive algorithm and the time complexity of the inference procedure.

This advantage of nonadaptive algorithms based on r-cover-free set systems has en-
couraged the study of r-cover-free set systems over r-union-free set systems in the group
testing literature. The next chapter in this dissertation presents some new results on

r-cover-free set systems.






CHAPTER b5

Characterizations and Improved Bounds for

r-Cover-Free Set Systems

5.1 Preliminaries

Let c(n, k,r) denote the maximum number of blocks in an r-cover-free k-uniform set
system of order n. Any r-cover-free k-uniform set system of order n having c(n, k,r)
blocks is said to be optimal.

If an r-cover-free k-uniform set system has at least » + 1 blocks, then each block in a
collection of 7 + 1 blocks must contain a point that is contained in no other blocks of the
collection. It follows that there are at least (k — 1) 4+ (r 4 1) = k + r points. Hence, we

assume throughout this chapter that » > k + r, since we have

)

0, ifn <k
C(n»k)r)=<min{(Z),r}, ifk<n<k+r-1,; (6.1)
r+1, frn=F%k+r.

39
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The problem of determining c(n, k, 7) was introduced by Kautz and Singleton [83], and
studied extensively by Erdos, Frankl, and Fiiredi [57, 58]. To state their main result, and
also our results in subsequent sections, we require the following definitions from design

theory.

Definition 5.1.1 A ¢-(v,k, A) design is a k-uniform set system, (X, B), of order v, such

that every ¢-subset of X is contained in precisely A of the blocks in B.

Definition 5.1.2 A t-(v, k, A) packing is a k-uniform set system, (X, B), of order v, such

that every t-subset of X is contained in at most A of the blocks in B.

The packing number Dy(v, k, ) is the maximum number of blocks in any t-(v, k, A) pack-
ing. A t-(v, k, A) packing, (X, B), is optimal if | B| = Dx(v, k,t). If A = 1, often one writes
D(v, k,t) for Di(v, k,t).

Packings play an important role in the study of r-cover-free set systems because of

the following simple observation.

Lemma 5.1.1 (Kautz and Singleton [83]) A ¢-(n, k, 1) packing is an r-cover-free set

system of order n if k > »(t — 1) 4 1.

Proof. Consider any block B in the packing. At most 7(¢ — 1) of the points in B can
be contained in the union of r other blocks. But k > 7(¢ — 1) + 1. Hence no block is

contained in the union of » others. O

Definition 5.1.3 A A-system with nucleus A is a set system (X, B) in which BNB' = A
forall B, B’ € B, B # B'. The sets B\ A, for all B € B, are called the rays of the A-system.

In [68], Erd6s, Frankl, and Fiiredi established the following result.
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Theorem 5.1.1 (Erdds, Frankl, and Fiiredi [58]) Let & = »(t — 1) + 1 4 d, where

0 < d < 7. There exists an integer ng(k) such that for all n > ng(k), we have

a-o) (" )/(*77) cetmin < Sl (5.2

whenever any one of the following conditions holds:
(i d=0or1,
(ii) d < r/2t2,
(i) t=2and d < [27/3].
Moreover, equality holds in (5.2) if and only if a t-(n — d, k — d, 1) design exists.

Apart from the characterization of r-cover-free k-uniform set systems meeting the
upper bound in (5.2) in terms of ¢-(n — d, k — d,1) designs, no other exact behaviour
of ¢(n, k,7) is known. The purpose of this chapter is to determine exactly the function
¢(n, k,r) for some values of 7 and k, and to characterize their associated set systems.
New upper bounds, improving that of Theorem 5.1.1, are also obtained.

We begin in the next section with the instructive case of 2-cover-free 3-uniform set

systems.

5.2 2-Cover-Free Triple Systems

The asymptotic behaviour of ¢(n, 3,2) was determined by Erdds, Frankl, and Fiiredi in

[57]:

o(n, 3,2) = %n2 —O(n).



42 Characterizations and Improved Bounds for r-Cover-Free Set Systems

Here, we determine c(n, 3, 2) exactly for all n. More specifically, we show that ¢(n, 3,2) =
D(n,3,2) for all » > 6. The function D(n,3,2) has been completely determined by
Schénheim [127] and Spencer [136] who proved

U(n,3,2) -1, ifn=5 (mod86);
D(n,3,2) =

U(n,3,2), otherwise,

where

viv—1 v—1t+41
U{v, k,t) = lz '_k—lu-l_k—-t-{—lJ JJ

The idea behind our determination of ¢(n, 3, 2) is based on the observation that every
A-system with a nucleus of size two in a 2-cover-free 3-uniform set system precludes all
of the points in its rays from appearing in any other blocks. Hence, we cannot have too
many A-systems with a nucleus of size two in a 2-cover-free 3-uniform set system. We
can also delete all A-systems with a nucleus of size two to obtain a 2-{v, 3,1) packing.

The number of blocks in this packing can be bounded. The details are as follows.

Theorem 5.2.1 For all n > 6, c¢(n,3,2) = D(n, 3,2).

Proof. First note that any 2-(n, 3, 1) packing is 2-cover-free (Lemma 5.1.1). This shows
that ¢(n, 3,2) > D(n, 3,2).
Now let (X, B) be any 2-cover-free 3-uniform set system of order n. For 4 € ()2( b

define

B(A)={BeB|B>A} and T(A)={ze X|AU{z}ec B}
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Note that there is a bijection between B(A) and T'(A):
zeT(A) < AuU{z}eB(4).
Further, define

G; = {AE (}2()‘|T(A)|=z}, for 0<i<n—-2.

Let g; = |G;|. Clearly, {Go,G1,...,Gn-2} is a partition of (}2{) Let G»y = ﬂL_jG,;.
Observe that if A € G'»3, then T'(A) contains points, each of which appears in or:1=y2 one
block of B; for otherwise there would exist # € T'(A) that is contained in the block AU{z}
and some other block B € B, and we can take a point y € T(A) different from  (this is
possible because |T'(A)| > 2) to obtain (AU {z}) C (AU {y}) U B, hence contradicting

the assumption that (X, B) is 2-cover-free. This observation implies that

T(A)NT(A)=2 and B(A)NB(A)=g, forany A, A €Gsy A# A
(5.3)

Let

Bf:ﬂs\( U 23(A)) and X’=X\( U T(A)).

AEG AEG 2

We claim that (X, B’) is a set system. Suppose not. Then there exists B € B’ such
that B ¢ X'. Hence, B contains a point & € T(4), for some A € G»,. It follows that
AU {z} is a block of B and there exists also another point y such that A U {y} is a block
of B. But then (AU {z}) C (AU {y}) U B, contradicting the assumption that (X, B)

is 2-cover-free. It is also easy to see that for any two distinct blocks B, B’ € B’, we
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have |B N B’| < 1; for otherwise there would exist 4 € (‘72( ) such that A C¢ B, A C B/,

and hence B, B’ ¢ U B(A). We conclude, therefore, that (X', B) is a 2-(| X[, 3,1)
AEG 2
packing. Also, (5.3) allows us to compute the size of X":

n—2
xi=1x1-| U 7| =1x1- 3 g
AEG_zz i=2
Similarly, we have
n—2
1B = |B| - > igi.
1=2
It follows that
n—2
1B| = |B|+ ) ig:
1=2
n—2 n—2
=D (n = igs,3, 2) + 3 ig: (5.4)
=2 =2

< D(n,3,2) forall n>6.

This completes the proof that ¢(n,3,2) = D(n, 3, 2). a

The proof of Theorem 5.2.1 gives a characterization of optimal 2-cover-free 3-uniform
n—2

set systems. If n > 7, then for equality to hold in (5.4), we must have Zigi = 0. This
—
is possible only if g2 = g3 = -+ = gn—2 = 0. Hence, every 2-subset of 1X appears in at

most one block of B. Consequently, we have the following result.

Corollary 5.2.1 Forn > 7, a 2-cover-free 3-uniform set system of order n is optimal if and

only if it is an optimal 2-(n, 3, 1) packing.
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This innocent-looking proof of Theorem 5.2.1 has two useful generalizations that yield
results on ¢(n, 7+ 1,7) and ¢(n, 2t — 1,2) that are stronger than any presently known.

We discuss these next.

5.3 r-Cover-Free (r 4+ 1)-Uniform Set Systems

Our goal in this section is to obtain a result similar to Theorem 5.2.1 for r-cover-free
(r -+ 1)-uniform set systems. To this end, we generalize the idea behind the proof of
Theorem 5.2.1 as follows. For every A-system with a nucleus of size two appearing in an
r-cover-free (r + 1)-uniform set system, we show that there is a sufficiently large number
of points in the rays that do not appear in any other blocks. We can then follow the same
bounding technique in the proof of Theorem 5.2.1.

First, Lemma 5.1.1 implies that any 2-(n,r + 1,1) packing is r-cover-free. Hence
¢(n,r+1,7) > D(n,7+1,2).

Now, let (X, B) be any r-cover-free (r+-1)-uniform set system of order n. For A € (}2{ )
define

B(A)={BeB|B>A} and T(A)={Fe (r)fl)‘AuFeB}.

Note again the existence of a bijection between B(A) and T'(A). Further define

G5={A€ (}2{)‘|T(A)|=z}, for 0<i<n—2.

n—2
Let g; = |G5| and Gzz = U G;.
=2

Now suppose A € G»,. If ' € T(A), then at least one point of F' is not contained

in any block of B other than A U F; for otherwise we can find 7 — 1 blocks of B whose
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union contains F. These 7 — 1 blocks together with the block AU F' for some F/ € T(A)
different from F then contain the block AU F, contradicting the assumption that (X, B)
is r-cover-free.

For each F' € T(A), define S4(F) to be the subset of points in F, each of which is

contained in no blocks of B other than AU F.

Lemma 5.3.1 For any k distinct (r — lj-subsets F,F, ..., F, € T(A), we have
[Sa(F1)USa(F2)U---USa(Fi)| > k.

Proof. The proof is by induction on k. The case k = 1 follows easily from our observation
before that every block AU F, F' € T(A), must contain a point that is contained in no
other block of B.

Now consider S4(Fy), Sa(F2), ..., Sa(F}) for k distinct (r — 1)-subsets Fy, Fy, ...,
Fy, € T(A). By the induction hypothesis, S = S4(F1) U Sa(F2)U---USa(Fi—_1) contains
at least k — 1 points. We claim that S4(F}) contains a point not in S. Assume the
contrary. Then every point of S4(F}) is contained in .S, and hence is contained in the
union of at most |Sa(Fy)| of the (r — 1)-subsets Fy, F, ..., Fj. Clearly, the points in
Fy, \ Sa(Fy) are contained in the union of at most » — 1 — |S4(F})| blocks from B. Hence,
the block AU F}, is contained in the union of at most » — 1 blocks of B, a contradiction.

Therefore, |S U S4(Fr)| > k. a

Corollary 5.3.1 There are at least |T'(A)| points in U Sa(F).
FeT(A)

From the definition of Sa(F'), it also follows that

( U SA(F))H( U SA:(F)) =3, (5.5)

FeT(A) FeT(A")
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if A# A
Let

3'%93\( U fB(A))

and

X’:X\( U U SA(F)).

AEG5, FET(A)

First we show that (X, B’) is a set system. Suppose not. Then there exists a block
B ¢ B’ such that B ¢ X'. Hence, B contains a point & € S4(F), for some A € G
and F € T(A). By definition of S4(F), = is contained in no blocks other than AU F.
So we must have B = AU F. This is a contradiction since A € G>3, and B’ contains

no blocks of U B(A). Next, for any two distinct blocks B and B’ in B’, we have
AEG s
|B N B'| < 1; for otherwise there would exists A € ()25) such that A ¢ B, A C B, and

hence B, B’ € U B(A). Consequently, (X', B) is a 2-(|X'|, » + 1,1) packing.
AEG>2

Since

U BA)< > IB(4)]

A€EGy, AeGy2

= Y IT(4)]  (by the bijection between B(A) and T'(4))
AEGy2

= Z 19i,

=2
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and
X\( U U sa®)|=x-|U U sa®
A€EGy2 FET(A) A€Gya FeT(A)
=n- > | U Sa® (by (5.5))
AEGy2 |FeT(A)
<n-— Z (T(A4)| (by Corollary 5.3.1)
AEG >,
n—2
=:n'_:£:igh
=2
we have

1Bl =1B1+| |J B(4)

AEG>,
n—2 n—2
<D (n—Zig,-,r+ 1,2) + g (5.6)
i=2 i=2

n—2

Let v = Z ig; and define, for fixed n and r, the function

2= (") ()

1t is easy to see that @ is a convex function. Hence, the maximum of ® over any closed

interval occurs at one of its boundary points. Since

n? —bn+ 2(r% + 7 + 3)
(r+1)

®(2) = and &(n)=n,
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we have &(2) > ®(n) if and only if n > 7% 47 + 3. In particular, this shows that

n, ifn<r?4+r+2
arg max {®(y) | v € 2, n]} = (5.7)
2, ifn2r2+r+3.

By counting the number of {-subsets in two ways, one has
n k
0, 1) < .
ek < (7)/(})
So (5.6) now implies
|Bl<D{n—-7,r+1,2)+7 < 2() (5.8)
Also, since v is either zero or at least two, it follows from (5.7) that

max{D(n,r+ 1,2),n}, ifn<r?4r42;
IB] < (5.9)
max{D(n,7+1,2), (%;2)/("¥) +2}, ifn>r*4+r+3.

The following result due to Johnson [82] can be used to simplify the bound in (5.9).

Lemma 5.3.2 (Johnson [82]) If v < k?/(t — 1), then

D(w, k1) < lMJ

k2 —(t—1)v

Corollary 5.3.2 Forn < 72 4+ 7+ 1, we have D(n,7+1,2) < n.
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Proof. If n < 72 4+ 7+ 1, then Lemma 5.3.2 applies and we have

rn
D(nir_l-l‘l‘?')s _1'2-|—2T+1—RJ
< T
“ 424 1- (P24 r41)
TTL
= _TJ
=T"n.

For the range 72 +7+2 < n < 7% + 27, we apply the following result of Schénheim [127].
Lemma 5.3.3 (Schonheim [127]) D(v,k,t) < U(v, k,t).

Corollary 5.3.3 Forr?+r4+2<n<r?+2r, D(n,7+1,2) < n.

Proof. if n =7r>+7r+a, 2 < a <7, then by Lemma 5.3.3, we have

r’+r+a lr2+r+a—l
r+41 7

P 4r+a a—1
=[S e

rl4rta
- | S e )

=r’trta

D(n,r+1,2) <

=Tn.

Finally, we observe that (n;Z) / (’";1) +2 >, for all n > 72 + » 4 3. This, together with
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Corollary 5.3.2 and Corollary 5.3.3, establishes the following theorem.

Theorem 5.3.1 For any positive integers n and 7 such that n > 2(r 4 1), we have

c(n,7+1,7)
('n, if2(r+1)<n<ri4+r+2;
<! (n;2)/(r';1)+2, ifr2tr+3<n<r?+2m
max{D(n,r—{-l,Z), (n;2>/(r-;-1) +2}, if (r+1)% < n.

The bound of Theorem 5.3.1 is stronger than that supplied by Theorem 5.1.1 of
Erdds, Frankl, and Fiiredi. A consequence of Theorem 5.3.1 is the characterization of
optimal 3-cover-free 4-uniform set systems and optimal 4-cover-free 5-uniform set systems

of sufficiently large order.

5.3.1 Optimal 3-Cover-Free 4-Uniform Set Systems

The following is a consequence of Theorem 5.3.1 and existing results on 2-(n, 4,1) pack-

ings.

Corollary 5.3.4 For n» > 19, a 3-cover-free 4-uniform set system of order n is optimal if

and only if it is an optimal 2-(n, 4, 1) packing.
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Proof. Brouwer [22] has shown that D(n, 4, 2) = U(n, 4, 2) — €, where

1, ifn=7o0r10 (mod 12), n # 10,19,
1, ifn=9o0r17;
€=142 ifn=28,10,o0r 11;

3, ifn=19;

0, otherwise.

Since ("’;2)/(‘21) +2 < D(n,4,2) when n > 19, we have c(n,4,3) = D(n, 4, 2) if and only
if ¥ = 0 in (5.8). This happens if and only if g2 = g3 = --- = gn—2 = 0, in which case we

have a 2-(n, 4, 1) packing. O

We can now determine c(n, 4, 3) completely.

Theorem 5.3.2

n — 3, if 8 <n<12;
¢(n,4,3) =
D(n,4,2), ifn>13.

Proof. Let (X,B) be a 3-cover-free 4-uniform set system of order n. We can classify
(X, B) as follows:

(i) (X, B)is a 2-(n, 4, 1) packing.

(ii) (X, B) has a pair of blocks that intersect in at least two points.

If (X,B)is a 2-(n,4,1) packing, then |{B| < D(n,4,2). Otherwise, let B, B’ € B be
such that |B N B’| > 2. Then there must be at least two points in BAB' that are not

contained in any block in B\ {B, B’}. Hence, |B\ {B,B'}| < c¢(n — 2,4,3), implying
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[B] < e(n — 2,4,3) 4+ 2. With the base cases ¢(6,4,3) = 3 and ¢(7,4, 3) = 4 provided by
(5.1), it follows by induction that if (X, B) satisfies condition (ii), then |B| < n — 3 for

n > 6. Hence, for any n > 6, we have

e(n,4,3) < max{n — 3, D(n, 4,2)}.

For 8 < n < 12, we have D(n,4,2) < n — 3. The blocks {1,2,3,4}, {1,2,3,5}, ...,
{1, 2, 3, n} give a 3-cover-free 4-uniform set system of order n having n — 3 blocks. Hence,
c(n,4,3)=n—3for 8<n <12

For n > 13, observe that the value of D(n,4,2) meets the upper bound on ¢(n, 4, 3)
given by Theorem 5.3.1.

This completes the proof. o

5.3.2 Optimal 4-Cover-Free 5-Uniform Set Systems

We begin with the following result concerning the function D(n, 5,2).

Theorem 5.3.3 There exist positive constants a and N such that for all n > N, we have

D(n,5,2) > U(n,5,2) — a.

Proof. The result for n = 1 or 5 (mod 20} follows from the existence of 2-(n, 5, 1) designs
[75]. For n = 3, 9, or 17 (mod 20), the result can be found in [105]. The result for n = 13
(mod 20) is implied by the results of [74]. When n = 7, 11, or 15 (mod 20}, the result
is obtained by Yin [155]. The result for n = 0 (mod 4) is obtained by Yin [157], and
the result for » = 2 (mod 4) is obtained by Ling [91]. The proof for the remaining case
n = 19 (mod 20) is relegated to Corollary A.0.2 in Appendix A, as it is not central to the

theme of this chapter. a
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Corollary 5.3.5 There exists a constant NV such that for all n > N, a 4-cover-free 5-uniform

set system of order n is optimal if and only if it is an optimal 2-(n, 5,1) packing.

Proof. Since, for any constant a, (";2) / (g) + 2 < U(n,5,2) — a for all sufficiently large
n, we have ¢(n,5,4) = D(n,5,4) if and only if ¥ = 0 in (5.8). This happens if and only

if g = g3 = -+ = gn_3 = 0, in which case we have a 2-(n, 5, 1) packing. O

5.4 2-Cover-Free Set Systems With Odd Block Size

We generalize the proof of Theorem 5.2.1 in a different direction. Instead of considering
A-systems with nuclei of size two, we now consider A-systems with nuclei of larger size.
Let (X, B) be any 2-cover-free (2t — 1)-uniform set system of order n. For A € ()t(),

define
X
B(A)={BeB|B>A} and T(A):{Fe (t 1)1AUF€T’>}.
Further define

Giz{Ae (‘:f)’mA)]:i}, for 0<i<n—t

n—t
Let g; = |Gi| and G2 = | Gi.
=2
Suppose A € G»y. If F € T(A), then F cannot be contained in any block of B other
than AU F; for otherwise if F' is contained in B € B, B # AU F, we can take F' ¢ T(4),

F' # F (which exists because A € G3;), to obtain

(AUF) C (AUF)UB.
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Definition 5.4.1 The upper shadow of a k-uniform set system (X, B) is the (k+1)-uniform
set system (X, 0,(B)), where

0u(B) = {A S (kfl)‘A 5 B for some B € ZB}.

Lemma 5.4.1 (Sperner [138]) Let (X, B) be a k-uniform set system. Then

|0.(B)] 2

n—k
k-l—lltBl'

Our observation above implies that no subset in the upper shadow of the (¢t — 1)-

uniform set system

(X, U T(A))
AEG 2

can be contained in any block of

93’:33\( U B(A)).

A€Gye

The number of t-subsets of X contained in B’ is therefore at most

(2)-

< (X) — E—-;t-j-—l U T(A)| - nz_:gi (by Lemma 5.4.1)

a,,( U T(A))‘~|G’Zz|

AEG 5

t AEGZQ =2
X n_t+1n—t- n—t
-(7) - m ey
1=2 =2
X\ E(n-t+1)i+t
-(0)- B

1=2
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Hence, the number of blocks in B’ is at most

(}:) _"Z't (n—t-;l)ijutgi

1=2

)

1t follows that

1Bl=131+| U B(4)

AEGs,

X\ E(n-t+1)itt
(t)_z t gi n—t
(2t—1) +Zzgi

=2
2

()B4
(2tt—1)
Now, if n > ¢ ((*%;%) +1) - 1,

S erds e

1=2

IN

is either zero or at least

n—t+1 (21
—_— 1.
()

If the quantity in (5.10) is zero, then g, = g3 = - - - = gt = 0, implying that (X, B) is a

t-(n, 2t — 1,1) packing. This results in the following.
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Theorem 5.4.1 Forn > ¢ ((?‘tt_l) 4 1) -1,

() -2 (2= (%)
)

For n >t ((*;%) + 1) — 1, Theorem 5.4.1 represents an improvement over the upper

e(n,2t — 1,2) < max ¢ D(n, 2t — 1,1),

bound for ¢(n, 2t — 1, 2) given by Theorem 5.1.1.
Further strengthening of Theorem 5.4.1 is possible. For one thing, better lower bounds

on the size of the upper shadow of U T(A) would improve Theorem 5.4.1. Our bound
AEng
on the size of the upper shadow uses a rather weak result of Sperner. The following

stronger bound can be obtained as a consequence of the Kruskal-Katona Theorem (see

[17]).
Lemma 5.4.2 Let (X, B) be a k-uniform set system. Then
|0u(B)| > |0u(A)],

where A is the set of the last |B| k-subsets of (J,f) in the colexicographic order.

At this point, however, it is not clear how the size of the upper shadow of the last m

subsets in the colexicographic order can be determined.

5.5 Remarks

We see in Section 5.3 how some r-cover-free (7 + 1)-uniform set systems are characterized
by 2-(n,7 + 1,1) packings. The following plausible conjecture (a packing analogue of

Wilson’s theorem for the asymptotic existence of 2-(n, k, 1) designs), if true, would enable
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all r-cover-free (r+ 1)-uniform set systems of sufficiently large order n = 0,1, 2 or 3 (mod

7} to be completely characterized.

Conjecture 5.5.1 For every k, there exists an N depending only on &, such that for all

n > N, there is a 2-(n, k, 1) packing with at least U(n, k, 2) — o(n) blocks.

Lemma 5.5.1 If Conjecture 5.5.1 is true, then for every », there exists an integer N de-
pending only on 7, such that for allm > N, n — 1 =0,1,2 or 3 (mod r), an r-cover-free
(7 + 1)-uniform set system of order n is optimal if and only if it is an optimal 2-(n, + 1, 1)

packing.

Proof. If Conjecture 5.5.1 is true, then for all sufficiently large n, D(n,» + 1,2) >

U(n,7+1,2) —o(n). fn—1=0,1,2 or 3 (mod 7),

Uln,7+1,2) = {ﬁ__l [n;lJJ
s

> n(n—4)~(r+1)r+1
B (r+1)r .

Y

But n(n — 4)(7“‘4_(2)"7: Dr+1 _ o(n) > (n ; 2) / (T ; 1) -+ 2 for all sufficiently large n.

This completes the proof. o

Notice that for the proof of Lemma 5.5.1, we need only the truth of Conjecture 5.5.1 for
the congruence classes n = 0,1, 2 or 3 (mod k — 1). Nevertheless, we feel that it is likely
that the conjecture in its full generality remains true. Erdés and Hanani [59] have shown
that Conjecture 5.5.1 is true if U(n, k, 2) — o(n) is replaced by (1 —0(1))U(n, k, 2). Recent
progress in probabilistic methods for constructing packings [70, 137, 154] also falls short

of proving Conjecture 5.5.1.



CHAPTER 6

The Spectrum of Weakly Union-Free Twofold

Triple Systems

6.1 Preliminaries

Definition 6.1.1 A set system (X, A} is weakly union-free if there do not exist four distinct

blocks Ay, As, A3, A4 € A such that A; U Ay = A3 U A,

The problem of determining the maximum number of blocks in a weakly union-free
3-uniform set system was first studied by Frankl and Fiiredi [62]. This is a Turdn-type
problem since a 3-uniform set system is weakly union-free if and only if it avoids all of
the configurations in Figure 6.1. The problem of determining the maximum number of
blocks in a 3-uniform set system that avoids just the first configuration in Figure 6.1 has
also been investigated by Lefmann, Phelps, and Rodl [90]. The motivation of Frankl and
Fiiredi was to generalize Erdos’ result [54] on the maximum number of edges in a graph
that avoids cycles of length four. We shall see in the next section that this problem also

has applications in nonadaptive group testing.

59
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o > AN

Figure 6.1: Forbidden configurations for weakly union-free 3-uniform set systems.

Definition 6.1.2 A twofold triple system of ordern, denoted TTS(n), is a 2-(n, 3, 2) design.

Frankl and Fiiredi showed in [62] that the maximum number of blocks in a weakly
union-free 3-uniform set system is at most n(n — 1)/3, with equality if and only if there
is a weakly union-free TTS(n). A necessary condition for the existence of a TTS(n) is

n =0 or 1 (mod 3). The following result was obtained by Frankl and Fiiredi.

Theorem 6.1.1 (Frankl and Fiiredi [62]) There is a constant N such that for all n >

N, n=1 (mod 6), there exists a weakly union-free TTS(n).

Theorem 6.1.1 settles only about a quarter of the admissible orders. In fact, in a
remark of [62], Frankl and Fiiredi posed the problem of determining those orders n for
which a weakly union-free TTS(n) exists, and made the conjecture that the condition
n =0 or 1 (mod 3) is asymptotically sufficient.

In this chapter, we prove this conjecture of Frankl and Fiiredi and make substantial
progress on the existence of weakly union-free twofold triple systems. In fact, we prove
that with at most 7064 exceptions, weakly union-free twofold triple systems of all orders

exist. We begin by describing an application to group testing in the next section.

6.2 Application to Approximate Identification

We focus on 3-RESTRICTED NONADAPTIVE (3/2)-APPROXIMATE IDENTIFICATION PRO-

BLEM(2), where weakly union-free twofold triple systems play an important role.
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Lemma 6.2.1 The dual system (Y, B) of an algorithm for 3-RESTRICTED NONADAPTIVE

(3/2)-APPROXIMATE IDENTIFICATION PROBLEM(2) must be weakly union-free.

Proof. Suppose not. Then there are four distinct blocks B;,, By,, Be,, Bz, € B such that
B, UBg, = By, UB,,. This implies that in the primal system (X, P) of the algorithm, the
sets U = {z1,z2} and U’ = {3, ¢4} satisfy f:; (U) = f; (U"), where f is the 1-threshold

function. But |/ U U’| = 4, violating the condition of Lemma 4.2.3. o

Lemma 6.2.2 Any weakly union-free twofold triple system is the dual system of an algorithm

for 3-RESTRICTED NONADAPTIVE (3/2)-APPROXIMATE IDENTIFICATION PROBLEM(2).

Proof. We verify that any weakly union-free twofold triple system (Y, B) is the dual
of a set system (X, P) satisfying the conditions of Lemma 4.2.3. It suffices to verify for
|U| = |U'| = 2 since f (U) = f3 (U’) for |U| # |U’| would mean that B contains repeated
blocks.

Lemma 4.2.3 implies that (¥, B) is a dual system of an algorithm if and only if there
exists C C B, |€] < 3, such that whenever B; U By = Bj U Bg, for distinct blocks
By, Bs, B3 € B, we have {Bj, By, B3} C €. Note that we cannot have B, U By = B3 U By
for distinct blocks By, By, B3, By € B since (Y, B) is weakly union-free. So suppose
we have distinct blocks By, By, Bs € B such that B; U B, = By U By = F. Hence
@ = {Bs, B2, Bs}. Suppose there exist B, B’ € B such that BUB' = F. Because (Y,B)is
weakly union-free, we must have {B, B'} = {Bi, B4} or {B, B’} = {B3, B3}. We consider
{B,B'} = {B1, Ba}.

We know that |B; N Bjy| # 0 or 3 because B contains no repeated blocks. If |[ByNB,| =
2, then |F| = 4, giving { By, Ba, B3, B4} = (I;) This is a contradiction since (F, (g')) is
not weakly union-free. It follows that |B; N Bg| = 1. But then B, \ B; is a 2-subset that
must also be contained in the blocks Bs and By, thus contradicting the assumption that

(Y, B) is a twofold triple system.
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Thus, only the case {B, B’} = {B,, B3} can occur, and we have {B, B’} C C. m]

6.3 PBD-Closure

Let W be the spectrum of weakly union-free twofold triple systems, that is,

W = {n | there exists a weakly union-free TTS(n)}.

Definition 6.3.1 Let K be a set of positive integers. A pairwise balanced design {PBD) of
order v with block sizes from K, denoted PBD{v, K}, is a set system (X, B) of order v such

that |B| € K for all B € B, and every 2-subset of X is contained in exactly one block of B.

Definition 6.3.2 A set S of positive integers is PBD-closed if the existence of a PBD(v, S)

implies that v € S.

Definition 6.3.3 let K be a set of positive integers and let B(K) = {v |
there exists a PBD(v, K')}. Then B(K) is the PBD-closure of K.

The theory of PBD-closure is developed by Wilson in his series of ground-breaking
work on the existence of PBDs [151, 152, 1563]. The importance of this theory lies in the

following result of Wilson {153].

Theorem 6.3.1 (Wilson [153]) Let K be a PBD-closed set. Then there exists a constant
N(K), such that for every k € K, {v | v > N(KX) and v = k (mod 8(K))} C K, where
B(EK) = ged{h(k - 1) | € K}.

The next result, stated without proof in [62], shows the relevance of PBD-closure to

weakly union-free twofold triple systems.

Lemma 6.3.1 (Frankl and Fiiredi [62]) The set W is PBD-closed.
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Proof. Suppose that (X, §) is a PBD(n, W). For each block G € G, replace G by the
blocks of a weakly union-free twofold triple system, (G, Bg). This gives a twofold triple
system (X, F) of order n. Now suppose (X, F) is not weakly union-free. Then there are
four distinct blocks 4, B, C, D € F such that AU B = C'UD. Without Joss of generality,
assume that |[ANC| =2 and |B N D| = 2. Hence, A and C are blocks of Bg, and B and
D are blocks of B¢ for some G, & € G. Since (G, Bg) is weakly union-free, we cannot
have G = G. But |[(AUC) N (BUD)| = [(ANB)U(AND)U(BNC)U(CN D) > 2.
Hence G and G’ intersect in at least two points. This is impossible since (X, G) is a PBD.

Therefore, (X, F) is weakly union-free, that is, n € W. a

Our proof of the asymptotic existence of weakly union-free twofold triple systems uses
the following idea. First we determine some subset L C W which contains at least one
integer from each of the congruence classes 0, 1, 3, and 4 (mod 6). According to Theorem
6.3.1, there then exists a constant N(L) such that for all n > N(L), » € L if and only
if n =0 or 1 {mod 3). Unfortunately, Theorem 6.3.1 does not supply any explicit upper
bound on N(L). Indeed, it has only been shown recently that N({k}) < exp(exp(k*"))
[32]. Instead, we compute the PBD-closure of L with the help of a set of recursive

constructions. This gives us an upper bound on N (L) that is reasonably small.

6.4 Nonexistence and Some Direct Constructions

Obviously, the trivial TTS(0) and TTS(1) are both weakly union-free. So we assume
throughout that the order is at least three. All twofold triple systems of order at most
ten (without repeated blocks) have been enumerated. There is a unique 2-(6, 3, 2) design,
a unique 2-(7, 3, 2) design, 13 nonisomorphic 2-(9, 3, 2) designs 98], and 394 nonisomor-

phic 2-(10, 3,2) designs [39]. A quick computer search on these designs establishes the
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following.

Lemma 6.4.1 There do not exist any nontrivial weakly union-free twofold triple systems of

order ten or less.

An infinite class of weakly union-free twofold triple systems have been constructed by

Frankl and Fiiredi [62].

Lemma 6.4.2 (Frankl and Firedi [62]) Let n > 13, » = 1 (mod 6), be a prime power.

Then there exists a weakly union-free TTS(n).

Proof. Let 1,{, and (? be the solutions to 23 = 1 in GF(n). Let B = {{a,b,c} €
(GFa(")) | @+ B¢ + c¢? = 0}. Then (GF(n), B) is a weakly union-free TTS(n). O

We now construct some small weakly union-free TTS(n), where n = 0,3 or 4 (mod
6).
Lemma 6.4.3 There exists a weakly union-free TTS(16).

Proof. Let the point set be X = Zg x {0,1} and define the permutation ¢ on X so that
o:(z,7) (2 + 1 (mod 8), 7).

