Turán-Type Problems in Group Testing, Coding Theory and Cryptography by Yeow Meng Chee A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy in Computer Science Waterloo, Ontario, Canada, 1996 ©Yeow Meng Chee 1996 I hereby declare that I am the sole author of this thesis. I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the University of Waterloo to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. The University of Waterloo requires the signatures of all persons using or photocopying this thesis. Please sign below, and give address and date. ### Abstract Turán-type problems are those which ask for the maximum number of blocks in a set system of a given order, which avoids a given set of configurations. We study the problem of designing low complexity nonadaptive algorithms for group testing, and the problem of constructing efficient erasure-resilient codes for large disk arrays, and frameproof codes for digital fingerprinting. These three problems are shown to yield a common treatment as Turán-type problems. The goal of this thesis is to develop bounds as well as to characterize optimal solutions to these problems. For the former, we focus on giving bounds that are at least asymptotically optimal, that is, optimal up to constant factors. We obtain characterizations of optimal r-cover-free k-uniform set systems for $(r, k) \in \{(2,3), (3,4), (4,5)\}$. When k = r+1 or $k \equiv 1 \pmod{2}$, we exhibit bounds that are stronger than previous ones of Erdös, Frankl, and Füredi. Next, weakly union-free twofold triple systems are shown to be equivalent to optimal nonadaptive algorithms for a certain group testing problem requiring only approximate identification. We investigate the spectrum of these set systems, and prove that the elementary necessary conditions are also sufficient for their existence, except perhaps for a small finite number of cases. This settles a conjecture of Frankl and Füredi in the affirmative. We also study a category of set systems arising from fault-tolerant nonadaptive group testing algorithms. Optimal solutions are obtained for all compositions of block sizes in $\{1, 2, 3\}$. In the process, we complete the spectrum of a class of designs (called quasidesigns) introduced by Frankl and Füredi. The next application area we investigate is the design of erasure-resilient codes for disk arrays. We prove general upper and lower bounds on the maximum size of such codes. The lower bound comes from a construction based on expander graphs. By studying set systems associated with (k, l)-erasure-resilient codes, asymptotically optimal bounds for such codes are established for all $k \le l \le 2k-1$, when k=3 and 4. We then study the problem of controlling group sizes in erasure-resilient codes, which leads to resolvability properties of the associated set systems. All these results improve, generalize, and/or extend previous results of Hellerstein, Gibson, Karp, Katz, and Patterson. It is also shown that erasure-resilient codes can be used to construct r-difference-free set systems, which correspond to nonadaptive group testing algorithms for the parity model. We prove asymptotically optimal bounds for 2-difference-free 3-uniform set systems. The final results of this thesis concern r-frameproof codes. These codes can be used to fingerprint digital data so that unauthorized use and copying of a piece of data can be traced back to its user. Moreover, no coalitions of at most r users can frame other users of unauthorized actions. We give improved bounds on 2-frameproof codes, and exhibit for every r, the first explicit family of r-frameproof codes whose rate is bounded away from zero. The results of this thesis indicate the pertinent role of Turán-type problems in group testing, erasure-resilient codes, and frameproof codes. # Credits Charlie Colbourn and Alan Ling have made some helpful suggestions during the preliminary part of research that culminated in Chapter 6. The electronic MOLS table that Charlie made available to me has been extremely useful. The material in Chapter 8 is joint work with Charlie Colbourn and Alan Ling. I thank them for this collaboration. My thesis committee comprises Gord Agnew, Charlie Colbourn, Frank Hwang, Ron Mullin, Paul Schellenberg, and Scott Vanstone. # Acknowledgements After earning my Master's degree from Waterloo in 1989, I was back in Singapore for a period of about five years. Many important decisions were made during that time. Amidst all these was the decision to come back to Waterloo for my Ph.D. During the span of five years in Singapore and two years that followed in Waterloo, I have been fortunate to meet many people who have influenced me greatly and who have made it possible for me to realize my dream. One of the delights of finally finishing my Ph.D. is this opportunity to thank them. I am greatly indebted to Charlie Colbourn, my advisor, mentor, and friend. Charlie gave me new directions in a time when I was wandering in the jungle of research. He got me thinking about many problems upon which this thesis is based. This thesis would not have come into being if he had not introduced me to group testing, and formulated the problem on erasure-resilient codes. Charlie's generosity with time also made it possible for me to discuss whatever ideas I have whenever I like. It is well known that most of Charlie's students graduated in relatively short time. Many attribute this to his folklorish ability to push his students. Having worked with Charlie in two degree programs, I have gotten to know sufficiently many of his students to know what the truth is. Charlie's commitment to research is such an inspiration that his students are propelled to work even harder. I am also grateful to Charlie for his financial support which enabled me to attend many interesting conferences. A special thank goes to Ron Mullin who is ever so willing to help and support. It was Ron who, nine years ago when I was an undergraduate, taught me what research is by offering me a reading course in cryptography. Many of the ideas I encountered in that course have been useful in my later work. Ron's phenomenally good temper and patience also merit mention. Ron will be turning 60 this August. I wish him a very happy 60th birthday and many healthy years ahead. Gord Agnew, Paul Schellenberg, and Scott Vanstone all served on my thesis committee. I am grateful to Gord for taking the time to make a careful reading of the thesis, despite his busy wedding preparations. Paul is to be commended for his readiness to serve on the committee as a substitute for Gord despite his heavy administrative duties. Anyone who has tried looking for Scott would appreciate how busy his schedule is. I am thankful to him for agreeing to serve on my committee without hesitation. Thanks also to Frank Hwang who consented to be my external examiner. The first year of my Ph.D. studies was supported financially by Anna Lubiw who was also my advisor. I would like to express my thankfulness to her for providing resources which made it possible for me to come to Waterloo. San Ling, at the National University of Singapore, played an important role in getting me to work on applications of algebraic number theory in combinatorics through his excellent series of lectures on elliptic curves. I thank him for several happy collaborations. The last two years I had in Waterloo were a time of hard work but great pleasure. I would like to thank my academic siblings, Zhike Jiang and Alan Ling, for stimulating discussions on combinatorics, and their friendship. The oyster dinner we had together To Angeline, the inspiration of all things wondrous. # Table of Contents | 1 Introduction | | | | | | |----------------|-----|-----------------------------|----|--|--| | | 1.1 | Group Testing | 2 | | | | | 1.2 | Erasure-Resilient Codes | 4 | | | | | 1.3 | Frameproof Codes | 7 | | | | | 1.4 | Organization of This Thesis | 8 | | | | 2 | Mat | thematical Preliminaries | 11 | | | | | 2.1 | Basic Notation | 11 | | | | | 2.2 | Analysis | 12 | | | | | 2.3 | Combinatorics | 13 | | | | | 2.4 | Coding Theory | 15 | | | | | 2.5 | Algebra and Number Theory | 15 | | | | 3 | Mo | dels of Group Testing | 17 | | | | | 3.1 | A Group Testing Game | 17 | | | | | 3.2 | Definition of the Metamodel | | | |---|---|---|---|----------------------| | | 3.3 Some Interesting Models | | | 21 | | | | 3.3.1 | Test Functions | 22 | | | | 3.3.2 | Solution Criteria | 24 | | | | 3.3.3 | Restrictions | 24 | | | 3.4 | A List | of Group Testing Problems | 25 | | 4 | No | nadapti | ve Group Testing and Turán-Type Problems | 27 | | | 4.1 | Why N | onadaptive Group Testing? | 27 | | | 4.2 | The Ro | le of Turán-Type Problems | 28 | | | | 4.2.1 | Exact Identification Problems | 29 | | | | 4.2.2 | lpha-Approximate Identification Problems | 33 | | | 4.3 | r-Cove | r-Free Set Systems | 34 | | | | | | | | 5 | Cha | racteri | zations and Improved Bounds for r -Cover-Free Set Systems | 39 | | 5 | Ch a | | zations and Improved Bounds for r-Cover-Free Set Systems | 39 | | 5 | | Prelimi | | | | 5 | 5.1 | Prelimi
2-Cover | naries | 39 | | 5 | 5.1
5.2 | Prelimi 2-Cover | naries | 39
41 | | 5 | 5.1
5.2 | Prelimi 2-Cover r-Cover 5.3.1 | naries | 39
41
45 | | 5 | 5.1
5.2 | Prelimi 2-Cover
r-Cover 5.3.1 5.3.2 | naries | 39
41
45
51 | | 5 | 5.15.25.3 | Prelimi 2-Cover 7-Cover 5.3.1 5.3.2 2-Cover | naries | 39 41 45 51 | | 5 | 5.15.25.35.45.5 | Prelimi 2-Cover r-Cover 5.3.1 5.3.2 2-Cover | naries :-Free Triple Systems :-Free (r + 1)-Uniform Set Systems Optimal 3-Cover-Free 4-Uniform Set Systems Optimal 4-Cover-Free 5-Uniform Set Systems :-Free Set Systems With Odd Block Size | 39 41 45 51 53 | | | 5.15.25.35.45.5 | Prelimi 2-Cover r-Cover 5.3.1 5.3.2 2-Cover Remark | naries -Free Triple Systems -Free (r + 1)-Uniform Set Systems Optimal 3-Cover-Free 4-Uniform Set Systems Optimal 4-Cover-Free 5-Uniform Set Systems -Free Set Systems With Odd Block Size | 39 41 45 51 53 54 57 | | | 5.1
5.2
5.3
5.4
5.5
The | Prelimi 2-Cover r-Cover 5.3.1 5.3.2 2-Cover Remark Spectr Prelimi | naries :-Free Triple Systems :-Free (r + 1)-Uniform Set Systems Optimal 3-Cover-Free 4-Uniform Set Systems Optimal 4-Cover-Free 5-Uniform Set Systems :-Free Set Systems With Odd Block Size :: um of Weakly Union-Free Twofold Triple Systems | 39 41 45 51 53 54 57 | | | Nonexistence and Some Direct Constructions | 63 | | |---|--|---|-----| | | | 6.4.1 Computational Details | 66 | | | 6.5 | Product Constructions | 69 | | | 6.6 | Eventual Periodicity of $oldsymbol{W}$ | 75 | | | | 6.6.1 Recursive Constructions for PBDs | 75 | | | | 6.6.2 PBDs up to Order Thirteen Million | 79 | | | | 6.6.3 The Spectrum | 81 | | | 6.7 | Subsystem-Free Twofold Triple Systems | 82 | | 7 | Fau | lt-Tolerant Group Testing | 85 | | | 7.1 | Introduction | 85 | | | 7.2 | (2,1)-Fault-Tolerant 3-Uniform Set Systems | 87 | | | 7.3 | (2,1)-Fault-Tolerant Set Systems With Block Sizes Two and Three | 89 | | | 7.4 | Remarks | 90 | | 8 | Era | sure-Resilient Codes for Redundant Arrays of Inexpensive Disks | 93 | | | 8.1 | An Overview of Disk Arrays | 93 | | | 8.2 | Terminology and Important Metrics | 97 | | | 8.3 | Properties of Parity-Check Matrices | 100 | | | 8.4 | Turán-Type Problems in Erasure-Resilient Codes | 103 | | | 8.5 | An Expander-Based Construction and an Upper Bound | 104 | | | 8.6 | (3,l)-Erasure-Resilient Codes | 109 | | | 8.7 | (4, l)-Erasure-Resilient Codes | 112 | | | | 8.7.1 The Cases $l=4$ and $l=5$ | 112 | | | | 8.7.2 The Cases $l = 6$ and $l = 7$ | 122 | | | 0 0 | Controlling Group Sizes by Balanced Orderings | 125 | | | 8.8 | Controlling Group bizes by Baranced Orderings | | | | | 8.9.1 | Generating Anti-Pasch Steiner Triple Systems | 132 | |----|------|----------------|--|-----| | | | 8.9.2 | Generating $(4, l)$ -Erasure-Resilient Codes | 134 | | | 8.10 | From 1 | Erasure-Resilient Codes to Group Testing | 134 | | | 8.11 | Summ | ary | 137 | | 9 | Fran | nepro | of Codes for Digital Fingerprinting | 139 | | | 9.1 | Techni | cal Preliminaries | 140 | | | 9.2 | Bound | s on Frameproof Codes | 142 | | | 9.3 | A Prol | pabilistic Construction for 2-Frameproof Codes | 144 | | | 9.4 | Explic | it Constructions for Superimposed and Frameproof Codes | 147 | | | 9.5 | Remar | ks | 151 | | 10 | Con | clusio | 1 | 153 | | | 10.1 | Open 1 | Problems | 155 | | | | 10.1.1 | Group Testing | 155 | | | | 10.1.2 | Erasure-Resilient Codes | 156 | | | 10.2 | Future | Directions | 158 | | A | Pacl | cing Pa | airs by Quintuples: $n \equiv 19 \; (mod \; 20)$ | 159 | | В | Enu | merati | on of A Class of Twofold Triple Systems of Order 12 | 163 | | , | B.1 | Structi | ıre of Automorphism Groups | 163 | | | B.2 | Enume | ration | 164 | | | B.3 | 3.3 Catalogues | | | | | | B.3.1 | Starter Blocks for TTS(12) With Starting Configuration A | 166 | | | | B.3.2 | Starter Blocks for TTS(12) With Starting Configuration B | 167 | | | | B.3.3 | Starter Blocks for TTS(12) With Starting Configuration C | 168 | | | | B.3.4 | Starter Blocks for TTS(12) With Starting Configuration D | 180 | | | B.3.5 | Starter Blocks for TTS(12) With Starting Configuration E |