Develop the starter blocks

{(0,0), (1,0, (3, 1)} {(0,0),(4,0),(0,1)} {(0,0),(2,0),(5,0)} {(0,0),(2,0),(1,1)}
{(3,0),(0,2), (1, 1)} {(0,0),(1,1),(3, 1)} {(0,0),(1,0),(5, 1)} {(0,1),(21),(5,1)}
{(0,0),(2,1),(6,1)} {(0,0),(0,1),(7,1)}

with the group (o) to obtain a TTS(16). That this design is weakly union-free can easily

be checked with a computer. . a
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Lemma 6.4.4 There exists a weakly union-free TTS(n) for n € {21, 24, 30}.

Proof. These designs are all 1-rotational and are constructed as follows. In each case,
the point set is taken to be X = Z,_; U {co}, where n is the order of the design. Let o

be the permutation

z+1 (mod n—1), ife# oo;
olT ey
o0, otherwise.

For n = 21, take the following as starter blocks:

{0,4,9} {0,2,4} {0,1,7} {0,3,8} {0,1,9} {0,3,13} {0,600}

For n = 24, take the following as starter blocks:

{0,8,15} {0,1,4} {0,3,12} {0,2,13} {0,6,16} {0,1,18} {0,4,18} {0,2 00}
For n = 30, take the following as starter blocks:

{0,3,20} {0,14,27} {0,20,00} {0,21,27} {0,24,25}
{0,4,5} {0,10,22} {0,15,26} {0,7,13} {0,11,19}

Developing each set of starter blocks with the group generated by the appropriate o yields

the required weakly union-free twofold triple systems. a

Let us denote by Q the set of prime powers congruent to 1 (mod 6) and at least 13,
together with the numbers 16, 21, 24, and 30. By Lemma 6.3.1, we have B(Q) C W, and
Theorem 6.3.1 gives n € B(Q) for all sufficiently large n = 0 or 1 (mod 3). So, at this
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point, the conjecture of Frankl and Fiiredi is already established in the affirmative.

6.4.1 Computational Details

It may appear that the set systems we presented in the foregoing lemmata are constructed
magically. Therefore, an explanation is in order. The first thing we tried is a hill-
climbing algorithm [140] that generates random TTS(n) (we are not claiming with uniform
distribution). For each n = 0 or 1 (mod 3), » not an odd prime power, and 12 < n <
33, one million TTS(n) were generated and checked for the weakly union-free property.
Rather surprisingly, this procedure yields no weakly union-free TTS(n). So it seems that
weakly union-free TTS(n) are quite rare. It is well-known that hill-climbing algorithms
tend to generate set systems without large automorphism groups [141]. We decided to
restrict our search to several classes of TTS(n) having a certain degree of symmetry, in
the hope that we have a better chance of finding one there which is weakly union-free.

The three primary classes we focused on were
(i) 1-rotational TTS(n): those that have the group generated by the permutation
(01 -+ 2-2)(c0)
as an automorphism group;
(i) cyclic TTS(n): those that have the group generated by the permutation

(01 -+ n—1)

as an automorphism group; and
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(iii) bicyclic TTS(n): those that have the group generated by the permutation

n
(01 - 2)5+1 542 - n)

as an automorphism group.

All nonisomorphic 1-rotational TTS(n) have been enumerated by Chee and Royle
[34], for 3 < m < 19. We checked all of these set systems, for n = 12, 15, 16, and 18,
but found none that were weakly union-free. We pushed further to the next case n = 21.
Employing essentially the same algorithm as in [34], we generated a set of l-rotational
TTS(21) which is guaranteed to contain all the nonisomorphic 1-rotational TTS(21). We
found that it is much faster to check each of these set systems, as it is being generated,
for the weakly union-free property, than to first carry out isomorph rejection, and then
check the remaining designs. We chose the faster option. Here, our persistence paid
off; we found our first example of a weakly union-free TTS(n), where n is not an odd
prime power. Encouraged by our result for » = 21, we continued with the examination
of 1-rotational TTS(22). However, there does not exist a weakly union-free 1-rotational
TTS(22). For n > 24, the resources required to enumerate all 1-rotational TTS(n) are
quite demanding. We therefore settled for the examination of randomly generated 1-
rotational TTS(n), using a hill-climbing algorithm similar to that described by Gibbons
and Mathon [69]. Again, one million 1-rotational TTS(n) are constructed, for each n = 0
or 1 (mod 3), and 24 < n < 33. Only for » = 24 and n = 30 did we obtain any weakly
union-free 1-rotational TTS(n) using this method.

Cyclic TTS(n) exist only if n = 0, 1, 3, 4, 7, or 9 (mod 12) [44]. For 3 < n < 21,
nonisomorphic cyclic TTS(n) have been completely enumerated by Colbourn [43]. Since
we already have weakly union-free TTS(n), for n = 13, 16, 19, and 21, we only checked

the nonisomorphic cyclic TTS(12) and TTS(15). These are all not weakly union-free.
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Hence, we move on to TTS(n) with smaller automorphism groups.

Bicyclic TTS(n) can only exist if n = 0 or 4 (mod 6). We enumerated all nonisomor-
phic bicyclic TTS(12) and bicyclic TTS(18) and found none that were weakly union-free.
However, we obtained a weakly union-free bicyclic TTS(16). Since the automorphism
group involved is small, the complete enumeration of nonisomorphic bicyclic TTS(n), for
n > 22, seems to require much more time. It involves finding all {0, 1}-vectors x that
satisfy Ax = 21, where A is the Kramer-Mesner matrix (see [89]) on the orbits of (Jz{)
and (¥). The matrix A has dimension 21 x 140 for the case n = 22. So again, we resort
to hill-climbing algorithms that construct random bicyclic TTS(n). We did not manage
to find any weakly union-free TTS(n) this way.

The existence of small ingredients is very important in the recursive construction of
PBDs. They can usually affect the asymptotic existence of PBDs in a drastic manner.
We paid particular attention to the existence of weakly union-free TTS(12). It is hope-
less to enumerate all nonisomorphic TTS(12). Royle [122] has constructed one million
nonisomorphic TTS(12) with a hill-climbing algorithm. We attempted to enumerate all
nonisomorphic TTS(12) with a nontrivial automorphism group. This was done for those
whose full automorphism group has order divisible by an odd prime. None of them is
weakly union-free. The amount of work required to enumerate the remaining case, where
two divides the order of the full automorphism group, seems prohibitive at present. A

more detailed account of this enumeration effort appears in Appendix B.

Definition 6.4.1 A Steiner triple system of order n, denoted STS(n), is a 2-(n, 3, 1) design.
It is well-known that an STS(n) exists if and only if n =1 or 3 (mod 6) [15].
Definition 6.4.2 Two STS(n), (X, A) and (X, B) are orthogonal if

() ANB =0, and
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(i) if {u,v,w}, {z,y,w} € A, and {u,v, s}, {z,y,1} € B, then s £ &.

It is known that there exists a pair of orthogonal STS(n) for all n =1 or 3 (mod 6) [40].

Definition 6.4.3 A TTS(n), (X, A), is decomposable if there exists a partition A = BUC
such that (X, B) and (X, C) are both STS(n).

Another avenue we explored is based on the following observation.

Lemma 6.4.5 if (X, A) is a weakly union-free TTS(n) that is decomposable into two

STS(n), then these two STS(n) must be orthogonal.

Proof. Let (X,A) be decomposable into (X,B) and (X,C). If (X, B) and (X,C) are
not orthogonal, then there exist {u,v,w},{z,y,w} € B and {u,,s},{=,y,s} € C. But
{v,v,w}U {z,v,s} = {z,y,w} U {u,v, s}, contradicting the fact that (X, A} is weakly

union-iree. a

All nonisomorphic pairs of orthogonal STS(15) have been enumerated by Gibbons [68].
We checked all TTS(15) that are the union of a pair of orthogonal STS(15), but none of
these is weakly union-free either. At this point, we decided to move on to the computation

of the PBD-closure.

6.5 Product Constructions

In this section, we describe two product constructions for weakly union-free TTS(n).

Theorem 6.5.1 Let m =1 or 3 (mod 6). If there exist a weakly union-free TTS(m) and a

weakly union-free TTS(n), then there exists a weakly union-free TTS(mn).
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Proof. Let (X, A), (Y,B), and (X, C) be, respectively, a weakly union-free TTS(m), a
weakly union-free TTS(n), and an STS(m). Define Z = X x Y, and

D={{(e,9),(5,9), (c,)} | {a,b,c} e A,y €Y}
U{{(ws al)a (‘csbl)1 (‘B)C,)} ] {a’llbll cl} €B,ze X}
U{{(a,a), (6, ), (c;)} | {a,b,c} € €, {a', ¥/, '} € B}

It is a routine matter to verify that (Z, D) is an TTS(mn). We now show that it is weakly
union-free. The proof is by case analysis. Suppose on the contrary that we have four

distinct blocks 4, B, C, D € D such that AUB = C'UD. There are four cases to consider.

Case (i). The four blocks 4, B, C, and D have the following form:

A ={(a,d), (b,¥),(c, )},
B = {(d,d), (e, &), (f, )},
C= {(a’y a',): (b, b’)v (f’ f,)}’

D ={(e,¢),(d, @), (e, &)},

where |{A N B| = 0. Consider the number of elements in the set S = {d, ¥/, ¢,
d', €, f'}. The definition of D implies that each of the sets {a’,¥’,¢'}, {d’, ¢, '},
{', ¥, f'}, and {c/, d’, €'} has size one or three. Hence, |S| € {1, 3, 6}.

If |S| = 1, then it must be the case that {a,b,c},{d, ¢, f},{a,b, f},{c,d,e} € A.

But then (X, A) is not weakly union-free, a contradiction.
If |S| = 3, we must have {&/,¥',c'} = {d', ¢/, f} and ¢' = f'. If |{a,b,c,d,e, f}| > 1,

then {a, b, c},{d, e, f},{a,b, f},{c,d, e} € C. Since (X, C) is an STS{m), this implies
¢ = f. Hence, (¢,c') = (f, f'), contradicting the assumption that-|AN B| = 0. If
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i{a,b, ¢, d, e, f}| = 1, then it must be the case that {c, o, '}y, {d, ¢, '}, {a, ¥, '},
{¢,d',e'} € B. But then (Y, B) is not weakly union-free, a contradiction.

If |S| = 6, then it must be the case that {a', ¥, '}, {d', €/, 1 {d ¥, f'}y, {c,d e} e

B. But then (Y, B) is not weakly union-free, a contradiction.

Case (ii). The four blocks A, B, C, and D have the following form:

A={(a,a), (b, 1), (c, )},
B ={(a,d),(d,d), (e, )},
C = {(a,a'), (b, 8), (e, )},
D = {(a,d),(c, ), (d,d)},

where |ANB| = 1. Consider the number of elements in the set S = {a', ¥, ¢, d', e'}.

A bit of reflection reveals that |S| € {1,3,5}.

If | S| = 1, then it must be the case that {a,b,c}, {a,d, e}, {a,b,e}, {a, ¢, d} € A

But then (X, A) is not weakly union-free, a contradiction.

If || = 3, we may assume without loss of generality that a b, and ¢’ are all
distinct. Then we must have ' = & and ¢’ = ¢'. If |{a,b,¢,d,e}| = 1, then we
have {a’, ¥, '}, {d',d, €'}, {d', ¥, €'}, {d, ¢, d'} € B. But then (¥, B) is not weakly
union-free, a contradiction. So we must have |{a,b,c,d,e}| > 1. Hence, {q,b,c},
{a,d, e}, {a,b,e}, {a,c,d} € C. Since (X,€) is an STS{m), this implies b = d and
¢ =e. Thus (b,8) = (d,d') and (c, ¢') = (e, €), contradicting the assumption that

|ANB|=1.

If | S| = 5, then it must be the case that {a’, ¥, '}, {a', d’, €'}, {d', b, €'}, {a',c,d'} €

B. But then (Y, B) is not weakly union-free, a contradiction.
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Case (iii): The four blocks A, B, C, and D have the following form:

A= {(a, a,), (b, b')r (Cs C,)}!
B ={(a,d),(d,d), (e, )},
C= {(a'v al)! (bs bl)1 (dl dl)}'

D = {(b,b"), (¢, ), (e, ")},

where |[AN B| = 1. Consider the number of elements in the set S = {a, ¥, ¢, d’, ¢'}.

A bit of reflection reveals that |S| € {1, 3,5}.

If |S| = 1, then it must be the case that {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d} € A.

But then (X, A) is not weakly union-free, a contradiction.

If |S| = 3, we may assume without loss of generality that o/,b, and ¢’ are all
distinct. Then we must have b/ = ¢’ and ¢ = d'. If |{a,b,c,d,e}| = 1, then we
have {a', ¥, '}, {d/, d', €'}, {d, ¥, €'}, {d’,c/,d'} € B. But then (Y, B) is not weakly
union-free, a contradiction. So we must have |{a,b,¢,d,e}| > 1. Hence, {a,b,c},
{a,d, e}, {a,b,d}, {b,c,e} € C. Since (X, C) is an STS(m), we must have b = e and
¢ =d. Thus (b,b) = (e, €') and (¢, '} = (d, d’), contradicting the assumption that

|AnB|=1.

If |S| = 5, then it must be the case that {a/, ¥, ¢}, {a', &, ¢'}, {&/, ¥, €'}, {d/, ¢/, d'} €

B. But then (Y, B) is not weakly union-free, a contradiction.
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Case (iv): The four blocks A, B, C, and D have the following form:

A={(a,d), (b,),{c, )},
B ={(a,d), (5,%),(d, d)},
C ={(a,a), (c,¢), (d, d)},
D ={(5,%), (¢, ), (d, d)},

where |4\ B| = 2. Consider the number of elements in the set S = {d',¥,c/,d'}.

A bit of reflection reveals that |S| € {1, 4}.

If |S| = 1, then it must be the case that {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d} € A.

But then (X, A) is not weakly union-free, a contradiction.

If |S| = 4, then it must be the case that {a’, ¥, '}, {a/, ¥, d'}, {d/, ¢, d'}, {¥/, ¢/, d'} €

B. But then (Y, B} is not weakly union-free, a contradiction.

This completes the proof. !

The next construction is a singular direct product-type construction.

Theorem 6.5.2 Let m = 4 (mod 6). If there exist a weakly union-free TTS(m) and a

weakly union-free TTS(n), then there exists a weakly union-free TTS((m — 1)n +1).

Proof. Let (X, A) and (Y, B) be, respectively, a weakly union-free TTS(m) and a weakly
union-free TTS(n). Let z* € X be a distinguished element and let (X \ {z*},C) be an
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STS(m — 1). Define Z = ({X \ {¢*}) X Y) U {0}, and

D = {{(a,9), (b, 9), (c,9)} | =" ¢ {a,b,c} € A,y €Y}
U{{(a,9),(b,y),0}|{a,b,2"} € Ay e Y}
U {{(z,d), (z,), (z,c")} | {d',¥',c'} € B,z € X,z £ ="}

U {{(a, a/), (b, bl)x (cr c’)} [ {a., b, c} €C, {a',$ blv CI} € fB}'

It is straightforward to verify that (Z, D) is a TTS((m — 1)n+ 1). The proof of Theorem
6.5.1 shows that there are no four distinct blocks A4, B, C, D € D such that AUB = CUD,

unless at least one of A, B, C, or D contains the point co. If follows that if AUB = CUD,

then

A, B,C,De{{(a,y),(b,9):(c,y)} | 2" € {a,b,c} € A,y €Y}

U{{(a,9), (b,y),00} | {a,b,2"} € Ay € Y}.

It is not hard to see that this is also impossible unless (X, A) is not weakly union-free. O

For a given set K of positive integers, let us define a sequence of sets, (K;)i>o, as

follows:

Ko=K, aundfori>1,
K=K

U {k | ¥ = mn for some m,n € K;_1, and either m or n is 1 or 3 (mod 6)}

U{k| k= (m—1)n+1 for some m,n € K;_;, and either m or n is 4 (mod 6)}.
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Let I = Qo. Theorem 6.5.1 and Theorem 6.5.2 imply that L C W. Hence B(L) C W.
We shall improve on the asymptotic existence of weakly union-free twofold triple systems

given in Section 6.4 by considering the PBD-closure of L.

6.6 Eventual Periodicity of W

In this section, we investigate the set W. We prove that for all n = 0 or 1 (mod 3),

n € W except for a set of at most 7064 values of n, the largest of which is 137628.

6.6.1 Recursive Constructions for PBDs

In this section, we describe several recursive constructions for PBDs. First, we need to

introduce some terminology.

Definition 6.6.1 Let K be a set of positive integers. A group divisible design (GDD) of
order v, denoted K-GDD, is a triple (X, G, B), where G is a partition of X into parts, called

groups, and (X, B) is a set system which satisfies the properties:

(i) if B € B, then |B| € K;

(ii) every 2-subset of X occurs in exactly one block or one group, but not both;
(iii) {S] > 1.

The type of a GDD (X, G, B) is the multiset {|G| | G € §}. We usually use an “expo-
nential” notation to describe types: a type g;'g,”:--g;* denotes u; occurrences of g;,
1<i<t.

A K-GDD of order v and type g;'gy°---g;' can be viewed as a PBD(v, KU
{91,893, --,9:}) by considering the groups of the GDD to be blocks of the PBD also. A

K-GDD of order v and type g;'g,* -+ - g;* can also be used to create a PBD{(v+1,K U
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{g1+1,92+1,...,9:+1}) by adjoining a new point to each group and considering the

resulting subsets as blocks.

Definition 6.6.2 A transversal design TD(k,n) is a {k}-GDD of type n".

It is well-known that a TD(k, ») is equivalent to k — 2 mutually orthogonal Latin squares
(MOLS) of order n. For a list of lower bounds on the number of MOLS of all orders up
to 10000, we refer the reader to [1].

We also need to define various types of incomplete designs.
Definition 6.6.3 An incomplete transversal design TD(k,n)—TD(k, m) is a quadruple
(X, 8, H,B), where
(i) (X, B)is a set system of order kn;
(if) G is a partition of X into k parts, called groups, each of size n;
(iii) H is a subset of X, called a hole, with the property that |G N H| = m for each G € §;
(iv) every 2-subset of X is

e contained in the hole, and contained in no blocks; or
o contained in a group, and contained in no blocks; or

e contained in neither the hole nor a group, and contained in exactly one block.

We also need PBDs containing subdesigns, or flats. Let (X, A) be a PBD. If a set of
points Y C X has the property that, for any A € A, either Y NA| <1or ACY, then
we say that Y is a flat of (X, A). The order of the flat is |[Y'|. If Y is a flat, then we can
delete all blocks A C Y, replace them by a single block, Y, and obtain a PBD. Any block
or point of a PBD is itself a flat. Often we do not require that the flat be present. This

gives rise to the notion of incomplete PBDs.



6.6. Eventual Periodicity of W 77

Definition 6.6.4 Let K be a set of positive integers and h a nonnegative integer. An
incomplete pairwise balanced design (IPBD) of order v with a hole of order h, denoted
IPBD(v, h, K), is a triple (X, H,B), where |B| € K for all B € B, H C X such that

|H|=h, and (X,BU{H}) is a PBD.

We begin with a useful construction for PBDs with two consecutive block sizes.

Lemma 6.6.1 (Truncation of a Group in a Transversal Design (see [103])) Let
k be a positive integer. Let K = {k,k+ 1}. Suppose that there exists a TD(k + 1, 7).

Then there exists a K-GDD of type n*m, for 0 < m < n.

Proof. Delete n — m points from one group ofa TD(k +1,n). O

If instead of deleting points from a group, we delete points from a block, then we obtain

the following well-known result.

Lemma 6.6.2 (Truncation of a Block in a Transversal Design) Let k and m be
integers such that 0 < m < k. Let K = {k, m}. Suppose that there exists a TD(k, n). Then
there exists a K-GDD of type n™(n — 1)¥—™.

Below are two further constructions for PBDs with two consecutive block sizes.

Lemma 6.6.3 (Bennett [13]) If n is a prime power, and 1 < k < m, then for 0 <t <

n — k, there exists a PBD{kn + ¢, K), where K = {k,k+ 1,k +1t,n}.

Lemma 6.6.4 (Spike Construction (see [103])) Let k and n be positive integers. Let
K = {k,k+ 1,k + n}. If there exists a TD(k 4 n,m), then there exists a K-GDD of type

mk1n,

The following constructions are also useful.
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Lemma 6.6.5 (Greig (see [103])) Let & and n be positive integers. If there exists a

TD{k +n, k +n — 1), then there exists a {k — 1, k- 1}-GDD of type (k +n — 2)*nl.

Lemma 6.6.6 (Brouwer [23]) Let ¢ be a prime power, and let ¢ be an integer satisfying

0 <t < g®—g+1. Then there exists a {t, g+ ¢}-GDD of type i+l

By adjoining a point to the GDDs constructed in Lemma 6.6.1, Lemma 6.6.2, and

Lemma 6.6.5, we obtain the following three results.

Lemma 6.6.7 Let k be a positive integer and suppose that there exists a TD{k+1,n}. Let
0 < m < n. Then there exists a PBD(kn+m+ 1, K), where K = {k,k+1,n+1,m+ 1}.

If m = 0, there are no blocks of size k + 1. If m = n, there are no blocks of size k.

Lemma 6.6.8 Let k and m be integers such that 0 < m < k and suppose that there exists
a TD(k,n). Then there exists a PBD(k(n — 1} +m+ 1, K), where K = {k,m,n,n+1}. If

m = 0, there are no blocks of size » + 1, and if m = &, there are no blocks of size n.

Lemma 6.6.9 Let k& and n be positive integers. If there exists a TD(k+n, k+n — 1), then

there exists a PBD(k(k+n —2)+n+1,K), where K ={k—1,k+ 1,n+1,k+n—1}.

The remaining constructions are product type constructions. The most general of

these constructions is the singular indirect product construction due to Mullin [102, 104].

Lemma 6.6.10 (Singular Indirect Product) Let K be a set of positive integers and

k € K. Let h be a nonnegative integer and suppose that the following designs exist:
(i) a TD(k,m+ n)—TD(k, m);
(ii) an IPBD(m + n + h,m+ h, K); and

(iii) a PBD(km + h, K).
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Then there exists a PBD(k(m + n) + h, K) containing flats of order k and km 4+ h.

If we let m = 0 in Lemma 6.6.10, we obtain the singular direct product construction.

Lemma 6.6.11 (Singular Direct Product) Let K be a set of positive integers and k €
K. Let k be a nonnegative integer and suppose there exist a TD(k,n), an IPBD(n+h, h, K),
and a PBD(h, K). Then there exists a PBD(kn + k, K') containing flats of order k, n + K,
and h. -

In order to apply the singular indirect product construction, we need incomplete

transversal designs. We rely on the following result of Wilson (see [24]) to supply these.

Lemma 6.6.12 (Wilson (see [24])) Let u and i be integers such that 0 < m < t. I
there exist a TD(k,n), a TD(k,n+ 1) and a TD(k + 1,%), then there exists a TD(k,tn +
m)—TD(k, m).

We also use a well-known result of MacNeish [95].

Lemma 6.6.13 (MacNeish [95]) Let n = p{'p5 - - -py* be the prime power factorization

of n. Then there exists a TD(k, n) for all £ < 1+ min{p] | 1 <4 < k}.

Finally, another set of important ingredients for our constructions is provided by

Brouwer.

Lemma 6.6.14 (Brouwer (see [1])) If k < 32, then there exists a TD(k, n) for all n >
52503.
6.6.2 PBDs up to Order Thirteen Million

In this section, we describe the construction of PBD(n, B(L)) for n = 0 or 1 (mod 3),

n < 13000000, in preparation for determining W. This was accomplished with a computer



80 The Spectrum of Weakly Union-Free Twofold Triple Systems

program that applied the constructions given in Section 6.6.1. It would take too much
space to write down all the constructions, but we give a brief description which will enable
anyone to easily duplicate our computations. Our computer program has a knowledge of
all the results in Section 6.6.1. The transversal designs employed are those that exist by
the MOLS table in [1], Lemma 6.6.13, and Lemma 6.6.14. The incomplete transversal
designs used are those whose existence is given by Lemma 6.6.12. Given an integer
n =0 or 1 (mod 3), the program attempts to construct a PBD(n, B(L)) by applying the

following constructions (in the order indicated):
(1) Lemma 6.6.1 (truncate a group of a transversal design),
(2) Lemma 6.6.7 (adjoin a point to a group-truncated transversal design),
(3) Lemma 6.6.2 (truncate a block of a transversal design),
(4) Lemma 6.6.8 (adjoin a point to a block-truncated transversal design),
(5) Lemma 6.6.3 (Bennett’s construction),
(6) Lemma 6.6.4 (spike construction),
(7) Lemma 6.6.5 (Greig’s construction),
(8) Lemma 6.6.9 (adjoin a point to the GDD obtained by Greig’s construction),
(9) Lemma 6.6.6 (Brouwer’s construction),
(10) Lemma 6.6.11 (singular direct product),
(11) Lemma 6.6.10 (singular indirect product).

The singular indirect product construction is a somewhat complicated construction

and we apply it only with & € {13, 16, 19, 24, 25, 31} and m + h € {13, 16, 19,
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21, 24, 25, 31, 37, 43, 49}. Our program also keeps track of all flats appearing in the
constructed PBDs. This information is used immediately by all subsequent constructions.

Our computational results up to this point can be summarized as follows.

Theorem 6.6.1 If 12 < n < 13000000, = = 0 or 1 {mod 3), then » € B(L} with at most

8507 exceptions.

Let L’ be the set of integers in B(L) given by Theorem 6.6.1. Note that L' C W.
Since our interest is in the set W, we next compute B(L. ) C W using the same program
as in the computation of B(L). Let E be the set of 7058 numbers given in Appendix C.

The result of this stage of computation is given below.

Theorem 6.6.2 If 12 < n < 13000000, n =0 or 1 (mod 3), and n ¢ E, then n € W.

6.6.3 The Spectrum

In this section, we show that all n = 0 or 1 (mod 3) exceeding 13000000 are in W.

Lemma 6.6.15 if n =0 or 1 (mod 3) and n > 1283140, then n € W.

Proof. We prove this theorem by induction on n. First notice that for all » = 1 (mod
3) and 52504 < n < 13000000, we have n € W. This can be verified easily with the
list given in Appendix C. Now, any n = 0 or 1 (mod 3) and at least 1283140 can be
written in the form n = 72m + 24 + g, where m € [17501,4333333]) and g = 0 or 1 (mod
3), g € [23044,23115]. Note that g € W for all g in this interval. By Lemma 6.6.14,
there exists a TD(24, 3m + 1}. We can therefore apply Lemma 6.6.2 to obtain a {24, 25}-
GDD of type (3m + 1)**¢®. Our induction hypothesis gives 3m + 1 € W. This implies
72m + 24+ g € W by the PBD-closure of W. By induction, the proof is complete. O
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We can now give the result for the spectrum of weakly union-free twofold triple sys-

tems.

Theorem 6.6.3 For all n = 0 or 1 (mod 3), there exists a weakly union-free TTS(n),
provided n > 137629. Below this bound, there are 7058 values of n (appearing in Appendix
C) for which the existence of a TTS(n) is not decided. There are no nontrivial weakly

union-free TTS(n) for n < 10.

Proof. Follows directly from Theorem 6.6.2 and Lemma 6.6.15. i

6.7 Subsystem-Free Twofold Triple Systems

Definition 6.7.1 A (4, k)-configuration is a set system (X, A) such that |[X|=j, |A| =k,

and U =X.

AgA

The problem of constructing Steiner triple systems of every admissible order avoiding
(7 + 2, j)-configurations, 2 < j < r, for every fixed 7, was proposed by Erdés [56]. For
7 = 4, the problem asks for the existence of Steiner triple systems avoiding the (6,4)-

configuration below, known as the Pasch configuration.

Such Steiner triple systems are called anti-Pasch, and we shall see more of them in the
next few chapters.

At the recent Tenth Ontario Combinatorics Workshop which was held at the Fields
Institute for Research in Mathematical Sciences, Terry Griggs mentioned {April 27, 1996)
to the author that one natural analogue of anti-Pasch Steiner triple systems for twofold

triple systems is those that avoid TTS(4), the last configuration in Figure 6.1. The reason



6.7. Subsystem-Free Twofold Triple Systems 83

is that the Pasch configuration is the (7, 4)-configuration with the minimum possible j
that a Steiner triple system can contain, while a TTS(4) is the (j, 4)-configuration with
the minimum possible j that a twofold triple system can contain. A TTS(v) that avoids

TTS(4) is called TTS(4)-free, and is called subsystem-free if it avoids TTS(w), for all

w < V.

Definition 6.7.2 Let (X, A) be a TTS(v). The neighbourhood of a point ¢ € X is the
graph G = (V, E), where V=X \ {z} and E={A\ {¢} |z € Aand A € A}.

There is an intimate connection between embeddings of the complete graph K, on
orientable surfaces and twofold triple systems of order n. Heffter (78] seems to be the first
to realize this connection. Heffter’s ideas were later used by Emch [53] to compute the
automorphism groups of some twofold triple systems. The article of Alpert [8] is a nice
exposition on this topic. The following theorem of Ducrocq and Sterboul [49] is obtained
by observing that some embeddings of K., constructed by Ringel and Youngs [120] (see
also [119]) give T'TS(n) with the desired property.

Theorem 6.7.1 (Ducrocq and Sterboul [49]) For every v = 0 or 1 (mod 3), v > 4,

there exists a TTS(v) in which the neighbourhood of every point is a cycle of length v — 1.

Colbourn [37] observed that the TTS(v) in Theorem 6.7.1 is TTS(4)-free and avoids
even the second configuration in Figure 6.1. In fact, more is true. We show that these

TTS(v) are subsystem-free.

Theorem 6.7.2 (Chee and Colbourn) There exists a subsystem-free TTS(v) for all v =

0 or 1 (mod 3), except when v = 3.

Proof. Suppose the TTS(v) in Theorem 6.7.1 contains a TTS(w). The neighbourhood

of any point in this TTS({w) is a graph on w — 1 vertices with w — 1 edges, and must be
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a subgraph of a cycle of length v — 1. This is possible only if w = v. a

The corresponding problem for Steiner triple systems has been solved by Doyen [47].



CHAPTER 7T

Fault-Tolerant Group Testing

7.1 Introduction

One of the most important issues in group testing that demands further investigation is
fault-tolerance. In real life applications, tests are affected by too many factors to be rarely
error-free. Let (X, 7, f,1I) be a group testing problem and O an oracle implementing f.
A test on a pool P C X performed by an algorithm with access to O is called erroneous
if the result returned is not f(P). Erroneous tests can happen as a result of incorrect
implementation of O or noise in the channel between the oracle and the processors. Very
recently, the problem of designing nonadaptive group testing algorithms that can tolerate

a certain number of erroneous tests has been studied by Balding and Torney [9].

Definition 7.1.1 A set system (X, A) is called (r, s)-fault-tolerant if for any A, A" C A

with |A/| <7, |[A”[ < r, we have

(ua)e(un)
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> s,
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unless A’ = A",

An important observation made in [9] is the following characterization.

Lemma 7.1.1 (Balding and Torney [9]) Let (X,r, f,1II) be a group testing problem
with f the 1-threshold test function, and II the exact identification criterion. Then (Y, B) is
the set system of a nonadaptive algorithm for (X, r, f, I) that can tolerate up to s erroneous

tests if and only if it is (7, s)-fault-tolerant.

In fact, Balding and Torney [9] studied the more stringent set systems which are
defined as in Definition 7.1.1, except with the condition |A”| < r removed. These set
systems have the additional property that the nonadaptive algorithms they define can
detect when the a priori guarantee 7 is violated. Such set systems have also been studied
by Dyachkov, Rykov, and Rashad [52] in the context of random multiple access com-
munication systems. The focus of Dyachkov, Rykov, and Rashad [52], and Balding and
Torney [9] is on set systems without any restriction on block sizes. In this chapter, we
are concerned with (2, 1)-fault-tolerant set systems whose block sizes do not exceed three.
Such set systems correspond to nonadaptive algorithms using the 1-threshold function
that can exactly identify target sets of at most two elements, even in the presence of one
erroneous test, and moreover each element is involved in at most three tests. To avoid
triviality, we assume the order of the set systems to be at least three.

Let us begin with some easy observations. First, there can be no blocks of size one
in any (2, 1)-fault-tolerant set system (X, A), since the existence of {z} € A implies that
|AA({z} U A)| < 1 for any A € A. Second, a (2,1)-fault-tolerant 2-uniform set system
is a graph G = (V, E) consisting of only independent edges, since the existence of edges
e1 = {a, b} and ey = {b, c} in E implies |e;A(e; Uez)| = 1. Hence the maximum number
of blocks in a (2,1)-fault-tolerant 2-uniform set system of order n is [n/2]. Next, we

examine the case of 3-uniform set systems. We show that with the same number of blocks
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in an optimal 2-union-free 3-uniform set system, we can construct a (2, 1)-fault-tolerant

3-uniform set system.

7.2 (2,1)-Fault-Tolerant 3-Uniform Set Systems

Let B(n) denote the maximum number of blocks in a (2, 1)-fault-tolerant 3-uniform set
system of order n. Obviously, any (2, 1)-fault-tolerant 3-uniform set system is 2-union-

free. It therefore follows from (4.3) that

B(n) < [@J : (7.1)

We show that equality in (7.1) can be met for all n.

Definition 7.2.1 A set system (X, A) is a quasi-design QD(n,{3,4}), if |[X| =n, A C
(()3{) U (}2()), such that

(i) [AnA'| < 1forall 4, A" € A; and
(ii) there is at most one 2-subset of X that is not contained in any block of A.

The concept of quasi-designs QD(n, {3, 4}) is first introduced by Frankl and Fiiredi
[62] to settle the existence problem for optimal 2-union-free 3-uniform set systems. We

use the same construction as that given in [62] and check that it is (2, 1)-fault-tolerant.
Lemma 7.2.1 Suppose that (X,.A) is 2 QD(n, {3,4}). Let
B={AcAl||A]=3}U{{e, b, ¢}, {a,c,d}| {a,b,c,d} € A}.