182 | |--------|---------|--|---------| | C List | t of Po | ssible Exceptions for W | 185 | | Biblio | graphy | | 197 | # List of Figures | 1.1 | A communication system | |-----|---| | 1.2 | Binary symmetric channel | | 1.3 | Binary erasure channel | | 3.1 | Star network | | 3.2 | An inverter | | 4.1 | Inference procedure | | 5.1 | Forbidden configurations for weakly union-free 3-uniform set systems 60 | | 8.1 | A RAID layout 94 | | 8.2 | Data layout on a disk array | | 8.3 | Forbidden configurations for (3, 4)-erasure-resilient codes | | 8.4 | Forbidden configurations for 4-erasure-resilient codes | | 8.5 | Forbidden configurations for (4,5)-erasure-resilient codes | | 8.6 | Forbidden configuration for (4, 6)-erasure-resilient codes | | 8.7 | Forbidden configurations for (4,7)-erasure-resilient codes | 124 | |-----|--|-----| | 8.8 | Algorithm for generating anti-Pasch $STS(v)$, $v \equiv 3 \pmod{6}$ | 133 | ### Introduction The investigation of the structure of finite set systems constitutes a large part of the development of combinatorics. Several approaches have been taken, but the one that is oldest and yet continues to yield deep insights and a rich source of interesting problems, has come to be known as the branch of Turán-type problems. In a Turán-type problem, we are given a class $\mathcal G$ of set systems, and an invariant μ (usually the number of blocks) for another class $\mathcal H$ of set systems. The problem is to determine the maximum of μ over all set systems in $\mathcal H$ that contain none of the elements in $\mathcal G$ as a subsystem. Turán-type problems are not merely mathematical curiosities. Many of them correspond naturally to problems of practical interest. In this dissertation, we study several Turán-type problems that arise from three areas of computer science and engineering which have received much attention recently: group testing, erasure-resilient codes for disk arrays, and frameproof codes for digital fingerprinting. Our goal is to construct nonadaptive group testing algorithms, erasure-resilient codes, and frameproof codes that are as efficient as possible. The nonadaptive group testing algorithms, erasure-resilient codes, and frameproof codes that we build are improvements on previous results. Characterizations of some classes of 2 Introduction optimal nonadaptive group testing algorithms are also obtained. #### 1.1 Group Testing The concept of group testing was introduced to deal with a laborious and expensive process in clinical medicine. During World War II, the United States Public Health Service and the Selective Service System found it necessary to sieve out syphilitic Americans who were inducted into military service. A sample of blood drawn from each prospective inductee was subjected to a laboratory analysis which revealed the presence or absence of syphilitic antigen. The presence of syphilitic antigen was taken as an indication of infection. Instead of performing such a test on each blood sample, it was proposed that blood samples be pooled in groups and analyzed. If a pool showed no trace of syphilitic antigen, then all the individuals contributing to that pool could be assumed to be uninfected. If, however, syphilitic antigen was detected in a pool, then each individual contributing to that pool must be tested again. The merit of this proposal is that while a test is wasted when the pool contains blood samples of one or more infected individuals, many tests can be saved if the pool turns out to be free from syphilitic antigen. This idea is usually attributed to Dorfman, who wrote the first paper [46] in the area. However, it seems that Rosenblatt is the first to suggest the idea. More interesting history can be found in a recent book of Du and Hwang [48]. A number of industrial inspection problems share many similarities with the blood testing problem described above: - 1. Detecting gas leakage in devices [135]. - 2. Testing electronic components for faults [135]. - 3. Locating electrical shorts [35, 67, 132]. The same technique of pooling several objects in groups and inspecting them collectively can be used to reduce the cost of these inspection processes. The phrase "group testing" is coined by Sobel and Groll [135] to describe this general technique. More recently, group testing has found new applications in network communication. In a multiple access channel, there are two or more users sending information to a common receiver using the channel. Such channels provide a way for a large number of geographically dispersed stations to communicate. They have many attractive features, including low cost and potential for high bandwidth. An example of this channel is a satellite receiver with many independent ground stations. One problem with multiple access channels surfaces when two or more users transmit simultaneously. A common model [114] for multiple access channels assumes that the transmissions interfere destructively. A simple protocol that resolves such conflicts is time division multiplexing (TDM). In a TDM protocol, the time horizon is divided into units called slots, such that any message of unit length can be transmitted in one slot. If there are n users, we define a step to be a period of n slots. During each step, the TDM protocol allocates a slot to each user during which the user can send any message of unit length. The step is then repeated. Time division multiplexing can be highly inefficient since slots are allocated even to users who do not wish to transmit. To overcome this drawback, Hayes [77] suggested that users who wish
to transmit should first be identified and then allotted slots. We are thus faced with a set of users from which we want to identify those who wish to transmit. The role of group testing is now evident. A group test comprises a poll to a subset of users to determine if any of them wishes to transmit. How these subsets of users are to be constructed to allow fast identification is addressed by many researchers [14, 28, 29, 30, 36, 71, 77, 87, 144]. Even more recently, applications of group testing have come a full circle. From its initial inception in a clinical problem, group testing is now widely used in several efforts of the Human Genome Project. The goal of the Human Genome Project is to analyze the 4 Introduction Figure 1.1: A communication system. structure of human DNA and to determine the location of the estimated 10⁵ human genes. Much of the current effort of this project involves screening large libraries of recombinant DNA in order to isolate clones containing a particular DNA sequence. The experimental test used is known as polymerase chain reaction. This screening is an important preliminary to disease-gene mapping and large scale clone mapping [109]. The isolation of clones containing DNA sequences of interest is a tedious process and has been done using the idea of group testing to reduce the amount of work involved [10, 25]. Group testing has also been considered for sequencing by hybridization [112]. In each of the applications discussed above, the objective is always to minimize the number of tests used while still being able to identify those objects with the desired property. #### 1.2 Erasure-Resilient Codes In Shannon's seminal work on information theory [130], the transfer of digital information from a source to a sink is modeled mathematically by a communication system depicted in Figure 1.1. A source signal is a vector X, where its components belong to a finite set called the source alphabet. The encoder transforms X to another vector Y with components also from a finite set called the channel input alphabet. This vector Y, called a codeword, is then transmitted through the channel which is occasionally corrupted by noise. At the Figure 1.2: Binary symmetric channel. end of the channel, the decoder tries to reconstruct the source signal from the received signal \tilde{Y} . Such a communication system is known as a discrete channel. It is necessary that enough redundant information be added by the encoder if the decoder is to be able to reconstruct the source signal from the distorted received signal. The fundamental problem in coding theory [130] is how to construct for a given channel with a specified noise function, an encoder/decoder pair so that even if part of the transmitted codeword is distorted by noise in the channel, the decoder can nevertheless deduce what the source signal is. The objective here is for the encoder to introduce as little redundant information as possible, and for the decoder to tolerate as much distortion as possible. We cannot, of course, fulfil both of these conditions at the same time. The problem is how good we can reconcile these aims. The theory of error-correcting codes (see [96]) addresses this problem for a discrete channel whose noise function may distort a codeword by replacing some of its components with other symbols in the channel input alphabet. A distorted component is called an error. The most frequently studied channel in the theory of error-correcting codes and information theory is the binary symmetric channel (Figure 1.2), where the channel input alphabet is $\{0,1\}$, and input symbols are complemented with probability p. The theory of error-correcting codes is well developed and Spielman's recent breakthrough [139] gives an asymptotically good family of error-correcting codes that can be encoded and decoded in linear time. The binary erasure channel is illustrated in Figure 1.3. In this channel, the channel input alphabet is also {0,1}, but the noise function changes any symbol in {0,1} to a special symbol '#' with probability p. This has the effect of erasing symbols in a codeword. An erased symbol is called an erasure. Hence, in a binary erasure channel, we know exactly where erasures have occurred just by looking at the received vector \bar{Y} , but we receive no values for those erased components. The binary erasure channel is also well analyzed in information theory but work on the coding-theoretic aspect of this channel has begun only recently [7, 79, 115]. There are two main reasons for this. Firstly, any errorcorrecting code that tolerates up to e errors also tolerates up to e erasures. So it seems more important that we understand and develop first the theory of error-correcting codes. Secondly, most of the communication systems in use during the inception of coding theory behave more like binary symmetric channels. This is no longer true. Today's packetswitched networks (the Internet, for example) face applications that generate bursty traffic, causing congestions and buffer overflows that can lead to unpredictable losses [3]. This is undesirable for real-time multimedia applications. A substantial part of the Priority Encoding Transmission (PET) project [3] at the International Computer Science Institute in Berkeley focuses on developing erasure-resilient codes for packet-switched networks. Another manifestation of binary erasure channels involves viewing storage devices as communication channels. The requirement for high-performance, highly available storage for file servers and supercomputing systems led to the development of Redundant Arrays of Inexpensive Disks (RAID) [111]. The reliability of a large array of disks can be an issue, even if each disk in the array is highly reliable. A recent survey of Özden, Rastogi, and Silberschatz [110] gives the design of fault-tolerant disk arrays as a significant research area in multimedia applications. The failure of any disk in a disk array corresponds to an erasure of data stored on that disk. Erasure-resilient codes for handling failures in disk Figure 1.3: Binary erasure channel. arrays thus become an important study. There are essentially two approaches to measuring the performance of a code. The first is an average-case analysis, which gives the performance of a code in terms