Then (X, B) is a (2, 1)-fault-tolerant set system with |n{n — 1)/6{ blocks.
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Proof. That |B| = [n(n — 1)/6] has been shown in [62]. Trivially, the symmetric
difference of any two blocks in B contains at least two points.

Suppose that A, B,C € B, B # C, such that [AA(BUC)| < L. If |BNC| <1, then
|BUC| > 5, and hence B U C contains at least two points not in A, a contradiction. If
|B N C| = 2, then any block A must intersect B U C in at most one point. Hence, A
contains two points not in B U C, a contradiction.

Next, suppose that A, B,C, D € B, {A, B} # {C, D}, such that [(AUB)A(CUD)| < 1.
We may assume that A, B, C, and D are all distinct, for otherwise we can reduce to the

previously considered cases.

Case (i): If |AN B| < 1, then each of C and D must be contained in AU B. Without
loss of generality, |[ANC| =2 and |[BN C| =1, where

(BNC) ¢ (ANC). (7.2)

Hence AU C € A. We cannot have |A N D| = 2 since it would mean AUD € A
and we have two blocks in A, namely AU C and AU D which intersect in three
points. So we must have |[AN Df =1 and |[BN D| = 2, implying BUD € A. But
the block B U D contains two points, that in AN D, and that in BNC. We claim
that these two points are distinct. Suppose not, then AND = BN C. It follows
that ANC D ANBNC = AnD = BNC, which is impossible by our assumption
(7.2). Hence, the two blocks BUD and AUC of A intersect in two distinct points,

a contradiction.

Case (ii): If [ANB| =2, then AUB € A. Since {4, B} # {C, D}, at least one of C and
D must contain at most one point of AU B. This block then has two points not in

AU B. O
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1t was shown in [62] that there exists a QD(n, {3,4}) for all n, except when n =5, 6

and 8, and possibly when n = 20 and 32. We settle the two remaining cases here.

Lemma 7.2.2 There exists a QD(n, {3, 4}) for all » = 2 (mod 6), n > 14.

Proof. Let (X, 5, A) be a {3}-GDD of type 3(n=2)/311 which is known to exist [41]. Let
o0 ¢ X and define Y = X U{co} and B = AU{GU{oo} |G € § and |G| = 3}. Then
(Y, B) is 2 QD(n, {3,4}). o

Corollary 7.2.1 There exists a QD(n, {3,4}) for all n € N \ {5, 6, 8}.

Proof. The cases for n ¢ {20, 32} are settled by Frankl and Fiiredi [62]. Existence of a
QD(20,{3,4}) and a QD(32, {3,4}) follows from Lemma 7.2.2. O

Corollary 7.2.2 For all n, B(n) = |n(n —1)/6].

7.3 (2, 1)-Fault-Tolerant Set Systems With Block Sizes Two

and Three

Let p(n) denote the maximum number of blocks in a (2, 1)-fault-tolerant set system,

(X,.A), such that |A] € {2, 3} for every A € A. From Corollary 7.2.2, we have
n{n—1
oy > |21,

Let (X,.A) be a (2,1)-fault-tolerant set system with block sizes two and three. Let
B = {A € A | |A| = 2}. The same argument for 2-uniform set systems shows that
BN B' = @ for all distinct B, B’ € B. Let A € A be any block of size three. Then
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AN B =@ for all B € B, since AA(AU B) = B\ A. It follows that if
x'=x\J B, and A'=A\B,
BeB
then (X', A') is a (2, 1)-fault-tolerant 3-uniform set system. This gives the inequality

p(n) < Bln —26) + b,

where b = |B|. But

Bn—20)+ b= [n(nG— 1) 2b(n «—36 - 2)} ’

Since

2%(n — b —
(n a 2) > 0 for all n > 3, we have p(n) = |n(—1)/6] for all n > 3. Trivially,

this also holds for n € {1,2}. We record this result below.

Lemma 7.3.1 For all positive integers n, p(n) = |n(n — 1)/6].

The set systems of order n achieving p(n) blocks do not contain blocks of size two.

7.4 Remarks

Tn this chapter, we have seen that optimal (2, 1)-fault-tolerant 3-uniform set systems are
optimal even within the larger class of set systems where blocks of size two are allowed.
(2, 0)-fault-tolerant set systems with block sizes two and three have been characterized by
Vakil and Parnes {147]. However, it seems hard to obtain a detailed characterization of
(2, 1)-fault-tolerant 3-uniform set systems. We know from {62] that in such a set system,
the number of 2-subsets not contained in any block must be equal to the number of

9-subsets contained in precisely two blocks, and that no 2-subset is contained in more
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than two blocks. But there remain many flexibilities. Firstly, we can construct many
nonisomorphic quasi-designs QD(n, {3,4}). Secondly, there are many ways to replace the

blocks of size four with two blocks of size three.






CHAPTER 8

Erasure-Resilient Codes for Redundant Arrays of

Inexpensive Disks

8.1 An Overview of Disk Arrays

A phenomenal increase in processor speed has occurred over the last decade and this
trend is likely to continue. Meanwhile, the performance of input/output (I/0O) systems
has lagged behind. Providing raw processing speed and large memories without balancing
I/O capabilities is not sufficient in solving many real-world problems. This imbalance has
transformed traditionally computation-bound applications to I/O-bound applications. To
achieve application speedup, the bandwidth of I/O systems must be improved. This
has led to the development of parallel I/O systems. Issues that must be addressed by
any parallel I/O system include storage, support hardware, networking, and software
technology.

The most successful approach to the storage problem is an architecture known as a
Redundant Array of Inexpensive Disks (RAID) [84, 92, 111, 124]. Rather than building

one large expensive disk, the RAID architecture increases I/0O bandwidth by using a

93
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Figure 8.1: A RAID layout.

large array of small magnetic disks linked together as a single data store (see Figure 8.1).
Small disks are preferable to large ones because they have a lower cost and consume
less power. The idea is to spread data across these small disks (disk striping) so that
subsequent data access can be done in parallel to reduce access time. Many commercial
RAID systems exist today, for example, Fujitsu’s DynaRAID, Storage Computer’s RAID
7, Sun’s SPARCstorage Array, and Thinking Machine Corporation’s ScaleArray. It is
estimated that the market for RAID systems will exceed thirteen billion dollars by the

year 1997 [45].

Large disk arrays, however, are prone to failures, even though each individual disk

making up the array may be highly reliable. If the probability of failure of a disk is p,
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then the probability of failure for a disk array with NV disks is 1 — (1—p)", assuming that
disk failures are uncorrelated. Thus, for p close to zero, a disk array with N disks is about
N times more likely to fail than an individual disk. Many applications, notably database
and transaction processing, require both high throughput and high data availability of
their storage systems. The most demanding of these applications requires continuous

operation, which in terms of a storage system requires

(i) the ability to satisfy all user requests for data even in the presence of disk failures,

and

(ii) the ability to reconstruct the content of a failed disk onto a replacement disk, thereby

restoring itself to a fault-free state.

The solution is to introduce redundancy into the system.
The taxonomy of RAID is based on the amount of redundancies as well as the method
of incorporating them. Eight levels of RAID organizations exist at present. We briefly

describe these.

RAID Level 0: Offers disk striping with redundancy. Generally not considered a RAID.

RAID Level 1: Uses the traditional method of mirroring. All data is copied onto two
separate disks. The disadvantage is in the overhead because twice as many physical

drives are required. Tolerates one disk failure in the worst case.

RAID Level 2: Uses multiple dedicated parity disks in a Hamming code scheme. All
disks are synchronized, which means that all disks must be accessed in parallel.
This is ineffective for applications requiring many small reads and writes. For this
reason, level 2 RAID is not commercially viable. Tolerates one disk failure in the

worst case.
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RAID Level 3: Like level 2, disks are synchronized. Data is interleaved bit-wise over

the disks. All parity data is stored on a single parity drive.

RAITD Level 4: Disks are not synchronized so that multiple reads to disks can be done
independently. Data is interleaved block-wise over the disks. All parity data is still

stored on a single parity drive.
RAID Level 5: Similar to level 4 RAID, but parity data is spread over all disks.

RATD Level 6: Similar to level 4 RAID but uses Reed-Solomon codes to tolerate up to

two disk failures.

RAID Level 7: This is a patented architecture of Storage Computer Corporation that
incorporates a totally asynchronous hardware environment with a multi-tiered cache
memory controlled by an embedded real-time operating system. Parity data is held

on one or more dedicated drives.

One noticeable characteristic of these RAID organizations is that all of them, except
level 6, are able to tolerate only one disk failure, and even level 6 can tolerate only two
disk failures. This can be a serious problem for mission—criticél applications, where very
high reliability of data storage is required. This has prompted Hellerstein, Gibson, Karp,
Katz, and Patterson [79] to examine coding in RAID that protects against catastrophic
disk failures.

When one deals with fault-tolerance issues in date storage systems, it is typical to
model the data store as a binary symmetric channel (refer to Section 1.2). This enables
one to use techniques from the theory of error-correcting codes to protect against data
loss. However, disk controllers can easily identify which disk has failed. This makes the
binary erasure channel (Figure 1.3) a more appropriate model for the RAID architecture.

The purpose of this chapter is to generalize, as well as to extend, the work of Hellerstein
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et al. [79]. In particular, we provide a new view of the design of erasure-resilient codes for
RAID systems, and develop new efficient coding schemes that tolerate a higher number
of disk failures than those treated in [79)].

Modern large-capacity, high-speed memory units also use erasure-resilient codes for

error control [116]. The metrics of interest there are different from those in disk arrays.

8.2 Terminology and Important Metrics

A data stripe is the minimum amount of contiguous user data allocated to one disk before
any data is allocated to any other disk. The size of a data stripe must be an integral
number of sectors, and is often the minimum unit of update used by system software.

Because of this, we can view each disk as a collection of data stripes.

Definition 8.2.1 An [n, c, k]-erasure-resilient code is a function E that encodes n-tuples
D = (Dy,Da,...,D,) of data stripes onto (n + c)-tuples E(D) = (E1(D), Es(D), ...,
E,1..(D)) of data stripes called codewords so that any n+c— k data stripes E;, (D), E;, (D),

s Bi .. (D) of E(D) together with the indices ¢; uniquely determine D.

We often call an [n, ¢, k]-erasure-resilient code a k-erasure-resilient code when the param-
eters n and ¢ are not important in the context.

To see the relevance of an [n,c, k]-erasure-resilient code to the protection of data
loss in RAID, suppose that we have a piece of data which is partitioned into an n-tuple
D = (Dy, D,,...,D,) of data stripes. Given an [n, ¢, k}-erasure-resilient code E, we can
form the codeword (E;(D), E3(D), ..., Enyc(D}) and store this onto a disk array of n+c
disks (see Figure 8.2). The definition of an [n, ¢, k]-erasure-resilient code ensures that we
can reconstruct the original data in the presence of up to k disk failures. We often call a

disk failure an erasure, and the failure of a set of k disks a k-erasure.
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Figure 8.2: Data layout on a disk array.

For performance reasons, we make the following two restrictions on erasure-resilient

codes, as in [79].

(i) We restrict ourselves to systematic erasure-resilient codes. These are erasure-resilient
codes for which E;(D) = D; for 1 < ¢ < n. The encodings E;(D) for n+1 < i < n+c
are called checks. This means that the encoding leaves the original data unmodified
on some disks. This property is desirable to avoid read penalties when there are no

disk failures.

(ii) We restrict ourselves to binary linear erasure-resilient codes over the field GF(2F),
where L is the bit-size of a data stripe. In this case, each data stripe is interpreted as
an L-dimensional vector over GF(2), and E is a linear function. Hence, calculations
used to form the encodings are restricted to modulo two arithmetic, that is, parity

operations, @. This ensures that encodings can be computed efficiently.

Restriction (i) above allows us to separate disks into information disks, which contain
the original data, and check disks, which contain the parity checks. In fact, both restric-
tions (i) and (ii) imply that an [n, ¢, k]-erasure-resilient code can be described in terms
of a ¢ X (n+ ¢) matrix H = [C | I] over GF(2), where I is the ¢ X ¢ identity matrix and

C is a ¢ X n matrix that determines the equations for the checks. This-is a well-known
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result in the theory of error-correcting codes [96]. The matrix H is called the parity-check
matriz of the code. Given the parity-check matrix & = [C | I] of a k-erasure-resilient
code, we can think of the rows of C (as well as the rows and columns of I) as being
indexed by the check disks of a disk array, and the columns of C' as being indexed by the
information disks. The content of check disk 7 is the modulo two sum of the content of
those information disks, whose columns they index in C have a one in row .

We consider the following metrics for the performance of an erasure-resilient code [79].

Check disk overhead: This is the ratio of the number of check disks to information

disks. An [n,c, k]-erasure-resilient code has a check disk overhead of ¢/7.

Update penalty: This is the number of check disks whose content must be changed
when a change is made in the content of a given information disk. We call these
disks the check disks associated with the information disk. It N check disks need
to be involved in every write, then the parallelism of the disk array is reduced by
a factor of N + 1. Since parallelism is the reason behind using disk arrays, update
penalties should be kept as small as possible. The update penalties of an erasure-

resilient code are the numbers of ones in the columns of its parity-check matrix.

Group size: This is the number of disks that must be accessed during the reconstruction
of a single failed disk. The cost of reconstruction makes small group size desirable,
while for load balancing reasons, uniform group size is desirable. The group sizes
of an erasure-resilient code are the numbers of ones in the rows of its parity-check

matrix.

Since updates of data are usually much more frequent than the reconstruction of data
due to disk failures, the update penalties are typically of more concern than the group

size.
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Another assumption we make is that disk failures are uncorrelated. This assumption
is valid for catastrophic failures, which are head crashes or failures of the read/write or
controller electronics [79]. It should be pointed out that disk failures can be correlated.
For example, the disks on a string are usually connected to the same power supply. So
the failure of the power supply causes all disks on the string to fail simultaneously. We
refer the reader to [106] for more information on this topic. Our interest in this chapter

is solely on uncorrelated disk failures.

8.3 Properties of Parity-Check Matrices

Let us consider the failure of k disks (both information disks and check disks can fail).
If H =[C | I] has a set of k or fewer linearly dependent columns (over GF(2)), then the
failure of the corresponding disks makes reconstruction of data impossible. In fact, this

is the only scenario for which disk failures are irrecoverable.

Lemma 8.3.1 (Hellerstein et al. [79]) A set of disk failures is recoverable if and only

if the corresponding set of columns in the parity-check matrix is finearly independent.

Therefore, H is the parity-check matrix of a k-erasure-resilient code if and only if every
set of k& columns of H contains no nonempty set of linearly dependent columns. Precisely
the same condition determines when H is the parity-check matrix of a k-error-detecting

code [96].

Corollary 8.3.1 A code is k-erasure-resilient if and only if it is k-error-detecting.

This equivalence between k-erasure-resilient and k-error-detecting codes means that re-
sults on error-detecting codes can be brought to bear. However, the study of codes for
error detection has not focussed on the metrics discussed in the previous section. Indeed,

as observed in [79], many of these codes are not suitable for disk arrays because they
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have large update penalties. Recently, erasure-resilient codes have also been constructed
to combat bursty losses in packet-switched networks [3, 7]. Again, the metrics of interest

there are different from those in disk array applications.

Corollary 8.3.2 H = [C' | I] is the parity-check matrix of a k-erasure-resilient code if and
only if for every ¢ < k columns, ¢1,¢3,...,¢; of C, thevector x = c; @ ca @ - D ¢, has

weight at least k41— 1.

Proof. The condition is exactly what is needed for every set of at most k columns of H

to be linearly independent. O

We have earlier discussed the importance of update penalties. It is easy to see that if
an erasure-resilient code is able to tolerate k erasures, then every update must affect the
content of at least k41 disks (one information disk and k check disks). Thus, the update
penalties of a k-erasure-resilient code are at least k. Henceforth, we consider only those
k-erasure-resilient codes for which the update penalties are all equal to k, the minimum
possible. We speak, therefore, of the update penalty, instead of the update penaliies of
an erasure-resilient code. The corresponding parity-check matrix H = [C' | I] has column
sums for C all equal to k.

Although an erasure-resilient code with update penalty £ cannot tolerate all (k+1)-
erasures, it can certainly tolerate some of them. Indeed, a (k 4 1)-erasure is irrecoverable
if and only if it corresponds to the failure of an information disk and its k associated
check disks. We call such (k - 1)-erasures bad. It is observed in [79] that with update
penalty k, one can nonetheless hope to tolerate all (k 4 1)-erasures, except for bad ones.
In fact, it can happen that all i-erasures are recoverable except for those that contain

bad (k + 1)-erasures.
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Definition 8.3.1 A t-erasure, where £ > k + 1, is called bad if it includes the failure of an

information disk and its & associated check disks.

With this in mind, we extend Definition 8.2.1 to encompass this notion of higher resilience.

Definition 8.3.2 An [n,c, k, []-erasure-resilient code is an [n, c, k]-erasure-resilient code

which can tolerate all t-erasures, for k + 1 < ¢ < [, except for bad t-erasures.

We often write (k,[)-erasure-resilient code for [n, ¢, k, []-erasure-resilient code when the
parameters  and ¢ are not important in the context. Requirements for higher reliability of
disk arrays make (k,!)-erasure-resilient codes attractive. Note that an [n, ¢, k, k]-erasure-
resilient code is simply an [n, c, k]-erasure-resilient code. Corollary 8.3.2 can be extended

as follows to handle the more general (k,{)-erasure-resilient codes.

Lemma 8.3.2 H = [C | I] is the parity-check matrix of a (k, [)-erasure-resilient code if and
only if for every ¢ columns, ¢, €2, . . . , ¢z of C, where 2 <t <[, the vector x = ¢c1@®c2®- - -Oct

has weight at least [ + 1 — ¢.

Proof. First we prove necessity. Suppose there exists x = ¢; @ ¢3 @ -+ - @ ¢ for some
columns ¢y, Cs, . . . , ¢; of C, such that wt(x) < ! — . Then there exists wt(x) columns of
I whose sum together with x gives the zero vector. Hence, the corresponding s-erasure,
where s = wt(x) + ¢ < [, cannot be recovered. We may assume that this s-erasure is not
bad, for otherwise we may discard information disks and their k associated check disks
from this s-erasure and obtain an s'-erasure, for some s’ < s, which is still irrecoverable.

For sufficiency, suppose on the contrary that there' exists an r-erasure which is irrecov-
erable. Then there exist columns ¢1, ¢, ..., ¢; of C and columns ey, ey, ... ,e; of I, such
that c; D ca @D DerPes®---De, =0 and £+ 5 = r. This is possible if and only

if the weight of X = ¢; @ c2 @ - - - @ ¢; is exactly s. Hence, we have wt(x) =7 —¢ <1 -1,
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a contradiction. (|

Before we leave this section, let us make the following definition.

Definition 8.3.3 Given ¢, k, and [, define F(c, k,1) to be the maximum n such that there

exists an [n, ¢, k, []-erasure-resilient code.

An [n, ¢, k, []-erasure-resilient code with n = F(c, k,1) is said to have optimal check disk

overhead. We also abbreviate F(c, k, k) to F(c, k).

8.4 Turin-Type Problems in Erasure-Resilient Codes

Given any matrix M € {0,1}™*", one can define a set system (X, A), where X =
{1,2,...,m} and A contains precisely the supports of the columns of M. We call (X, A)

the set system associated with the matriz M.

Definition 8.4.1 Let (X,.A) be a set system. The replication number of a point z € X is

ro=[{A€Alz e A}

Let H = [C | I] be the parity-check matrix of an erasure-resilient code. The set
system associated with C is called the set system of the erasure-resilient code. If (X, A) is
the set system of an [n, c, k, []-erasure-resilient code, then with our foregoing assumptions,
(X, A) is k-uniform, | X| = ¢, |A| = n (and therefore the check disk overhead is | X|/|A]),
and the group sizes are one more than the corresponding replications numbers. It is this
correspondence between set systems and parity-check matrices that gives rise to Turdn-

type problems in erasure-resilient codes.

Lemma 8.4.1 (X,A) is the set system of a (k,[)-erasure-resilient code if and only if it

satisfies the following condition. For any 2 < ¢ < [, there do not exist ¢ blocks A;, As, ..., A
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in A such that [A;AAA - Ady| <1 —1t.

Proof. Simply translate Lemma 8.3.2 into the language of set systems and observe that

supp(u @ v) = supp(u)Asupp(v) for any two vector u, v, € {0, 1}". O

Lemma 8.4.1 implies that the construction of a (k, !}-erasure-resilient code with opti-
mal check disk overhead is precisely the Turdn-type problem of determining the maximum
number of blocks in a set system satisfying the condition of Lemma 8.4.1.

When considering (k,{)-erasure-resilient codes, we may assume [ < 2k — 1 for the
following reason. Let (X,.A) be the set system of a (k,[)-erasure-resilient code. If A
contains at least two blocks A and A’ with nonempty intersection, then |AAA'| < 2k — 2.
It follows from Lemma 8.4.1 that I — 2 < 2k — 2, and this implies I < 2k — 1. Hence, if
I > 2k, then A must consist of pairwise disjoint blocks. This corresponds to the scheme
where the data on each information disk is replicated on %k different check disks. This
scheme is able to tolerate t-erasures for all ¢, except for bad ones. For fixed update penalty
k, this scheme has the highest reliability, but suffers from a huge check disk overhead of
k. Henceforth, we restrict our attention to I < 2k — 1.

In the next section, we give a general construction for [n, ¢, k, []-erasure-resilient codes

and establish a limit on how good an [n, ¢, k, [}-erasure-resilient code can be.

8.5 An Expander-Based Construction and an Upper Bound

Given a set system (X,A), one can construct a bipartite graph G = (X U A, E) as
follows. The vertex sets of the bipartition are X and A. Two vertices 2z €¢ X and A€ A
are adjacent if and only if # € A. This graph is called the point-block incidence graph of
(X, A). It is easy to see that (X,.A) can be reconstructed from its point-block incidence

graph.
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Definition 8.5.1 Let S be a subset of vertices in a graph. The neighbourhood of S, denote

N(S), is the set of all vertices not in S that are adjacent to some vertex in S. The elements

of N(S) are called the neighbours of S.

Definition 8.5.2 Let S be a subset of vertices in a graph. A vertex v is an odd neighbour

of S if v is adjacent to an odd number of vertices in 5.

Lemma 8.5.1 Llet1 <k <land2<t <l LetG= (U UV, E) be a bipartite graph where

cach vertex in U has degree k, and such that for any subset ' C V, |T'{ = ¢, we have

tHk—1)+1+1
- :

\N(T)| 2

Then G is the point-block incidence graph of a set system of an (k,l)-erasure-resilient code.

Proof. From Lemma 8.4.1, it suffices to show that any subset T of ¢ vertices from V has
at least [+ 1 — ¢ odd neighbours. Suppose that there are only s <1 —¢ odd neighbours of
T. Then there are |N(T')| — s neighbours of T, each of which is adjacent to at least two

vertices of 7. Hence,

2(|N(T)| — 5) + s < tk,

which gives

th + s
)| < 25

ta —

< 41—t

- 2

_t(k—l)-l—l

2
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This is a contradiction. O

Lemma 8.5.1 shows that bipartite graphs for which the neighbourhood of any set of
vertices S is large relative to the size of S give erasure-resilient codes. This property is
indeed what defines a special class of graphs known as ezpanders [16, 66]. Expanders are
useful in many theoretical as well as practical applications in computer science. Unfor-
tunately, the study of (bipartite) expanders have focussed on the case when the sizes of
the two partitions are linearly related [4, 94, 97, 113, 143]. This gives trivial results in
our application. The probabilistic construction we give next yields bipartite expanders
where the sizes of the two partitions are polynomially related. The construction is a

modification of the usual probabilistic construction for expanders {see [100]).

Theorem 8.5.1 Let k and [ be constants such that 1 < k < I, and define @ = (2k+1-1)/4.
Let 2 < t <. There is an integer ng such that for all n > ng, there exists a bipartite graph

G = (UUV, E) with |U| = n and [V| = Q(n®) satisfying the following two conditions:
(i) each vertex in V' has degree k;
(i1) for every subset T' of ¢ vertices from V, we have [N(T)| > (¢(k — 1) +1+1)/2.

Proof. Let |V| = dn® for some positive constant d. Consider a random bipartite graph
on the vertices in U and V, in which each vertex of V' chooses its k neighbours by sampling
a k-subset of vertices from U independently and uniformly from (Ej) It is clear that the
bipartite graph so constructed satisfies condition (i).

Let & denote the event that a subset of ¢ vertices of V' has fewer than s = (¢(k —
1) + 1+ 1)/2 neighbours in U. Fix any subset T' C V of size ¢ and any subset S C U of
size 5. There are (d't‘a) ways of choosing T' and (’;) ways of choosing S. The probability
that S contains N(T') is (({)/ (%)) Thus, the probability of the event that all the edges
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emanating from some ¢ vertices of V fall within any s vertices of U is bounded as follows:

prig) < () (" _(s'”—) t.
‘( t )(s) (:)

Using the inequalities (7) < (ne/k)* and (}) > (n/ k)*, we obtain

Pr[£;] < O(n~ (-4,

The probability that the bipartite graph fails to satisfy (i1) is at most

i
Z Pr[c‘,}],

=2

which can be made to be less than one for n large enough by an appropriate choice of d.

The desired result follows. O

Next, we establish an upper bound on F(c, k,1).

Theorem 8.5.2 Let %, and ! be constants such that 1 < k < L. Then F(c,k,l) =
O(ck+1—-|_l/2_[)_

Proof. Consider all the configurations of two blocks of size k intersecting in at least
k+1— [I/2] points. Any set system (X, A) for an [n, ¢, k, []-erasure-resilient code must
avoid all such configurations, for otherwise it would violate the condition of Lemma 8.3.2.

Hence, any two blocks of (X,A) intersect in at most k — [1/2] points. It follows that
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(X,A)is a (k+1—|1/2])-(c, k, 1) packing. Hence,

|Ah§Dmk¢+1—[Uﬂ)g(k+1_UﬂD:=O@HbﬂM%

( 2
k41— [1/2]

Theorem 8.5.1 and Theorem 8.5.2 give the following.

Corollary 8.5.1 For any fixed k and [ such that 1 < k& <[, there exist positive constants

a; and a, such that
a, D < (e, b, 1) < apc T,

for all c € N.

For general k, the only lower bound on F(c, k,!) obtained by Hellerstein et al. [79] is

for the case [ = k. We give a new short proof here.

Theorem 8.5.3 (Hellerstein et al. [79]) For any k¥ € N, we have F(c, k) > (1 —

o(1))(5)/(5)-

Proof. It is easy to see that every (k — 1)-cover-free set system is the set system of a
k-erasure-resilient code. By Lemma 5.1.1, any 2-(c, k,1) packing is (k — 1)-cover-free.

Hence, F(c, k) > D{c, k,2) = (1 — o(1)) (5)/(%); the last equality being from [59]. a

The (k, [)-erasure-resilient codes we built from expanders are at least as reliable and have
asymptotically better check disk overheads than that provided by Theorem 8.5.3 as long
as k<1< 2k-38.
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The exponent in the upper bound of Corollary 8.5.1 is about twice that for the lower
bound. We believe the upper bound to be the true asymptotic behaviour of F(c, k, I}, but
tightening the lower bound in general appears to be difficult. We can give tight bounds

for several cases when k& is small.

8.6 (3,l)-Erasure-Resilient Codes

An extensive treatment of (3,!)-erasure-resilient codes, for I = 3 and 4, was given in [79].

We summarize their results below.

Lemma 8.6.1 (Hellerstein et al. [79]) (X, (‘73()) is the set system of a 3-erasure-resilient

code with optimal check disk overhead. Hence, F'(c, 3) = (3).

Lemma 8.6.2 (Hellerstein et al. {79]) For all ¢ € N, F(c,3,4) < ¢(c — 1)/6, with
equality if ¢ = 3° for some nonnegative integer a. If ¢ = 3 (mod 6), there exists a [¢(c —

3)/6, c, 3, 4]-erasure-resifient code.

We can improve on Lemma 8.6.2 by examining the set system of a (3,4)-erasure-
resilient code. First, consider the configuration P; in Figure 8.3(a) for which the sym-
metric difference of its two blocks has size two. By Lemma 8.3.2, this configuration must
be avoided by the set system of any (3, 4)-erasure-resilient code. For 3 < ¢ < 4, the only
configuration of ¢ blocks of size 3 for which their symmetric difference has at most 4 — ¢
points and which does not contain P, is that given in Figure 8.3(b). Lemma 8.3.2 implies
that P, must also be avoided in the set system of any (3, 4)-erasure-resilient code.

Forbidding P; from the set system (X,A) of an {n,c, 3, 4]-erasure-resilient code is
equivalent to saying that (X,A) is a 2-(¢, 3,1) packing. The configuration P, is known

in the design theory literature under various names: quadrilateral, Pasch configuration,
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(a.) Py (b) Py

Figure 8.3: Forbidden configurations for (3, 4)-erasure-resilient codes.

fragment, or arrow (see [42]}. A 2-{c, 3,1) packing that does not contain a Pasch configu-
ration is called anti-Pasch. The construction of (3, 4)-erasure-resilient codes with optimal

check disk overhead is therefore equivalent to the following problem.

Problem 8.6.1 Determine the maximum number of blocks in an anti-Pasch 2-(v, 3, 1) pack-

ing.

An anti-Pasch 2-(v, 3, 1) packing with D(v, 3, 2) blocks is said to be optimal.
A complete solution to Problem 8.6.1 is not known. We believe that for all sufficiently
large v, there exists an optimal anti-Pasch 2-(v, 3,1) packing. The simple observation

below shows that it is sufficient to treat the cases v =1, 3, or 5 (mod 6).

Lemma 8.6.3 Let v =1, 3, or 5 (mod 6). If there exists an optimal anti-Pasch 2-(v, 3,1)

packing, then there exists an optimal anti-Pasch 2-(v — 1, 3, 1) packing.

Proof. Schonheim [127, 128] and Spencer [136] have shown that for v =1, 3, or 5 (mod
6), an optimal 2-(v -1, 3, 1) packing (X, A) can be constructed from an optimal 2-(v, 3,1)
packing (Y, B) as follows. Pick an element y € ¥ that is contained in the least number of
blocks in B, breaking ties arbitrarily. Take X =Y \{y} and A = {B € B | y € B}. Since
A C B, it is clear that (X, A) does not contain a Pasch configuration if (X, B) does not. O
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Example 8.6.1 An optimal anti-Pasch 2-(17,3, 1) packing (X, A): X is taken to be {0, 1,

..., 16} and A contains the following 3-subsets of X.

{6,8,11} {3,7,13}  {2,5,7} {3,11,12} {3,5,16} {4,8,13} {0,10,11}
{1,512} {2,10,13} {1,8,16} {5,11,14} {1,9,15} {0,7,8} {4,12,16}
(6,7,15} {7,9,12} {12,14,15} {3,8,15}  {2,4,6}  {3,9,10} {2,11,15}
f0,1,13} {1,7,11} {0,15,16} {0,2,12} {2,9,16} {0,3,14} {1,10,14}
(5,13,15} {1,3,6}  {2,8,14} {4,7,14} {11,13,16} {4,9,11} {4,10,15}
{7,10,16} {8,10,12} {9,13,14} {6,12,18} {5,8,9} {6,14,16} {0,4,5}
{5,6,10}  {0,6,9}

When v = 1 or 3 (mod 6), an optimal 2-(v,3,1) packing is a Steiner triple system,
STS(v). Already twenty years ago, Erdds [56] made the conjecture that there exists an
anti-Pasch STS(v) for all v = 1 or 3 (mod 6) whenever v is sufficiently large. The unique
STS(7) and the two nonisomorphic STS(13) contain Pasch configurations. Brouwer [21]

refined Erdds’ conjecture as follows.

Conjecture 8.6.1 (Brouwer [21]) There exists an anti-Pasch STS(v) for all v =1 or 3

(mod 6), except when v =7 or 13.

Conjecture 8.6.1 is known to be true for v = 3 (mod 6).

Theorem 8.6.1 (Brouwer [21], Griggs, Murphy, and Phelan [72]) There exists
an anti-Pasch STS(v) for all v = 3 (mod 6).

The results for v = 1 (mod 6) is more fragmented and we refer the reader to [42] for a sur-
vey. It appears that Griggs has recently constructed anti-Pasch STS(v) for a large fraction
of v = 1 (mod 6). So by observing the equivalence between (n, c, 3, 4)-erasure-resilient

codes with optimal check disk overhead and optimal anti-Pasch 2-(c, 3,1) packings, we
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can easily improve Lemma 8.6.2 as follows.

Lemma 8.6.4 For all c € N, we have F(c,3,4) < D(c,3,2), with equality if c = 2 or 3
(mod 6).

Proof. Follows from Theorem 8.6.1 and Lemma 8.6.3. O

We now turn our attention to (3, 5)-erasure-resilient codes. It turns out that there
are no additional configurations to P; and P, which must be avoided by the set system
of an (3,5)-erasure-resilient code. Consequently, every (3,4)-erasure-resilient code is a

(3, 5)-erasure-resilient code.

Lemma 8.6.5 For all ¢ € N, we have F(c,3,5) = F(c,3,4).

8.7 (4,l)-Erasure-Resilient Codes

The only previously-known result concerning (4,[)-erasure-resilient codes is the lower
bound F(c,4) > c(c — 1)/12 given by Theorem 8.5.3. Hellerstein et al. [79] posed the

open problem of determining F{c, 4).