of its error probability, that is, the probability that an error cannot be corrected. The second approach is a worst-case analysis which measures the performance of a code by the number of errors appearing in any codeword which can be corrected with certainty. Although the two measures are closely related, it is usually more convenient to describe a code by its worst-case performance [133]. This is also the approach adopted in this dissertation. # 1.3 Frameproof Codes The goal of cryptography is to solve the problem of communication in the presence of adversaries [121]. In this dissertation, we focus on the problem of protecting digital data against unauthorized use or copying. Here, the user of the data plays the role of the adversary, and the data tries to communicate to its distributor whether any unauthorized use or copying has taken place. For nondigital products, this problem is often solved by physically incorporating an identifier, called a fingerprint, into each product. These identifiers help to trace the products back to their users, and hence act as a deterrent of unauthorized use. The design of fingerprinting mechanisms is much harder for digital data, since these can be processed and manipulated easily. Many procedures which are infeasible for users to perform on nondigital products are simply accomplished for digital ones. For example, the ability of the users to collude and compare every bit of a digital data allows them to detect the position of the fingerprints, and subsequently to modify them. If the design of fingerprints is not careful, it is also possible for users to collude and produce legitimate fingerprints, allowing them to frame another user (not in the collusion) of unauthorized actions. The problem of constructing fingerprints that are tolerant to the adversarial behaviour of users discussed above has been addressed recently by Boneh and Shaw [19]. They introduced a class of codes, called frameproof codes, that would prevent collusions of users from framing other users. Frameproof codes are an interesting deterrent of software piracy, and warrant investigation. # 1.4 Organization of This Thesis 8 We begin in Chapter 2 with an introduction to some basic notation, terminology, and results in analysis, combinatorics, algebra, and number theory that are used in this dissertation. Chapter 3 is devoted to formalizing group testing models and group testing problems. The purpose is to provide a formal context for the results in subsequent chapters. The chapter ends with a section containing a list of problems that are of interest in this dissertation. In Chapter 4, we show how Turán-type problems arise from nonadaptive group test- ing problems. In particular, we see the applications of r-union-free and r-cover-free set systems in nonadaptive group testing problems where exact identification of the target set is required. Chapter 5 is devoted to the study of uniform r-cover-free set systems. We present a characterization of several classes of optimal r-cover-free uniform set systems. In some other situations where we did not manage to achieve such characterizations, new upper bounds on the number of blocks are obtained. These improve on previous bounds of Erdös, Frankl, and Füredi [57, 58]. Chapter 6 deals with the existence problem for weakly union-free twofold triple systems. This problem was first studied by Frankl and Füredi [62] as a generalization of an old result of Erdös [54] on graphs. We show that this Turán-type problem arises naturally in a certain nonadaptive group testing problem where only an approximate identification of the target set is required. We solve
the existence problem for weakly union-free twofold triple systems completely except for a small finite number of cases, thus settling a conjecture of Frankl and Füredi in the affirmative. We also determine completely those orders for which there exists a twofold triple system that avoids all twofold triple systems of smaller order. The theme of Chapter 7 is fault-tolerant group testing. We study nonadaptive group testing algorithms that can identify target sets of size at most two even in the presence of an erroneous test, subjecting each of the elements to no more than three tests. It is found that the nonadaptive algorithm with the lowest test complexity involves each element in precisely three tests. The 2-union-free 3-uniform set systems constructed by Frankl and Füredi [62] is found to have the desired properties. We also complete the spectrum of a class of designs introduced by Frankl and Füredi. We shift our attention in Chapter 8 to the problem of designing erasure-resilient codes for large disk arrays. It turns out that the problem can be expressed equivalently as a Turán-type problem. We provide a general lower bound obtained from a construction based on expanders. Viewing the design of erasure-resilient codes as a Turán-type problem, we improve on this lower bound for some parameter situations by constructing erasure-resilient codes that are better than any presently known. The results we obtain here are optimal up to a constant factor. In this respect, we make heavy use of techniques from design theory. Often, looking at the associated Turán-type problem gives extremely simple and direct proofs of existing results (and even their improvements). This gives evidence that perhaps treating Turán-type problems is the right approach to the design of erasure-resilient codes for large disk arrays. The chapter also contains an application of erasure-resilient codes to the nonadaptive group testing problem where the test function used is the MOD₂ test function. In Chapter 9 we consider yet another area in which Turán-type problems arise naturally. Very recently, Boneh and Shaw have considered cryptographic techniques for protecting unauthorized use and copying of digital data, with the requirement that we be able to trace unauthorized actions back to their originators, and no coalitions below a certain size can frame other users. Special codes, known as r-frameproof codes, can be used to solve the problem. Stinson and Wei have observed that the problem of designing r-frameproof codes is equivalent to a Turán-type problem. We give a probabilistic construction of 2-frameproof codes, improving earlier bounds. We also exhibit for every r, the first explicit constructible family of r-superimposed codes, and hence also r-frameproof codes, whose rate is bounded away from zero. The final chapter summarizes the results of this dissertation and discusses some of its ramifications. # **Mathematical Preliminaries** This chapter summarizes mathematical background material from analysis, combinatorics, coding theory, algebra, and number theory used in this thesis. The definitions and results listed are mainly meant for reference. #### 2.1 Basic Notation By \mathbf{R} (\mathbf{Z} , \mathbf{N}) we denote the set of real (integral, natural) numbers. The set \mathbf{N} of natural numbers does not contain zero. \mathbf{R}_+ (\mathbf{Z}_+) denotes the nonnegative real (integral) numbers. Let M be a set. For $n \in \mathbb{N}$, we denote by M^n the set of vectors with n components (or n-dimensional vectors) with entries in M. We sometimes call a vector in M^n an M-vector. **Definition 2.1.1** The *weight* of a vector $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \{0, 1\}^n$, denoted $\operatorname{wt}(\mathbf{v})$, is the number $\sum_{i=1}^n v_i$. **Definition 2.1.2** The support of a vector $\mathbf{v}=(v_1,v_2,\ldots,v_n)\in\{0,1\}^n$, denoted supp (\mathbf{v}) , is the set $\{i\mid v_i=1\}$. **Definition 2.1.3** Given a vector $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbf{R}^n$, and a set $I = \{i_1, i_2, \dots, i_m\}$ $\subseteq \{1, 2, \dots, n\}$, such that $i_1 < i_2 < \dots < i_m$, the *restriction of* \mathbf{v} *to* I, denoted $\mathbf{v}|_I$, is the vector $(v_{i_1}, v_{i_2}, \dots, v_{i_m})$. **Definition 2.1.4** A vector $\mathbf{u}=(u_1,u_2,\ldots,u_n)\in\mathbf{R}^n$ is said to *precede* another vector $\mathbf{v}=(v_1,v_2,\ldots,v_n)\in\mathbf{R}^n$, and we write $\mathbf{u}\preceq\mathbf{v}$, if $u_i\leq v_i$ for all $i\in\{1,2,\ldots,n\}$. The j-th unit vector in \mathbb{R}^n , whose j-th component is one while all other components are zero, is denoted by \mathbf{e}_j . The zero vector is denoted by $\mathbf{0}$ and the vector of all ones is denoted by $\mathbf{1}$. The component-wise Boolean sum of two $\{0,1\}$ -vectors \mathbf{u} and \mathbf{v} is written $\mathbf{u} \vee \mathbf{v}$. For any set M, we denote by $M^{m \times n}$ the set of $m \times n$ matrices with entries in M. The identity matrix is denoted by I. The transpose of a matrix A is denoted by A^T . For a real number α , the symbol $\lfloor \alpha \rfloor$ denotes the largest integer not larger than α , and $\lceil \alpha \rceil$ denotes the smallest integer not smaller than α . For two sets M and N, we write $M \setminus N$ for the set-theoretic difference $\{x \in M \mid x \notin N\}$, $M \triangle N$ for the symmetric difference $(M \setminus N) \cup (N \setminus M)$, and 2^M for the set of all subsets of M. If $k \in \mathbb{Z}_+$, a k-subset of M is a set $N \subseteq M$ such that |N| = k. The set of all k-subsets of M, $\{N \subseteq M \mid |N| = k\}$, is denoted by $\binom{M}{k}$. If $M \cap N = \emptyset$, the expression $M \cup N$ is often used in place of $M \cup N$ to emphasize that the two sets are disjoint. The discrete probability measure is denoted by \mathbf{Pr} and $\mathbf{E}[X]$ denotes the expectation of a random variable X. # 2.2 Analysis We use the classical notations for asymptotic analysis. Let $f, g: \mathbf{R} \to \mathbf{R}_+$. - (i) We say that f(n) = O(g(n)) if there exist positive numbers c and N such that, for all $n \ge N$, $f(n) \le cg(n)$. - (ii) We say that $f(n) = \Omega(g(n))$ if there exist positive numbers c and N such that, for all $n \geq N$, $f(n) \geq cg(n)$. - (iii) We say that $f(n) = \Theta(g(n))$ if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ both hold. - (iv) We say that f(n) = o(g(n)) if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$. The natural logarithm is denoted by "ln" while "log" denotes the logarithm to base two. We use "exp" to denote the exponential function. #### 2.3 Combinatorics **Definition 2.3.1** Let X be a finite set. A set system or configuration is a pair (X, \mathcal{A}) , where $\mathcal{A} \subseteq 2^X$. The order of the set system is |X|. The elements of X are called points and the elements of \mathcal{A} are called blocks. Our definition of a set system precludes repeated blocks. A set system (X, A) is represented diagrammatically by a set of points corresponding to the elements of X and each block $A \in A$ is drawn as a continuous curve passing through precisely those points comprising A. **Example 2.3.1** Consider the set system (X, A), where $X = \{1, 2, 3, 4\}$ and $A = \{\{1, 2\}, \{1, 3, 4\}, \{2, 3, 4\}\}$. This set system is represented diagrammatically as follows. **Definition 2.3.2** A set system (X, A) is k-uniform if $A \subseteq {X \choose k}$. We sometimes say that a set system is uniform if it is k-uniform for some k. **Definition 2.3.3** Two set systems (X, A) and (Y, B) are isomorphic if there exists a bijection, called an isomorphism, $\pi: X \to Y$ such that $A \in A$ if and only if $\{\pi(a) \mid a \in A\} \in B$. **Definition 2.3.4** If (X, A) and (Y, B) are set systems such that $Y \subseteq X$ and $B \subseteq A$, we say that (Y, B) is a *subsystem* of (X, A). **Definition 2.3.5** A set system (X, \mathcal{A}) is said to *contain* a configuration (Y, \mathcal{B}) if there exists a subsystem of (X, \mathcal{A}) that is isomorphic to (Y, \mathcal{B}) . **Definition 2.3.6** A set system (X, \mathcal{A}) avoids a configuration (Y, \mathcal{B}) if (X, \mathcal{A}) does not contain (Y, \mathcal{B}) . In this case, we also say that (Y, \mathcal{B}) is a forbidden configuration of (X, \mathcal{A}) . The following definitions pertain to group actions on set systems. **Definition 2.3.7** An automorphism of a set system (X, A) is an isomorphism from (X, A) onto itself. **Definition 2.3.8** The set of all automorphisms of a set system forms a group Γ , called its full automorphism group, under functional composition. Any subgroup of Γ is simply referred to as an automorphism group. **Definition 2.3.9** Let Γ be a group acting on a set X. For $S \subseteq X$, the *development of* S with Γ , denoted $\text{dev}_{\Gamma}(S)$, is the set $\{\{\gamma(s) \mid s \in S\} \mid \gamma \in \Gamma\}$. **Definition 2.3.10** A collection of *starter blocks* for a set system (X, A), with automorphism group Γ , is a subset $A' \subseteq A$ such that $A = \bigcup_{A \in A'} \operatorname{dev}_{\Gamma}(A)$. #### 2.4 Coding Theory A code, or more specifically a q-ary code of length n, is any subset $\mathcal{C} \subseteq \{0, 1, \dots, q-1\}^n$. The elements of \mathcal{C} are called codewords. An important parameter of a code is its Hamming distance. **Definition 2.4.1** The Hamming distance between two codewords $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ is the quantity dist $(\mathbf{u}, \mathbf{v}) = |\{i \mid u_i \neq v_i\}|$. **Definition 2.4.2** The minimum distance of a code ${\mathfrak C}$ is $$d(\mathcal{C}) = \min_{\substack{\mathbf{u}, \mathbf{v} \in \mathcal{C} \\ \mathbf{u} \neq \mathbf{v}}} dist(\mathbf{u}, \mathbf{v}).$$ **Definition 2.4.3** The relative minimum distance of
a code $\mathbb C$ of length n is $\delta(\mathbb C) = \mathsf d(\mathbb C)/n$. Another important parameter in coding theory is the *rate* of a code. This is defined as follows. **Definition 2.4.4** The *rate* of a *q*-ary code, \mathcal{C} , of length n is $\mathsf{Rate}(\mathcal{C}) = \frac{\log_q |\mathcal{C}|}{n}$. We define a family of codes to be an infinite sequence of codes that contain at most one code of any length. **Definition 2.4.5** A family of codes, $\{\mathcal{C}_i\}_{i=1}^{\infty}$, is said to have rate R if $Rate(\mathcal{C}_i) \geq R$ for all i. # 2.5 Algebra and Number Theory The finite field with q elements, where q is a prime power, is denoted by GF(q). \mathbf{Z}_n represents the ring of integers modulo n. If σ is a permutation, the group generated by σ is denoted $\langle \sigma \rangle$. The following result on the gap between consecutive primes is useful. **Theorem 2.5.1** (Mozzochi [101]) Let p_n denote the n-th prime. Then $p_{n+1}-p_n=O(p_n^{1051/1921+\epsilon})$, for any $\epsilon>0$. # Models of Group Testing #### 3.1 A Group Testing Game Consider the one-player simple group testing game. The object of the game is to identify an unknown subset U of a finite set X, where $|U| \leq r$. We shall call U the target set. The player receives information about U only through the following process. The player chooses an arbitrary subset P of X and is told whether P contains at least one element of U or no elements of U. We call P a pool and the process of obtaining information a test on P. We often view a test on P as the evaluation of some test function $f_U: 2^X \to R$ on P. The appearance of the subscript U is to remind the reader that U is generally a parameter of the test function. We usually write f instead of f_U , unless we find it necessary to emphasize the dependency on U. In this game, R can be taken to be $\{0,1\}$. The goal of the player is to use as few tests as possible, and as little computation as possible, to pick a set U' which is a "close" approximation to U. To motivate the group testing game, consider Dorfman's blood testing application explained in Section 1.1. We can express this application as an instance of the game. The set X comprises all blood samples, and the target set U comprises those blood samples that contain syphilitic antigen. A subset P of X is a positive pool if and only if P contains at least one blood sample showing presence of syphilitic antigen. The objective here is to identify exactly the set U. There are a number of features of the simple group testing game that are essential to any model of group testing. We highlight them before delving into the general definitions. - The goal of the group testing game is to identify an unknown target set. The target set is not arbitrary, but contains at most r elements of X. - Finding a solution occurs through performing tests on pools. - The solution supplied by the player must satisfy a specified criterion. - We are interested in a player who is efficient: not many questions need to be asked to obtain the solution. Our intent is to state a metamodel of group testing that shares and formalizes the properties listed above. We begin by developing and motivating the necessary definitions. ## 3.2 Definition of the Metamodel Many models of group testing have been proposed (see [48]). Unfortunately, these different proposals seem rather ad hoc. It is possible, however, to describe them as derivations of a common metamodel. Treating them in this view provides us with a formal setting to discuss various results in group testing. Let X be a finite set called the *object space*, and let r be a positive integer called the a priori guarantee of X. A target set of X is just a subset $U \subseteq X$ such that $|U| \le r$. The test function employed is $f: 2^X \to R$. Our group testing algorithm (corresponding to the player of our simple group testing game) is an XPRAM, a model introduced by Valiant [148, 149] for parallel computation. An XPRAM is a machine that consists of a number of processors, each one with a local memory. Each processor is a universal sequential machine with its local instruction set which can access words from the local memory. In addition, there is a set of global parallel instructions that allow accesses by processes to the memories of other processors. The main global instructions are reads and writes, which enable processors to simultaneously read from or write to places in the whole memory space. Each processor is assumed to execute its own, possibly unique, program. An XPRAM executes operations in steps. In each step, each processor may execute any number of local instructions, and access other memories using global reads and writes. The processors know whether or not a step is completed at the end of every period of a specified length. Within such a period, there is no synchronization among the processors. In addition to the above defining properties of an XPRAM given by Valiant, we allow each processor to have access to an oracle. We call such a machine an oracle XPRAM. We think of the oracle as a procedure $\mathcal{O}(\cdot)$ that implements the test function $f: 2^X \to R$. When presented with a pool $P \subseteq X$, the oracle \mathcal{O} performs a test on P, that is, it returns f(P). Other than the oracle, the XPRAM knows, X, r, and the solution criterion, but has no other knowledge. For formality, the solution criterion is specified as a predicate $\Pi(\varphi)$ containing a variable φ . The solution U' is said to satisfy the solution criterion if $\Pi(U')$ is true. The predicate $\Pi(\varphi)$ will, in general, involve U and possibly r. Let us now take a moment to see how an oracle XPRAM with p processors, numbered one to p, plays the simple group testing game. The oracle in this case implements the function $f: 2^X \to \{0,1\}$ such that f(P) = 1 if $|P \cap U| \ge 1$ and f(P) = 0 otherwise. The global communication pattern of the p processors is in the form of a $star\ network$ (Figure Figure 3.1: Star network. 3.1). Processor one, called the *center*, communicates with the other p-1 leaf processors via global reads and writes. The other p-1 processors do not communicate with each other. In each step, the processors work as follows. Center: Depending on results from previous steps, either output a solution and halt, or compute p pools of X, P_1, P_2, \ldots, P_p . Using global writes, write P_i into the local memory of processor i, for $2 \le i \le p$. Now present P_1 to the oracle. Check local memory for results written by the leaf processors. Leaf processor i: read local memory for P_i written by the center. Present P_i to the oracle. Using global write, write the answer supplied by the oracle to the local memory of the center. Up to now, we have not mentioned how the complexity of the group testing algorithm is measured. Valiant [149] gives a formula for the running time of an XPRAM without oracles. In most applications of group testing, the cost of performing a test (calling the oracle) far exceeds the cost of gathering results of tests and distributing the tests to be performed (global reads and writes). Inferring the final solution or what subsequent pools to test based on the results of previous tests is not a simple process, but is usually not as tedious as performing the tests. Hence, it has been common practice in the group testing literature (see [48]) to assume that the most important factor is the number of tests performed. The time complexity of the inference procedure is of secondary importance. This is also the view we take throughout this dissertation. The test complexity of an oracle XPRAM is defined to be the total number of calls made to the oracles. We are now ready to give a definition for the group testing metamodel. **Definition 3.2.1 (Group Testing Metamodel)** Let X be a finite set with a priori guarantee $r, f: 2^X \to R$ be a test function, and $\Pi(\varphi)$ be a solution criterion. Let \mathcal{O} be an oracle implementing f. For positive integers p and t, we say that (X, r, f, Π, p, s) is t-group testable if there exists a p-processor s-step group testing algorithm with access to \mathcal{O} having test complexity at most t, that outputs a solution P' such that $\Pi(P')$ is true. The hextuple (X, r, f, Π, p, s) is called a group testing problem. Given a group testing problem (X, r, f, Π, p, s) , the objective is to determine the minimum t such that the problem is t-group testable. A dash "—" is used to indicate that a parameter is unconstrained. In the literature, a $(X, r, f, \Pi, 1, -)$ problem is called sequential, and a $(X, r, f, \Pi, -, 1)$ problem is called nonadaptive. Hence, in a sequential problem, the algorithm has only one processor and at each step, its query to the oracle can depend on the results of all previous queries. In contrast, an algorithm for a nonadaptive problem must specify all its queries in one step. Since the values of both p and s are implied, sequential and nonadaptive problems are simply defined by a quadruple (X, r, f, Π) . Also, by a sequential or nonadaptive algorithm, we mean an algorithm for a sequential or nonadaptive problem, respectively. ## 3.3 Some Interesting Models Various models of group testing can be derived from the metamodel (Definition 3.2.1) by specifying f and Π in different ways. Let us briefly discuss some of the most important types. #### 3.3.1 Test Functions An *n*-ary test function is a function $f: 2^X \to R$, where |R| = n. The most popular models for group testing have binary or ternary test functions [48]. Among these, binary test functions form the majority. Nonadaptive problems with binary test functions also give rise to interesting Turán-type problems, which are the subject of this dissertation. We therefore restrict ourselves to binary test functions here and in subsequent chapters. Without loss of