8.7.1 The Casesl—=4andl =5

The proof of Theorem 8.5.2 shows that any set system (X,A) of an [n,c, 4]-erasure-
resilient code must avoid the two configurations @; and @ in Figure 8.4, and hence is a
3-(c, 4, 1) packing'. Therefore, F(c,4) < D{c, 4, 3). But being a 3-(c, 4,1) packing is not
sufficient. Lemma 8.3.2 implies that (X, A) must further avoid the four configurations

Qs, Q4, Qs, and Qg in Figure 8.4. It follows that F{(c,4) = c(c—1)(c — 2)/24 if and only

10ur definition of a set system (see Section 2.3) automatically excludes the configuration 1. This
configuration is given here to remind the reader that Q; must be avoided even if set; systems with repeated
blocks are allowed. :
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(8) 1 {(b) Q2 (c) Qs
(d} Q4 (e) Qs (f) Qs

Figure 8.4: Forbidden configurations for 4-erasure-resilient codes.

if there exists a 3-(c,4,1) design (known as a Steiner quadruple system of order ¢ and
denoted SQS{c)) that avoids all the configurations @3, Q4, @s, and Q¢. At present, we
do not know of any example of a nontrivial SQS(c) that avoids all these configurations.
For a comprehensive survey on Steiner quadruple systems, we refer the reader to [76].

Here, we address the more difficult problem of constructing (4, 5)-erasure-resilient
codes, and in the process, obtain asymptotically-tight bounds (up to constant factors) on
both F(c,4) and F(c,4,5). Let (X,.A) be the set system of an [n, c, 4, 5]-erasure-resilient
code. Naturally, (X,.A) is a 3-(c, 4, 1) packing that avoids the four configurations Qs,
Q4, Qs, and Q. A short computation demonstrates that there are precisely nine other
configurations that must be avoided. These configurations are shown in Figure 8.5.

The remainder of this section discusses a finite fleld construction for (4, 5)-erasure-

resilient codes.

Definition 8.7.1 A set system (X, .A) is k-partite if there is a partition of X into k parts,

X = X;UX,U- - Xy, such that for every block A € A, we have |[ANX;| <1for1 <i< k.
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(a) @ (b} Qs () Qo
(d) Q1o (e) Qu (f) Q12
(g) Qs (h) Q14 (l) s

Figure 8.5: Forbidden configurations for (4, 5)-erasure-resilient codes.
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One idea we use to simplify our construction is to restrict our attention to set systems of
(4, 5)-erasure-resilient codes that are 4-partite. It is known [60] that for every k-uniform
set system (X, A), one can find a k-partite set system (X, B), where B C A, such that
B > %Vﬂ So our restriction to 4-partite set systems is not a severe one and affects
F(c,4,1) by at most a constant factor of 32/3. It is easy to verify that the configurations
Qs, Q7, Qs, Q9, @10, @11, Q12, @13, Q14, and Q15 are not 4-partite. Hence, they cannot
be present in any 4-partite set syétem. It therefore suffices to construct 4-partite set

systems that do not contain any of the configurations Q1, @2, Q4, 5, and Qs.

Definition 8.7.2 An extension of a set system (X, A) by a point co € X is the set system
(X U {oo}, B), where B ={AU {oo} | A € A}.

We now describe the finite field construction. Let ¢ be an odd prime power and let
w be a primitive element of GF(g). For each i, 1 < i < (¢ — 1)/2, define a set system
(Xi, B;), where

X; = GF(q) x {0,1, 2}, and

B; = {{(a,0), (b,1), (a-+w'b,2)} | a,b € GF(g) and b # 0}.

Now let (¥;,C;) be the extension of (X;, B;) by the point oo;, for 1 < 7 < (¢ — 1)/2.
Finally, define (Y, €) so that

(g—1}/2 (g—-1)/2
Y = U Y; and €= U e;.
=1 =1

The next lemma shows that (Y, ) is a set system, that is, (Y, C) avoids the configuration

Q1

Lemma 8.7.1 The pair (Y, €) is a set system.
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Proof. If (Y, C) contains the configuration @, then it would mean that some (Xj;, B;)

contains the configuration below.

(@Eemy)

But this contradicts the fact that (X;, B;) is a 2-(3¢, 3, 1) packing. a

It is now clear that (Y, @) is a 4-uniform set system. Since each block in € intersects
each of the sets GF(g) x {0}, GF(g) x {1}, GF{q) x {2}, and {oc01,003,...,00(4_1)/2} in
exactly one point, and these sets partition Y, (Y, C) is also 4-partite. The sequence of

lemmata below shows that (Y, C) avoids several other configurations.

Lemma 8.7.2 The set system (Y, C) avoids the configuration Q5.

Proof. Suppose (Y, €) contains the configuration below.

Y

ool

z

Without loss of generality, either @ = co;, or ¥ = co0; and z = oo}, for some 7 # j.

If z = o0;, then some (X;, B;) must contain the following configuration.

=

But this contradicts the fact that (X;, B;) is a 2-(3¢, 3, 1) packing.

Ky = oo; and z = ooj, then there exists {(a,0),(d,1),(c,2)} € B; N B;. This
is only possible if & = 0. But the only set system that contains blocks of the form
{(a,0),(0,1), (¢, 2}} is (X1, B1). This is a contradiction. a

Lemma 8.7.3 The set system (Y, C) avoids the configuration Q.



8.7. (4,l)-Erasure-Resilient Codes 117

Proof. Suppose (Y, €) contains the configuration below.

Yy

Without loss of generality, either z = co;, or y = 0o; and z = oo;, for some @ # j.
If £ = oo;, then (X;, B;) contains the Pasch configuration. The only way a Pasch

configuration can occur in (Xj, B;) is as follows.

GF(g )

GF(q)

GF(g )

But this implies ¢ = a + wb=d+uweand f=a+we=d+ w*h, which can only be
satisfied if b = e. This is a contradiction.
If y = oo; and z = 00;, then (X, B;) and (X, B;) must contain four blocks (two from

B; and two from B;) that occur in one of the following three ways.

a d
GF(@) e GF(¢) GF(q) —
d ~ S’
( b d) b "’\\\}0
GFlg) —f——* GFlg) GRg) —2 $
Syt t i
’/’\\\ \\ ”
GF(g) GF(g ) GF(g) AL
c e c e c

The blocks in B; are shown in solid lines and the blocks in B; are shown in dashed lines.
In the first situation, we have ¢ = a 4 whb=a+w/dand e =a+ wid = a + w’b, which
can only be satisfied if b — d. In the second situation, we have ¢ = d +w'b = a +w’b and
e = a4+ w'b = d + w’b, which can only be satisfied if @ = d. For the last situation, we
have ¢ = @+ w'b = d + wie = a + wie = d + w'b, which can only be satisfied if b = e. All

these lead to contradictions.
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It follows that (Y, C) cannot contain the configuration Q4. a

Lemma 8.7.4 The set system (Y, €) avoids the configuration Q5.

Proof. Suppose (Y, C) contains the configuration below.

X

Without loss of generality, we may assume ¢ = co; and y = oo; for some 7 # j. Then

(X, B;) and (X, B;) must contain four blocks (two from B; and two from B;) that occur

as follows.
d
GF(g) - —
~ ~ ”
e i ~
bl ~
GFlg) — =
Is AY
i ]
AY 7
GE(g ) > <

The blocks in B; are shown in solid lines and the blocks in B; are shown in dashed lines.
But this implies that ¢ = @ + w*b = d + w’b and f = a + w'e = d + w’e, which can only

be satisfied if 6 = e. This is a contradiction. 0

Lemma 8.7.5 The set system (Y, €} avoids the configuration Q.

Proof. Suppose (Y, C) contains the configuration below.

w
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Without loss of generality, either w = oo; and z = o0;, or ¢ = o0; and y = oo;, for some
i ]
If w = oo; and z = ooy, then (X, B;) and (X, B;) must contain four blocks (two

from B; and two from B;) that occur as follows.

a d
GF(q ) < P
-
N
kd N ~
bl N
GFlg) —= ~
7 AY
] 13
AY ’
GF(g ) A 4

This, as we have seen in the proof of Lemma 8.7.4, is impossible.
If z = oo; and y = 0o, then (X;, B;) and (X, B;) must contain four blocks (two from

B; and two from B;) that occur in one of the following three ways.

a d a d a d
GF(q) — GF(g ) / GFig) —
e 1 -, 1 o~
e 3 ~ 1 PN
/ t S0 4 \)
b N b
GFlg) — N GFz) X GF(¢ ) e
\\ L’ L \\ }
\‘: > ” 'I ~ o h
GF( ) < == GF(g ) = GF(q ) St
W I R f ¢ 5

The blocks in B; are shown in solid lines and the blocks in B; are shown in dashed lines.
The first situation gives ¢ = a+w'b = d+we and f = a+w'e = d+w’b, which can only
be satisfied if b = e or w' = —w?. But —w’ = wi+(a"1)/2 gince ¢ is odd, and i # j (mod
(g —1)/2) since 1 < 7,7 < (g — 1)/2. The second situation gives c = a +w'h =d+ wle
and f = d + w'h = a + wie, which can only be satisfied if d == a. For the last situation,
we have ¢ = a + w'b = d + w'e and f = a + w’e = d + wib, which can only be satisfied if
b=eor w' = —w’. As before, w’ = —w’ is impossible. All these lead to contradictions.

It follows that (Y, C) cannot contain the configuration Qs. o

We can now state the main result of this section.
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Theorem 8.7.1 Let ¢ be an odd prime power, and let A be an integer such that 1 < A <

{g — 1)/2. Then there exists an [n, c, 4, b]-erasure-resilient code, where ¢ = 3¢ — 1 4- A and

n=Ag(g—1).

Proof. The set system (Ug\=1 Y:, U?=1 C;) is a 4-uniform 4-partite set system of order
3q — 1+ A having Ag(g — 1) blocks, which avoids the configurations @2, Q4, @s, and Qs
by Lemmata 8.7.2, 8.7.3, 8.7.4, and 8.7.5. Hence, it is the set system of a (4, 5)-erasure-

resilient code. Qa

The asymptotic behaviour of F(c,4) and F(c,4,5) can now be determined.

Corollary 8.7.1 F(c,4) = ©(c®) and F(c,4,5) = ©(c?).

Proof. Let ¢ be the largest odd prime power, at most (2¢+ 3)/7. Taking A = (¢ — 1)/2

in Theorem 8.7.1 gives a [g(q — 1)2/2, (7q — 3)/2, 4, 5]-erasure-resilient code. Hence,

F(c,4,5) > F((7q - 3)/2,4,5)

_ 2
s 2a—-1)"
=72
4
> 355¢° — O(c®*/19%149) by Theorem 2.5.1)

for any € > 0. This, together with the inequalities
1
F@&MgF@QgD@@&gﬁf
gives the required result. a

The bound on F{c,4,5) in Corcliary 8.7.1 is a significant improvement over the results of

[79]. It is an order of magnitude better than even the bound on F(c, 4) ‘obtained in [79].
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One drawback of the (4, 5)-erasure-resilient codes produced in Theorem 8.7.1 is that
the group size is large and nonuniform. Among the 3¢ — 1 + A points, 2¢ have replication
number A(g — 1), ¢ — 1 have replication number Ag, and the remaining A have replication
number ¢(¢ — 1). When A = (g — 1)/2, all groups have size ©(g*) but the largest group
remains about twice as big as the smallest. However, the following splitiing process can

be used to make the group sizes more uniform.

Definition 8.7.3 Suppose (X, A} is a set system and z € X. Let A, = {A € A |z € A}
and A, = B1U B, be any partition of A, such that ||B;| — |Bs|| < 1. Define W = X U{z'}
and D = (A\ B1) U {(A\ {z}) U {2’} | A € By}. Then (W, D) is the set system obtained
by splitting = in (X, A), and is denoted split;(X, A).

We can extend this definition to splitting a subset S C X in (X, A) as follows.

_ splity (X, A), if §$={z};
splitg (X, A) =

splitg {7} (splitz (X, A)), ifz € S and |S]> 2.

Next, we show that splitting preserves erasure-resilience.

Lemma 8.7.6 If (X,A) is the set system of a (k,[)-erasure-resilient code and

z € X, then splity(X,.A) is also the set system of a (&, I)-erasure-resilient code.

Proof. Suppose not. Then by Lemma 8.3.2, there exist ¢ blocks Ay, As,...,A; in
split; (X, A), where 2 < ¢t < I, such that |[A;AA;A---AA| < 1 —t For each of the
blocks A;, As, ..., A; that contains 2/, replace z’ by =. Note that this will not increase
the size of their symmetric difference. But now, all these blocks are in A, contradicting

the assumption that (X, A) is the set system of a {k,!)-erasure-resilient code. a
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(a) Qs (b) Q17

Figure 8.6: Forbidden configuration for (4, 6)-erasure-resilient codes.

Let co = {003,002,...,00(41)/2}- It is not hard to see that split(Y,C} is a set
system of order 4¢ — 2 with ¢(g — 1)?/2 blocks and all replication numbers are g*/2 or
g(g—1)/2. It also follows from Lemma 8.7.6 that this is the set system of a (4, 5)-erasure-

resilient code. We record this result below.

Lemma 8.7.7 Let g be an odd prime power. Then there exists a [g(g — 1)2/2,4g — 2,4, 5]-

erasure-resilient code where the group sizes are ¢?/2 and g(q — 1)/2.

872 TheCasesl=6andl =7

Let (X, A) be the set system of a (4, 6)-erasure-resilient code. Lemma 8.3.2 implies that
(X, A) must avoid the configuration Q1¢ shown in Figure 8.6(a). Hence, (X,.A) must be
a 2-(c,4, 1) packing and F(c, 4, 6) < D(c,4,2). This obviates the need to consider many
of the configurations treated for the case when [ = 5. The only configurations that a 2-
(¢, 4, 1) packing must avoid in order for it to be the set system of a (4, 6)-erasure-resilient
code are the configuration Q;5 shown in Figure 8.5(i) and the configuration Q37 shown
in Figure 8.6(b).

Consider the standard construction of a transversal design TD(4,q), where ¢ is a
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prime power. Let

X = GF(q) x {0,1,2,3}, (8.1)
G={GF(q) x {:}|i€{0,1,2,3}}, and

B = {{(a,0), (6,1), (a+,2), (a+25,3)} | a,b € GF(g)}. (8.2)

Then (X, G, B) is a TD(4,q). It is easy to see that the set system (X, B) is a 4-partite
2-(4q,4,1) packing. Let (X’,5’, B') be the TD(3, ¢) obtained by truncating the entire

group GF(q) x {3}.
Lemma 8.7.8 The set system (X, B) avoids the configuration Q7.

Proof. Suppose (X, B) contains the configuration below.

This configuration has a unique (up to isomorphism) partition of its points into four parts
so that each block contains exactly one point from each part. This partition is indicated
by the different shadings in the figure above. Hence, the points of one of the parts must
belong to GF(g) x {3}. It is easy to check that deleting all the points in any part gives

the following configuration.

So (X', B') must contain the configuration above. There are six possibilities to consider,

as shown below.
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Figure 8.7: Forbidden configurations for (4, 7)-erasure-resilient codes.
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Each point is an element of GF(g) x {0,1,2}. The label inside a point shows its first
coordinate and the label outside a point shows its second coordinate.

Consider the first possibility. We have c = a+ b= f+4, e =b+ f = d+ h, and
g = a+d = h+1, which can only be satisfied if b = d. This is a contradiction.

The other five possibilities can be disposed of similarly. a

The set system of a (4, 7)-erasure-resilient code must avoid the four configurations in
Figure 8.7 in addition to all the forbidden configurations for set systems of (4, 6)-erasure-

resilient codes.

Theorem 8.7.2 Let g be a prime power. Then there exists an [¢?, 4¢, 4, 7]-erasure-resilient

code. Moreover, this code has uniform group size q.
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Proof. It follows from Lemma 8.7.8 that the set system (X, B) is the set system of a
(4, 6)-erasure-resilient code. It is easily verified that all the configurations in Figure 8.7
are not 4-partite. Since (X, B) is 4-partite, these configurations are all avoided. Hence,
(X,B) is also the set system of a (4, 7)-erasure-resilient code. It is straightforward to see

that every point of X is contained in exactly g blocks of B. a

Corollary 8.7.2 F(c,4,6) = ©(c?) and F(c,4,7) = 0(c?).
Proof. Let g be the largest prime power, at most c/4. Theorem 8.7.2 gives a [¢%, 4¢, 4,7]-

erasure-resilient code. Hence,

F(c,4,7) > F(4q,4,7)

>q2

> %62 _ 0(62972/1921-}-5) (by Theorem 2.5.1)

for any € > 0. This, together with the inequalities
1,
F(c,4,7) < F(c,4,6) < D(c,4,2) < 3¢
gives the required result. : a

8.8 Controlling Group Sizes by Balanced Orderings

Let H = [C | I] be the parity-check matrix of an [n, ¢, k, []-erasure-resilient code. Let
g1,92,- . - , ge be the group sizes of this code. By counting the ones in H in two different

ways, we obtain

ig; = kn +c.
i=1
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So the average group size is kn/c + 1. Since the check disk overhead is ¢/n, the smaller
the check disk overhead, the larger the average group size. In the previous sections, our
focus has been on the construction of erasure-resilient codes with optimal (up to constant
factors) check disk overheads. Therefore, inevitably, our codes have large average group
size.

It is however, possible to trade check disk overhead for a smaller average group size.
Given the parity-check matrix [C' | I] of an erasure-resilient code, one can simply delete
the appropriate number of columns of C' so that the desired average group size is obtained.
However, this process does not guarantee that the maximum group size will be lowered.
We have indicated in Section 8.2 that for load balancing reasons, uniform group size is
desirable. This raises the issue of whether it is possible to construct erasure-resilient
codes for which there is a way of deleting columns from its parity-check matrix so that
every group size is close to the average. Let us discuss this problem more formally. The

terminology we use here generalizes those used in [79].

Definition 8.8.1 Let o be a positive integer. An erasure-resilient code is said to have

a-balanced group size if the following conditions hold:
(i) when the average group size is 1 (mod ), all groups are the same size;

(1) when the average group size is not 1 (mod «), the maximum group size is at most «

greater than the minimum group size.

Let M be an m x n matrix. For any 1 < 7 < n, M (%) denotes the m X ¢ matrix comprising

the first 7 columns of M.

Definition 8.8.2 Let H = [C | I] be the parity-check matrix of an [n, ¢, k, []-erasure-

resilient code and « a positive integer. We say that the columns of C are arranged in an
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a-balanced ordering if, for any 1 < i < n, H = [C(3) | I] is the parity-check matrix of an

[2, ¢, k, []-erasure-resilient code with a-balanced group size.

The existence of an a-balanced ordering for a (k, 1)-erasure-resilient code allows us to
derive from it other (k,[)-erasure-resilient codes with higher check disk overhead but
smmaller group sizes, and whose group sizes differ from one another by at most a. Another
use of balanced orderings observed by Hellerstein et al. [79] is in the design of extensible
disk array systems. If we have chosen a code whose parity-check matrix have more
columns then we need, then as more disks are added to the system, the extra columns
are put to use. The existence of an a-balanced ordering for the original parity-check
matrix ensures that we have a-balanced group size at all times if disks are associated
with columns according to this ordering. The case @ = 1 was considered by Hellerstein

et al. [79].

Definition 8.8.3 Let a be a positive integer and (X, A) a set system. Let B C A bea
subset of blocks. Then,

(i) B is an a-resolution class if every element of X is contained in precisely & blocks of B;

(i1) B is a partial a-resolution class if every element of X is contained in at most & blocks

of B.

Definition 8.8.4 Let « be a positive integer. A set system (X, A) is c-resolvable if A can

be partitioned into parts A, As, ... ,A,, each of which is an a-resolution class.

Definition 8.8.5 Let « be a positive integer. A set system (X, A) is almost a-resolvable if
A can be partitioned into parts A;, A, ... ,4A,, each of which is an a-resolution class, except

perhaps for one part which is a partial c-resolution class.
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If (X, A) is k-uniform, then (X, A) is a-resolvable or almost a-resolvable only if a|X| = 0

(mod k), since the number of blocks in each a-resolution class is exactly a]X|/k.

Lemma 8.8.1 Let H = [C' | I] and (X, A) be the parity-check matrix and set system of an
[n, ¢, k, l]-erasure-resilient code, respectively. Then C has an a-balanced ordering if and only

if (X, A) is almost a-resolvable.

Proof. Suppose (X, A) is almost a-resolvable with a-resolution classes Ay, Ag, ..., Ap1
and a partial e-resolution class A, (which can be empty). Order the matrix C so that
C =[C1|C2| | C:], where each C; contains precisely those columns whose supports
are in A;. The ordering of the columns within each C; can be arbitrary. This is an
a-balanced ordering for C.

Now suppose C' has an a-balanced ordering. Consider the first ac/k columns of C
and the set of their supports A;. The erasure-resilient code formed by these columns
has average group size a + 1, and hence each group has size @ + 1. If follows that every
point is contained in exactly « blocks in A;. Now consider the first ¢(ac/k) columns of C,
2 < i < |nk/ac|, and the set of their supports B U A;, where A; is the set of supports of
columns (i — 1)(ac/k) + 1 to i(ac/k) of C. The average group size of the erasure-resilient
code formed by the first 2{ac/k) columns of C is 7o + 1. Hence every point appears in
exactly < blocks of B U A;. By the induction hypothesis, every point appears in exactly
(¢ — 1} blocks of B. It follows that every point must appear in precisely a blocks of A;.
Consequently, A; is an c-resolution class. The supports of the remaining columns of C

constitute a partial a-resolution class. |

Hellerstein et al. [79] showed that the [3%(3% — 1)/6, 3% 3, 4]-erasure-resilient code
they constructed (see Lemma 8.6.2) has a 1-balanced ordering. In fact, the set system

of this erasure-resilient code is the affine geometry AG,(a,3) (see, for example, [15])
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whose 1-resolvability is a classical result in design theory. An STS(n) that is 1-resolvable
is commonly known as a Kirkman triple system of order m, or KTS(n). The above
discussion shows that the problem of constructing [n, c, 3, 4]-erasure-resilient codes with
optimal check disk overhead having a 1-balanced ordering is equivalent to the following

problem.

Problem 8.8.1 Determine the existence of anti-Pasch Kirkman triple systems.

The existence of KTS(n) has long been settled [93, 117}; the condition 7 = 3 (mod 6) is
both necessary and sufficient. Work on the existence problem for anti-Pasch STS(n) is
also well under way. However, Problem 8.8.1 appears not to have been studied, perhaps
due to the lack in motivation. As we have shown, this is not the case now. Here, we

settle the existence problem for anti-Pasch almost 3-resolvable Steiner triple systems.

Example 8.8.1 Let X = Zj; and

Ay ={{i,1+4,3+1i} i€ Zn},
Az = {{i,4+ 1,12+ i} | i € Zn},
As = {{i,6+ 1,11+ i} | i € Zm},
Ag={{3,7+4,14+14} | 0 < i < 6}
Let A = U A;. Then (X,A) is an anti-Pasch almost 3-resolvable STS(21). The 3-

1<i<4
resolution classes are A1, A2, and Az. The partial 3-resolution class is A4.

Lemma 8.8.2 There exists an anti-Pasch almost 3-resclvable STS(3g) whenever g is odd

and g # 0 (mod 7).

Proof. Let X = Z, x {0,1,2}. Let A contain the following blocks:
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(i) {(a,0),(a,1),(a,2)},for all a € Z;

(i) {(a,2),(b,2),((a+ )21+ 1)}, for all a,b € Z,, a # b, and all 1 € Zg (reducing

subscripts modulo 3 as necessary).

Brouwer [21] has shown that (X,.A) is an anti-Pasch STS(3g) when g # 0 (mod 7). We
show that (X, A) is almost 3-resolvable. The partial 3-resolution class is taken to be
{{(e,0),(a,1),(a,2)} | a € Z,} (which is in fact a 1-resolution class). The other (g —1)/2

3-resolution classes are

{{(a,4), (a+4,9), ((2a+7)27" i+ 1)} |a € Zg,i € Zg}, for1<j<(9-1)/2

Theorem 8.8.1 There exists an anti-Pasch almost 3-resolvable STS(%) for all » = 3 (mod

6).

Proof. Lemma 8.8.2 handles all cases except when n = 0 (mod 7).

So suppose that n = 3 (mod 6) and » = 7v. Then proceeding inductively, there is
an anti-Pasch almost 3-resolvable STS(v), (X, A), with 3-resolution classes A, Az, ...,
A(y-3)/6 and a partial 3-resolution class A*. Let ¥’ = X X Z7. For each A € A", construct
an STS(21), (A X Z+,B(A)), which is isomorphic to that given in Example 8.8.1. Let
B(A);, B(A), and B(A)s be the 3-resolution classes of this STS(21), and B(A)* the

partial 3-resolution class. Define

B; = U B(4);, for1<4<3, and
AgA*

B* = | ] B(4)".

AcA*
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Next, define

Bi; = U {{(a, k), (b,h+3), (c;2h+ )} | A= {a,b,c} and h € Z7},
AEA;

for1 <1< (v—3)/6and j € Z7.

Finally, let

B=| |J B:|U U B |us
1<i<3 1<i<(v—3)/6
i€Z7

Brouwer [21] and Griggs, Murphy, and Phelan [72] have established that (Y, B) is an
anti-Pasch STS(7v). It is easy to check that B;, 1 <1 <3,and B;; 1 <¢ < (v — 38)/6,

j € Zy, are 3-resolution classes of (Y, B), and B* is a partial 3-resolution class. O

The (4, 7)-erasure-resilient code we construct in Theorem 8.7.2 has a 1-balanced order-
ing. This follows from the well-known result in design theory concerning the resolvability
of transversal designs produced by the standard finite field construction (see [15]). We

give the proof here for the sake of completeness.

Theorem 8.8.2 The (4, 7)-erasure-resilient code of Theorem 8.7.2 has a 1-balanced order-

ing.

Proof. The set system (X, B) of the code is given by (8.1) and (8.2). This set system is
1-resolvable, with 1-resolution classes {{(a,0), (5,1),(a+ 5,2), (a+ 2b,38)} | a4 3b = (},
for ¢ € GF(q). _ O
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8.9 Complexity of Code Construction

One of the most important issues associated with any family of codes is the question of
how hard it is to encode and decode in the family [12, 125, 126].

The erasure-resilient codes we consider are systematic binary linear codes. All sys-
tematic binary linear codes have an extremely simple encoding procedure. Suppose
H = [C'- | I] is the parity-check matri.x- of such a code. Then the encoding of a (row)
vector x € {0,1}" is the vector (x | xC7). The decoding of erasure-resilient codes is dis-
cussed at length by Hellerstein et al. [79]. It is straightforward to see that both encoding
and decoding of erasure-resilient codes can be carried out efficiently.

It has been pointed out by Bassalygo, Zyablov, and Pinsker [12] that in addition to
considering the complexity of encoding and decoding procedures, we should also examine
the complexity of building the encoding and decoding software and hardware. It is clear
that this reduces to the complexity of constructing the parity-check matrices or their
associated set systems. For the remainder of this section, we study the complexity of
constructing the erasure-resilient codes described in this thesis. The model of computation
we adopt is the unit-cost random access machine (RAM) (see [2]). The more realistic bit-
cost RAM model can also be used, but this introduces only a polylogarithmic factor in

our results.

8.9.1 Generating Anti-Pasch Steiner Triple Systems

Anti-Pasch Steiner triple systems are set systems associated with optimal (3, [)-erasure-
resilient codes, for I = 4 and 5. In this section, we consider the construction of anti-Pasch
STS(v), where v = 3 (mod 6). Our aim is to design an efficient algorithm which on input
v = 3 (mod 6), outputs the blocks of an anti-Pasch STS(v). We have to be careful here

with the meaning of the word “efficient”. The size of the input is O(log v) and the output
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anti-Pasch-STS(v)

if v # 0 (mod 7) then
return the blocks obtained by applying Lemma 8.8.2;

else if v = 21 then
return the blocks in Example 8.8.1;

else
(X, B) = anti-Pasch-STS{v/7);
with (X, B), return the blocks given in the proof of Theorem 8.8.1;

Figure 8.8: Algorithm for generating anti-Pasch STS(v), v = 3 (mod 6).

consists of v(v — 1)/6 blocks, which has size exponential in the size of the input. Hence,
we say that an algorithm is “efficient” if its running time is polynomial in the size of
its output. Any algorithm for constructing anti-Pasch STS(v) must output v(v — 1)/2
numbers in Z,, since each block contains precisely three elements, and there are exactly
v(v — 1) /6 blocks. It follows that any algorithm must take time (v?). We describe in

Figure 8.8 an algorithm which achieves O(v?) time.

Theorem 8.9.1 Algorithm anti-Pasch-STS given in Figure 8.8 outputs the blocks of an
anti-Pasch STS(v) in O(v?) time.

Proof. Correctness of the algorithm follows from Lemma 8.8.2 and Theorem 8.8.1. Let
T(v) denote the running time of the algorithm on input v. If v # 0 (mod 7), we can
efficiently determine 2~! in Z, /s using the extended Euclidean algorithm. An additional
O(v?) additions and multiplications in Z, 3 suffice to construct all the required blocks.

Hence T'(v) = O(v?) when v # 0 (mod 7). If v = 0 (mod 7), we have the recurrence

T()=T (3) +0@?),
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which also gives T'(v) = O(v?) by an easy induction. m]

It is interesting to point out that it is only recently that Colbourn [38] began a study

of complexity issues related to the construction of combinatorial designs.

8.9.2 Generating (4,!)-Erasure-Resilient Codes

Our goal here is to design an algorithm that on input ¢, outputs the blocks of a set system
associated with the (4, [)-erasure-resilient code given by Theorem 8.7.1 and Theorem 8.7.2.
It is easy to see that these set systems can be constructed using a polynomial number (in
g} of arithmetic operations in GF(q). Therefore, the main problem here is the synthesis
of the finite field GF(g). Let ¢ = p*, where p is prime and « € N. Shoup [131] gave an
algorithm for synthesizing finite fields with a running time of O(y/p(a+1ogp)°™). This
time bound is not polynomial in the size of g but is polynomial in the size of the output
(which is at least Q(g?)). It follows that all our erasure-resilient codes can be constructed

efficiently.

8.10 From Erasure-Resilient Codes to Group Testing

We consider the k-RESTRICTED NONADAPTIVE EXACT IDENTIFICATION PARITY

PROBLEM(r). Specializing Lemma 4.2.2 to MOD,, test functions gives the following.

Lemma 8.10.1 Let (X,r, f,II) be a group testing problem with the MOD, test function
and the exact identification criterion. A set system (Y, B) is the dual system of a nonadap-
tive algorithm for (X, 7, f,IT) if and only if the following condition holds. For any blocks

A1, Az, ..., A € Band By, B,,...,By € B, where a < r and b < r, we have

A AAA - AA, # BiAByA ---AB;,
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unless {41, A, ..., A} = {B1,Ba, ..., Bs}.

We call a set system satisfying the condition of Lemma 8.10.1 an r-difference-free set
system. Let d(n,k,r) denote the maximum number of blocks in an r-difference-free
k-uniform set system of order ». No previous results on nonadaptive algorithms for
the k-RESTRICTED NONADAPTIVE EXACT IDENTIFICATION PARITY PROBLEM(7) or 7-
difference-free k-uniform set systefns are known, although some results have been ob-
tained by Chang, Hwang, and Weng [31] for the sequential case. In this section, we
show how erasure-resilient codes can be used to construct r-difference-free k-uniform set
systems, and hence nonadaptive algorithms for the k-RESTRICTED NONADAPTIVE EXACT

IDENTIFICATION PARITY PROBLEM(7).

Theorem 8.10.1 If there exists an [n,c,k,[]-erasure-resilient code, then there exists

an |l/2]-difference-free k-uniform set system of order ¢ having n blocks.

Proof. Let (X,.A) be the set system of an [n, ¢, k, []-erasure-resilient code. We claim that
(X,A) is |1/2]-difference-free. Suppose not. Then there exist blocks A, A,, ... VA €A
and By, Bs,...,By € A, where a < |1/2], b < |1/2], such that

A]_AAZA . 'AAa == B]_ABzA . 'AB(,.
This gives
[A1AAZA -+ - AAZABIAB>A -- - ABy| = 0.

Since a + b < I, this contradicts the fact that (X, A) is the set system of a (k, [)-erasure-

resilient code. ) O
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Corollary 8.10.1 let k& and » be positive integers such that &k > r.  Then
d(n, k,r) > QnE-1)+1/4),

Proof. Follows from the codes obtained from expanders in Corollary 8.5.1. a

We can also determine the order of d{n, 3, 2) exactly.

Theorem 8.10.2 d(n, 3,2) = O(n?).

Proof. There exist [¢?/6 — O(c), ¢, 3, 4]-erasure-resilient codes (Lemma 8.6.4). Hence, by
Theorem 8.10.1, d(n, 3, 2) > n?/6 ~ O(n).

The upper bound can be proven using the same argument in [62] for weakly union-
free 3-uniform set systems. We give the proof here for completeness. Let (X, A) be any
2-difference-free 3-uniform set system. Let us define, for B € (sz), T(B) = {¢ € X |

BU{z} € A}. Forevery7,0< i< n—2, let

e o ()=

Let g; = |G;|. Clearly, {Go,G1,-..,Gn—2} is a partition of (}2() Thus, we have

f‘z‘:zgi = (Z) (8.3)

=0
Counting the number of pairs {B, A) such that B € (‘g), A€ A, and B C A, in two ways,
we obtain

n—2

D igi = 3|Al. _ (8.4)

1=0
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‘We claim that

(N>

Suppose not. Let {z,2'}, ¢ # z', belong to the intersection. Then 4; = B U {z},
A, = Bu{z'}, A3 = B'U{z}, Ay = B'U{z'} are four blocks of A. But A;Ad,; = A3AA,,

a contradiction. Hence, we have

5 (o 2)

Adding (8.3) to (8.5) gives

which implies
n—2 n—2 .
K]
EZ,-}-E 1+()—i) ; < n{n—1). 8.6
=0 ! =0 ( 2 s ( ) ( )

The first term of (8.6) is just 3|A| by (8.4), while the second is nonnegative. Thus,
14| < n(n—1)/3.