generality, we assume that the range of each test function is $\{0,1\}$. Another assumption we make concerns a particular property of tests. In all applications of group testing encountered, one can observe that adding an element not in the target set cannot change the test result of a pool from zero to one. For example, in Dorfman's blood testing application, the addition of a nonsyphilitic blood sample to a pool which shows no trace of syphilitic antigen cannot render the pool syphilitic. We formalize this property as follows. **Definition 3.3.1** Let X be a finite set and $U \subseteq X$. A function $f: 2^X \to \{0,1\}$ is coherent with respect to U if $f(\emptyset) = 0$ and whenever $P \subseteq X$ such that f(P) = 0, we have $f(P \cup \{x\}) = 0$ for all $x \in X \setminus U$. Henceforth, we assume that the test functions for our group testing problems are all coherent with respect to the target sets. The test function that is most frequently studied in group testing is $$f(P) = \begin{cases} 1, & \text{if } |P \cap U| \ge 1; \\ 0, & \text{otherwise.} \end{cases}$$ (3.1) A useful generalization of (3.1) is the τ -threshold function $$f(P) = \begin{cases} 1, & \text{if } |P \cap U| \ge \tau; \\ 0, & \text{otherwise.} \end{cases}$$ (3.2) To motivate the definition of this test function, let us refer back to Dorfman's blood testing application in Section 1.1. The precision of any test has a limit. Hence, a test cannot detect the presence of syphilitic antigen in a blood pool, unless the number of syphilitic blood samples it contains exceeds a certain threshold. The function in (3.2) models this situation. It is also possible that the precision of the test depends on the concentration of syphilitic antigen in the pool, and not on the minimum amount of antigen that would trigger the test. This scenario gives rise to the test function $$f(P) = \begin{cases} 1, & \text{if } |P \cap U| \ge \gamma |P|; \\ 0, & \text{otherwise.} \end{cases}$$ (3.3) Another test function with potential applications is the MOD_m function, $$f(P) = \begin{cases} 1, & \text{if } |P \cap U| \equiv 1 \pmod{m}; \\ 0, & \text{otherwise.} \end{cases}$$ (3.4) Suppose that a factory produces *inverters* (Figure 3.2), which may suffer from faults. Instead of inverting its input, a *faulty inverter* simply outputs its input. The factory would like to sieve out those faulty inverters before putting its inverters out on the market. A possible group test for inverters is to construct pools, each consisting of several inverters connected in series. A test comprises inputing a bit to a pool and observing its output. It is not hard to verify that a pool produces an incorrect output if and only if the pool Figure 3.2: An inverter. contains an odd number of faulty inverters. The group test just described corresponds to a MOD₂ test function. The three test functions (3.2), (3.3), and (3.4) we introduce do not appear to have been studied before. #### 3.3.2 Solution Criteria The most important solution criterion is the exact identification criterion: $$\Pi(\varphi) \equiv (\varphi = U). \tag{3.5}$$ In some situations, it may be sufficient to find a reasonably small set containing U. This leads to the following α -approximate identification criterion: $$\Pi(\varphi) \equiv (\varphi \supseteq U \text{ and } |\varphi| \le \alpha r),$$ (3.6) where r is the a priori guarantee. #### 3.3.3 Restrictions Further restrictions are often imposed on group testing algorithms. Typical restrictions are: • There is a given set L, and for every pool P, we must have $|P| \in L$. • For each $x \in X$, the number of tests involving x must not exceed some number k. The first restriction is motivated by applications in which the test kit is manufactured only with sizes in L. The second restriction is appropriate in situations when there is insufficient material for test, or when the quality of the object degrades with each test. For example, in Dorfman's blood testing application, each blood sample may be enough for only k tests. In some applications, it is also desirable that the number of tests involving each $x \in X$ is constant. We call a group testing problem k-restricted if each $x \in X$ is involved in exactly k tests. ## 3.4 A List of Group Testing Problems We end this chapter with a list of group testing problems that are of interest in this dissertation. Each problem is parametrized by the a priori guarantee r which appears at the end of the name of the problem in parentheses. All the problems are nonadaptive. We therefore only specify the test function, solution criterion, and restrictions (if any) for each problem. ## UNRESTRICTED NONADAPTIVE EXACT IDENTIFICATION PROBLEM(r) TEST FUNCTION: 1-threshold function. SOLUTION CRITERION: $(\varphi = U)$. ## k-Restricted Nonadaptive Exact Identification Problem(r) TEST FUNCTION: 1-threshold function. SOLUTION CRITERION: $(\varphi = U)$. RESTRICTIONS: Every object is tested exactly k times. ## $k ext{-Restricted}$ Nonadaptive $lpha ext{-Approximate}$ Identification Problem(r) TEST FUNCTION: 1-threshold function. SOLUTION CRITERION: $(\varphi \supseteq U \text{ and } |\varphi| \le \alpha r)$. RESTRICTIONS: Every object is tested exactly k times. ## k-Restricted Nonadaptive Exact Identification Parity Problem(r) TEST FUNCTION: MOD_2 function. SOLUTION CRITERION: $(\varphi = U)$. RESTRICTIONS: Every object is tested exactly k times. # Nonadaptive Group Testing and Turán-Type Problems ## 4.1 Why Nonadaptive Group Testing? The group testing problems that are the primary concern of this dissertation are nonadaptive. It is clear that the best sequential algorithm for a group testing problem (X, r, f, Π) must perform at least as well as any nonadaptive algorithm for (X, r, f, Π) , since a one-processor oracle XPRAM can simulate a p-processor oracle XPRAM without increasing the test complexity. It is therefore not surprising that most past research efforts on group testing had focused on sequential problems. Moreover, machines with many processors were not a reality until relatively recently. The advent of massively parallel computers have prompted Hwang and Sós [81] to make a case for the study of nonadaptive group testing problems. Further support of this case is given by Knill and Muthukrishnan [85], who observed that the following three features in the screening of clone libraries with hybridization probes strongly encourage nonadaptive algorithms: - A set X of clones is screened many times. Each time the concept of positive clones in X is different. The aim is to identify the positive clones, with respect to the different concepts. During each screening, a different probe suited to a particular concept of positivity, is used to test pools of clones. - It is expensive to prepare a pool for testing the first time. Once a pool is prepared, however, it can be tested many times with different probes. - Testing one pool at a time is expensive but testing many pools in parallel with the same probe is much cheaper per pool. An example of a real-life screening effort can be found in [25]. In addition to the above biological application, nonadaptive group testing is also closely related to the theory of *superimposed codes*. Superimposed codes were first studied by Kautz and Singleton [83]. These codes have applications in information retrieval [83] and multiple access communication [11]. We refer the interested reader to [51, 52] for more information. ## 4.2 The Role of Turán-Type Problems A $Tur\'an-type\ problem$ takes the following form. Given a family $\mathcal F$ of configurations, determine the maximum number of blocks in a set system of order n that avoids all the configurations in $\mathcal F$. This problem is so-named in memory of Tur\'an, who proved one of the most important results in the area [145, 146]. A recent survey of Füredi [65] provides a good summary of work in the area. In this section, we explain the role of Tur\'an-type problems in nonadaptive group testing. Let A be any nonadaptive algorithm for a group testing problem. The only essential factor of A is whether the pools it tests would yield enough information for the deter- mination of a solution. Hence, we may consider a nonadaptive algorithm \mathcal{A} for a group testing problem (X, r, f, Π) as being completely specified by a set system $\mathcal{S} = (X, \mathcal{P})$, where \mathcal{P} is the set of all pools tested by \mathcal{A} . The test complexity of \mathcal{A} is then given by $t = |\mathcal{P}|$. \mathcal{S} is called the *primal system associated with* \mathcal{A} . It has been more natural to consider the dual of \mathcal{S} , which is constructed as follows. Let P_1, P_2, \ldots, P_t be the blocks in \mathcal{P} . For each $x \in X$, let $B_x = \{i \mid x \in P_i\}$. The dual of $\mathcal{S} = (X, \mathcal{P})$, denoted \mathcal{S}^* , is the set system (Y, \mathcal{B}) , where $Y = \{1, 2, \ldots, t\}$ and $\mathcal{B} = \{B_x \mid x \in X\}$. A block $B_x \in \mathcal{B}$ contains exactly all those pools in which x is involved. We call (Y, \mathcal{B}) the dual system associated with \mathcal{A} . Since $(\mathcal{S}^*)^*$ is isomorphic to \mathcal{S} for any set system \mathcal{S} , a nonadaptive algorithm is also determined by its dual system. In the following subsections, we define for any test function f, set system (X, \mathcal{P}) , and $U \subseteq X$, the set $$f_{\mathcal{P}}^+(U) = \{P \in \mathcal{P} \mid f_U(P) = 1\}.$$ #### 4.2.1 Exact Identification Problems Let (X, f, r, Π) be a nonadaptive group testing problem with the exact identification criterion. Let U and U' be two distinct subsets of X, each containing at most r elements. A necessary and sufficient condition for (X, \mathcal{P}) to be the primal system of a nonadaptive algorithm for an exact identification problem is given in the following lemma. Lemma 4.2.1 Let (X, r, f, Π) be a
group testing problem with the exact identification criterion (3.5). A set system (X, \mathcal{P}) is the primal system of a nonadaptive algorithm for (X, r, f, Π) if and only if the following condition holds. For any two distinct subsets U and U' of X, each containing at most r elements, we have $f_{\mathcal{P}}^+(U) \neq f_{\mathcal{P}}^+(U')$. **Proof.** Necessity is easy. If $f_{\mathcal{P}}^+(U) = f_{\mathcal{P}}^+(U')$, then the algorithm cannot decide whether U or U' is the target set, since the tests yield the same results regardless of whether U or U' is the target set. To prove sufficiency, let $S = \{P \in \mathcal{P} \mid \text{the result of the test on pool } P \text{ is 1}\}$. Since $f_{\mathcal{P}}^+(U) \neq f_{\mathcal{P}}^+(U')$, there exists precisely one subset $U \subseteq X$, $|U| \leq r$, such that $f_{\mathcal{P}}^+(U) = S$. This subset is the required target set. The condition in Lemma 4.2.1 can be translated into a condition for the dual system by observing that $P_i = \{x \in X \mid i \in B_x\}.$ **Lemma 4.2.2** Let (X, r, f, Π) be a group testing problem with the exact identification criterion (3.5). A set system (Y, \mathcal{B}) is the dual system of a nonadaptive algorithm for (X, r, f, Π) if and only if the following condition holds. For any two distinct subsets U and U' of X, each containing at most r elements, we have $$\{i \in Y \mid f_U(\{x \in X \mid i \in B_x\}) = 1\} \neq \{i \in Y \mid f_{U'}(\{x \in X \mid i \in B_x\}) = 1\}.$$ (4.1) In a nonadaptive group testing problem, $|\mathcal{B}|$, the number of objects in X, is usually fixed and we want to minimize the algorithm's test complexity t = |Y|. Equivalently, we can keep the test complexity of the algorithm fixed and try to maximize the number of objects for which we can still solve the problem. This latter view defines a Turán-type problem. The condition (4.1) dictates which configurations are to be avoided in the dual system. We illustrate this with the UNRESTRICTED NONADAPTIVE EXACT IDENTIFICATION PROBLEM(r). **Definition 4.2.1** A set system (X, A) is *r-union-free* if there do not exist A_1, A_2, \ldots, A_r , $B_1, B_2, \ldots, B_r \in A$, not necessarily distinct, such that $$\bigcup_{i=1}^r A_i = \bigcup_{i=1}^r B_i,$$ unless $\{A_1, A_2, \dots, A_r\} = \{B_1, B_2, \dots, B_r\}.$ Lemma 4.2.2 gives the following. Corollary 4.2.1 (Hwang and Sós [81]) Solving the UNRESTRICTED NONADAPTIVE EXACT IDENTIFICATION PROBLEM(r) is equivalent to determining the maximum number of blocks in an r-union-free set system of order n. **Proof.** For f the 1-threshold function, (4.1) reduces to $$\bigcup_{x \in U} B_x \neq \bigcup_{x \in U'} B_x \tag{4.2}$$ for the dual system (Y, \mathcal{B}) , where U and U' are distinct subsets of X, each containing at most r elements. When |U| = |U'| = r, (4.2) is exactly the condition for the dual system being r-union-free. So suppose the dual system is r-union-free and $\bigcup_{x \in U} B_x = \bigcup_{x \in U'} B_x$ for some U and U' distinct subsets of X, each containing at most r elements. Now increase the multiplicity of any $x \in U$ and any $x' \in U'$ until |U| = |U'| = r. It is obvious that $\bigcup_{x \in U} B_x = \bigcup_{x \in U'} B_x$. But this contradicts the assumption that the dual system is r-union-free. From Corollary 4.2.1, the result below follows easily. Corollary 4.2.2 Solving the k-RESTRICTED NONADAPTIVE EXACT IDENTIFICATION PROBLEM(r) is equivalent to determining the maximum number of blocks in an r-union-free k-uniform set system of order n. Let u(n, r) and u(n, k, r) denote the maximum number of blocks in an r-union-free set system and r-union-free k-uniform set system, respectively. Not many results concerning these two functions are known, other than those implied by r-cover-free set systems (see Section 4.3). In general, it is known (see [48]) that $$\binom{u(n,r)}{r} \leq \sum_{j=r}^{n} \binom{n}{j}.$$ The problem of estimating u(n, 2) was raised by Erdös and Moser [61]. Frankl and Füredi [63] proved $$2^{(n-3)/4} \le u(n,2) \le 2^{(n+1)/2} + 1.$$ A 2-union-free 2-uniform set system is a graph without cycles of length three and cycles of length four. Reiman [118] proved $$\frac{1}{2\sqrt{2}}n^{3/2} < u(n,2,2) < \frac{1}{2}n^{3/2}.