This completes the proof. a

8.11 Summary

In this chapter, we have considered the construction of erasure-resilient codes for increas-
ing the reliability of large disk arrays. We adopt a set systems approach different from

those considered previously. As a result, we have at our disposal many tools from design
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theory, which enabled us to construct some classes of erasure-resilient codes better than
any known. It is also observed that previous results in erasure-resilient codes follow easily
or even trivially from existing results in design theory. This suggests that perhaps the
approach considered here is the natural one.

We close this chapter with a conjecture.

Conjecture 8.11.1 For any integer k > 2, we have F(c,k,l) = O(nFt1=UI/21), for all 1
such that £ <1< 2k—1.

The 2d-parity code constructed in [79] shows that Conjecture 8.11.1 holds when &k = 2.

Our work in this chapter shows that Conjecture 8.11.1 is true for & = 3 and 4.



CHAPTER 9

Frameproof Codes for Digital Fingerprinting

A procedure, called fingerprinting, commonly practiced by suppliers is to mark their
products with an identifier, called a fingerprint, before distributing the products to the

users. By fingerprinting, it is hoped that the following two objectives can be met:
(i) products can be distinguished; and
(ii) a product can be traced back to its user.

Condition (ii} discourages users from unauthorized use of the products. So it is the
wish of the users to destroy the fingerprints, while the supplier tries to prevent this from
happening. Fingerprinting has been applied to a diverse spectrum of objects, including
consumer goods, advertisements, explosives, mathematical tables, and maps [150]. For
digital products, such as computer software or data, the difficulty in designing fingerprints
is immense, since digital data can be processed and manipulated easily. For example, two
or more users can compare their digital data and deduce that the fingerprints are where
their copies differ. If the fingerprints are not carefully designed, it is also possible for

a coalition of users to generate new fingerprints, allowing them to frame other users of
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unauthorized actions. The goal of the supplier is to produce undetectable and unalterable
fingerprints.

The problem discussed above is first studied by Boneh and Shaw [19], who showed
that certain codes, known as frameproof codes, can be used to solve the problem. The
combinatorics of frameproof codes is further investigated by Stinson and Wei [142], who
observe the equivalence to a certain Turdn-type problem. The purpose of this chapter is

to establish several improved bounds for frameproof codes.

9.1 Technical Preliminaries

Let D € {0,1}¢ be a piece of binary digital data, which is to be made available to m
users. A fingerprint, w(®) € {0,1}", is generated for user 4, 1 < ¢ < m. The fingerprinted
data f(D,w(?) is then distributed to user 4, where f denotes the function performing
the fingerprinting process. Owing to space limitations, it is not possible for us to survey
the various techniques used for incorporating fingerprints into digital data. We refer the
interested reader to [20, 150] for more information. We should point out, however, that
the only information we obtain from two fingerprinted data f(D,w®) and f(D, w(?) is
exactly the information we would have obtained from w() and w{?), This gives rise to

the first of the following three properties that a fingerprinted data should satisfy.

(i) Two users can detect the bit positions in which their respective fingerprints defer,

and nothing else.
(ii) A user cannot change an undetected bit without rendering the data useless.
(iif) Any detected bit can be changed, or made unreadable.

Asin [19], we assume that methods exist to produce fingerprinted data satisfying the three

properties above. With this assumption, it is obvious that if users do not collude, then
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assigning a unique fingerprint to each user would enable us to detect any unauthorized
use. This is also true if users have no knowledge of the set of all fingerprints. In reality,
we have to worry about collusions, as well as the possibility that the set of all fingerprints

is known to the users.

Definition 9.1.1 Let w1, w(®, .. w(™ ¢ {0,1}*and C C {1,2,..., m}. Forie {1,
2, ..., n}, bit position i is said to be undetectable for C' if I{ng) | 7 € C} = 1. Define

U{(C) to be the set of undetectable bit positions for C.

Intuitively, a bit position is undetectable for a coalition C of users if the fingerprints

assigned to users in C' all agree in that position.

Definition 9.1.2 Let T' = {w(),w(® .. w(™} C {0,1}" and C a coalition of users.

The feasible set of C' is
F(C,T) = {w e {0,1}" ‘ wlyc) = whly(g) forall i c}.

The feasible set is the set of all possible vectors that match the undetected bits of C.
Hence, the coalition C can only create a piece of data whose fingerprint lies in F(C,T').
It follows that a user (outside the coalition C) can be framed by C if and only if the
fingerprint of his piece of data is in F(C,I') \ {w( | 5 € C}. The desire for this not to

happen motivates the following definition.

Definition 9.1.3 Let T' C {0,1}". We call ' an r-frameproof code of length n if for every
W C T such that |W| < r, we have F(W,T)NT = W. The elements of T are called

codewords.
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9.2 Bounds on Frameproof Codes

The problem of designing frameproof codes is to construct for any given 7, a family of
r-frameproof codes having as high a rate as possible. The observation that this problem

is equivalent to a Turdn-type problem is made recently by Stinson and Wei [142].

Definition 9.2.1 A set system (X, .A) is r-frameproof if there do not exist 7 41 blocks Ay,

Ag, ..., A—r-}-l € A such that

hAi gAr+1 g LTJAil

=1 i=1

unless Arq € {41, Ag, ..., Ar}

Theorem 9.2.1 (Stinson and Wei [142]) There exists an r-frameproof code of length
n having m codewords if and only if there exists an r-frameproof set system of order n, having

m blocks.

Proof. Let M be the matrix whose columns are codewords of an r-frameproof code.

Then M is the point-block incidence matrix of an r-frameproof set system. (]

Let f(n,k,r) denote the maximum number of blocks in an r-frameproof k-uniform

set system of order n.

Theorem 9.2.2 (Boneh and Shaw [19]) For any r € N, there exists a family of -

frameproof codes with rate at least 1/1672.

The bound in Theorem 9.2.2 was established using a probabilistic construction. For
constant weight frameproof codes (or frameproof uniform set systems), we have the fol-

lowing result of Stinson and Wei [142].
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Theorem 9.2.3 (Stinson and Wei [142]) For any n,k € N, we have f(n, k, k—1) >

D(n,k,2).

It is trivial to see that any r-cover-free set system is r-frameproof. Therefore, Theorem
9.2.3 is a simple corollary of Lemma 5.1.1. Indeed, many known bounds for r-cover-free
set systems already supersede Theorem 9.2.2. It appears that neither Boneh and Shaw
nor Stinson and Wei are aware of the work on r-cover-free set systems carried out by t};e
data communications community [27, 50, 51, 52, 83, 107]. The r-cover-free set systems

often appear under the guise of superimposed codes, which are introduced by Kautz and

Singleton [83].

Definition 9.2.2 A set § C {0,1}" is an r-superimposed code of length n if there are no
7 + 1 codewords S1, So,.. . le+1 € 8 with the property that Sr+1 < S;1VvS5V---Vv5,

unless Sry1 € {51,S52,...,S5-}

It is easy to see that a set of {0,1}-vectors is an r-superimposed code if and only if
the supports of these vectors form an r-cover-free set system. It is known long ago (see
[88, 123]) that there exists a family of r-superimposed codes of rate ¢/r?, for some absolute
constant ¢. Busschbach [27] (see also [48, 134]) gave a family of r-superimposed codes
of rate {1 — o(1))/3(r -+ 1)2. This was improved by Erdds, Frankl, and Fiiredi [58], and
Hwang and S6s [81] to a rate of log(1 + 1/4r%). Nguyen and Zeisel [107] obtained an
even better rate of (0.6617 — 0(1))/(r+ 1)%. The best lower bound currently known is the
following result of Dyachkov, Rykov, and Rashad [52].

Theorem 9.2.4 (Dyachkov, Rykov, and Rashad [52]) Forany r € N, there exists a

family of r-superimposed code with rate (1 — o(1))A,/r, where

Ao = e, max (1~ Quogt—07)+ 7 (Quos & + (1- Q)leg =5 ).

0<Q<1 0<g<1
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Theorem 9.2.4 implies the existence of a family of r-frameproof codes of length n with
In 2

a rate of (1 — o(1))4,/r. It is known that rll}rgo A = - [62]. So the improvement on
Theorem 9.2.2 is quite drastic.

However, the less stringent defining conditions of an r-frameproof set system permit
us to establish results better than those implied by r-cover-free set systems. In the
next section, we give an improved bound on 2-frameproof codes using a probabilistic

construction.

9.3 A Probabilistic Construction for 2-Frameproof Codes

Definition 9.3.1 An r-frameproof array of order n and size m is an n X m matrix with
entries from {0, 1} such that every n x (r + 1) submatrix L of M has the property that for

every i € {1,2,...,7+ 1}, either e; or 1 — e; appears as a row of L.

We begin with the following property of frameproof codes.

Lemma 9.3.1 The existence of an r-frameproof set system of order n with m blocks is

equivalent to the existence of an r-frameproof array of order n and size m.

Proof. Let M be the point-block incidence matrix of an r-frameproof set system. It is

straightforward to verify that M is an r-frameproof array. a

For any fixed ¢ > 0, let M be a 2n X (1 + €)m matrix? with entries from {0,1}
constructed as follows. Each column of M is a vector selected uniformly at random from
the set of all vectors in {0,1}?" of weight n. Let C = {1,2,... , (14 €)m} be the set of
column indices of M. For C ¢ (g), define M(C) to be the 2n x 3 submatrix of M with

*Strictly speaking, we should write [(1 4 €)m] instead of (1 + €}m. However, this only introduces
notational burden, and does not affect the results in any way. If the reader is uncomfortable, he/she can
replace all occurrence of em with [em].
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columns in C. Further define the indicator variables

0, if M(C) contains e; or 1 — e; as a row;

X(C,7) =
1, otherwise.

The sum X = Z Z X (C,1), is an upper bound on the number of subsets C' € (g)
cepEE
for which M(C) contains neither e; nor 1 — e;, for at least one i € {1,2, 3}.

For any C € (g) and ¢ € {1,2, 3}, we have

HI)

Pr{X(C,i) = 1] = ¥=2 .
()

To see this, suppose without loss of generality that C' = {1,2,3} and i = 3. Permute

(9.1)

the rows of M(C), if necessary, so that its first column consists of n zeroes followed by
ones. The total number of choices for the other 2 columns is (2,:‘)2. Let = be the number
of common zeroes in columns one and two, and hence also the number of common ones in
columns one and two. Then X (C,i) = 1 if and only if the zeroes in column 3 are disjoint

from the common ones, and the ones in column 3 are disjoint from the common zeroes.

) N G

This event can happen in ( ) ways.

Asymptotically, the sum (9.1) is dominated by the terms near u = an. Let H{z) =
—zlogz — (1 - z)log(l — z), for 0 < = < 1, be the binary entropy function. Using the

well-known approximation (see, for example, [108]) (o:;) = onH(a}+0(logn) we have

Pr[X(C,i)=1]= 92n(#(a)—1~a)+O0(logn)
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The minimum of #(a) — 1 ~ a occurs at & = 1/3. Hence,

2n
PI‘[X(C, 1,) = 1] < 22n10g%+0(10gn) -0 ((z) ) .

It follows that

E[X]< O (m3 (g) zn) . (9.2)

Now choose m to be the largest integer so that E[X] < em. It is easy to see from (9.2)

that it suffices to choose

-a((3))

It follows that, for m taking the value in (9.3), there exists a 2n x (1 + €)m matrix
with entries from {0, 1}, in which there are at most e 2n x 3 submatrices that contain
neither e; nor 1 —e; as a row, for at least one 7 € {1, 2, 3}. Hence, by deleting at most em

columns from this matrix, we obtain a 2-frameproof array of order 2n and size at least

20 (3)):

m. This gives

or

smaza((%)). (9.4)

We summarize the foregoing results in the theorem below.

Theorem 9.3.1 There exists a family of 2-frameproof codes with rate (1—0(1)) log(2/+/3).
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The family of 2-frameproof codes supplied by Theorem 9.2.2 has a rate of 1/64. So

Theorem 9.3.1 provides a substantial improvement.

9.4 Explicit Constructions for Superimposed and Frame-

proof Codes

In this section, we discuss constrl;ctivity issues of superimposed codes and frameproof
codes. A family of codes {€;}$2, is said to be constructiveif for every C; = {e1,¢z,...,€m},
there exists an algorithm that on every input j, where 1 < 7 < m, outputs the codeword
c; in time that is polynomial in terms of the length of C;. So all codes constructed us-
ing probabilistic methods are not constructive, since the corresponding algorithms may
not even halt. It is possible, however, to derandomized any such algorithm to give one
that is guaranteed to halt, by sampling exhaustively the underlying sample spaces. Un-
fortunately, the sample spaces used in probabilistic constructions of codes often have
exponential size, rendering the codes not constructive.

The frameproof codes of Theorem 9.2.2 and Theorem 9.3.1 are both not constructive.
The superimposed codes of Busschbach [27], Erdés, Frankl and Fiiredi [58], Hwang and
S6s [81], Nguyen and Zeisel [107], and Dyachkov, Rykov, and Rashad [52], mentioned in
Section 9.2 all involved probabilistic arguments at some point, and is therefore also not
constructive. Hwang and Sés [81] actually gave a greedy algorithm for constructing the
codes, but the algorithm involves an exponential size search space, and can be viewed
also as a direct derandomization of the construction of Erdds, Frankl and Fiiredi [58].

In applications, it is desirable that constructive superimposed codes and frameproof
codes be available. The frameproof codes in Theorem 9.2.3 are constructive but have

rather poor rates. Boneh and Shaw provided an explicit construction for a family of

frameproof codes but the rate of this family is not even bounded away from zero.
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Theorem 9.4.1 (Boneh and Shaw [19]) For any r € N, there exists an r-frameproof

code of length n with 2¥™/" codewords.

Stinson and Wei [142] has given a better explicit construction based on orthogonal arrays,

but the rate of the code family is still not bounded away from zero.

Theorem 9.4.2 (Stinson and Wei [142]) For any prime power ¢ and any integer £ < g,

there exists a |g/(t — 1) [-frameproof code of length ¢ + ¢ having ¢* codewords.

A family of r-superimposed codes of similar rate can be constructed using Reed-Solomon
codes, or polynomial codes in general [58].

To our knowledge, there is also no known constructive families of superimposed codes
whose rate is bounded away from zero. We show in this section that for all » € N,
there exists a constructive family of r-superimposed codes whose rate is bounded away
from zero. This also implies for every » € N, the existence of a constructive family of
r-frameproof codes whose rate is bounded away from zero. We make use of the following

composition construction of Kautz and Singleton [83].

Lemma 9.4.1 (Kautz and Singleton [83]) If there exist
(i) an r-superimposed code, T', of length n having ¢ codewords, and

(i) a g-ary code, C, of length n/, where n’ > 7, with relative minimum distance at least

1 —1/7, having N codewords,
then there exists an r-superimposed code of length nn’ having N codewords.

Proof. Let T' = {w(l),w(z), - ,W(Q)}. For each codeword v = (v1,vs,...,¥) € C, let
u) = (wl) w2 wl)). The set {ul) | v € @} is an r-superimposed code of

length nn' having N codewords. a
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Boneh and Shaw [19] have the same construction for r-frameproof codes.
Let Hy(z) = zlog,(g — 1) — zlog,z — (1 — 2)logy(1 —2), 0 <= <1—1/g. The

following is a well-known bound in coding theory.

Theorem 9.4.3 (Zyablov [159]) For any é € [0,1— 1/g), there exists a family of g-ary

codes of relative minimum distance § and of rate R > Rz(§), where

é

Rz(6) = 1~ 1——.

20) =, max (1-7Ha() (1- )
We have the following approximation of Rz(d) for § near 1 —1/g.

Lemma 9.4.2 Let ¢ > 2 and € > 0 be fixed. Then for ¢ sufficiently small, we have

R (1—1—z N S Y (9.5)
Z q ~ 16(g—1)%Ing '

Proof. We have

Rz<1—$—m)2(1—7{g(1——%—§>) (1—1:2—__2. (9.6)

The series expansion of the right hand side in (9.6), with respect to z, about the point

zero, is
3 Ryl
q 23— (g —5)q 2t
16(¢ — 1)21ng 96(¢ —1)3Ing
which gives the required result. |

We need an explicit construction of Alon, Bruck, Naor, Naor, and Roth [6].
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Theorem 9.4.4 (Alon et al. [6]) Let g be a prime power. Then there exists a construc-
tive family of g-ary codes of relative minimum distance § and rate at least yRz(4d), where

v =1/(22 + 10/5).

Theorem 9.4.5 For any » € N, there exists a constructive family of r-superimposed codes

whose rate is bounded away from zero.

Proof. We use Lemma 9.4.1 to produce such a family of r-superimposed codes. Let
7 € N, and g be the smallest prime power at least 7 + 1. The rows of a ¢ X ¢ identity
matrix give an r-superimposed code of length ¢ having g codewords. Take this as our
first ingredient for Lemma 9.4.1. We now give the second ingredient required by Lemma
9.4.1.

Let € > 0. Choose z < 1/g(g— 1) sufficiently small so that (9.5) holds. Theorem 9.4.4
gives an explicit family of g-ary codes of relative minimum distance 1 — 1/g — = and rate
greater than yRz(1 — 1/q — ). Therefore, the number of codewords in a code of length

7o in this family is at least

1

g (@) /18(a=1)* Ing—e) — (4m)

for some constant a. Now,

1 1 1 1 > 1 1

g—1~ r’

So we can take this family of codes as the second ingredient for Lemma 9.4.1. It follows
that there is a family of 7-superimposed codes for which each code in this family of length
gn has at least Q2(a™) codewords. It follows that this family of r-superimposed codes has

rate bounded away from zero.

The constructivity of this construction follows from that of the composition construc-
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tion (Lemma 9.4.1) and the construction of Alon et al. {Theorem 9.4.4). o

Corollary 9.4.1 For any 7 € N, there exists a constructive family of r-frameproof codes

whose rate is bounded away from zero.

The family of codes in Theorem 9.4.5 is in fact explicit since the construction of Alon
et al. (Lemma 9.4.4) is explicit. The constant a in the proof of Theorem 9.4.5 is probably
very bad. But Theorem 9.4.5 and Corollary 9.4.1 appears to be the first explicit families

of r-superimposed codes and r-frameproof codes whose rates are bounded away from zero.

9.5 Remarks

In this chapter, we have given and analyzed a probabilistic construction for 2-frameproof
codes. The bound we obtained with this construction is the best currently known. We
have also established for every r, the first explicit families of r-superimposed codes and 7-
frameproof codes whose rates are bounded away from zero. Frameproof codes are studied

only very recently, and many combinatorial properties remain to be discovered.
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Conclusion

This dissertation examines three problems in computer science that have received much
attention recently. The first is the study of nonadaptive algorithms for different group
testing models. The second is the design of erasure-resilient codes for large disk arrays.
The final problem is that of constructing frameproof codes for fingerprinting of digital
data. All of these problems yield a unified treatment as Turdn-type problems. We ob-
tained new and improved results on several Turdn-type problems that arise from these
applications. These results, when interpreted in the context of group testing, give el-
ther stronger bounds on the test complexity of nonadaptive group testing algorithms, or
characterizations of nonadaptive group testing algorithms with optimal test complexity.
Nonadaptive algorithms for new models of group testing are also obtained. Our results on
the construction of erasure-resilient codes for large disk arrays established many families
of codes with as many codewords as possible (up to a constant factor), having optimal
update penalties. We have also shown how some properties of our erasure-resilient codes,
namely, the existence of a-balanced orderings, can be used to trade the number of code-

words for smaller a-balanced group sizes. In another connection, we illustrated that
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erasure-resilient codes can be used to construct nonadaptive algorithms for group testing
problems in which the test function used is the MOD, test function. Our contribution in
frameproof codes is the establishment of a better bound for 2-frameproof codes, as well
as the exhibition of the first explicit family of r-frameproof codes whose rate is bounded

away from zero.

The most exciting aspect of this research® is the serendipitous discovery that many
mathematical problems (Turdn-type problems in particular), studied long and not so long
ago by mathematicians purely for reasons of aesthetics, are equivalent to problems faced
by designers of erasure-resilient codes in practice. By this, we do not mean taking a
mathematical problem and trying to come up with a problem corresponding to it that is
perhaps practical. Such an approach, which unfortunately is quite pervasive, often gives
artificial problems that never actually occur in real life. Rather, Hellerstein et al. [79]
begin with the problem of designing erasure-resilient codes for large disk arrays, working
their way through the requirements of the codes, and arrive at certain properties which
must be possessed by the parity-check matrices. We carry this step further by examining
the set systems corresponding to these parity-check matrices. The result is the discovery
that some of what are desired are combinatorial designs that have been studied for quite
some time without any apparent applications in mind. The same can be said about the
work of Hwang and Sés [81] who demonstrated that r-union-free set systems correspond

to nonadaptive algorithms for some group testing models.

3This opinion is expressed by C. J. Colbowrn in his talk “Erasure Codes”, presented at the University
of Toronto Department of Computer Sciences Spring Colloquia on February 13, 1996 and in the Tutte
Colloquinm at the University of Waterloo on February 16, 1996. Part of what follows is a paraphrase of
excerpts from his talk. ’
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10.1 Open Problems

We list two categories of open problems. The first, which is contained in Section 10.1.1,
concerns group testing. The second, in Section 10.1.2 concerns erasure-resilient codes.
We do not attempt to suggest any open problems here for frameproof codes, since the

area is still in its infancy, and almost any problem one can conceive is open.

10.1.1 Group Testing

For a given r, let us define

m(r) = min{n | there exists an r-cover-free set system of order n with at least n +1 blocks}.
Erdos, Frankl, and Fiiredi [68] raised the following open problem.

m(r)

Open Problem 10.1.1 Is lim =1 or even m(r) > (7 +1)%?

r—00 r

The importance of this problerr‘l for group testing stems from the following obser-
vation. Consider an instance of UNRESTRICTED NONADAPTIVE EXACT IDENTIFICATION
PROBLEM(7), (X, 7, f, I). If we have fewer than m(r) elements to test, that is, [ X| < m(r),
then by the definition of m(r), any nonadaptive algorithm based on an r-cover-free set
system must use at least | X| tests. Hence, we can do no better than the naive algorithm
which tests every element individually. Therefore, m(r) determines when nonadaptive
algorithms based on r-cover-free set systems become useful. Erdds, Frankl, and Fiiredi

claimed (see [58]) that

(14 0(1))2r? < mr) < 2+ ofr),
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but no proof for the lower bound is published. The upper bound can be obtained from a
2-(¢?, ¢, 1) design (an affine plane of order g), where g is the smallest prime power at least
r+1. Erdés, Frankl, and Fiiredi (see [58]) also claimed to have shown that m(r) > (r+1)?
for » < 3. Again, no proof appears in print.

The next problem is suggested by our results in Chapter 5.

Open Problem 10.1.2 s it true that for every r, there is a constant N, depending only
on 7, such that for all n > N, an r-cover-free (7 + 1)-uniform set system of order n is optimal

if and only if it is an optimal 2-(n,7 + 1, 1) packing?

We have made substantial progress on the existence problem for weakly union-free

twofold triple systems. It would be interesting to improve our results.

Open Problem 10.1.3 Determine the existence of weakly union-free TTS(n) for those

values of n not decided by Theorem 6.6.3.

In particular, does there exist a weakly union-free TTS(12)?

10.1.2 Erasure-Resilient Codes

In view of the equivalence between (3, 5)-erasure-resilient codes and anti-Pasch 2-(%, 3,1)

packings, we propose the following broblems.

Open Problem 10.1.4 Determine those n for which there exists an anti-Pasch optimal

2-(n, 3,1) packing.

Open Problem 10.1.5 Determine those n = 3 (mod 6) for which there exists an anti-

Pasch Kirkman triple system of order n.
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Let g be a prime power and (X, A) be the set system defined as follows:

X = GF(q) x Zx, and

A = {{(a,0), (5,1), (a+,2),(a+2b,3),...,(a+ (k- 2)b,k - 1)} | a, b € GF(g)}-

It is easy to see that (X, {GF(q) x {i} | i € Zi},.A) is a TD(k, ).

Open Problem 10.1.6 Is the set system (X, A) defined above that of a [¢%, kg, k, 2k —1]-

erasure-resilient code?

A positive answer to Open Problem 10.1.6 would imply that
L 5
F(e, k,2k—1) > = - O(e),

which compares favourably with the upper bound F(c, k,2k—1) < 'k(kl—l)cz of Theorem

8.5.2. We have shown that the answer to Open Problem 10.1.6 is yes if k = 3 (this is
implicit in the proof of Lemma 8.7.3) or k = 4 (Theorem 8.7.2). A more difficult problem
is:

Open Problem 10.1.7 Prove that

Flc, k,1) = ©(cH1-1/2]), (10.1)

An even harder problem is to determine the constant factor in (10.1). We know that it

is 1/6 for k = 3 (and any ! < 5), but we know nothing for k > 4.
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10.2 Future Directions

Sequential and nonadaptive algorithms for group testing lie at the two extreme ends
of a spectrum of algorithms. Sequential algorithms are not limited by the number of
steps they take, but are restricted to only one processor. Nonadaptive algorithms, on
the other hand, must obtain all necessary information in one step, but can have any
number of processors. The goal is to ‘minimize the unrestricted resource, that is the
number of steps for sequential algorithms, and the number of processors for nonadaptive
algorithms. We can define an s-step group testing algorithm to be one that is limited to
s steps. The problem then is to design, for any given s, an s-step algorithm that finds the
target set using the minimum possible total number of tests. Such algorithms have been
considered in other areas of computer science. For example, the problem of designing
s-step algorithms for sorting (called sorting in rounds), has been studied in [5, 18, 73].

Two-step algorithms have been considered before for group testing as well [25]. How-
ever, the concept there is different. In [25], pools are designed probabilistically for the first
step. The second step is used to test individually those elements for which membership
in the target set cannot be decided after the first step.

Other important issues in group testing that demand further study are given in 2
recent article written by Hwang [80] for CADCOM (Committee for the Advancement of
Discrete and Combinatorial Mathematics).

Quite recently, Buhrman, Hemaspaandra, and Longpré [26] have used r-cover-free set
systems to show that any sparse set is conjunctive truth-table reducible to a tally set,
thus refuting two conjectures of Ko [86] in complexity theory. Chaudhuri and Radhakr-
ishnan [33] have also used r-cover-free set systems to derive new lower bounds for the
circuit complexity of threshold functions. We are hopeful that more intimate connections

between Turén-type problems and other problems in computer science will be uncovered.



APPENDIX A

Packing Pairs by Quintuples: n = 19 (mod 20)

Concerning the determination of D(n, 5, 2), there has not been any explicit work done on
the case n = 19 (mod 20). The reason is that no example of a 2-(n,5,1) packing with
U(n,5,2) blocks is known in this case. For our application, the asymptotic existence of
2-(n, 5,1) packings with at least U(n,5,2) — o(n) blocks suffices (see Section 5.3.2). In
this appendix, we prove that there is a constant a so that D(n,5,2) > U(n,5,2) — a for
all sufficiently large n = 19 (mod 20). We assume knowledge of various designs defined

in Section 6.6.

Definition A.0.1 Let n and m be nonnegative integers. A maximum incomplete packing,
denoted by MIP(v,w), is a triple (X,Y,A), where |[X| = n, Y C X with |[Y| = m, and
(X, A) is a 5-uniform set system with U(n,5,2) — U(m, 5, 2) blocks so that,

(i) each 2-subset of X not contained in Y is contained in at most one block of A, and

(i1) no block contains any 2-subset of Y.

The concept of maximum incomplete packings originated in the work of Yin {156]. The

following lemmata can be found in the work of Mullin and Yin [105].
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Lemma A.0.1 (Mullin and Yin [105]) Suppose that there exist a {5}-GDD of type

9192---9s and an MIP(q¢+gi,q) for each 4, 1 <i<s—1. Then there exists an

s—1
MIP (q + Zgix Q+gs) .

=1
Lemma A.0.2 (Mullin and Yin [105]) Suppose that there exists a TD(6,%) and 0 <

u < . Then an MIP(20¢ + 4u + ¢, 4u + g) exists if an MIP(4t +- g, q) exists.

Lemma A.0.8 (Mullin and Yin [105]) There exists an MIP(79,19).

We also use a recent result of Yin et al. [158].
Theorem A.0.1 (Yin et al. [158]) There exists a {5}-GDD of type 60° for all s > 5.

Corollary A.0.1 There exists an MIP{60s 4 19, 19) for all s > 5.

Proof. Let s > 5. Since there is a {5}-GDD of type 60°0* (Theorem A.0.1) and an
MIP(19 + 60, 19) (Lemma A.0.3), Lemma A.0.1 implies the existence of an MIP(60s +
19,19). O

The following is the main result of this appendix.

Theorem A.0.2 For all n > 319 such that n = 19 (mod 20), there exists an MIP(n,m),

where m = 19 (mod 20) and 19 < m < 299.

Proof. Every n > 319, n = 19 (mod 20), can be written in the form 20t +4u+19, where
t =0 (mod 15), and 0 < » < 70, u = 0 (mod 5). By Corollary A.0.1, there exists an
MIP (4t 4-19,19). Since there exists a TD(6, ) for all positive £ = 0 (mod 15) [1], it then

follows from Lemma A.0.2 that there exists an MIP(n, 4u + 19). O

Corollary A.0.2 There exists a constant a such that for all n > 319, n = 19 {mod 20),

D(n,5,2) > U(n,5,2) ~ a.
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Proof. For all n > 319, n = 19 (mod 20), we have an MIP(n,m), where m = 19
(mod 20) and 19 < m < 299. This MIP(n,m) is a 2-(n,5,1) packing having at least
U(n,5,2) — U(299, 5, 2) blocks. |

Stronger results can be obtained but Corollary A.0.2 suffices for our purpose.



APPENDIX B

Enumeration of A Class of Twofold Triple

Systems of Order 12

In this appendix, we determine all TTS(12) having an automorphism group whose order

is divisible by an odd prime.

B.1 Structure of Automorphism Groups

Let I be the full automorphism group of a TTS(12). We develop some facts about the

structure of I'.

Lemma B.1.1 Let o be an automorphism of a TTS(12), where a has prime order p > 3.

Then « fixes 0 or 1 point.

Proof: Let (X,B) be a TTS(12) with o as an automorphism, and F' the set of fixed
points of a. Let B; = {B € B | |BNF| =1}, 0 < ¢ < 3, and let b; = |B;|. Henceforth,
we assume that f = |F| > 2, since if f < 1, then the lemma easily holds. So let A € (1;)

and let B be any block in B such that A C B. Then the three blocks B, a(B), and
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a?(B) all contain A, which is impossible unless B C F. Hence, by = 0 and (F, B3) is
a TTS(f). The necessary conditions for the existence of a TTS(f) with f < 12 require

that f =4,6,7,9, or 10. But to cover pairs from X \ F' we need

12 —
3b0+b1:( zf)l

and
b0+b1+b3=44,

“which cannot be satisfied for any f € {4,6,7,9,10}. a

Theorem B.1.1 Let p be a prime dividing the order of the automorphism group T of a

TTS(12). Then p € {2, 3,11}. Furthermore, for a € T, we have
(i) « fixes no points if a has order 3, and
(ii) « fixes 1 point if @ has order 11.

Proof: Let o be an automorphism of order p of a TTS(12). If p= 5 or 7, then « fixes f

points, where f € {2,5,7}. Our result then follows from Lemma B.1.1. O

B.2 Enumeration

Having established the structure of I', we proceed to enumerate all TTS(12) having
an automorphism group whose order is divisible by an odd prime. Henceforth, any
TTS(12), (X, B), under consideration has point set X = {0,1,...,9,a,b}. When T
contains an automorphism of order 11, the TTS(12) is 1-rotational and all nonisomorphic

1-rotational TTS(12) have been enumerated by Chee and Royle [34]. There are precisely
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five nonisomorphic 1-rotational T'TS(12). So it remains to examine the case when T’

contains an automorphism « of order three. Without loss of generality, let

and G = (a) <T.

e=(0 1 2)(3 45)6 7 8)9 atb)

From the orbit structure of G on (if), we see that B must consist of two orbits of

length one, and 14 orbits of length three on ()3[) Without loss of generality, the two

orbits of length one are taken to be {0,1,2} and {3,4,5}. The pairs {0,1} and {3,4}

must appear in some other blocks, and thus we can assume that the set of starter blocks

for B contains {0, 1,2}, {3,4,5}, {0,1,%}, and {3,4,«}. Filling in the stars in all possible

ways leads to five nonisomorphic starting configurations which are given below.

starting

configuration A

starting

configuration B

starting

configuration C

starting

configuration D

starting

configuration &

{0,1,2}
{3,4,5}
{0,1,3}
{0, 3,4}

{0,1,2}
{3,4,5}
{0,1,3}
{1,3,4}

{0,1,2}
{3,4,5}
{0,1, 3}
{8,4,6}

{0,1,2}
{3,4,5}
{0,1, 6}
{3,4,6}

{0,1,2}
{3,4,5}
{0,1,6}
{3,4,9}

Beginning with each starting configuration above, we try to complete to a TTS(12) by

adding 12 more starter blocks using a backtracking algorithm. All the TTS(12) con-

structed are subjected to an isomorphism test to sieve out isomorphic designs. This is

carried out with McKay’s Nauty program [99]. The result is that there are precisely 775

nonisomorphic TTS(12) having G as an automorphism group, 36 with starting config-

uration A, 16 with starting configuration B, 540 with starting configuration ¢, 88 with
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starting configuration p, and 95 with starting configuration E. The starter blocks for
these designs are given in Sections B.3.1 through B.3.5. We only list the starter blocks
required to complete the respective starting configurations to a TTS(12). To reduce space
utilization in the tables, we omit braces and commas, and write a set {z,y, z} as zyz.
None of the 1-rotational TTS(12) have an automorphism group whose order is divisible

by three. Consequently, we have the following theorem.

Theorem B.2.1 There are exactly 780 isomorphism classes of TTS(12) admitting an au-

tomorphism group whose order is divisible by an odd prime.

An attempt was made to enumerate all TTS(12) with an automorphism of order two.
In this case, we have about 80 starting configurations to try to complete to a TTS(12).
When run on each of the first few starting configurations we picked, our backtracking

algorithm did not stop even after a week, and we decided to abandon the search.

B.3 Catalogues

B.3.1 Starter Blocks for TTS(12) With Starting Configuration A

Design # Starter Blocks

379 136 378 078 369 069 (6a 38a 23b 07b Oab 3ab
379 136 368 068 069 07a 38a 39a 23b 37b 07b Oab
379 136 368 068 079 37a 06a 39a 23b 07b 38b Oab
379 236 378 078 13a 36a 06a 0%a 08b 06b 39b 38b
379 137 067 368 0839 36a 07a 38a 08b 23b 39b Oab
379 137 368 068 089 23a 07a 39a 09a 36b 07b 38b
379 137 368 078 239 079 36a 06a 08b 05b 38b 3ab
379 137 368 078 089 23a 06a 07a 39a 36b 09b 38b
379 237 067 368 079 13b 36a 06a 3%a 08b 09b 38b
379 237 368 068 13a 06a 07a 39%a 36b 07b 05b 38b
379 378 067 238 13b 089 36a 07a 3%a 08b 36b 09b
379 378 138 078 369 069 089 23a 06a 36b Oab 3ab
379 367 138 068 36a 06a 07a 38a 08b 23b 39b 05b
379 367 138 078 239 069 089 36a 06b 38b Oab 3ab

W 0~ oo W N e
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15 136 378 067 069 37a 389 23a 08a 0%a 36b 07b 38b
16 136 367 067 389 07a 38a 3%a 09a 08b 23b 06b 37b
17 136 368 078 239 069 37a 38a 09a 06b 37b 07b 39b
18 236 378 067 369 13a 089 08a 3%9a 06b 37b 38b Oab
19 236 378 067 365 13a 06a 38a 08a 08b 37b 39b 09b
20 137 378 067 389 36a 07a 08a 3%a 08b 36b 23b 05b
21 137 067 368 239 37a 089 38a 0%a 08b 36b 07b 35b
22 137 368 068 369 079 089 23a 07a 38a 37b 39b Oab
23 137 368 078 37a 089 385 07a 3%a 36b 23b 06b Oab
24 237 378 067 139 369 079 36a 06a 08a 09b 38b 3ab
25 237 368 068 079 13b 37a 389 36a 07a 06b 39b 0%b
26 378 367 238 139 069 089 07a 08a 35a 36b 07b 3ab
27 378 367 238 069 079 13b 36a 08a 3%a 08b 07b 39b
28 378 138 068 239 369 37a 089 092 36b 06b 07b 3ab
29 367 067 138 239 069 089 38a 39a 08b 36b 37b Oab
30 367 238 068 369 13a 07a 38a 08a 37b 07b 39b 05b
31 367 238 078 139 069 079 36a 08a 39%a 37b 38b Oab
32 367 138 068 239 369 089 07a 38a 06b 37b 09b 3ab
33 367 138 068 239 079 37a 389 06a 08b 36b 0Sb 3ab
34 367 138 078 239 369 069 089 38a 06b 37b Oab 3ab
35 238 368 068 139 079 37a 089 07a 35a 36b 37b Oab
36 138 368 078 239 069 37a 089 39a 36b 06b 37b Oab

B.3.2 Starter Blocks for TTS(12) With Starting Configuration B

Design # Starter Blocks
1 379 236 378 068 089 23a 06a 07a 3%a 36b 09b 38b
2 379 236 368 078 069 23a 06a 38a 09a 08b 37b 39b
3 236 378 067 239 37a 0839 06a 38a 08b 36b 39b 0%b
4 236 378 368 069 089 23a 07a 08a 3%a 06b 37b 39b
5 236 378 068 069 37a 389 23a 08a 09a 36b 07b 3%b
6 236 368 068 37a 389 07a 08a 3%a 23b 06b 37b 0%b
7 237 378 067 369 389 36a 07a 08a 23b 06b 09b 3ab
8 237 367 067 089 389 23a 07a 39a 09a 36b 06b 38b
9 237 367 068 239 069 079 36a 38a 07b 39b 38b Oab
10 237 067 368 239 369 089 07a 38a 06b 37b 09b 3ab
11 237 067 078 369 069 389 23a 38a 09a 36b 37b Oab
12 237 368 078 369 06a 07a 38a 3%9a 23b 06b 37b 09Db
13 378 238 068 369 079 089 23a 07a 39a 36b 37b Oab
14 367 238 078 239 079 37a 389 06a 08b 36b 09b 3ab
15 367 238 078 065 37a 389 23a 08a 09a 36b 07b 39b
16 238 368 078 239 37a 089 07a 39a 36b 06b 37b 09D
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B.3.3 Starter Blocks for TTS(12) With Starting Configuration C

Design # Starter Blocks

1 379 037 136 067 239 089 679 23a 06a 09b 38b 3ab
2 379 037 136 067 069 389 23a 08a 67a 23b 0Oab 3ab
3 379 037 136 068 239 079 23a 06a 67a 09b 38b 3ab
4 379 037 136 068 069 389 23a 07a 23b 67b 0ab 3ab
5 379 037 136 068 6795 23a 06a 3%a 09a 23b 07b 38b
6 379 037 136 078 239 069 23a 06a 67b 09b 38b 3ab
7 379 037 136 078 069 679 389 23a 06a 23b 0ab 3ab
8 379 037 136 078 23a 06a 67a 3%a 09a 23b 06b 38b
9 379 037 236 068 139 089 679 23a 06a 09a 38b 3ab
10 379 037 236 068 069 13b 389 23a 09a 08b 67b 3ab
11 379 037 236 068 13b 089 679 23a 06a 39a 09b 38b
12 379 037 236 068 13b 089 23a 67a 3%9a 0%a 06b 38b
13 379 037 236 068 13a 089 679 23a 06a 39b 38b Oab
14 379 037 236 068 13a 679 389 06a 08b 23b Oab 3ab
15 379 037 236 068 13a 23a 06a 09a 08b 67b 39b 38b
16 379 037 236 068 13a 06a 39a 08b 23b 67b 38b 0ab
17 379 037 067 238 139 36a 08a 67a 09a 08b 23b 3ab
18 379 037 067 238 369 13b 089 23a 08a 67a 09b 3ab
19 379 037 067 238 369 13b 089 23a 09a 08b 67b 3ab
20 379 037 067 238 13b 36a 08a 67a 3%a 08b 23b 05b
21 379 037 067 068 239 13b 089 23a 36a 09b 38b 65b
22 379 037 238 068 139 089 679 36a 07a 23b Oab 3ab
23 379 037 238 068 139 36a 07a 09a 08b 23b 67b 3ab
24 375 037 238 068 239 079 13b 36a 67a 08b 09b 3ab
25 379 037 238 068 369 079 13b 089 23a 67a Oab 3ab
26 379 037 238 068 369 13a 08a 67a 23b 07b Oab 3ab
27 379 037 238 068 079 13b 36a 67a 3S%a 08b 23b Oab
28 379 037 238 068 13a 089 23a 07a 67a 36b 39b Oab
29 379 037 238 068 13a 36a 07a 08b 23b 67b 39b Oab
30 379 037 238 078 369 069 13b 089 23a 67b Oab 3ab
31 379 037 238 078 13b 679 36a 06a 39a 08b 23b 09b
32 379 037 238 078 13b 36a 67a 39a 05a 08b 23b 06b
33 379 037 138 068 239 679 36a 06a 08b 23b 09b 3ab
34 379 037 138 068 365 23a 06a 08a 67a 23b 09b 3ab
35 379 037 138 068 069 23a 36a 08a €7a 23b 39b 0Qab
36 379 037 138 068 23a 06a 67a 39a 08%a 08b 36b 23b
37 379 037 368 068 13a 23a 06a 07a 08b 23b 39b 6ab
38 379 037 368 078 239 13a 06a 69a 08b 23b 06b 3ab
39 379 037 068 078 239 13a 36a 69a 23b 06b 38b 0Oab
40 379 136 237 067 039 679 23a 06a 09a 07b 38b 3ab
41 379 136 237 067 239 069 38a 67a 09a 03b 07b 3ab

379 136 237 067 069 389 23a 07a 09%a 03b 67b 3ab

18
[
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43 379 136 237 0867 079 03a 23a 06a 67a 39b 09b 38b
44 379 136 237 067 679 03a 06a 39a 23b 07b 09b 38b
45 379 136 237 067 389 03a 07a 67a 23b 06b 09b 3ab
46 379 136 237 067 03a 67a 39a 09a 23b 06b 07b 38b
47 379 136 378 067 069 03a 23a 08a 6%a 23b 07b 39b
48 379 136 378 067 088 03a 23a 07a 69%a 23b 06b 39b
49 379 136 378 068 039 23a 06a 07a 23b 07b 69b 3ab
50 379 136 378 078 039 23a 06a 07a 6%a 23b 06b 3ab
51 379 136 038 067 679 23a 06a 07a 3%a 23b 37b 09
52 379 136 067 238 079 03a 23a 67a 09a 08b 37b 39b
53 379 136 067 238 089 679 03a 23a 07a 37b 39b 09b
54 379 136 067 238 679 03a 39%9a 09a 08b 23b 37b 07b
55 379 136 067 068 039 23a 07a 3Ba 69a 23b 37b 0Oab
56 379 136 238 068 079 37a 03a 67a 23b 07b 39b Oab
57 379 136 238 078 039 069 23a 07a 37b 67b Oab 3ab
58 379 136 238 078 239 069 679 03a 37b 07b 09b 3ab
59 379 136 238 078 03a 07a 67a 3%9a 23b 06b 37b 09b
60 379 036 137 078 239 079 089 23a 67a 38b 0ab 3ab
61 379 036 137 078 239 38a 67a 09a 08b 23b 07b 3ab
62 379 036 137 078 0895 23a 07a 3%a 23b 67b 38b Oab
63 379 036 237 067 239 13a 08% 679 07b 38b 0ab 3ab
64 379 036 237 067 239 13a 08a 67a 07b 09b 38b 3ab
65 379 036 237 067 079 13b 389 23a 67a 09a 08b 3ab
66 379 036 237 067 13b 089 679 23a 3%a 08%a 07b 38b
67 379 036 237 068 239 13a 07a 07b 67b 09b 38b 3ab
68 379 036 237 068 079 13b 3889 23a 07a 67a 09b 3ab
69 379 036 237 068 13b 07a 38a 67a 39a 23b 07b (Sb
70 379 036 237 068 13a 23a 07a 0%a 07b 67b 39b 38b
71 379 036 237 078 239 069 13b 38a 67a 07b 09b 3ab
72 379 036 237 078 069 079 13b 389 23a 67a 0ab 3ab
73 379 036 237 078 079 13a 23a 06a 67a 39b 38b Oab
74 379 036 237 078 13a 679 23a 06a 09a 07b 39b 38b
75 379 036 237 078 13a 389 07a 67a 23b 06b 0ab 3ab
76 379 036 237 078 13a 23a 06a 07a 67b 39b 09b 38b
77 379 036 378 067 13b 089 23a 07a 3%a 08b 23b 6ab
78 379 036 378 078 239 13a 08a 08b 23b 07b €9b 3ab
79 379 036 378 078 069 13b 23a 08a 39a 6%a 23b 07b
80 379 036 378 078 13b 089 23a 07a 39a 69a 23b 06b
81 379 036 067 078 13b 37a 389 23a 08a 69a 23b 09b
82 379 036 238 078 139 37a 08a 67a 09a 23b 07b 3ab
83 379 036 238 078 13b 37a 089 23a 07a 67b 39b 0Sb
84 379 036 138 068 23% 37a 089 673 23b 07b Oab 3ab
85 379 036 138 078 239 069 089 679 23a 37b Oab 3ab
86 379 036 138 078 069 23a 0Ba 67a 39a 23b 37b Oab
87 379 236 137 067 239 089 38a 67a 0%a 08b 3ab

03b
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83 379 236 137 067 089 03a 23a 09a 08b 67b 39b 38b
89 379 236 137 067 089 03a 3Ba 67a 08b 23b 39b 0ab
S0 379 236 137 067 089 03a 39a 08b 23b 67b 38b 0Oab
91 379 236 137 068 039 23a 08a 67a 09a 07b 38b 3ab
92 379 236 137 068 089 679 03a 23a 09a 07b 39b 38b
93 379 236 137 068 089 23a 07a 38a 67a 09a 03b 39b
94 379 236 137 068 089 07a 38a 67a 39a 03b 23b 0Oab
95 379 236 137 078 239 069 089 38a 67a 03b 0ab 3ab
96 379 236 137 078 069 089 03a 23a 67b 39b 38b 0ab
97 379 236 137 078 089 679 03a 23a 06a 3%b 09b 38b
98 379 236 137 078 089 03a 67a 39a 23b 06b 38b 0ab
99 379 236 137 078 679 389 03a 06a 08b 23b 09b 3ab
100 379 236 137 078 03a 06a 38a 67a 08b 23b 39b 09b
101 379 236 237 067 139 069 089 03a 67b 38b Oab 3ab
102 379 236 237 067 039 13a 06a 08b 67b 38b Oab 3ab
103 379 236 237 067 069 13b 389 03a 08b 67b 09b 3ab
104 379 236 237 067 13a 089 03a 67a 06b 35b 38b Oab
106 379 236 237 067 13a 679 389 06a 09a 03b 08b 3ab
106 379 236 237 067 13a 06a 3%a 09a 03b 08b 67b 38b
107 379 236 237 068 139 069 03a 09a 07b 67b 38b 3ab
108 379 236 237 068 139 079 03a 06a 67a 09b 38b 3ab
109 379 236 237 068 069 13b 03a 38a 67a 07b 39b 09b
110 379 236 237 068 13a 679 389 06a 07a 03b 09b 3ab
111 379 236 237 068 13a 389 07a 67a 0%a 03b 06b 3ab
112 379 236 237 078 1339 069 06a 38a 67a 0%a 03b 3ab
113 379 236 237 078 069 13b 389 03a 67a 06b 0%b 3ab
114 379 236 237 078 13a 06a 67a 39a 09%9a 03b 06b 38b
115 379 236 378 067 13a 06a 08a 39a 6%a 03b 08b 23b
116 379 236 378 068 039 069 13b 23a 08a 69a 07b 3ab
117 379 236 378 068 035 079 13b 23a 06a 69a 08b 3ab
118 379 236 378 068 039 13b 089 23a 07a 6%a 06b 3ab
118 379 236 378 068 239 079 13a 06a 69a 03b 08b 3ab
120 379 236 378 068 239 13a 089 07a 6%9a 03b 06b 3ab
121 379 236 378 068 069 13b 089 23a 07a 3%a 03b 6ab
122 379 236 378 078 062 13b 085 03a 23a 69a 06b 35b
123 379 236 038 067 139 37a 06a 08a 67a 23b 09b 3ab
124 379 236 038 068 069 079 13b 23a 67a 39a 37b Oab
125 379 236 038 068 13a 679 23a 06a 07a 37b 39b 0%b
126 379 236 038 078 13b 37a 06a 67a 39a 23b 06b 09b
127 379 236 038 078 37a 13a 06a 67a 23b 06b 39b 0Oab
128 379 236 067 238 13a 03a 08a 67a 08b 37b 39b 09b
129 379 236 238 068 039 13a 07a 08b 37b 67b Oab 3ab
130 379 236 238 078 039 13a 679 06a 08b 37b 0Oab 3ab
131 379 236 238 078 37a 13a 06a 08a 67a 03b 39b 059b

132 379 236 238 078 13a 679 03a 06a 08b 37b 39b 09b
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133 379 236 138 068 239 069 37a 089 03b 67b Oab 3ab
134 379 236 138 068 239 37a 089 679 06a 03b 09b 3ab
135 379 236 138 068 069 089 679 03a 23a 37b 39b Oab
136 379 236 138 068 37a 089 679 23a O6a 09a 03b 39b
137 379 236 068 078 139 069 03a 23a 09a 37b 38b 6ab
138 379 236 068 078 039 065 13b 23a 38a 69a 37b Oab
139 379 236 068 078 039 13a 23a 06a 37b 38b Oab 6Sb
140 379 236 068 078 239 069 13a 38a 69a 03b 37b Oab
141 379 137 038 067 369 089 23a 07a 23b 67b 0ab 3ab
142 379 137 038 067 089 23a 07a 67a 39a 36b 23b Oab
143 379 137 038 067 23a 36a 07a 09a 08b 23b 67b 39b
144 379 137 038 068 679 23a 36a 07a 09a 23b 07b 39b
145 379 137 067 368 239 089 03a 08b 23b 07b 69b 3ab
146 379 137 067 078 039 23a 36a 08a 69a 23b 38b Oab
147 379 137 067 078 239 089 03a 23a 69a 36b 09b 38b
148 379 137 067 078 239 089 23a 36a 09a 03b 38b €9b
149 379 137 238 078 039 089 23a 07a 67a 36b Oab 3ab
150 379 137 238 078 369 03a 08a 67a 23b 07b 09b 3ab
151 379 137 238 078 089 23a 07a 67a 39a 09a 03b 36b
152 379 137 368 078 239 069 03a 08b 23b 07b 6ab 3ab
153 379 137 068 078 389 03a 23a 07a 69a 36b 23b 09D
154 379 237 038 067 139 36a 07a 67a 0%a 23b 06b 3ab
155 379 237 038 067 069 13b 679 23a 36a 09a 07b 39b
156 379 237 038 067 13a 23a 06a 07a 67a 36b 39b 09b
157 379 237 067 238 139 089 03a 07a 67a 36b 09b 3ab
158 379 237 067 238 039 079 13b 36a 67a 08b Oab 3ab
159 379 237 067 238 369 13a 08a 67a 09a 03b 07b 3ab
160 379 237 067 138 039 23a 06a 67a 09a 08b 36b 3ab
161 379 237 067 138 239 065 089 673 36a 03b Oab 3ab
162 379 237 067 368 139 079 03a 06a 69a 08b 23b 3ab
163 379 237 067 368 039 079 13b 23a O6a 69a 08b 3ab
164 379 237 067 368 069 13b 03a 39a 08b 23b 07b 6ab
165 379 237 067 068 139 03a 36a 07a 23b 09b 38b 6ab
166 379 237 067 068 139 03a 36a 09a 23b 07b 38b 69b
167 379 237 067 068 239 079 13a 36a 69a 03b 38b 0ab
168 379 237 067 068 239 13a 36a 09a 03b 07b 38b €5b
169 379 237 067 068 369 13b 03a 38a 69a 23b 07b 09b
170 379 237 067 068 369 13a 03a 23b 07b 38b Oab 6ab
171 379 237 067 068 13a 389 36a 07a 03b 23b Oab 69b
172 379 237 067 078 139 069 03a 36a 23b 38b Oab 6ab
173 379 237 067 078 039 13b 23a 36a 09a 69a 06b 38b
174 379 237 067 078 369 13a 06a 38a 69a 03b 23b Oab
175 379 237 238 068 369 13a 07a 09a 03b 07b 67b 3ab
176 379 237 238 068 13a 07a 67a 39a 09a 03b 36b 07b
177 379 237 238 078 139 069 36a 07a 09a 03b 67b 3ab
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178 379 237 238 078 369 13a 675 06a 09a 03b 07b 3ab
179 379 237 238 078 13a 679 36a 06a 07a 03b 39b 09b
180 379 237 138 068 369 069 03a 23b 07b 67b Oab 3ab
181 379 237 138 068 369 679 03a 06a 23b 07b 09b 3ab
182 379 237 138 068 069 679 03a 36a 23b 07b 39b Oab
183 379 237 138 068 069 03a 23a 67a 09a 36b 07b 39b
184 379 237 138 078 239 063 36a 67a 09a 03b 06b 3ab
185 379 237 138 078 369 069 23a 06a 09a 03b 67b 3ab
136 379 237 138 078 069 679 23a 36a 06a 09a 03b 39b
187 ' 379 038 367-067 13a 23a 06a 07a 08b 23b 35b 6ab
188 379 038 367 068 239 069 079 13b 23a 6%9a 07b 3ab
189 379 038 367 068 239 13a 07a 69a 23b 06b 07b 3ab
190 379 038 367 068 13a 23a 06a 07a 23b 07b 39b 69b
191 379 038 367 078 069 13b 23a 06a 3%a 23b 07b 69b
192 379 038 367 078 13a 23a 06a 07a 69a 23b 06b 39b
193 379 038 067 068 369 13b 37a 23a 09a 23b 07b 6ab
194 379 038 067 078 239 13b 37a 36a 69a 23b 06b 05b
195 379 367 067 238 079 13b 089 03a 23a 6%a 08b 3Sb
196 379 367 067 138 039 23a 06a 08a 65a 08b 23b 3ab
197 379 367 067 138 239 069 089 23a 08a 69a 03b 3ab
198 379 367 067 138 239 089 03a 69a 08b 23b 06b 3ab
199 379 367 238 068 13a 03a 07a 08b 23b 07b 39b 6ab
200 379 367 238 068 13a 07a 08a 39a 69a 03b 23b 07b
201 379 367 238 078 039 13b 089 23a 07a 69a 06b 3ab
202 379 367 238 078 069 13b 03a 3%a 08b 23b 07b 6ab
203 379 367 138 068 089 23a 06a 07a 3%a 03b 23b 69b
204 379 367 138 078 239 065 089 23a 06a 03b 69b 3ab
205 379 367 138 078 069 (3a 23a 06a 08b 23b 39b 6ab
206 379 067 238 078 239 13a 03a 6%a 08b 36b 37b 09b
207 379 067 238 078 239 13a 36a 09a 03b 08b 37b 69b
208 379 067 138 068 239 37a 089 23a 09a €6%a 03b 36b
209 379 067 138 068 239 37a 36a 08a 69a 03b 23b 0Sb
210 379 067 138 068 369 03a 23a 09a 08b 23b 37b 6ab
211 379 238 068 078 039 13a 23a 07a 6%a 36b 37b Oab
212 379 238 068 078 369 13a 03a 23b 37b 07b Oab 69b
213 037 136 378 239 079 06a 67a 3%a 08b 23b 06b 3ab
214 037 136 067 239 37a 089 23a 09a 06b 67b 39b 38b
215 037 136 067 239 37a 389 0%a 08b 23b 06b 67b 3ab
216 037 136 067 069 37a 389 23a 08a 23b 67b 39b Oab
217 037 136 068 239 069 079 23a 39a 37b 67b 38b 0Oab
218 037 136 068 239 069 37a 38a 23b 07b 67b 39b 0Oab
219 037 136 068 239 069 679 23a 38a 09a 37b 07b 3%b
220 037 136 068 239 37a 679 389 0%a 23b 06b 07b 3ab
221 037 136 068 239 07a 38a 67a 39a 23b 06b 37b 09

222 037 136 068 679 389 23a 07a 39a 09a 23b 06b. 37b
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223 037 136 078 239 069 679 389 23a 09a 06b 37b 3ab
224 037 236 378 139 069 06a 08a 39a 08b 23b 67b 3ab
225 037 236 378 13a 06a 08a 67a 39a 08b 23b 06b 39b
226 037 236 068 239 13a 679 389 09a 08b 06b 37b 3ab
227 037 236 068 13b 37a 089 675 389 23a 09a 06b 39b
228 037 137 067 239 089 23a 38a 67a 09a 08b 36b 39b
229 037 137 067 239 36a 08a 39a 08b 23b 67b 09b 38b
230 037 137 067 369 389 23a 08a 0%a 08b 23b 67b 3ab
231 037 137 368 239 069 089 679 23a 08a 07b 39b 3ab
232 037 137 068 239 369 079 089 23a 67b 38b Oab 3ab
233 037 137 068 239 079 089 679 23a 36a 39b 38b Oab
234 037 137 068 239 079 089 23a 67a 39a 36b 38b Oab
235 037 137 068 239 079 679 389 36a 08b 23b 0ab 3ab
236 037 137 068 239 079 389 23a 67a 09a 08b 36b 3ab
237 037 137 068 239 079 36a 38a 67a 08b 23b 39b Oab
238 037 137 068 239 089 679 389 23a 07a 36b 09b 3ab
239 037 137 078 239 069 389 23a 09a 08b 36b 67b 3ab
240 037 137 078 239 069 36a 38a 08b 23b 67b 35b Oab
241 037 137 078 369 23a 06a 38a 09a 08b 23b 67b 39b
242 037 237 067 139 069 385 23a 08a 67a 09a 36b 3ab
243 037 237 067 139 06a 38a 67a 39a 09a 08b 36b 23b
244 037 237 067 239 369 13b 089 38a 67a 06b 09b 3ab
245 037 237 067 239 13a 679 389 06a 08b 36b 09b 3ab
246 037 237 067 239 13a 389 67a 09a 08b 36b 06b 3ab
247 037 237 067 369 069 13b 389 23a 08a 67b 09b 3ab
248 037 237 067 369 13b 089 23a 39a 09a 06b 67b 38b
249 037 237 067 069 13b 389 23a 08a 67a 39a 36b 09b
250 037 237 068 139 369 06a 07a 38a 23b 67b 09b 3ab
251 037 237 068 139 069 36a 07a 38a 23b 67b 39b Oab
252 037 237 068 139 079 23a O6a 67a 39a 09a 36b 38b
253 037 237 068 139 36a 07a 39a 09a 23b 06b 67b 38b
254 037 237 068 069 13b 679 389 23a 39a 09a 36b 07b
255 037 237 068 069 13a 389 23a 07a 36b 67b 39b 0Oab
256 037 237 068 13b 679 389 36a 07a 39a 23b 06b 05b
257 037 237 078 139 069 23a 06a 38a 67a 09a 36b 39b
258 037 237 078 239 069 13a 389 67a 36b 06b 0ab 3ab
259 037 237 078 239 13a 06a 67a 39a 36b 06b 09b 38b
260 037 237 078 369 13a 06a 38a 67a 23b 06b 39b Oab
261 037 237 078 069 13b 679 389 23a 06a 39a 36b 09b
262 037 237 078 069 13b 679 389 36a 39a 23b 06b Oab
263 037 237 078 069 13a 679 389 23a 06a 36b 39b Oab
264 037 378 067 239 13a 36a 08a 69a 08b 23b 06b 39b
265 037 378 068 139 239 069 089 23a 07a 36b 6ab 3ab
266 037 378 068 139 239 079 36a 06a 08b 23b 69b 3ab
267 037 378 068 139 369 079 23a 06a 08a 69a 23b 3ab
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268 037 378 068 139 069 23a 36a 07a 08a 23b 39b Gab
269 037 378 078 139 369 069 23a 06a 08a 23b 6ab 3ab
270 037 378 078 239 069 13a 23a 06a 08b 36b 35b 6ab
271 037 367 238 239 069 13a 08a 08b 07b 67b 39b 3ab
272 037 367 238 069 13b 089 679 23a 08a 3%a 07b 39b
273 037 367 068 139 079 23a 06a 08a 39a 69a 23b 38b
274 037 367 068 239 069 13b 38a 39a 08b 23b 07b 6ab
275 037 367 068 239 13a 089 23a 07a 06b 39b 38b 6ab
276 037 367 068 239 13a 06a 38a 08b 23b 07b 39b 69b
277 037 367 068 079 13b 389 23a 06a 39a 08b 23b 69b
278 037 367 078 139 069 23a 06a 08a 3%a 23b 38b 6ab
279 037 367 078 239 069 13b 089 389 23a 06b 65b 3ab
280 037 067 238 239 13b 37a 089 39a 08b 36b 67b 09
281 037 067 368 239 069 13a 23a 08a 08b 37b 39b 6ab
282 037 067 068 239 3695 13a 23a 08a 37b 09b 38b 6ab
283 037 238 068 139 37a 08a 67a 39a 09a 36b 23b 07b
284 037 238 068 369 079 13b 089 679 23a 3%9a 37b 0Oab
285 037 238 078 139 37a 06a 39a 0%a 08b 36b 23b 67b
286 037 238 078 239 362 13a 08a €7a 06b 37b 0Sb 3ab
287 037 238 078 239 369 13a 0%a 08b 06b 37b 67b 3ab
288 037 138 068 239 069 23a 08a 67a 3%a 36b 37b 0%9b
289 037 368 068 239 079 13b 37a 089 23a 69a 06b 3%b
290 037 368 068 239 37a 13a 08a 69a 23b 06b 07b 39b
291 037 368 078 239 069 13a 23a 08a 69a 06b 37b 39b
292 037 368 078 239 37a 13a 06a 08b 23b 06b 39b 6ab
293 037 368 078 239 13a 06a 39a 08b 23b 06b 37b 69b
294 037 068 078 239 369 13a 23a 0%a 06b 37b 38b 6ab
295 037 068 078 369 13b 37a 389 23a 0%a 23b 06b 6ab
296 136 237 067 039 239 07a 38a 67a 06b 37b 09b 3ab
297 136 237 067 039 679 389 23a 07a 09a 06b 37b 3ab
298 136 237 067 239 069 079 38a 67a 3%9a 03b 37b Qab
299 136 237 067 239 065 679 03a 38a 37b 07b 39b 09b
300 136 038 067 239 079 37a 23a 67a 09%a 06b 37b 39b
301 136 038 067 239 37a 07a 39a 23b 06b 37b 67b 05b
302 136 067 238 039 37a 679 23a 08a 09a 37b 07b 3%b
303 136 067 238 038 37a 679 08a 39a 23b 37b 07b Oab
304 136 067 238 239 079 37a 03a 08b 37b 67b 39b 05b
305 136 067 238 239 079 37a 08a 67a 3%a 03b 37b 09b
306 136 067 238 239 079 37a 39a 0%a 03b 08b 37b 67b
307 136 067 068 039 239 079 37a 23a 37b 38b Oab 6ab
308 136 067 078 039 239 37a 38a 6%9a 23b 06b 37b Oab
309 136 238 078 239 079 37a 03a 67a 06b 37b 39b 09b
310 036 137 378 239 079 08a 67a 39a 08b 23b 07b 3ab
311 036 137 078 239 37a 089 679 38a 23b 07b 39b Oab