$$ Erdös [55] has made the conjecture that $$u(n, 2, 2) = \frac{1 + o(1)}{2\sqrt{2}}n^{3/2}.$$ Surprisingly, the case k=3 is easier. Frankl and Füredi [62] established the following exact result: $$u(n,3,2) = \left\lfloor \frac{n(n-1)}{6} \right\rfloor. \tag{4.3}$$ For general k, employing symmetric functions over finite fields, Frankl and Füredi [64] obtained the result below. **Theorem 4.2.1 (Frankl and Füredi** [64]) For any fixed k, there exist positive constants a_1 and a_2 such that $$a_1 n^{\lceil 4k/3 \rceil/2} \le u(n, k, 2) \le a_2 n^{\lceil 4k/3 \rceil/2}$$. #### 4.2.2 α-Approximate Identification Problems Let (X, r, f, Π) be a nonadaptive group testing problem with the α -approximate identification criterion. We have the following analogue of Lemma 4.2.1. Lemma 4.2.3 Let (X, r, f, Π) be a group testing problem with the α -approximate identification criterion (3.6). A set system (X, \mathcal{P}) is the primal system of a nonadaptive algorithm for (X, r, f, Π) if and only if the following condition holds. There exists a subset $Z \subseteq X$, $|Z| \leq \alpha r$, such that for any two distinct subsets U and U' of X, each containing at most r elements, we have either $f_{\mathcal{P}}^+(U) \neq f_{\mathcal{P}}^+(U')$ or $U \cup U' \subseteq Z$. **Proof.** First we prove necessity. Suppose there does not exist such a subset Z and $f_{\mathbb{P}}^+(U) = f_{\mathbb{P}}^+(U')$. Then, one of the following two situations must occur: - (i) $|U \cup U'| > \alpha r$; - (ii) there exists $U'' \subseteq \mathcal{P}$ such that $f_{\mathcal{P}}^+(U) = f_{\mathcal{P}}^+(U'')$ and there is no set of size αr containing both $U \cup U'$ and $U \cup U''$. If $|U \cup U'| > \alpha r$, then no set of size at most αr can contain both U and U'. So the solution obtained by the algorithm can contain at most one of U and U'. We can obtain a contradiction by taking the target set to be the one that is not contained in the solution given by the algorithm. For the second situation, the algorithm cannot obtain a solution that contains both $U \cup U'$ and $U \cup U''$. If the solution contains $U \cup U'$, we let the target set be U''. If the solution contains $U \cup U''$, we let the target set be U'. In both cases we have a contradiction. To prove sufficiency, let $S = \{P \in \mathcal{P} \mid \text{the result of the test on pool } P \text{ is 1}\}$. Then there exists a subset $Z \subseteq X$, $|Z| \le \alpha r$, such that for all $U \subseteq X$, $|U| \le r$, and $f_{\mathcal{P}}^+(U) = S$, we have $U \subseteq Z$. This subset Z is the required solution since it contains the target set and has size at most αr . In Chapter 6, we shall see that Lemma 4.2.3 gives rise to a Turán-type problem for the 3-RESTRICTED NONADAPTIVE (3/2)-APPROXIMATE IDENTIFICATION PROBLEM(2). ## 4.3 r-Cover-Free Set Systems The proof of Corollary 4.2.1 shows that every nonadaptive algorithm based on an r-union-free set system is able to solve the (unrestricted or k-restricted) nonadaptive exact identification problem(r). How does one actually go about finding the solution after obtaining the results for the set of pools \mathcal{P} ? This is the task of the inference procedure. One approach is to build a table of $f_{\mathcal{P}}^+(U)$, for all $U \subseteq X$, $|U| \le r$. The table can be sorted with respect to $f_{\mathcal{P}}^+(U)$ so that a search for the target set can be done in $O(\log |X|)$ time, for constant r. However, the time and space required to build and store the table is $\Omega(|X|^r)$. The tabulation of $f_{\mathcal{P}}^+(U)$ can thus be a serious bottleneck in terms of both space and time for some applications when r is large, even though once built, the table can be used over and over again. It is not known whether there is a more efficient inference procedure of determining the target set for nonadaptive algorithms based on r-union-free set systems [48]. Another problem commonly encountered in practical applications is that the a priori guarantee is often an estimate and hence can be wrong at times. Ideally, we would like to be able to tell as soon as possible whether the a priori guarantee given is correct. An inference procedure for a nonadaptive algorithm based on an r-union-free set system only reveals the correctness of the a priori guarantee after having succeeded or failed the search in the table of $f_{\mathbb{P}}^+(U)$. This is often undesirable. The two problems discussed above can be alleviated by nonadaptive algorithms based on set systems that satisfy a stronger property. **Definition 4.3.1** A set system (X, A) is r-cover-free if there do not exist $A_0, A_1, \ldots, A_r \in A$, not necessarily distinct, such that $$A_0 \subseteq \bigcup_{i=1}^r A_i$$ unless $A_0 \in \{A_1, A_2, \dots, A_r\}$. Let \mathcal{A} be a nonadaptive algorithm whose dual system (Y, \mathcal{B}) is r-cover-free. Since every r-cover-free set system is also r-union-free, \mathcal{A} solves the (UNRESTRICTED or k-RESTRICTED) NONADAPTIVE EXACT IDENTIFICATION PROBLEM(r) (X, r, f, Π) . **Lemma 4.3.1** Let U be the target set and $x \in X$. Then U contains x if and only if x does not appear in any pool $P \subseteq X$ such that f(P) = 0. **Proof.** It is obvious that $x \in U$ implies that x cannot appear in any pool P such that f(P) = 0. So assume that every pool P containing x is such that f(P) = 1. Suppose to the ``` all x \in X are not marked; for i = 1 to t do if f(P_i) = 0 then mark x for all x \in P_i; for x \in X do if x is not marked then x \in U; ``` Figure 4.1: Inference procedure. contrary that $x \notin U$. For all $i \in B_x$, we have
$f(P_i) = 1$. But $$\{i \in Y \mid f(P_i) = 1\} = \bigcup_{u \in U} B_u,$$ where U is the target set. Hence $$B_x \subseteq \bigcup_{u \in U} B_u.$$ This contradicts the fact that (Y, \mathcal{B}) is r-cover-free, since $x \notin U$ and $|U| \leq r$. An inference procedure based on Lemma 4.3.1 can be developed to find the target set given the test results. This is given in Figure 4.1. This procedure is more efficient than the search table technique used for nonadaptive algorithms based on r-union-free set systems. The time complexity of the procedure is easily bounded by O(t|X|). It is known [58, 81] that there exist r-cover-free set systems for which t is as small as $O(\log |X|)$ for unrestricted problems and $O(|X|^{1/k})$ for k-restricted problems. This gives a marked improvement over the $\Omega(|X|^r)$ time procedure employed by nonadaptive algorithms based on r-union-free set systems. If at the end of the procedure above, we have more than r objects in U, then we can also conclude that the a priori guarantee is wrong. This obser- vation is first made by Schultz [129]. Since the property of being r-cover-free is stronger than the property of being r-union-free, the tradeoff here is between the test complexity of the nonadaptive algorithm and the time complexity of the inference procedure. This advantage of nonadaptive algorithms based on r-cover-free set systems has encouraged the study of r-cover-free set systems over r-union-free set systems in the group testing literature. The next chapter in this dissertation presents some new results on r-cover-free set systems. #### 5.1 Preliminaries Let c(n, k, r) denote the maximum number of blocks in an r-cover-free k-uniform set system of order n. Any r-cover-free k-uniform set system of order n having c(n, k, r) blocks is said to be optimal. If an r-cover-free k-uniform set system has at least r+1 blocks, then each block in a collection of r+1 blocks must contain a point that is contained in no other blocks of the collection. It follows that there are at least (k-1)+(r+1)=k+r points. Hence, we assume throughout this chapter that n>k+r, since we have $$c(n, k, r) = \begin{cases} 0, & \text{if } n < k; \\ \min\left\{\binom{n}{k}, r\right\}, & \text{if } k \le n \le k + r - 1; \\ r + 1, & \text{if } n = k + r. \end{cases}$$ $$(5.1)$$ The problem of determining c(n, k, r) was introduced by Kautz and Singleton [83], and studied extensively by Erdös, Frankl, and Füredi [57, 58]. To state their main result, and also our results in subsequent sections, we require the following definitions from design theory. **Definition 5.1.1** A t- (v, k, λ) design is a k-uniform set system, (X, \mathcal{B}) , of order v, such that every t-subset of X is contained in precisely λ of the blocks in \mathcal{B} . **Definition 5.1.2** A t- (v, k, λ) packing is a k-uniform set system, (X, \mathcal{B}) , of order v, such that every t-subset of X is contained in at most λ of the blocks in \mathcal{B} . The packing number $D_{\lambda}(v, k, t)$ is the maximum number of blocks in any t- (v, k, λ) packing. A t- (v, k, λ) packing, (X, \mathcal{B}) , is optimal if $|\mathcal{B}| = D_{\lambda}(v, k, t)$. If $\lambda = 1$, often one writes D(v, k, t) for $D_1(v, k, t)$. Packings play an important role in the study of r-cover-free set systems because of the following simple observation. **Lemma 5.1.1** (Kautz and Singleton [83]) A t-(n, k, 1) packing is an r-cover-free set system of order n if $k \ge r(t-1) + 1$. **Proof.** Consider any block B in the packing. At most r(t-1) of the points in B can be contained in the union of r other blocks. But $k \geq r(t-1) + 1$. Hence no block is contained in the union of r others. **Definition 5.1.3** A Δ -system with nucleus A is a set system (X, \mathcal{B}) in which $B \cap B' = A$ for all $B, B' \in \mathcal{B}$, $B \neq B'$. The sets $B \setminus A$, for all $B \in \mathcal{B}$, are called the rays of the Δ -system. In [58], Erdös, Frankl, and Füredi established the following result. Theorem 5.1.1 (Erdös, Frankl, and Füredi [58]) Let k = r(t-1) + 1 + d, where $0 \le d < r$. There exists an integer $n_0(k)$ such that for all $n > n_0(k)$, we have $$(1-o(1))\binom{n-d}{t}/\binom{k-d}{t} \le c(n,k,r) \le \binom{n-d}{t}/\binom{k-d}{t} \tag{5.2}$$ whenever any one of the following conditions holds: - (i) d = 0 or 1, - (ii) $d < r/2t^2$, - (iii) t=2 and $d<\lceil 2r/3\rceil$. Moreover, equality holds in (5.2) if and only if a t-(n-d, k-d, 1) design exists. Apart from the characterization of r-cover-free k-uniform set systems meeting the upper bound in (5.2) in terms of t-(n-d,k-d,1) designs, no other exact behaviour of c(n,k,r) is known. The purpose of this chapter is to determine exactly the function c(n,k,r) for some values of r and k, and to characterize their associated set systems. New upper bounds, improving that of Theorem 5.1.1, are also obtained. We begin in the next section with the instructive case of 2-cover-free 3-uniform set systems. ## 5.2 2-Cover-Free Triple Systems The asymptotic behaviour of c(n, 3, 2) was determined by Erdös, Frankl, and Füredi in [57]: $$c(n,3,2) = \frac{1}{6}n^2 - O(n).$$ Here, we determine c(n, 3, 2) exactly for all n. More specifically, we show that c(n, 3, 2) = D(n, 3, 2) for all $n \geq 6$. The function D(n, 3, 2) has been completely determined by Schönheim [127] and Spencer [136] who proved $$D(n,3,2)= egin{cases} U(n,3,2)-1, & ext{if } n\equiv 5\pmod 6; \ U(n,3,2), & ext{otherwise,} \end{cases}$$ where $$U(v,k,t) = \left\lfloor rac{v}{k} \left\lfloor rac{v-1}{k-1} \cdots \left\lfloor rac{v-t+1}{k-t+1} ight floor \cdots ight floor floor$$ The idea behind our determination of c(n, 3, 2) is based on the observation that every Δ -system with a nucleus of size two in a 2-cover-free 3-uniform set system precludes all of the points in its rays from appearing in any other blocks. Hence, we cannot have too many Δ -systems with a nucleus of size two in a 2-cover-free 3-uniform set system. We can also delete all Δ -systems with a nucleus of size two to obtain a 2-(v, 3, 1) packing. The number of blocks in this packing can be bounded. The details are as follows. **Theorem 5.2.1** For all $n \ge 6$, c(n, 3, 2) = D(n, 3, 2). **Proof.** First note that any 2-(n, 3, 1) packing is 2-cover-free (Lemma 5.1.1). This shows that $c(n, 3, 2) \ge D(n, 3, 2)$. Now let (X, \mathcal{B}) be any 2-cover-free 3-uniform set system of order n. For $A \in {X \choose 2}$, define $$\mathfrak{B}(A) = \{B \in \mathfrak{B} \mid B \supset A\} \quad \text{and} \quad T(A) = \{x \in X \mid A \cup \{x\} \in \mathfrak{B}\}.$$ Note that there is a bijection between $\mathcal{B}(A)$ and T(A): $$x \in T(A) \iff A \cup \{x\} \in \mathcal{B}(A).$$ Further, define $$G_i = \left\{A \in inom{X}{2} \middle| |T(A)| = i ight\}, \quad ext{for} \quad 0 \leq i \leq n-2.