312 036 137 078 079 37a 389 23a 08a 67a 23b 39b 0Oab
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313 036 237 378 239 079 13a 679 06a 08b 07b 39b 3ab
314 036 237 067 139 079 23a 08a 67a 39a 09a 37b 38b
315 036 237 067 139 37a 679 389 08a 0%9a 23b 07b 3ab
316 036 237 067 139 37a 38a 08a 67a 09a 23b 07b 39b
317 036 237 067 239 079 13b 37a 389 08b 67b 0Sb 3ab
318 036 237 067 239 079 13a 679 389 08b 37b Oab 3ab
319 036 237 067 239 13a 679 38a 09a 08b 37b 07b 39D
320 036 237 067 13b 37a 679 389 08a 3%9a 23b 07b 09b
321 036 237 067 37a 13a 679 389 08a 23b 07b 39b Oab
322 036 237 067 13a 679 389 23a 07a 08a 37b 39b 09b
323 036 237 068 239 13a 679 07a 38a 37b 07b 39b 09b
324 036 237 078 239 079 13b 37a 389 67a 06b 09b 3ab
325 036 378 078 239 069 079 13b 23a 3%9a 08b 37b 6ab
326 036 067 138 239 37a 089 679 23a 08a 37b 39b 09b
327 036 238 078 239 37a 13a 679 08a 37b 07b 3%b 09b
328 036 138 068 239 079 37a 23a 0%a 08b 37b 67b 3%b
329 036 138 078 235 069 37a 23a 08a 37b 67b 39b 08bH
330 036 068 078 139 239 079 37a 23a 0%a 37b 38b 6ab
331 036 068 078 139 239 079 37a 38a 69a 23b 37b Oab
332 036 068 078 139 239 37a 38a 0%9a 23b 37b 07b €9b
333 036 068 078 239 079 13b 37a 385 23a 37b 09b 69b
334 236 137 378 239 079 089 03a 67a 08b 06b 39b 3ab
335 236 137 067 37a 089 679 389 23a 08a 09a 03b 3%b
336 236 137 068 039 079 23a 08a 67a 39%a 37b 38b Oab
337 236 137 068 039 37a 679 389 08a 23b 07b Oab 3ab
338 236 137 068 039 37a 38a 08a 672 23b 07b 39b Oab
339 236 137 068 039 679 383 23a 07a 08a 37b 09b 3ab
340 236 137 068 239 37a 089 07a 38Ba 03b 67b 39b 09b
341 236 137 068 079 37a 389 23a 08a 67a 09a 03b 39b
342 236 137 068 079 679 389 03a 39%a 08b 23b 37b Oab
343 236 137 068 37a 679 389 03a 08a 23b 07b 39b 0%b
344 236 137 078 039 23a 08a 67a 3%9a 09a 06b 37b 38b
345 236 137 078 069 679 389 23a 08a 39a 09%a 03b 37b
346 236 237 378 039 079 13b 06a 67a 39a 08b 06b 3ab
347 236 237 378 039 13a 06a 07a 08b 06b 67b 39b 3ab
348 236 237 067 139 069 679 389 03a 08a 37b 09b 3ab
349 236 237 067 37a 13a 389 08a 67a 0%a 03b 06b 35b
350 236 237 068 139 039 079 3T7a 06a 67b 38b Oab 3ab
351 236 237 068 139 039 07a 38a 67a 0%a 06b 37b 3ab
352 236 237 068 139 069 079 679 389 03a 37b Oab 3ab
353 236 237 068 139 069 679 03a 38a 0%a 37b 07b 3%b
354 236 237 068 139 079 37a 679 389 06a 09a 03b 3ab
355 236 237 068 139 079 37a 03a 06a 67b 39b 09b 38b
356 236 237 068 039 079 13b 37a 389 67a 06b Oab 3ab
357 236 237 068 039 13a 07a 39a 06b 37b 67b 38b Qab
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358 236 237 078 139 069 03a 3B8a 67a 0%a 06b 37b 39b
359 236 237 078 069 13b 37a 389 03a 06b 67b 39b 09b
360 236 378 067 239 069 13a 08a 39%a 03b 08b 37b 6ab
361 236 378 067 239 13a 089 03a 08b 06b 37b 395b 65b
362 236 378 068 139 089 03a 07a 3%a 23b 06b 37h 69b
363 236 378 068 039 13b 089 23a 07a 39a 06b 37b 69b
364 236 378 068 239 069 37a 13a 08a 03b 07b 39b 6ab
365 236 378 078 139 37a 085 03a 06a 23b 06b 39b 65b
366 236 378 078 039 13b 37a 089 23a 06a 06b 39b 69b
367 236 378 078 239 069 13b 37a 089 3%a 03b 06b 6ab
368 236 038 067 139 37a 08a 67a 39a 05a 23b 06b 37b
369 236 038 068 139 239 079 37a 679 06a 37b 09b 3ab
370 236 038 068 139 235 079 37a 67a 09a 06b 37b 3ab
371 236 038 068 139 079 37a 679 06a 39a 23b 37b Oab
372 236 038 068 239 37a 13a 07a 06b 37b 67b 39b 09b
373 236 038 078 139 37a 679 06a 39a 09%a 23b 06b 37b
374 236 038 078 23S 069 37a 13a 06b 37b 67b 3%b Oab
375 236 067 238 139 37a 085 679 03a 08a 37b 39b 09b
376 236 067 238 039 37a 13a 08a 08b 37b 67b 39b Oab
377 236 067 068 139 039 37a 38a 08a 69a 23b 37b Oab
378 236 067 068 039 239 13b 37a 38a 08b 37b 09bL 6ab
379 236 238 068 135 039 079 37a 0Ba 67a 37b Oab 3ab
380 236 238 068 139 039 37a 07a 08a 37b 67b 09b 3ab
381 236 238 068 139 079 37a 03a 08a 67a 37b 39b 059b
382 236 238 068 039 079 13b 37a 3%a 08b 37b 67b Oab
383 236 238 068 039 13b 37a 679 08a 39a 37b 07b 09b
384 236 238 078 039 13b 37a 089 679 39a 06b 37b Qab
385 236 138 068 035 239 37a 089 679 06b 37b Oab 3ab
386 236 138 068 039 239 37a 08a 67a 06b 37b 09b 3ab
387 236 138 068 239 37a 089 679 03a 06b 37b 39b 05D
388 137 237 067 039 389 23a 07a 05a 08b 36b 67b 3ab
389 137 237 067 2339 079 0B89S 679 36a 3%9a 03b 38b Oab
390 137 237 067 239 089 679 03a 39a 36b 07b 0Sb 38b
391 137 237 067 369 079 389 03a 08b 23b 67b Oab 3ab
392 137 237 067 369 38a 08a 67a 3%a 0%a 03b 23b 07b
393 137 237 067 079 388 03a 23a 67a 09%9a 08b 36b 35b
394 137 237 067 679 389 36a 07a 08a 35a 03b 23b 09b
395 137 237 067 389 03a 07a 39a 08b 36b 23b 67b 05b
396 137 237 368 039 069 23a 07a 08a 07b 67b 39b 3ab
397 137 237 368 039 07a 08a 67a 39a 23b 06b 07b 3ab
398 137 237 368 239 069 079 0Ba 67a 3%a 03b 07b 3ab
399 137 237 068 038 679 385 23a 07a 0%a 36b 07b 3ab
400 137 237 068 039 679 36a 07a 38a 23b 07b 39b Oab
401 137 237 068 369 079 03a 39%9a 23b 07b 67b 38b Oab

402 137 237 078 039 239 679 36a 0%a 06b 07b 38b 3ab
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448 237 378 067 139 089 03a 07a 3%a 69a 36b 23b 06b
449 237 378 067 039 13b 089 23a 07a 39a 6%a 36b 06b
450 237 378 067 239 069 13a 03a 08b 36b 07b 39b 6ab
451 237 378 068 139 239 069 079 03a 6%a 36b 07b 3ab
452 237 378 078 139 039 069 23a 06a 07a 36b 6ab 3ab
453 237 378 078 139 039 36a 06a 07a 23b 06b 69b 3ab
454 237 378 078 139 069 03a 36a 07a 23b 06b 39b 6ab
455 237 378 078 039 239 069 13b 36a 06b 07b 69b 3ab
456 237 038 367 239 069 079 13b 67a 39%a 06b 07b 3ab
457 237 038 367-23% 069 13a 07a 06b 07b 67b 39b 3ab
458 237 038 067 239 13a 07a 67a 3%9a 36b 06b 37b 09b
459 237 038 067 369 13a 07a 39a 23b 06b 37b 67b Oab
460 237 367 067 139 089 389 03a 07a 23b 06b 69b 3ab
461 237 367 067 039 239 069 13b 38a 08b 07b Bab 3ab
462 237 367 067 039 079 13b 389 23a 06a 08b 69b 3ab
463 237 367 067 039 13b 089 389 23a 07a 06b 69b 3ab
464 237 367 067 039 13b 089 23a 07a 38a 69a 06b 3%b
465 237 367 067 239 13a 089 07a 38a 69a 03b 06b 39b
466 237 367 067 069 079 13b 389 03z 23a 08b 39b 6ab
467 237 367 067 069 079 13b 389 23a 08a 39a 69a 03b
468 237 367 067 069 13a 389 23a 07a 08a 03b 39b 6ab
469 237 367 067 079 13b 389 03a 39a 6%a 08b 23b 06b
470 237 367 238 079 13a 06a 07a 3%a 03b 08b 67b 3%b
471 237 367 138 069 079 23a 06a 08a 67a 39a 03b 39b
472 237 367 138 069 03a 08a 67a 3%a 23b 06b 07b 39b
473 237 367 068 039 069 13b 23a 07a 38a 07b 39b 6ab
474 237 367 068 239 079 13a 06a 35a 03b 07b 38b 69b
475 237 367 068 069 079 13b 389 03a 23a 07b 39b 69b
476 237 367 078 139 039 06a 07a 38a 69a 23b 06b 3ab
477 237 367 078 139 069 389 03a 07a 23b 06b 6ab 3ab
478 237 367 078 139 069 06a 07a 38a 3%a 03b 23b 6ab
479 237 367 078 039 069 13b 389 23a 07a 06b 6ab 3ab
480 237 367 078 039 069 13b 23a 06a 38a 07b 39b 65b
481 237 367 078 039 13a 23a 06a 07a 06b 39b 38b Gab
482 237 067 238 139 039 37a 08a 67a 09z 36b 07b 3ab
483 237 067 238 139 369 079 089 673 03a 37b Oab 3ab
484 237 067 238 139 369 079 03a 08a 67a 37b 09b 3ab
485 237 067 238 139 37a 089 07a 3%a 05%a 03b 36b 67b
486 237 067 238 369 079 13b 37a 089 39a 03b 67b Oab
487 237 067 138 369 089 679 03a 23a 09a 06b 37b 3%b
488 237 067 368 139 039 37a 06a 08a 23b 07b 69b 3ab
439 237 067 368 139 079 03a 06a 39a 08b 23b 37b 65b
490 237 067 368 139 089 03a 072 3%a 23b 06b 37b 69b
491 237 067 368 039 13b 37a 08a 3%a 69a 23b 06b 07b

492 237 067 368 239 13a 089 07a 38%a 03b 06b 37b.65b



B.3. Catalogues 179
493 237 067 068 139 369 079 03a 38a 69a 23b 37b Oab
494 237 067 078 039 369 069 13b 23a 38a 37b Oab 6ab
495 237 067 078 039 369 13b 23a 06a 38a 37b 09b 69b
496 237 067 078 365 13b 37a 389 03a 23b 06b 09b 6ab
497 237 067 078 369 13a 389 03a 23b 06b 37b Oab 69b
498 237 238 068 139 039 37a 07a 0%9a 36b 07b €7b 3ab
499 237 238 068 135 079 37a 03a 67a 09a 36b 07b 3%
500 237 238 068 369 079 13b 37a 3%a 09%a 03b 07b 67b
501 237 238 078 369 079 13a 03a 67a 06b 37b 39b Oab
502 237 238 078 369 13a 679 03a 09a 06b 37b 07b 39b
503 237 138 068 039 369 079 679 23a 06a 37b Oab 3ab
504 237 138 068 039 079 37a 23a 06a 67a 36b 39b Oab
505 237 138 068 039 679 23a 36a 07a 09a 06b 37b 39b
506 237 138 068 239 069 37a 03a 36b 07b 67b 39b 09b
507 237 138 068 369 079 03a 67a 39a 23b 06b 37b Oab
508 237 138 068 369 37a 03a 0%a 23b 06b 07b 67b 39b
509 237 138 068 369 679 03a 39a 09a 23b 06b 37b 07b
510 237 138 078 0395 369 37a 06a 23b 06b 67b Oab 3ab
511 237 138 078 369 37a 03a 06a 23b 06b 67b 3Sb 05b
512 237 368 068 139 039 079 23a 06a 07a 37b 69b 3ab
513 237 368 068 039 079 13b 23a 07a 39a 6%a 06b 37b
514 237 368 078 139 239 069 079 37a 06a 03b 6ab 3ab
515 237 368 078 139 239 069 079 03a 69a 06b 37b 3ab
516 237 368 078 139 069 03a 07a 39a 23b 06b 37b 6ab
517 237 368 078 035 239 069 13b 37a 06b 07b 6ab 3ab
518 237 368 078 039 069 13b 23a 07a 39a 06b 37b 6ab
519 038 367 067 139 239 069 37a 08a 23b 07b 6ab 3ab
520 038 367 067 139 079 37a 23a 06a 08a €9a 23b 39b
521 038 367 067 239 079 13b 37a 089 23a 69a 06b 39b
522 038 367 067 239 37a 13a 08a 69a 23b 06b 07b 39b
523 038 367 068 239 079 13a 23a 07a 69a 06b 37b 39b
524 038 067 068 233 369 079 13b 37a 23a 37b 09b 6ab
525 367 067 238 139 079 03a 08a 3%9a 69a 08b 23b 37b
526 367 067 238 039 13a 23a 07a 08a 08b 37b 39b Gab
527 367 067 238 239 079 13a 08a 3%9a 69a 03b 08b 37b
528 367 238 068 139 079 37a 03a 08a 69a 23b 07b 35b
529 367 238 078 139 039 37a 06a 08a 23b 07b 68b 3ab
530 367 238 078 139 069 079 03a 23a 08a 69a 37b 39b
531 367 238 078 039 239 13a 07a 08b 06b 37b 6ab 3ab
532 367 238 078 039 13b 37a 08a 39a 69a 23b 06b 07b
533 367 138 068 239 069 37a 08a 39a 03b 23b 07b 6ab
534 367 138 068 239 079 37a 089 23a 06a 03b 39b 69b
535 367 138 078 039 239 37a 0€a 08b 23b 06b 6ab 3ab
536 067 238 078 039 239 37a 13a 08b 36b 37b 0ab 6ab
537 067 238 078 039 369 13b 37a 23a 08a 37b 05b 6ab
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538 067 238 078 239 369 37a 13a 08a 03b 37b 09b 6ab
539 238 068 078 139 369 079 37a 03a 23b 37b O=b 6ab
540 138 068 078 039 239 37a 23a 06a 36b 37b 09b 6Sb

B.3.4 Starter Blocks for TTS(12) With Starting Configuration D

Design # Starter Blocks
1 379 037 136 067 13b 389 03a 23a 67a 23b 09b 69b
2 379 037 136 238 239 13a 679 67a 0%a 03b 07b 3ab
3 379 037 136 238 238 13a 07a 67a 03b 67b 09b 3ab
4 379 037 136 238 13a 23a 07a 67a 09a 03b 67b 35b
5 379 037 136 138 679 03a 23a 06a 67a 23b 3%b 09b
6 379 037 036 138 13b 089 679 23a 67a 39a 23b Oab
7 379 037 036 078 13b 13a 389 23a 67a 23b 0ab 65b
8 379 037 236 068 035 13b 13a 23a 67a 38b Oab 6ab
9 379 037 038 067 239 13b 13a 23a 67a 69a 36b 09b
10 379 037 038 067 368 13b 13a 23a 69a 23b 67b Oab
11 379 037 067 368 139 13b 089 03a 23a 69a 23b 6%b
12 379 037 238 078 239 13b 13a 679 36a 69a 03b 09b
13 379 136 067 138 239 37a 03a 67a 03b 23b 09b 6ab
14 379 036 237 138 13b 679 03a 67a 39a 23b 07b 09b
15 379 036 237 138 13a 23a 07a 67a 09a 03b 67b 39b
16 379 036 138 078 239 37a 13a 69a 03b 23b 6€7b 0Oab
17 379 236 137 038 139 03a 07a 67a 23b 67b 09b 3ab
18 379 236 137 078 239 13a 03a 67a 03b 09b 38b 6ab
19 379 236 137 078 239 13a 03a 63a 03b 67b 09b 38b
20 379 236 237 067 13b 13a 679 385 03a 69a 03b 09D
21 379 236 237 138 139 069 03a 67a 09a 03b 67b 3ab
22 379 236 237 138 13a 679 03a 06a 67a 03b 39b 09b
23 379 236 238 078 039 13b 37a 13a 67a 03b Oab 6ab
24 379 236 138 068 039 13b 679 03a 23a 69a 37b 09b
25 379 137 138 078 365 03a 23a 67a 09a 03b 23b 6ab
26 379 367 067 138 035 13b 03a 23a 69a 08b 23b 6ab
27 379 367 238 078 139 13a 03a 07a 69%a 03b 23b 6ab
28 379 367 138 068 239 13a 03a 69a 03b 23b 07b 69b
29 037 136 137 039 23a 07a 3Ba 67a 23b 67b 39b Oab
30 037 136 378 139 239 069 679 03a 23b 07b 6ab 3ab
31 037 136 378 139 235 075 03a 67a 6%a 23b 06b 3ab
32 037 136 378 039 239 079 13b 23a 67a 69a 06b 3ab
33 037 036 237 139 239 079 13a 67a 67b 38b Oab 3ab
34 037 036 078 139 239 13a 679 38a 69a 23b 37b 0Oab
35 037 036 078 139 13b 37a 679 389 23a 09a 23b Gab
36 037 236 137 139 089 679 03a 38a 67a 23b 39b 0Oab

037 236 137 239 13a 679 389 08a 67a 03b 09b- 3ab

w
-3
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38 037 236 378 039 13b 13a 23a 08a 67a 69a 06b 3%b
39 037 236 238 039 13b 13a 679 3%a 08b 37b 67h Oab
40 037 236 068 139 13a 679 389 03a 23b 37b 0ab 69b
41 037 236 068 239 13b 37a 13a 389 03b 67b 05b 69b
42 037 137 038 139 239 679 36a 07a 23b 67b 05b 3ab
43 037 137 038 239 079 13b 679 23a 36a 67a 39b 05b
44 037 137 138 039 239 089 679 23a 67a 36b 0ab 3ab
45 037 137 138 039 679 23a 36a 08a 67a 23b 39b Oab
46 037 137 138 369 23a 08a 67a 39a 09a 03b 23b 67b
47 037 137 368 139 079 03a 23a 08a 67a 69a 23b 35b
48 037 237 067 139 239 13a 03a 67a 36b 05b 38b 6ab
49 037 237 067 139 369 13b 03a 38a 67a 23b 09b 6ab
50 037 237 067 139 369 13b 03a 38a 69a 23b 67b 09b
51 037 237 067 369 13b 13a 679 389 23a 09a 03b 6ab
52 037 237 238 139 13a 03a 07a 67a 36b 67b 39b 0%b
53 037 237 238 369 13b 13a 679 03a 07b 67b 39b 0%b
54 037 237 138 139 235 069 03a 67a 36b 67b 09b 3ab
55 037 237 138 239 13a 679 06a 67a 3%a 03b 36b 09b
56 037 237 138 369 13a 679 06a 39a 03b 23b 67b Oab
57 037 237 368 139 239 079 13a 679 06a 69a 03b 3ab
58 037 237 368 139 13a 679 06a 07a 39a 03b 23b 6ab
59 037 378 067 139 039 13b 23a 36a 08a 69a 23b 69b
60 037 378 068 139 239 13a 36a 07a 03b 23b 69b 6ab
61 037 367 238 139 079 13b 089 679 03a 23a 65a 35b
62 037 367 238 239 079 13b 13a 67a 3%a 03b 08b 6ab
63 037 367 238 239 079 13b 13a 39a 6%a 03b 08b 67b
64 037 367 138 139 239 089 679 03a 69a 23b 06b 3ab
65 037 367 138 139 239 089 03a 67a 23b 06b 69b 3ab
66 037 367 138 239 13a 08a 67a 3%a 6%a 03b 23b 06b
67 037 138 068 039 239 13a 679 23a 6%a 36b 37b Oab
68 037 138 068 239 369 13a 23a 0%a 03b 37b 67b €9b
69 036 237 378 239 079 13b 13a 6795 3%a 69a 03b 07b
70 036 237 378 239 079 13b 13a 67a 3%a 03b 07b 69b
71 036 237 138 239 079 37a 13a 67a 03b 67b 39b Oab
72 236 137 237 139 039 079 03a 67a2 67b 38b 0ab 3ab
73 236 137 237 139 073 679 389 03a 67a 05a 03b 3ab
74 236 137 378 0398 079 13b 03a 23a 67a 08b 39b 6ab
75 236 137 378 039 079 13b 03a 23a 6%a 08b 67b 3%b
76 236 137 378 239 i3a 089 679 03a 03b 07b 39b 69b
77 236 137 038 239 079 13a 679 67a 39a 03b 37b Oab
78 236 137 138 (39 239 679 03a 08b 37b 67b 09b 3ab
79 236 137 078 039 13b 679 389 03a 23a 37b 09b 69b
80 236 237 378 139 039 069 13b 679 03a 07b 6ab 3ab
81 236 237 067 139 039 13b 37a 03a 67b 09b 38b Eab
82 236 237 067 038 13b 37a 13a 679 389 03b Oab 6ab
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83 137 237 368 239 079 13a 679 03a 6%a 03b 07b 39b
84 137 038 367 039 13b 679 23a 07a 39a 23b 07b 6Gab
85 237 367 067 039 13b 13a 389 23a 07a 03b 69b 6ab
86 237 367 138 039 13b 679 03a 39a 69a 23b 06b 07b
87 237 367 138 039 13a 672 23a 06a 07a 03b 39b 6ab
83 237 067 368 039 239 13b 37a 13a 03b 07b 69b 6ab

B.3.5 Starter Blocks for TTS(12) With Starting Configuration E

Design # Starter Blocks

1 379 037 136 138 368 03a 23a 06a 67a 23b 09b 69b
2 379 036 236 237 138 13a 03a 67a 67b 09b 38b Oab
3 379 036 237 138 368 13a 23a 07a 67a 0%a 03b 6Gab
4 379 036 038 367 138 13a 23a 07a 69a 23b 67b Oab
5 379 236 038 367 138 069 13b 03a 23a 69a 67b 059D
6 379 236 038 367 138 13a 23a 06a 67a 09a 03b 69b
7 037 136 036 378 239 13a 23a 09a 07b 67b 38b 65b
8 037 136 036 138 239 37a 38a 67a 23b 67b 09b Oab
9 037 136 236 378 239 069 13a 38a 67a 03b 0ab 6ab
10 037 136 236 378 13a 679 389 23a 06a 09a 03b 69b
11 037 136 236 238 37a 13a 679 389 09a 03b 67b Cab
12 037 136 137 368 079 €79 389 03a 23a 69%a 23b Qab
13 037 136 378 238 139 03a 36a 07a 23b 67b 09b 69b
14 037 136 378 238 039 079 13b 679 23a 36a 69%a Oab
15 037 136 378 238 239 13a 03a 67a 36b 07b 09b 69b
16 037 136 378 238 239 13a 36a 07a 03b 67b 09b 69b
17 037 136 367 238 239 079 13a 38a 67a £9a 03b Oab
18 037 136 238 368 139 079 679 03a 23a 09a 69a 37b
19 037 136 238 368 039 13b 37a 23a 09a 07b 67b 69b
20 037 136 138 368 239 37a 03a 6%a 23b 06b 67b 05b
21 037 036 236 237 139 13a 38a 67a 09%a 67b 38b Oab
22 037 036 236 378 239 13b 13a 38a 67a 08b 0Sb 6ab
23 037 036 236 378 13b 13a 679 389 23a 08a 69a 09b
24 037 036 236 378 13b 13a 679 389 23a 0%a 08b 6ab
25 037 036 236 378 13b 13a 389 23a 09a 08b 67b 68b
26 037 036 378 138 239 13a 23a 08a 67a 6%a 36b 09b
27 037 036 378 138 239 13a 23a 67a 09a 08b 36b 6ab
28 037 036 367 138 239 13b 089 23a 38a 67a 08b 69b
29 037 236 137 368 139 03a 38a 08a 67a 6%a 23b 09b
30 037 236 137 368 035 13b 23a 3Ba 09a 6Sa 08b 67b
31 037 236 137 368 039 13a 23a 08a 69a 67b 38b Oab
32 037 236 137 368 239 13a 38a 08a 67a 69a 03b 05b
33 037 236 237 368 139 13a 679 06a 38a (09%a 69a 03b
34 037 236 378 038 139 069 13b 23a 36a 09a 67b 69b
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35 037 236 378 038 369 13b 13a 23a 67a 09a 06b 6ab
36 037 236 378 238 139 13a 36a 08a 67a 09a 03b 69b
37 037 236 378 238 369 13b 13a 03a 08b 67b 09b 6ab
38 037 236 378 368 139 069 13b 089 03a 23a 69b 6ab
39 037 236 038 368 139 069 13b 37a 23a 09a 67b 6ab
40 037 236 038 368 139 37a 13a 06a 23b 67b Oab 69b
41 037 236 367 238 039 13b 13a 38a 69a 08b 67b Oab
42 037 236 238 368 139 13a 03a 09a 08b 37b 67b 65b
43 037 236 238 368 039 13b 37a 13a 08b 67b Oab 6ab
44 037 137 038 368 139 679 23a 36a 07a 092 23b 6ab
45 037 137 038 368 239 13a 679 23a 09a 69a 36b 07b
46 037 237 238 368 139 13a 679 03a 09a 69a 36b 07b
47 037 237 138 368 239 13a 03a 67a 69a 36b 06b 09b
48 037 038 367 238 369 13b 13a 23a 07a 67b 09b 6ab
49 037 038 367 138 369 13a 23a 06a 23b 67b 0Oab 69b
50 037 367 238 138 039 13b 23a 36a 08a 67a 09b 65b
51 037 367 238 138 239 13a 03a 69a 08b 36b 67b 09b
52 037 367 238 138 239 13a 36a 08a 67a 03b 09b 6Sb
53 136 236 137 378 039 03a 38a 67a 23b 07b Oab 6%b
54 136 236 137 378 039 23a 07a 38a 672 09a 03b 6ab
55 136 236 378 238 139 079 37a 03a 09a 69a 03b 67b
56 136 236 378 238 039 37a 13a 07a 03b 67b Oab 6ab
57 136 236 378 138 239 069 37a 03a 03b 67b 09b 6ab
58 136 367 238 138 039 079 679 03a 23a 69a 37b Oab
59 136 367 238 138 239 079 37a 03a 67a 03b 09b 6ab
60 036 236 378 038 139 13a 679 23a 07a 09a 37b §ab
61 036 237 378 138 139 03a 36a 07a 23b 67b 09b 69b
62 036 237 378 138 039 079 13b 23a 36a 67a Oab 69b
63 036 237 378 138 369 13a 23a 07a 0%a 03b 67b 6ab
64 036 237 367 138 079 13b 389 03a 23a 67a 09b 69b
65 036 237 138 368 239 37a 13a 679 09a 03b 07b 6ab
66 036 237 138 368 239 37a 13a 07a 03b 67b 09b 6ab
67 036 237 138 368 239 37a 13a 09a 03b 07b 67b 69D
68 036 378 367 138 239 13a 089 23a 07a 03b 69b 6ab
69 036 038 367 138 239 37a 13a 679 23b 07b Oab 6ab
70 236 137 237 368 039 13a 07a 38a 69a 03b 67b Oab
71 236 137 237 368 079 13a 389 03a 67a 03b Oab 69b
72 236 137 378 038 139 03a 36a 07a 23b 67b 09b 69b
73 236 137 378 038 039 13b 679 23a 36a 09a 07b 69b
74 236 137 378 138 039 089 03a 23a 67a 36b 0ab 69b
75 236 137 378 138 039 03a 23a 08a 67a 69a 36b 09b
76 236 137 378 368 039 13a 23a 07a 08a 69a 03b 6ab
77 236 137 038 367 139 079 03a 23a 67a 0%a 38b 6ab
78 236 137 038 367 139 079 03a 38a 67a 69a 23b Oab
79 236 137 038 367 239 13a 38a 67a 09a 03b 07b 69b



184 Enumeration of A Class of Twofold Triple Systems of Order 12

80 236 137 038 367 079 13b 389 03a 23a 67a 09b 69b
81 236 137 038 368 039 13b 37a 23a 09a 07b 67b 6%b
82 236 137 038 368 239 079 37a 13a 69a 03b 67b Oab
83 236 137 367 138 039 03a 23a 08a 69a 67b 09bL 38b
84 236 237 378 138 369 13a 679 03a 06a 03b 09b 6ab
85 236 237 378 138 369 13a 03a 67a 09a 03L 06b 6ab
86 236 237 138 368 039 13a 03a 67a 06b 37b Oab 69b
87 236 038 367 238 139 37a 13a 07a 09a 03b 67b 6ab
88 236 038 367 138 139 069 679 03a 23a 09a 37b 6ab
89 236 038 367 138 139 069 03a 23a 0%a 37b 67b 6%b
90 236 038 367 138 139 37a 03a 09a 69a 23b 06b 67b
91 236 038 367 138 239 37a 13a 09a 69a 03b 06b 67b
92 236 367 238 138 039 13a 03a 08b 37b 67b 0ab 69b
93 137 237 138 368 239 079 03a 36a 67a 03b 09b 69b
94 137 038 367 368 139 079 03a 23a 07a 69a 23b 6ab

95 137 367 138 368 039 03a 23a 08a 69a 23b 07b 69b



ApPpENDIX C

List of Possible Exceptions for W

This appendix gives a list of elements in F, the set of possible exceptions for W. We use
the notation z.y to represent the y numbers congruent to 0 or 1 (mod 3) immediately
following and including z.

12 15 18 22 27.2  33.3 39.3 453 517 633 69.3 75.3

81.11 99.3 1053 111.7 123.3 129.7 141.7 153.3 159.3 165.3 171.7 183.7
195.3 2015 210 213.7 225.3 231.7 243.3 249.5 2589 274.2 279.3 285

288 291.6 301.2 306 309.2 315 318.5 327.3 333.2 339.3 345.3 3517
363.3 370.2 375 381.6 391.4 402 405.3 41l.7 423.7 435.2  442.6 483.2
459.3 468.5 477.3 483 486 489.5 498 501.2 505.12 526.2 531.7 543.3
549.2 555 568 561.6 573.3 579.7 591 594.4 603.3 609 612 615

618 622 627.2 634.2 639.3 645 648.2 652.6 663.7 6759 690 693.3
699.3 705.3 711 714 718 723.2 729.3 735 738 741.2  747.2 753.3
759 762 772 778.4 786 789.3  795.11 813.3 819.3 8253 831.7 843.7
855.3 861.3 867.3 873.3 879.3 885.2 891.2 897.3 906 910 915 921.3
927.2 933.3 939.3 945 948 952 957.2 963.3 969.5 978.9 993.3 999.5
1008  1011.7 1023.3 1030 1035.2 1041.3 1047 1050 1054 1059.2 1065.3 1071

1074 1077.7 1089.3 1095 1098.8 1113.3 1119.3 1125 1128 1132 1137.2 1143.3
1149.3 1155.3 1161.5 1170 1173.2 1179.2 1185 1188 1191 1194 1198  1203.2
1209.3 1215.3 1221.3 1227.3 1233.3 1239.3 1245.3 1251.7 1263 1266.5 1275.3 1282.5
1293.3 1209.3 1305 1308 1312 1317.2 1323.3 1329.3 1335.3 1341.19 1371.7 1383.3
1380.7 1401.4 1408.6 1419.3 1425.3 1431.11 1449.3 1455 1458 1461.2 1467.2 1473.3
1479 1482 1492 1497.2 1503.3 1509.3 1515.3 1521.3 1527.3 1534.6 1545 1548

185
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1551 1554.9 1569.3 1575.3 1581.7 1593.3 1599.6 1611.2 1617.3 1623 1626 1630

1635 1641.3 1647 1650 1653.3 1660.2 1665.3 1671.3 1677.3 1683.7 1695.3 1701.15
1725.11 1743 1746 1749.2 1755.2 1761.3 1767 1770 1774 1779.2 1785.3 1791.3
1797Y.3 1803.3 1809.3 1815 1818 1821.3 1827.2 1833.3 1839.3 1845 1848 1852

1857.2 1863.3 1869.3 1875.3 1881.7 1893.2 1899.2 1905 1908 1911 1914 1918

1923.2 1929.3 1935 1938 1941.3 1947.3 1953.3 1959.3 1965.3 1971.3 1977.7 1989.3
1995.3 2001.6 2013.3 2019.3 2025 2028 2038 2043.3 2049.3 2055.3 2061.7 2073.3
2079.3 2085 2088 2091.11 2109.3 2115.3 2121.7 2133.3 2139.3 2145.11 2164.10 2181.6
2193.3 2199.3 2205 2208 2212 2217.2 2223 2226  2229.3 2235.3 2241.7 2253.3
2259.3 2265 2268 2271.7 2283.3 2290.2 2295.3 2301.7 2313.3 2319.6 2331.2 2337.3
2343 2346 2350 2355 2361.3 2367.2 2373.3 2379.3 2385 2388 2392 2397.2
2403.3 2409.3 2415 2418 2421.3 2427.3 2433.3 2439.3 2445 2448 2451.11 2469.2
2475.2 2481.3 2487 2490 2484 2499.2 2505.3 2511 2514 2517.3 2523.3 2529.3
2535 2538 2544  2647.3 2553.3 2559.7 2571 2574  2577.7 2589.3 2595.9 2610.4
2619.2 2625.3 2631 2634 2638 2643.2 2650.2 2655.3 2661.3 2668.2 2673.3 2679.3
2685.3 2691.3 2697.3 2703 2706 2709.3 2715 2718 2721 2724 2727.3 2733.3
2739.3 2745.3 2751 2754.9 2769.15 2793.3 2799.3 2805.3 2811 2814.9 2829.3 2835.11
2853.3 2859.7 2871 2874.5 2883.3 2889.5 2898 2901 2907.2 2913.3 2922 2932

2937.2 2943.3 2949.3 2955.3 2961.3 2967.3 2973.3 2979.3 2985 2988 2991 2994.5
3003.3 3009.3 3015.3 3021 3024 3027.7 3039.6 3051.2 3057.3 3063 3066 3070

3075.2 3081.3 3087 3093.3 3099.3 3105 3108 3112 3117.2 3123.3 3129.3 3135.3
3141.3 3147.3 3153.3 3159.3 3165 3168 3174 3177.3 3183 3186 3189.3 3195.5
3204.5 3213.3 3219.7 3231 3234.9 3249.3 3255.3 3261 3264.4 3273.3 3279.3 3285

3288 3292 3208 3303.3 3309.3 3315.3 3321.5 3330 3333.2 3339.2 3345 3348

3351 3354 3358 3363.2 3369.3 3375 3378 3381 3384 3387.3 3393.3 3399.3
3405.3 3411.3 3417.3 3424.2 3429.3 3435 3438 3441 3444 3447.3 3453.3 3459.3
3465.3 34713 3477.3 3483.3 3489.7 3501.7 3513.3 3519.3 3525.3 3531.4 3538.2 3543.3
3550.6 3561 3564.3 3570 3573.3 3579.3 3585.3 3591.7 3603.3 3609.3 3615 3618.4
3627.2 3633.3 3639 3642 3652 3657.2 3663 3666 3669.3 3675.3 3681.3 36387.3
3693.3 3699.3 3705 3708 3711 3714.3 3720 3723 3726 3729.3 3735.3 3741

3744 3747.3 3753.3 3759 3762 3765.2 3771.2 3777.3 3783 3786 3790 3795.2
3804 3807.2 3813.3 3819.3 3825 3828 3832 3837.2 3843.3 3849.3 3855 3858

3861.3 3867.3 3873.3 3879.3 3885.2 3891 3894 3897.2 3903.3 3909.2 3915.2 3921.3
3927 3930 3934 3939.2 3945.3 3951 3954 3957.3 3963.3 3969.3 3975.3 3981.3
3987.3 3993.3 3999.3 4005.3 4011.3 4017.3 4023.3 4029.3 4035.3 4041.2 4047.3 4054