$$ Let $g_i = |G_i|$. Clearly, $\{G_0, G_1, \ldots, G_{n-2}\}$ is a partition of $\binom{X}{2}$. Let $G_{\geq 2} = \bigcup_{i=2}^{n-2} G_i$. Observe that if $A \in G_{\geq 2}$, then T(A) contains points, each of which appears in only one block of \mathbb{B} ; for otherwise there would exist $x \in T(A)$ that is contained in the block $A \cup \{x\}$ and some other block $B \in \mathbb{B}$, and we can take a point $y \in T(A)$ different from x (this is possible because $|T(A)| \geq 2$) to obtain $(A \cup \{x\}) \subseteq (A \cup \{y\}) \cup B$, hence contradicting the assumption that (X, \mathbb{B}) is 2-cover-free. This observation implies that $$T(A) \cap T(A') = \emptyset$$ and $\mathcal{B}(A) \cap \mathcal{B}(A') = \emptyset$, for any $A, A' \in G_{\geq 2}, A \neq A'$. (5.3) Let $$\mathcal{B}' = \mathcal{B} \setminus \left(\bigcup_{A \in G_{\geq 2}} \mathcal{B}(A) \right) \quad ext{and} \quad X' = X \setminus \left(\bigcup_{A \in G_{\geq 2}} T(A) \right).$$ We claim that (X', \mathcal{B}') is a set system. Suppose not. Then there exists $B \in \mathcal{B}'$ such that $B \not\subseteq X'$. Hence, B contains a point $x \in T(A)$, for some $A \in G_{\geq 2}$. It follows that $A \cup \{x\}$ is a block of \mathcal{B} and there exists also another point y such that $A \cup \{y\}$ is a block of \mathcal{B} . But then $(A \cup \{x\}) \subseteq (A \cup \{y\}) \cup B$, contradicting the assumption that (X, \mathcal{B}) is 2-cover-free. It is also easy to see that for any two distinct blocks $B, B' \in \mathcal{B}'$, we have $|B \cap B'| \leq 1$; for otherwise there would exist $A \in {X \choose 2}$ such that $A \subset B$, $A \subset B'$, and hence $B, B' \in \bigcup \mathcal{B}(A)$. We conclude, therefore, that (X', \mathcal{B}') is a 2-(|X'|, 3, 1)packing. Also, (5.3) allows us to compute the size of X': $$|X'| = |X| - \left| \bigcup_{A \in G_{\geq 2}} T(A) \right| = |X| - \sum_{i=2}^{n-2} ig_i.$$ Similarly, we have $$|\mathcal{B}'| = |\mathcal{B}| - \sum_{i=2}^{n-2} ig_i.$$ It follows that $$|\mathcal{B}| = |\mathcal{B}'| + \sum_{i=2}^{n-2} ig_i$$ $$= D\left(n - \sum_{i=2}^{n-2} ig_i, 3, 2\right) + \sum_{i=2}^{n-2} ig_i$$ $$\leq D(n, 3, 2) \quad \text{for all} \quad n \geq 6.$$ (5.4) This completes the proof that c(n, 3, 2) = D(n, 3, 2). The proof of Theorem 5.2.1 gives a characterization of optimal 2-cover-free 3-uniform set systems. If $n \geq 7$, then for equality to hold in (5.4), we must have $\sum_{i=1}^{n-2} ig_i = 0$. This is possible only if $g_2=g_3=\cdots=g_{n-2}=0$. Hence, every 2-subset of X appears in at most one block of \mathcal{B} . Consequently, we have the following result. Corollary 5.2.1 For $n \geq 7$, a 2-cover-free 3-uniform set system of order n is optimal if and only if it is an optimal 2-(n,3,1) packing. This innocent-looking proof of Theorem 5.2.1 has two useful generalizations that yield results on c(n, r+1, r) and c(n, 2t-1, 2) that are stronger than any presently known. We discuss these next. ## 5.3 r-Cover-Free (r+1)-Uniform
Set Systems Our goal in this section is to obtain a result similar to Theorem 5.2.1 for r-cover-free (r+1)-uniform set systems. To this end, we generalize the idea behind the proof of Theorem 5.2.1 as follows. For every Δ -system with a nucleus of size two appearing in an r-cover-free (r+1)-uniform set system, we show that there is a sufficiently large number of points in the rays that do not appear in any other blocks. We can then follow the same bounding technique in the proof of Theorem 5.2.1. First, Lemma 5.1.1 implies that any 2-(n, r+1, 1) packing is r-cover-free. Hence $c(n, r+1, r) \geq D(n, r+1, 2)$. Now, let (X, \mathcal{B}) be any r-cover-free (r+1)-uniform set system of order n. For $A \in {X \choose 2}$, define $$\mathcal{B}(A) = \{B \in \mathcal{B} \mid B \supset A\} \quad ext{and} \quad T(A) = \left\{F \in {X \choose r-1} \middle| A \cup F \in \mathcal{B} \right\}.$$ Note again the existence of a bijection between $\mathcal{B}(A)$ and T(A). Further define $$G_i = \left\{A \in inom{X}{2} \middle| |T(A)| = i ight\}, \quad ext{for} \quad 0 \leq i \leq n-2.$$ Let $$g_i = |G_i|$$ and $G_{\geq 2} = \bigcup_{i=2}^{n-2} G_i$. Now suppose $A \in G_{\geq 2}$. If $F \in T(A)$, then at least one point of F is not contained in any block of \mathcal{B} other than $A \cup F$; for otherwise we can find r-1 blocks of \mathcal{B} whose 46 union contains F. These r-1 blocks together with the block $A \cup F'$ for some $F' \in T(A)$ different from F then contain the block $A \cup F$, contradicting the assumption that (X, \mathcal{B}) is r-cover-free. For each $F \in T(A)$, define $S_A(F)$ to be the subset of points in F, each of which is contained in no blocks of \mathcal{B} other than $A \cup F$. **Lemma 5.3.1** For any k distinct (r-1)-subsets $F_1, F_2, \ldots, F_k \in T(A)$, we have $$|S_A(F_1) \cup S_A(F_2) \cup \cdots \cup S_A(F_k)| \geq k.$$ **Proof.** The proof is by induction on k. The case k = 1 follows easily from our observation before that every block $A \cup F$, $F \in T(A)$, must contain a point that is contained in no other block of \mathcal{B} . Now consider $S_A(F_1)$, $S_A(F_2)$, ..., $S_A(F_k)$ for k distinct (r-1)-subsets F_1 , F_2 , ..., $F_k \in T(A)$. By the induction hypothesis, $S = S_A(F_1) \cup S_A(F_2) \cup \cdots \cup S_A(F_{k-1})$ contains at least k-1 points. We claim that $S_A(F_k)$ contains a point not in S. Assume the contrary. Then every point of $S_A(F_k)$ is contained in S, and hence is contained in the union of at most $|S_A(F_k)|$ of the (r-1)-subsets F_1, F_2, \ldots, F_k . Clearly, the points in $F_k \setminus S_A(F_k)$ are contained in the union of at most $r-1-|S_A(F_k)|$ blocks from B. Hence, the block $A \cup F_k$ is contained in the union of at most r-1 blocks of B, a contradiction. Therefore, $|S \cup S_A(F_k)| \geq k$. Corollary 5.3.1 There are at least |T(A)| points in $\bigcup_{F \in T(A)} S_A(F)$. From the definition of $S_A(F)$, it also follows that $$\left(\bigcup_{F\in T(A)} S_A(F)\right) \cap \left(\bigcup_{F\in T(A')} S_{A'}(F)\right) = \varnothing, \tag{5.5}$$ if $A \neq A'$. Let $$\mathbb{B}'=\mathbb{B}\setminus\left(igcup_{A\in G_{\geq 2}}\mathbb{B}(A) ight)$$ and $$X' = X \setminus \left(\bigcup_{A \in G_{\geq 2}} \bigcup_{F \in T(A)} S_A(F)\right).$$ First we show that (X', \mathcal{B}') is a set system. Suppose not. Then there exists a block $B \in \mathcal{B}'$ such that $B \not\subseteq X'$. Hence, B contains a point $x \in S_A(F)$, for some $A \in G_{\geq 2}$ and $F \in T(A)$. By definition of $S_A(F)$, x is contained in no blocks other than $A \cup F$. So we must have $B = A \cup F$. This is a contradiction since $A \in G_{\geq 2}$, and \mathcal{B}' contains no blocks of $\bigcup_{A \in G_{\geq 2}} \mathcal{B}(A)$. Next, for any two distinct blocks B and B' in B', we have $|B \cap B'| \leq 1$; for otherwise there would exists $A \in \binom{X}{2}$ such that $A \subset B$, $A \subset B'$, and hence $B, B' \in \bigcup_{A \in G_{\geq 2}} \mathcal{B}(A)$. Consequently, (X', \mathcal{B}') is a 2-(|X'|, r+1, 1) packing. Since $$egin{aligned} \left|igcup_{A\in G_{\geq 2}} \mathcal{B}(A) ight| &\leq \sum_{A\in G_{\geq 2}} |\mathcal{B}(A)| \ &= \sum_{A\in G_{\geq 2}} |T(A)| \qquad ext{(by the bijection between } \mathcal{B}(A) ext{ and } T(A)) \ &= \sum_{i=2}^{n-2} ig_i, \end{aligned}$$ 48 and $$\left| X \setminus \left(\bigcup_{A \in G_{\geq 2}} \bigcup_{F \in T(A)} S_A(F) \right) \right| = |X| - \left| \bigcup_{A \in G_{\geq 2}} \bigcup_{F \in T(A)} S_A(F) \right|$$ $$= n - \sum_{A \in G_{\geq 2}} \left| \bigcup_{F \in T(A)} S_A(F) \right| \quad \text{(by (5.5))}$$ $$\leq n - \sum_{A \in G_{\geq 2}} |T(A)| \quad \text{(by Corollary 5.3.1)}$$ $$= n - \sum_{i=2}^{n-2} ig_i,$$ we have $$|\mathcal{B}| = |\mathcal{B}'| + \left| \bigcup_{A \in G_{\geq 2}} \mathcal{B}(A) \right|$$ $$\leq D\left(n - \sum_{i=2}^{n-2} ig_i, r+1, 2\right) + \sum_{i=2}^{n-2} ig_i. \tag{5.6}$$ Let $\gamma = \sum_{i=2}^{n-2} ig_i$ and define, for fixed n and r, the function $$\Phi(\gamma) = \binom{n-\gamma}{2} / \binom{r+1}{2} + \gamma.$$ It is easy to see that Φ is a convex function. Hence, the maximum of Φ over any closed interval occurs at one of its boundary points. Since $$\Phi(2) = \frac{n^2 - 5n + 2(r^2 + r + 3)}{3(r+1)}$$ and $\Phi(n) = n$, we have $\Phi(2) \geq \Phi(n)$ if and only if $n \geq r^2 + r + 3$. In particular, this shows that $$\arg\max \left\{ \Phi(\gamma) \mid \gamma \in [2, n] \right\} = \begin{cases} n, & \text{if } n \le r^2 + r + 2; \\ 2, & \text{if } n \ge r^2 + r + 3. \end{cases}$$ (5.7) By counting the number of t-subsets in two ways, one has $$D(n, k, t) \le \binom{n}{t} / \binom{k}{t}$$. So (5.6) now implies $$|\mathcal{B}| \le D(n - \gamma, r + 1, 2) + \gamma \le \Phi(\gamma). \tag{5.8}$$ Also, since γ is either zero or at least two, it follows from (5.7) that $$|\mathcal{B}| \le \begin{cases} \max\{D(n, r+1, 2), n\}, & \text{if } n \le r^2 + r + 2; \\ \max\{D(n, r+1, 2), \binom{n-2}{2} / \binom{r+1}{2} + 2\}, & \text{if } n \ge r^2 + r + 3. \end{cases}$$ (5.9) The following result due to Johnson [82] can be used to simplify the bound in (5.9). Lemma 5.3.2 (Johnson [82]) If $v < k^2/(t-1)$, then $$D(v,k,t) \leq \left\lfloor rac{(k+1-t)v}{k^2-(t-1)v} ight floor.$$ Corollary 5.3.2 For $n \leq r^2 + r + 1$, we have $D(n, r + 1, 2) \leq n$. 50 **Proof.** If $n \le r^2 + r + 1$, then Lemma 5.3.2 applies and we have $$D(n, r+1, 2) \le \left\lfloor \frac{rn}{r^2 + 2r + 1 - n} \right\rfloor$$ $$\le \left\lfloor \frac{rn}{r^2 + 2r + 1 - (r^2 + r + 1)} \right\rfloor$$ $$= \left\lfloor \frac{rn}{r} \right\rfloor$$ $$= n.$$ For the range $r^2 + r + 2 \le n \le r^2 + 2r$, we apply the following result of Schönheim [127]. Lemma 5.3.3 (Schönheim [127]) $D(v, k, t) \leq U(v, k, t)$. Corollary 5.3.3 For $r^2 + r + 2 \le n \le r^2 + 2r$, $D(n, r + 1, 2) \le n$. **Proof.** If $n = r^2 + r + a$, $2 \le a \le r$, then by Lemma 5.3.3, we have $$D(n, r+1, 2) \le \left\lfloor \frac{r^2 + r + a}{r+1} \left\lfloor \frac{r^2 + r + a - 1}{r} \right\rfloor \right\rfloor$$ $$= \left\lfloor \frac{r^2 + r + a}{r+1} \left\lfloor r + 1 + \frac{a-1}{r} \right\rfloor \right\rfloor$$ $$= \left\lfloor \frac{r^2 + r + a}{r+1} (r+1) \right\rfloor$$ $$= r^2 + r + a$$ $$= n.$$ Finally, we observe that $\binom{n-2}{2}/\binom{r+1}{2}+2\geq n$, for all $n\geq r^2+r+3$. This, together with Corollary 5.3.2 and Corollary 5.3.3, establishes the following theorem. **Theorem 5.3.1** For any positive integers n and r such that $n \geq 2(r+1)$, we have $$c(n,r+1,r)$$. if $2(r+1) \le n \le r^2 + r + 2;$ $$\le \begin{cases} n, & \text{if } 2(r+1) \le n \le r^2 + r + 2; \\ \binom{n-2}{2} / \binom{r+1}{2} + 2, & \text{if } r^2 + r + 3 \le n \le r^2 + 2r; \\ \max \left\{ D(n,r+1,2), \binom{n-2}{2} / \binom{r+1}{2} + 2 \right\}, & \text{if } (r+1)^2 \le n. \end{cases}$$ The bound of Theorem 5.3.1 is stronger than that supplied by Theorem 5.1.1 of Erdös, Frankl, and Füredi. A consequence of Theorem 5.3.1 is the characterization of optimal 3-cover-free 4-uniform set systems and optimal 4-cover-free 5-uniform set systems of sufficiently large order. #### 5.3.1 Optimal 3-Cover-Free 4-Uniform Set Systems The following is a consequence of Theorem 5.3.1 and existing results on 2-(n, 4, 1) packings. Corollary 5.3.4 For $n \ge 19$, a 3-cover-free 4-uniform set system of order n is optimal if and only if it is an optimal 2-(n,4,1) packing. **Proof.** Brouwer [22] has shown that $D(n,4,2) = U(n,4,2) - \epsilon$, where $$\epsilon = egin{cases} 1, & ext{if } n \equiv 7 ext{ or } 10 \pmod{12}, \ n \neq 10, 19; \ 1, & ext{if } n = 9 ext{ or } 17; \ 2, & ext{if } n = 8, 10, ext{ or } 11; \ 3, & ext{if } n = 19; \ 0, & ext{otherwise.} \end{cases}$$ Since $\binom{n-2}{2}/\binom{4}{2}+2 < D(n,4,2)$ when $n \geq 19$, we have c(n,4,3)=D(n,4,2) if and only if $\gamma=0$ in (5.8). This happens if and only if $g_2=g_3=\cdots=g_{n-2}=0$, in which case we have a 2-(n,4,1) packing. We can now determine c(n, 4, 3) completely. #### Theorem 5.3.2 $$c(n,4,3) = egin{cases} n-3, & ext{if } 8 \leq n \leq 12; \ D(n,4,2), & ext{if } n \geq 13. \end{cases}$$ **Proof.** Let (X, \mathcal{B}) be a 3-cover-free 4-uniform set system of order n. We can classify (X, \mathcal{B}) as follows: - (i) (X, \mathcal{B}) is a 2-(n, 4, 1) packing. - (ii) (X, \mathcal{B}) has a pair of blocks that intersect in at least two points. If (X, \mathbb{B}) is a 2-(n, 4, 1) packing, then $|\mathbb{B}| \leq D(n, 4, 2)$. Otherwise, let $B, B' \in \mathbb{B}$ be such that $|B \cap B'| \geq 2$. Then there must be at least two points in $B\Delta B'$ that are not contained in any block in $\mathbb{B} \setminus \{B, B'\}$. Hence, $|\mathbb{B} \setminus \{B, B'\}| \leq c(n-2, 4, 3)$, implying $|\mathcal{B}| \leq c(n-2,4,3)+2$. With the base cases c(6,4,3)=3 and c(7,4,3)=4 provided by (5.1), it follows by induction that if (X,\mathcal{B}) satisfies condition (ii),