4059.2 4065 4068 4071 4074 4078  4083.2 4089.3 4095 4098 4101 4104

4107 4110 41133 4119.3 4125.3 4131.3 4137.3 4143.3 4149.3 4155 4158 4164

4167 4173.3 4180.2 4185 4188 4192  4197.2 4203.3 4209.3 4215.3 4221.3 4227.3
4233.3 4239.3 4245 4248 4251.7 4263.3 4269.3 4275.3 4281.7 4293.3 4299.3 4305.3
4311.11 4329.5 4338 4341.2 4347.2 4354.2 4359 4362 4366 4371.2 4377.3 4383.3



187

4389.2
4467.3
4539.3
4611.7
4677.3
4737.2
4798
4866
4929.3
4995.3
5067.2
5133.3
5202
5259.3
5343.3
5400
5448
5514
5577
5619.3
5679
5754.3
5829.3
5901
5958
6027.3
6075
6123.3
6180
6234
6282
6339.3
6399
6450
6501.2
6561.3
6615
6663
6724.2
6774

4395.3
4473.3
4545

4623

4684.2
4743.3
4803.2
4869.3
4935.3
5001.5
5073.3
5139.3
5205.3
5265.5
5349.2
5403.3
5457

6523.2
5580

5625.3
5688

5760.5
5835.3
5807.2
5961.3
6034.2
6078

6129.3
6183.3
6237

6285.3
6345

6402

6453.3
6507

6567.3
6618

6666

6729.3
6777.3

4401.3
4479.3
4548
4626
4689.3
4749.3
4810.2
4875
4941.3
5010
5079
5145
5211.3
5274
5355.2
5409.3
5463.2
5529.3
5583
5631
5697.2
5769.3
5841.3
5913.2
5967
6039
6084
6135
6189
6240
6291
6348
6405.3
6459
6513.3
6574.2
6621
6675.2
6735
6783.3

4407.3
4485.3
4552
4629.2
4695
4755.3
4815.3
4878
4947.3
5013.3
5082
5148
5217.3
5277
5361.3
5415
5469.3
5535
5586
5634
5703
5775
5847.3
5919
5973.3
6042
6087
6138
6192
6243.3
6294
6357
6411.3
6462
6519
6580.2
6624
6681
6738
6789

4413.3
4491.3
45657.2
4635.2
4698
4761.3
4821.3
4881.3
4953.3
5019.3
5092
5151.7
5223.3
5280
5367
5418
5475.3
5538
5589.3
5637
5706
5778
5854.2
5922
5979.3
6048
6090
6141
6195.3
6249.3
6297.2
6363.3
6417.3
6465.3
6522
6585
6627.3
6684
6741.3
6795.2

4419.3
4497.3
4563.3
4641.3
4701.3
4767
4827.3
4887
4959.3
5025.3
5097
5163.3
5229.3
5283.3
5370
5421
5481.3
5541.3
5595
5640
5709.7
5781
5859.3
5925.2
5985
6051
6093.3
6147.2
6201.3
6255
6303.3
6369
6423
6471.3
6526
6588
6633.2
6687
6747.3
6801.3

4425.3
4503.3
4569.3
4647
4707.2
4770
4833.3
4893.3
4965
5031.5
5103.3
5169.3
5235
5289.3
5374
5424
5487
5547.3
5598
5643.3
5722.2
5787.2
5865.3
5931.3
5988
6054
6099.3
6153.3
6207.3
6258
6309.3
6372
6426
6477
6531
6591
6639
6693.3
6753.3
6807

4434.5
4509.3
4575.3
4650
4713.3
4773.2
4839.3
4899
4968
5040
5109.3
5175.3
5238
5295
5379.2
5427.2
5493.2
5553.3
5601
5649.3
5727.4
5793.3
5871
5937
5997
6057
6105.3
6159
6213.3
6261
6315
6375
6429
6480
6537
6594
6642
6699
6759
6810

4443.3
4515.3
4581.7
4654
4719.3
4779.2
4845.3
4905
4971.3
5043.3
5115.3
5181.3
§5241.3
5298.13
5385.3
5433
5489.2
5559
5604
5655.3
5734.2
5799
5874.5
5940
6003
6060
6111
6162
6219
6264
6318
6378
6432
6483.3
6543
6597.3
6645.2
6702
6762
6814

4449.3
4521.3
4593.3
4659.2
4725
4786.2
4851.3
4908
4978.2
5049.3
5122.2
5188.2
5247
5319.3
5391
5436
5505
5562
5607
5661.2
5739.3
5802
5883.3
5944.2
6009.3
6063
6114
6166
6222
6267.3
6324
6381.2
6435.3
6489.3
6546
6603.3
6651.2
6705
6765
6819

4455.3
4527
4599.3
4665.3
4728
4791
4857.3
4917
4983.3
5055
5127
5193.3
5250
5325.3
5394
5439.3
5508
5565.3
5610
5667.3
5745.3
5812
5890.2
5949.3
6015.3
6066
6117
6171.2
6226.2
6273.3
6327
6387.3
6441
6495
6549
6609
6657
6708
6768
6826.2

4461.3
4533.3
4608
4671.3
4732
4794
4863
4923.3
4989.3
5062
5130
5199
5253.3
5331.7
5397
5445
5511
5571.3
5613.3
5673.3
5751
5823.3
5895.3
5955
6021.3
6070.2
6120
6177
6231
6279
6333.3
6393.3
6444
6498
6555.3
6612
6660
6717
6771
6831



188 List of Possible Exceptions for W

6834 6837 6840 6843.3 6849 6852 6855 6858 6861.3 6867 6873.3 6879
6882 6885 6888 6892 6903 6906 6909 6912 6915.3 6922.2 6927 6930
6933.2 6939.2 6945 6954 6963.2 6969.3 6975 6978 6981 6984 6987.2 6994.2
6999 7002 7005.3 7012.2 7017 7020 7023 7026 7029 7032 7035.3 7044
7047 7050 7053.2 7059 7062 7066.2 7071 7074 7080 7083.3 7089 7092
7095.3 7101.3 7107.3 7113.3 7119 7122 7125 7128 7131.3 7137.3 7143 7146
7149 7152 7155.3 7161 7167 7170 7173 7179.2 7186.2 7191 7194 7197
7204.2 7212 7215 7218 7221 7224 7227 7233.3 7239 7242 7245 7248
7252 7257 7263.3 7272 7275.3 7282.2 7287.3 7293 7296 7299.3 7305 7308
7311 7314 7317.3 7323.3 7332 7335.3 7341 7344 73473 7353 7356 7359
7362 7365.2 7371.2 7377.3 7383 738 7305.2 7401 7404 7407 7413.3 7419.3
7426.2 7T431.3 7437 T7443.3 7449 7452 7455 7458 7461.3 T467.3 7473.3 7479
7482 7491 7497.2 7503.3 7509.2 7515.2 7524 7527 7530 7539 7545.3 7551
7554 7557 7560 7563.3 7569.3 7575 7578 7584 7587.3 7593.3 7599 7602
7605 7608 7611.3 7618.2 7623 7626 7629 7632 T7635.3 7642 7647 7650
7653 7656 7659.3 7665.2 7671 7674 7677 7683.3 7689 7692 7695 7698
7702 7708 7713 7716 7719 7722 7725 7728 7731.3 7740 7743 7746
7752 7755 7758 TY67 YT70 7773 7779 7Y82 7786 7791 V794 7797
7803.3 7809 7815 7818 7822 7827.3 7834.2 783% 7842 7845 7848 7851
7854 7860 7863 7866 7869.3 7875 7878 78813 7887 7890 7893 7899
7902 7905 7908 7911l 7914 7917 7920 7923.3 7929 7932 7935  7939.2
7947.2 7953.3 7962 7971.2 7977 7983 7986 7989 7992 7995 7998  8002.2
8007 8010 8013 8016 8019.3 8025.3 8031 8034 8037 8040 8043.3 8052
8055 8058 8061 8064 8067.3 8074.2 8079 8082 8085 8091.2 8097.2 8103
8106 8115 8121 8124 8127 8133.3 8139.3 8145 8148 8157 8163.3 8169
8172 8175 8181.3 8187.2 8194.2 8199 8202 8205 8208 8211.3 8218 8223
8226 8235 8241 8247 8250 8259 8265.3 8271 8274 8277 8280 8283.3
8289 8292 8298 8301 8307 8313.3 8319 8325 8328 8332 8343 8346
8349 8352 8355 8358 8362 8367 8370 8373 8385 8391 8394 8403
8409 8412 8415 8418 8427.3 8433 8436 8439 8442 8445 8448 8451.3
8457 8460 8466 8469.3 8475.3 8484 8487 8493 8496 8499 8502 8517
8523 8526 8529 8535 8538 8541.2 8550 8556 8559 8562 8565 8571
8574 8577.3 8586 8592 8595 8598 8601.3 8607 8610 8613 8616 8619
8622 8628 8631 8634 8637 8640 8643.3 8650 8655 8658 8661 8667
8673.2 8679 8682 8697 8703.3 8709 8715 8718 8721.3 8727.3 8736 8739.3
8745 8748 8751 8754 8757.3 8764.2 8769.3 8775 8778 8781 8784 87873
8793 8796 8799 8802 8805 8811.2 8820 8823 8826 8844 8847 8850
8853 8859 88G2 8865 8868 8871 8874 8877 8880 8883.3 8839 8892
8895 8898 8901.3 8907 8910 8916 8919 8922 8925 8928 8931 8934
8938 8946 8949 8955 8967 8970 8974 8979 8985 8988 8991 8994



189

8997.2 9003.3 9009 9012 9015 9018 9021 9024 9027.3 9034.2 9039 9042
9045 9048 9051.3 9063 9066 9069 9072 9075 9078 9082 9087 9090
9099 9111 9114 0118 9123 9129 9132 9135 9141 9147.3 9153.3 9159
9162 9168 9171.3 9177.3 9183 9186 9189 9192 9195 9204 9207 9213
9216 9220.2 9237 9243 9246 9249 9255 9258 9262 9267 9270 9273.3
9279 9282 9285 9291 9294 9298 9303 9306 9309 9312 9315 9318
9324 9327 9330 9333 9336 9339 9342 9363.2 9370 9375 9378 9381
9387 9393.2 9399 9402 9405 9417 9423 9429 9435 9442.2 9447 9456
9459.3 9468 89477.2 9486 9489 9492 9495 5498 9501 9504 9507 9513
9516 9519 9522 9525 9531.2 9537 9540 9543 9546 9555 9561 9564
9567 9570 9573.2 9579 9582- 9588 9591 9594 9604.2 9612 9615 9618
9627.2 9639 9645 9651 9654 9657.2 9666 9669.2 9675 9678 8687 9699.2
g708 9711 9717 9720 9729 9732 9735 9738 9741 9747.2 97533 9759
9762 9768 9771 9774 9780 9783 9789 9792 9795 9798 9802 9807
9810 9813 9819 9825 9831 9834 9843 9849 9852 9855 9858 9861
9867 9870 9874.2 9879 9885 9888 9891.2 9900 9903 9909.3 9915 9924
9927 9933 9939.3 9948 9957 9963.3 9978 9981.2 9987.3 9993 9996 9999
10002 10005.3 10011 10014 10017.3 10026 10029.3 10035 10038 10041.3 10047 10053
10056 10059 10068 10071 10074 10077 10080 10083 10086 10095 10098 10107
10113 10119 10122 10137 10143 10146 10149 10155 10158 10162 10167 10176
10179 10188 10197.2 10209 10218 10221 10224 10228 10233 10236 10239 10245
10248  10251.3 10257 10260 10263 10266 10269 10272 10275.3 10281 10284 10287
10293 10296 10299 10302 10305 10308 10317 10323.3 10329 10332 10335 10338
10341.3 10347.3 10356 10359 10362 10365 10368 10371 10374 10378 10386 10389
10395 10401 10407 10419 10425 10428 10431 10434 10443 10452 10455 10461
10464 10467 10476 10485 10492 10497 10506 10509 10512 10515 10518 10521.3
10527 10530 10539 10545 10548 10551 10554 10569.2 10575 10578 10581 10587.2
10593 10599 10605 10608 10611.3 10617.3 10623 10629 10632 10635 10638 10644
10647 10650 10653 10656 10659.3 10671 10674 10677 10683 10686 10689 10695
10698 10701 10707 10710 10716 10722 10725 10731.3 10749 10755 10764 10773
10779 10788 10794 10797 10800 10803 10815 10818 10821 10827 10833.2 10839
10842 10845 10857 10863 10866 10869 10875 10878 10882.2 10887 10893 10896
10899.2 10908 10917.3 10923 10929 10932 10938 10941 10944 10947.2 10953 10956
10962 10965 10972 10977 10980 10986 10995 11001 11004 11007 11013 11016
11018 11028 11037 11043.3 11049 11052 11055 11058 11061.3 11067 11076 11079
11082 11085 11088 11091 11094 11097.2 11106 11115 11122.2 11127 11139 11148
11151 11154 11157 11163 11169 111v2 11175 11178 11181.3 11187 11193 11196
11199 11202 11205 11208 11226 11229 11232 11235 11238 11242 11247 11250
11259 11265 11271 11274 11277 11286 11280 11295 11298 11301 11307 11319
11325 11328  11331.2 11340 11349 11352 11355 11364 11373 11376 11379 11397



190 List of Possible Exceptions for W

11403 11415 11418 11422 11427 11436 11442 11445 11451 11454 11458 11469.2
11475 11484 11493  11499.2 11514 11517 11523 11535 11538 11541 11547 11562
11565  11571.3 11577 11580 11583 11586 11589 11595 11598 11604 11607 11616
11619.2 11628 11631 11637.2 11646 11649 11655 11658 11661 11664 11667.2 11673
11679 11685 11697.2 11703 11715 11721 11724 11727 11733 11736 11740 11745
11751 11754 11757 11760 11763.3 11769 11772 11775 11778 11781.3 11787.3 11793
11796 11802 11805 11808 11811 11814 11818.2 11823 11826 11829.3 11835 11838
11847 11850 11853 11859 11862 11865 11868 11871 11874 11877 11880 11883
11886 11890.2 11895 11898 11901 11904 11907 11916 11922 11925 11928 11932
11946 11949 11955 11958 11962 11967 11973 11979 11985 11984 12003 12009.3
12015 12018 12021 12028 12034.2 12045 12051 12069 12072 12075 12081 12084
12089 12111 12114  12123.2 12132 12135 12138 12141.2 12147 12150 12156 12159
12162 12165 12168 12171 12174 12177 12186 12189.2 12195 12198 12202.2 12207
12213 12219 12228 12231 12234 12237 12243 12255 12261 12267 12282 12285
12297 12303 12306 12309 12315 12318  12322.2 12327 12333 12339 12348 12357
12360 12364 12370 12378 12381 12387 12394.2 12399 12405 12411.2 12420 12423
12426 12429 12435 12438 12444 12447 124563 12456 12459 12465.2 12474 12477
12483.3 12489 12492 12495 12498 12501.3 12507 12516 12519 12522 12525 12531.3
12546 12549 12555 12561 12564 12567 12579 12585 12588 12591 12594 12597
12603 12612 12615 12624  12627.2 12633 12636 12642 12645 12652 12657 12663
12666 12672 12675 12678 12681.3 12687 12690 12693 12699 12705 12708 12711
12714 12723.2 12729.3 12735 12738 12741 12744 12748.2 12753 12756 12759 12762
12765 12768 127713 12777 12780 12783 12786 12792 12795 12798 12804 12807
12813 12816  12819.3 12831 12834 12837 12843 12846 12849 12855 12858 12861
12867 12870 12876 12879 12882 12885 12891 12894 12909 12915 12922.2 12933
12839 12948 12954 12957 12960 12963 12975 12981 12987 13002 13023 13026
13035 13038  13042.2 13047 13053 13059 13068 13080 13083.2 13089 13092 13098
13101 13107 13114.2 13119 13122 13131 13140 13143 13146 13155 13164 13167
13179 13182 13185 13188 13203.3 13209 13215 13218 13222.2 13227 13236 13239
13242 13245 13248 13252.2 13258 13266 13269 13275 13278 13281 13287 13299
13305 13308 13311 13314 13317 13323 13332 13335 13341 13347 13356 13365
13371 13386 13382 13395 13407 13410 13419 13431 13434 13437 13446 13455
13458 13461 13467 13479 13491 13500 13512 13521 13524 13533 13536 13551
13554 13557 13563.2 13572 13575 13581 13587 13590 13605 13611 13620 13626
13635 13638 13641 13644 13647 13654.2 13659 13665 13674 13683.2 13692 13695
13688 13701  13707.2 13713 13719 13722 13732 13737 13743 13746 13749 13752
13755  13762.2 13767 13770 13773 13779 13782 13785 13788 13791 13797 13809
13812 13815 13818 13821 13824 13827.2 13833.3 13839 13842 13845 13851 13857
13860 13863 13866 13875 13887 13893 13896 13899 13902 13905 13908 13917
13923 13926 13932 13938 13941 13944 13947 13959 13962 13965 13971 13974



191

13989
14067
14187
14307
14379
14451.2
14493
14538
14601
14661
14727
14826
14955
15108
15198
15333
15477
15579
15642
15717
15789
15855
15924
15987
16077
16185
16266
16350
16419
16524
16587
16689
16804.2
16893
16956
17034
17115
17175
17250
17325

13995
14076
14199
14310
14388
14457
14496
14547.3
14604
14664
14739
14829
14964
15117
15204
15342
15483
15591
15651
15723
15792
15858
15927
15993
16083.2
16188
16272
16353
16422
16533
16596
16701
16812
16899
16965
17052
17118
17178
17253
17337

13998
14085
14211
14319
14391
14460
14499
14553
14607
14667
14748
14835
14997
15123
15207
15351
15492
15603
15654
15726
15795
15861
15930
15999
16092
16197
16284
16356
16437
16539
16602
16707
16815
16902
16971
17055
17121
17187
17256
17346

14001
14091.2
14220
14322
14403
14463
14502
14556
14613
14670
14751
14847
15003
15135
15219
15364
15495
15606
15657
15735
15804
15876
15939.3
16005
16095
16203
16287
16359
16443
16545
16611
16713
16824
16908
16980
17058
17124
17196
17259
17349

14007
14106
14235
14325
14409
14466
14505
14559
14616
14679
14757 -
14850
15027
15147
15228
15372
15507
15612
15660
15738
15813.3
15879
15945
16011.3
16102.2
16212
16280
16362
16449
16548
16623
16719
16827
16911
16989
17061
17127
17199
17262
17355

14013
14115
14244
14334
14412
14469
14508
14562
14619.3
14682
14772
14871
15039
15159
15279
15387
15516
15615
15663
15747
15819
15882
15948
16017
16107
16215
16293
16371
16455
16554
16626
16731
16830
16917
16995
17067
17133
17223
17268
17358

14019
14127
14253
14337.3
14421
14472
14514
14565
14625
14685
14781
14874
15042
15162
15285
15423
15537
15618
15675
15753
15828
15903
15951
16020
16119
16221
16299
16380
16458
16557
16635
16737
16839
16923
17002.2
17073
17139
17226
17295
17367

14028
14130
14277
14355
14427.2
14475
14517
14571
14628
14691
14784
14898
15054
15171
15291
15429
15540
15627
15684
15756
15834
15906
15954
16035
16122
16224
16314
16386
16467
16560
16647
16740
16842
16926
17007
17076
17142
17229
17298
17376

14043
14139
14283.2
14358
14433
14478
14520
14580
14643.3
14694
14787
14907
15060
15180
15303
15447
15549
15630
15687
15759
15837
15909
15966
16044
16134
16227
16323
16398
16476
16563
16650
16743
16863
16932
17010
17079
17145
17232
17301
17379

14052
14154
14292
14361
14436
14481.3
14523.3
14583
14652
14709
14796
14919
15063
15183
15315
15450
15562.2
15633
15693
15762
15840
15915
15969
16047
16161
16236
16332
16404
16479
16572
16659
16764
16869
16941
17013
17097
17163
17241
17307
17388

14061
14175
14295
14364
14439
14487
14529
14586
14655
14715
14805
14931
15082.2
15186
15324
15471
15567
15636
15699
15780
15843
15918
15975
16071
16167
162456
16338
16407
16482
16575
16662
16767
16887
16944
17019
17103
17166
17244
17319
17397

14064
14178
14302
14367
14442
14490
14532
14595
14658
14722
14811
14940
15099
15189
15327
15474
15573
15639
15702
15783
15852
15921
15981
16074
16179
16257
16341
16413
16509
16581
16674
16797
16890
16947
17028
17106
17172
17247
17322
17427



192 List of Possible Exceptions for W

17445 17451 17463 17475 17484 17487 17493 17502 17505 17514 17523 17532
17547 17559 17577 17601 17607 17628 17631 17676 17703 17706 17715 17727
17730 17733 17739 17754 17763 17772 17787 17796 17811 17820 17829 17844
17859 17871 17874 17883 17895 17898 17901 17910 17916 17919 17922 17931
17934 17940 17943 17955 17964 17979 17988 17997 18003 18015 18027 18042
18063 18066 18084 18087 18123 18147 18156 18159 18180 18183 18186 18195
18204 18207 18228 18246 18249 18252 18255 18258 18267 18276 18279 18315
18327 18351 18354 18372 18375 18381 18396 18405 18447 18450 18459 18498
18501 18507 18519 18531 18564 18597 18603 18615 18627 18639 18642 18678
18681 18687 18699 18708 18711 18723 18747 18753 18783 18786 18804 18807
18849 18858 18867 18879 18891 18903 18927 18933 18945 18966 18975 18987
19029 19059 19068 19071 19101 19113 19116 19143 19146 19155 19167 19179
19209 19218 19227 19239 19260 19284 19335 19347 19359 19377 19380 19407
19419 19428 19431 19437 19446 19449 19461 19467 19473 19476 19479 19491
19503 19506 19527 19545 19548 19575 19578 19587 19593 19599 19611 19617
19620 19644 19647 19671 19674 19683 19686 19692 19695 19704 19707 19710
19719 19734 19743 19749 19761 19767 19770 19779 19788 19791 19797 19806
19821 19824 19827 19836 19845 19848 19857 19869 19872 19875 19887 19899
19908 19932 18935 19938 19941 19947 19950 19956 19959 19962 19974 19977
19980 19583 19986 19998 20004 20013 20019 20022 20031 20037 20043 20046
20049 20058 20067 20076 20079 20082 20109 20124 20133 20139 20148 20154
20163 20175 20187 20202 20223 20226 20244 20247 20259 20283 20289 20292
20301 20316 20319 20331 20340 20343 20346 20364 20367 20388 20391 20394
20406 20409 20415 20418 20427 20436 20439 20487 20508 20514 20532 20535
20541 20544 20556 20565 20571 20577 20586 20595 20604 20607 20610 20619
20634 20652 20658 20676 20679 20682 20691 20697 20700 20703 20706 20718
20724 20727 20733 20739 20763 20769 20775 20778 20787 20796 20799 20802
20829 20832 20844 20853 20856 20859 20868 20874 20883 20895 20898 20907
20919 20922 20940 20943 20946 20964 20967 20979 21021 21027 21039 21045
21051 21060 21063 210756 21084 21087 21111 21132 21147 21150 21153 21159
21180 21183 21207 21210 21228 21231 21258 21264 21273 21276 21279 21285
21303 21315 21327 21339 21372 21375 21378 21396 21399 21405 21408 21411
21420 21429 21432 21435 21444 21459 21471 21474 21477 21483 21495 21498
21516 21519 21522 21525 21531 21534 21555 21564 21579 21585 21597 21603
21612 21615 21627 21636 21642 21651 21663 21684 21690 21702 21714 21723
21732 21747 21771 21777 21780 21783 21786 21804 21807 21828 21837 21846
21849 21852 21855 21867 21876 21879 21897 21915 21924 21927 21930 21951
21954 21972 21981 21984 21987 21993 21996 22002 22023 22029 22047 22050
22089 22098 22101 22107 22119 22128 22131 22155 22161 22173 22239 22257
22278 22281 22299 22308 22341 22347 22353 22383 22386 22407 22437 22467
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22479
22875
23142
23295
23388
23532
23658
23772
23898
24054
24189
24315
24447
24567
24783
24975
25188
25449
25650
25884
26124
26412
26706
26886
27189
27540
27765
28059
28332
28539
28791
28932
29079
29217
29469
29655
29835
30027
30201
30399

22491
22881
23157
23298
23403
23538
23676
23799
23913
24069
24195
24321
24450
24576
24789
24978
25227
25452
25659
25893
26166
26436
26724
26892
27213
27543
27774
28077
28356
28554
28815
28938
28082
29226
29472
29679
29847
30060
30207
30402

22503
22884
23187
23307
23412
23541
23679
23844
23919
24081
24207
24333
24459
24597
24801
24999
256263
25476
25692
25908
26172
26445
26742
26970
27276
27564
27777
28146
28359
28563
28818
28953
29085
29250
29523
29685
29850
30075
30231
30411

22524
22932
23193
23316
23415
23547
23682
23847
23931
24099
24219
24363
24471
24609
24810
25011
25266
25479
25731
25914
26137
26556
26769
27021
27282
27627
27783
28155
28362
28572
28839
28962
29091
20259
29538
29691
29871
30081
30267
30483

22572
22998
231986
23319
23445
23550
23706
23862
23937
24108
24252
24396
24483
24613
24819
26014
25287
25527
25740
25923
26250
26595
26793
27033
27300
27633
27807
28167
28371
28653
28842
28986
29139
29319
29559
297156
29895
30084
30273
30486

22587
23001
23223
23322
23451
23556
23718
23865
23997
24123
24255
24399
24495
24627
24828
25023
25299
25548
25767
25935
26268
26625
26799
27069
27324
27639
27819
28188
28407
28671
28866
29025
29145
29337
29583
29766
29901
30093
30306
30439

22650
23019
23268
23325
23466
23571
23724
23868
24003
24141
24258
24402
24507
24639
24861
25035
25329
255561
25779
25983
26298

26628

26817
27099
27357
27657
27825
28209
28455
28683
28893
29037
29148
29343
29586
29772
29907
30111
30327
30492

22713
23028
23277
23346
23475
23601
23727
23871
24006
24147
24267
24420
24513
24651
24885
25053
25332
25554
25803
25986
26301
26652
26820
27105
27402
27660
27885
28212
28461
28652
28899
29043
29163
29391
29619
29796
29946
30123
30357
30516

22719
23031
23283
23349
23487
23604
23739
23874
24027
24156
24270
24423
24519
24684
24897
25083
25356
25572
25818
26019
26313
26655
26844
27129
27411
27663
27915
28227
28476
28695
28908
29049
29172
29403
29622
29802
29949
30132
30369
30519

22779
23037
23286
23355
23499
23613
23748
23877
24030
24165
24276
24438
24543
24732
24915
25149
256359
25575
256827
26049
26319
26667
26847
27132
27420
27681
27933
28236
28485
28698
28911
29052
29181
29415
29625
29811
29967
30147
30372
30525

22839
23043
23289
23379
23514
23619
23763
23886
24039
24171
24279
24441
24546
24747
24927
25173
25371
25581
25836
26061
26346
26676
26874
27156
27444
27690
28020
28251
28506
28707
28923
29067
29196
29427
29623
29823
29979
30159
30378
30555

22872
23127
23292
23385
23517
23652
23769
23895
24042
24186
24291
24444
24564
24759
24939
25179
25446
25626
25869
26091
26385
26682
26877
27165
27468
27753
28029
28263
285615
28716
28929
29076
29205
29442
29652
29826
29994
30162
30396
30579



194 List of Possible Exceptions for W

30621 30663 30699 30714 30738 30756 30759 30762 30771 30780 30786 30807
30816 30837 30843 30849 30858 30867 30876 30909 30915 30924 30933 30939
30948 30963 30975 31002 31023 31026 31059 31101 31119 31131 31140 31146
31167 31215 31227 31239 31275 31287 31332 31341 31410 31419 31491 31719
31743 31746 31788 31809 31815 31932 31983 32010 32061 32085 32127 32139
32187 32211 32253 32283 32319 32367 32487 32571 32646 32649 32652 32676
32679 32697 32715 32745 32823 32826 32829 32865 32871 32874 32925 32931
32940 32997 33003 33027 33042 33057 33081 33111 33117 33141 33171 33177
33183 33186 33195 33207 33219 33237 33249 33252 33258 33279 33309 33339
33363 33366 33369 33372 33396 33399 33405 33429 33435 33438 33459 33471
33495 33501 33546 33579 33588 33591 33594 33615 33651 33657 33675 33681
33705 33717 33723 33729 33732 33738 33747 33756 33801 33804 33831 33834
33855 33867 33882 33906 33924 33927 33939 33957 33969 33978 33981 33999
34011 34083 34092 34107 34119 34191 34233 34263 34266 34338 34359 34362
34371 34443 34449 34476 34515 34524 34575 34623 34626 34659 34701 34725
34731 34740 34755 34767 34806 34812 34815 34827 34836 34884 34911 34941
34953 34956 34965 34971 34974 34983 34986 34995 35007 35019 35052 35076
35091 35100 35109 35139 35163 35196 35235 35244 35295 35343 35346 35388
35532 35547 35601 35661 35676 35706 35715 35727 35739 35748 35811 35940
35949 36099 36108 36171 36228 36291 36351 36372 36474 36516 36531 36579
36588 36675 36684 36705 36714 36891 37035 37074 37179 37188 37194 37218
37260 37335 37362 37506 37527 37539 37599 37611 37686 37692 37716 37791
37815 37866 37899 37971 37980 38043 38067 38115 38193 38223 38226 38268
38331 38340 38367 38403 38409 38427 38436 38445 38475 38481 38556 38586
38607 38619 38634 38655 38658 38679 38763 38772 38787 38838 38859 38862
38883 38907 38913 38976 38988 38997 39018 39123 39132 39159 39276 39306
39327 39453 39771 39915 39996 40047 40131 40323 40383 40452 40491 40572
40650 40857 40923 40929 41004 41067 41139 41148 41181 41211 41220 41289
41292 41355 41361 41364 41391 41394 41415 41433 41436 41442 41499 41577
41580 41598 41604 41613 41616 41619 41643 41649 41724 41745 41754 41775
41802 41823 41826 41850 41874 41901 41931 41940 41967 41997 42006 42018
42027 42036 42075 42111 42114 42135 42186 42189 42219 42234 42300 42315
42363 42375 42399 42420 42507 42519 42567 42588 42726 42732 42753 42756
42780 42795 42801 42876 42906 42027 42939 42954 43005 43020 43053 43083
43107 43197 43227 43263 43266 43287 43449 43452 43476 43515 43626 43659
43674 43803 43827 43947 43956 43983 43986 44172 44349 44379 44388 44475
44532 44559 44583 44601 44739 44748 44892 45531 45609 45675 45681 45834
45933 45963 46044 46143 46506 46539 46683 46722 47049 47175 47259 47268
47340 47355 47403 47553 47619 47625 47628 47691 47772 47817 47871 47943
47949 47985 48075 48093 48123 48159 48204 48267 48306 48327 48492 48519
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48555
49203
49995
51183
51867
52092
52452
52647
53346
53754
54627
55761
57411
59127
59868
61083
63495
64866
65988
66945
68499
69372
70311
72252
73755
79308
85356
86796
90684

104652 105228
111867 113292

48612
498206
50001
51186
51876
52107
52476
52659
53388
53811
54684
56836
57579
59148
59919
61905
63540
64908
66129
67137
68652
69615
70371
72351
74076
79839
85407
86847
90966

48699
49227
50052
51300
51903
52236
52479
52731
53451
53820
54783
55887
57771
59319
59943
62457
63684
65052
66201
67197
68751
69660
70479
72783
77355
80706
85533
86940
90972
108972
114012

48732
49644
50127
51327
51906
52257
52482
52812
53526
53847
54786
556914
58674
59361
60006
62487
63756
65121
66204
67206
68826
69759
70539
72786
77643
81099
85572
87003
51146
109287
121932

48756
49767
50154
51372
51927
52266
52506
52827
53532
53853
54996
55977
58695
59364
60027
62817
63972
65196
66213
67209
68832
69903
71244
72861
77652
82188
85587
87186
91404
108683
127692

48771
49779
50253
51387
51945
52269
52509
52911
53559
54099
55347
56427
58809
59385
60141
62919
64002
65340
66306
67212
68874
69906
71346
72891
78183
82332
85746
87228
95436

109692 110268
128412 131292

48801
49788
50463
51546
51948
52272
52521
52986
53595
54171
55506
56511
58815
59505
60156
62988
64188
65373
66381
67227
68940
69993
71385
73113
78327
82764
85932
87927
96012

48852
49851
50466
51579
51954
52287
52524
53019
53601
54276
555627
56679
58818
59565
60195
63243
64287
65484
66492
67305
68961
70092
71457
73116
78435
83052
86076
88809
96732

110439 110844

137628

48876
49929
50571
51723
52011
52299
52533
53058
53676
54315
55548
56985
58947
59571
60546
63279
64332
65628
66633
67839
69039
70119
71547
73179
78687
84132
86466
88827
96876

48924
49935
50859
51756
52017
52308
52587
63079
53706
54351
55611
57165
59001
59680
60732
63324
64401
65772
66852
67932
69183
70221
71631
73245
78759
84201
866652
89244
97452
110943

48951
49938
51003
51780
52020
52413
52623
53163
53727
54474
55692
57267
59073
59667
60876
63423
64476
65916
66876
68076
69186
70236
71919
73332
78876
84492
86667
89775
104139
110988

49026
49959
51135
51804
52086
52443
52626
53343
53739
54540 °
556716
57276
59106
59757
60906
63465
64539
65946
66924
68283
69363
70287
71949
73611
78927
85140
86793
89964
104283
111699
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