then $|\mathcal{B}| \leq n-3$ for $n \geq 6$. Hence, for any $n \geq 6$, we have $$c(n,4,3) \leq \max\{n-3, D(n,4,2)\}.$$ For $8 \le n \le 12$, we have $D(n,4,2) \le n-3$. The blocks $\{1,2,3,4\}$, $\{1,2,3,5\}$, ..., $\{1,2,3,n\}$ give a 3-cover-free 4-uniform set system of order n having n-3 blocks. Hence, c(n,4,3) = n-3 for $8 \le n \le 12$. For $n \geq 13$, observe that the value of D(n, 4, 2) meets the upper bound on c(n, 4, 3) given by Theorem 5.3.1. This completes the proof. #### 5.3.2 Optimal 4-Cover-Free 5-Uniform Set Systems We begin with the following result concerning the function D(n, 5, 2). **Theorem 5.3.3** There exist positive constants a and N such that for all n > N, we have $D(n, 5, 2) \ge U(n, 5, 2) - a$. **Proof.** The result for $n \equiv 1$ or 5 (mod 20) follows from the existence of 2-(n, 5, 1) designs [75]. For $n \equiv 3$, 9, or 17 (mod 20), the result can be found in [105]. The result for $n \equiv 13$ (mod 20) is implied by the results of [74]. When $n \equiv 7$, 11, or 15 (mod 20), the result is obtained by Yin [155]. The result for $n \equiv 0 \pmod{4}$ is obtained by Yin [157], and the result for $n \equiv 2 \pmod{4}$ is obtained by Ling [91]. The proof for the remaining case $n \equiv 19 \pmod{20}$ is relegated to Corollary A.0.2 in Appendix A, as it is not central to the theme of this chapter. **Corollary 5.3.5** There exists a constant N such that for all n > N, a 4-cover-free 5-uniform set system of order n is optimal if and only if it is an optimal 2-(n, 5, 1) packing. **Proof.** Since, for any constant a, $\binom{n-2}{2}/\binom{5}{2}+2 < U(n,5,2)-a$ for all sufficiently large n, we have c(n,5,4)=D(n,5,4) if and only if $\gamma=0$ in (5.8). This happens if and only if $g_2=g_3=\cdots=g_{n-2}=0$, in which case we have a 2-(n,5,1) packing. ## 5.4 2-Cover-Free Set Systems With Odd Block Size We generalize the proof of Theorem 5.2.1 in a different direction. Instead of considering Δ -systems with nuclei of size two, we now consider Δ -systems with nuclei of larger size. Let (X, \mathcal{B}) be any 2-cover-free (2t-1)-uniform set system of order n. For $A \in {X \choose t}$, define $$\mathcal{B}(A) = \{B \in \mathcal{B} \mid B \supset A\} \quad ext{and} \quad T(A) = \left\{F \in \binom{X}{t-1} \middle| A \cup F \in \mathcal{B}\right\}.$$ Further define $$G_i = \left\{A \in {X \choose t} \middle| |T(A)| = i ight\}, \quad ext{for} \quad 0 \leq i \leq n-t.$$ Let $$g_i = |G_i|$$ and $G_{\geq 2} = \bigcup_{i=2}^{n-t} G_i$. Suppose $A \in G_{\geq 2}$. If $F \in T(A)$, then F cannot be contained in any block of $\mathcal B$ other than $A \cup F$; for otherwise if F is contained in $B \in \mathcal B$, $B \neq A \cup F$, we can take $F' \in T(A)$, $F' \neq F$ (which exists because $A \in G_{\geq 2}$), to obtain $$(A \cup F) \subseteq (A \cup F') \cup B$$. **Definition 5.4.1** The *upper shadow* of a k-uniform set system (X, \mathcal{B}) is the (k+1)-uniform set system $(X, \partial_u(\mathcal{B}))$, where $$\partial_u(\mathcal{B}) = \left\{ A \in inom{X}{k+1} \middle| A \supset B \quad ext{for some } B \in \mathcal{B} ight\}.$$ **Lemma 5.4.1** (Sperner [138]) Let (X, \mathcal{B}) be a k-uniform set system. Then $$|\partial_u(\mathcal{B})| \ge \frac{n-k}{k+1}|\mathcal{B}|.$$ Our observation above implies that no subset in the upper shadow of the (t-1)uniform set system $$\left(X,\bigcup_{A\in G_{\geq 2}}T(A)\right)$$ can be contained in any block of $$\mathcal{B}' = \mathcal{B} \setminus \left(\bigcup_{A \in G_{\geq 2}} \mathcal{B}(A)\right).$$ The number of t-subsets of X contained in \mathcal{B}' is therefore at most $$\begin{pmatrix} X \\ t \end{pmatrix} - \left| \partial_u \left(\bigcup_{A \in G_{\geq 2}} T(A) \right) \right| - |G_{\geq 2}|$$ $$\leq \begin{pmatrix} X \\ t \end{pmatrix} - \frac{n - t + 1}{t} \left| \bigcup_{A \in G_{\geq 2}} T(A) \right| - \sum_{i=2}^{n - t} g_i \qquad \text{(by Lemma 5.4.1)}$$ $$= \begin{pmatrix} X \\ t \end{pmatrix} - \frac{n - t + 1}{t} \sum_{i=2}^{n - t} i g_i - \sum_{i=2}^{n - t} g_i$$ $$= \begin{pmatrix} X \\ t \end{pmatrix} - \sum_{i=2}^{n - t} \frac{(n - t + 1)i + t}{t} g_i.$$ Hence, the number of blocks in \mathcal{B}' is at most $$\frac{\binom{X}{t} - \sum_{i=2}^{n-t} \frac{(n-t+1)i+t}{t}g_i}{\binom{2t-1}{t}}.$$ It follows that $$\begin{split} |\mathcal{B}| &= |\mathcal{B}'| + \left| \bigcup_{A \in G_{\geq 2}} \mathcal{B}(A) \right| \\ &\leq \frac{\binom{X}{t} - \sum_{i=2}^{n-t} \frac{(n-t+1)i+t}{t} g_i}{\binom{2t-1}{t}} + \sum_{i=2}^{n-t} i g_i \\ &= \frac{\binom{X}{t} - \sum_{i=2}^{n-t} \left[\left(\frac{n-t+1}{t} - \binom{2t-1}{t} \right) i + 1 \right] g_i}{\binom{2t-1}{t}}. \end{split}$$ Now, if $n \ge t \left(\binom{2t-1}{t} + 1 \right) - 1$, $$\sum_{i=2}^{n-t} \left[\left(\frac{n-t+1}{t} - \binom{2t-1}{t} \right) i + 1 \right] g_i \tag{5.10}$$ is either zero or at least $$2\left(\frac{n-t+1}{t}-\binom{2t-1}{t}\right)+1.$$ If the quantity in (5.10) is zero, then $g_2 = g_3 = \cdots = g_{n-t} = 0$, implying that (X, \mathcal{B}) is a t-(n, 2t - 1, 1) packing. This results in the following. **Theorem 5.4.1** For $n \ge t \left(\binom{2t-1}{t} + 1 \right) - 1$, $$c(n,2t-1,2) \leq \max \left\{ D(n,2t-1,t), \frac{\binom{n}{t}-2\left(\frac{n-t+1}{t}-\binom{2t-1}{t}\right)-1}{\binom{2t-1}{t}} \right\}.$$ For $n \ge t\left(\binom{2t-1}{t}+1\right)-1$, Theorem 5.4.1 represents an improvement over the upper bound for c(n, 2t-1, 2) given by Theorem 5.1.1. Further strengthening of Theorem 5.4.1 is possible. For one thing, better lower bounds on the size of the upper shadow of $\bigcup_{A \in G_{\geq 2}} T(A)$ would improve Theorem 5.4.1. Our bound on the size of the upper shadow uses a rather weak result of Sperner. The following stronger bound can be obtained as a consequence of the Kruskal-Katona Theorem (see [17]). **Lemma 5.4.2** Let (X, \mathcal{B}) be a k-uniform set system. Then $$|\partial_u(\mathcal{B})| \geq |\partial_u(\mathcal{A})|,$$ where $\mathcal A$ is the set of the last $|\mathcal B|$ k-subsets of $X \choose k$ in the colexicographic order. At this point, however, it is not clear how the size of the upper shadow of the last m subsets in the colexicographic order can be determined. #### 5.5 Remarks We see in Section 5.3 how some r-cover-free (r+1)-uniform set systems are characterized by 2-(n, r+1, 1) packings. The following plausible conjecture (a packing analogue of Wilson's theorem for the asymptotic existence of 2-(n, k, 1) designs), if true, would enable all r-cover-free (r+1)-uniform set systems of sufficiently large order $n \equiv 0, 1, 2$ or 3 (mod r) to be completely characterized. Conjecture 5.5.1 For every k, there exists an N depending only on k, such that for all n > N, there is a 2-(n, k, 1) packing with at least U(n, k, 2) - o(n) blocks. **Lemma 5.5.1** If Conjecture 5.5.1 is true, then for every r, there exists an integer N depending only on r, such that for all n > N, $n-1 \equiv 0,1,2$ or $n \pmod r$, an $n \pmod r$ and $n \pmod r$ are cover-free $n \pmod r$ and $n \pmod r$ is optimal if and only if it is an optimal $n \pmod r$ packing. **Proof.** If Conjecture 5.5.1 is true, then for all sufficiently large n, $D(n, r+1, 2) \ge U(n, r+1, 2) - o(n)$. If $n-1 \equiv 0, 1, 2$ or 3 (mod r), $$U(n, r+1, 2) = \left\lfloor \frac{n}{r+1} \left\lfloor \frac{n-1}{r} \right\rfloor \right\rfloor$$ $$\geq \left\lfloor \frac{n(n-4)}{(r+1)r} \right\rfloor$$ $$\geq \frac{n(n-4) - (r+1)r + 1}{(r+1)r}.$$ But $$\frac{n(n-4)-(r+1)r+1}{(r+1)r}-o(n)>\binom{n-2}{2}/\binom{r+1}{2}+2$$ for all sufficiently large n . This completes the proof. Notice that for the proof of Lemma 5.5.1, we need only the truth of Conjecture 5.5.1 for the congruence classes $n \equiv 0, 1, 2$ or 3 (mod k-1). Nevertheless, we feel that it is likely that the conjecture in its full generality remains true. Erdös and Hanani [59] have shown that Conjecture 5.5.1 is true if U(n, k, 2) - o(n) is replaced by (1 - o(1))U(n, k, 2). Recent progress in probabilistic methods for constructing packings [70, 137, 154] also falls short of proving Conjecture 5.5.1. The Spectrum of Weakly Union-Free Twofold Triple Systems ### 6.1 Preliminaries **Definition 6.1.1** A set system (X, A) is weakly union-free if there do not exist four distinct blocks $A_1, A_2, A_3, A_4 \in A$ such that $A_1 \cup A_2 = A_3 \cup A_4$. The problem of determining the maximum number of blocks in a weakly union-free 3-uniform set system was first studied by Frankl and Füredi [62]. This is a Turán-type problem since a 3-uniform set system is weakly union-free if and only if it avoids all of the configurations in Figure 6.1. The problem of determining the maximum number of blocks in a 3-uniform set system that avoids just the first configuration in Figure 6.1 has also been investigated by Lefmann, Phelps, and Rödl [90]. The motivation of Frankl and Füredi was to generalize Erdös' result [54] on the maximum number of edges in a graph that avoids cycles of length four. We shall see in the next section that this problem also has applications in nonadaptive group testing. Figure 6.1: Forbidden configurations for weakly union-free 3-uniform set systems. **Definition 6.1.2** A twofold triple system of order n, denoted TTS(n), is a 2-(n, 3, 2) design. Frankl and Füredi showed in [62] that the maximum number of blocks in a weakly union-free 3-uniform set system is at most n(n-1)/3, with equality if and only if there is a weakly union-free TTS(n). A necessary condition for the existence of a TTS(n) is $n \equiv 0$ or 1 (mod 3). The following result was obtained by Frankl and Füredi. **Theorem 6.1.1 (Frankl and Füredi** [62]) There is a constant N such that for all n > N, $n \equiv 1 \pmod{6}$, there exists a weakly union-free TTS(n). Theorem 6.1.1 settles only about a quarter of the admissible orders. In fact, in a remark of [62], Frankl and Füredi posed the problem of determining those orders n for which a weakly union-free TTS(n) exists, and
made the conjecture that the condition $n \equiv 0$ or 1 (mod 3) is asymptotically sufficient. In this chapter, we prove this conjecture of Frankl and Füredi and make substantial progress on the existence of weakly union-free twofold triple systems. In fact, we prove that with at most 7064 exceptions, weakly union-free twofold triple systems of all orders exist. We begin by describing an application to group testing in the next section. # 6.2 Application to Approximate Identification We focus on 3-RESTRICTED NONADAPTIVE (3/2)-APPROXIMATE IDENTIFICATION PROBLEM(2), where weakly union-free twofold triple systems play an important role. **Lemma 6.2.1** The dual system (Y, \mathcal{B}) of an algorithm for 3-RESTRICTED NONADAPTIVE (3/2)-APPROXIMATE IDENTIFICATION PROBLEM(2) must be weakly union-free. **Proof.** Suppose not. Then there are four distinct blocks $B_{x_1}, B_{x_2}, B_{x_3}, B_{x_4} \in \mathcal{B}$ such that $B_{x_1} \cup B_{x_2} = B_{x_3} \cup B_{x_4}$. This implies that in the primal system (X, \mathcal{P}) of the algorithm, the sets $U = \{x_1, x_2\}$ and $U' = \{x_3, x_4\}$ satisfy $f_{\mathcal{P}}^+(U) = f_{\mathcal{P}}^+(U')$, where f is the 1-threshold function. But $|U \cup U'| = 4$, violating the condition of Lemma 4.2.3. **Lemma 6.2.2** Any weakly union-free twofold triple system is the dual system of an algorithm for 3-RESTRICTED NONADAPTIVE (3/2)-APPROXIMATE IDENTIFICATION PROBLEM(2). **Proof.** We verify that any weakly union-free twofold triple system (Y, \mathcal{B}) is the dual of a set system (X, \mathcal{P}) satisfying the conditions of Lemma 4.2.3. It suffices to verify for |U| = |U'| = 2 since $f_{\mathcal{P}}^+(U) = f_{\mathcal{P}}^+(U')$ for $|U| \neq |U'|$ would mean that \mathcal{B} contains repeated blocks. Lemma 4.2.3 implies that (Y, \mathcal{B}) is a dual system of an algorithm if and only if there exists $\mathcal{C} \subseteq \mathcal{B}$, $|\mathcal{C}| \leq 3$, such that whenever $B_1 \cup B_2 = B_1 \cup B_3$, for distinct blocks $B_1, B_2, B_3 \in \mathcal{B}$, we have $\{B_1, B_2, B_3\} \subseteq \mathcal{C}$. Note that we cannot have $B_1 \cup B_2 = B_3 \cup B_4$ for distinct blocks $B_1, B_2, B_3, B_4 \in \mathcal{B}$ since (Y, \mathcal{B}) is weakly union-free. So suppose we have distinct blocks $B_1, B_2, B_3 \in \mathcal{B}$ such that $B_1 \cup B_2 = B_1 \cup B_3 = F$. Hence $\mathcal{C} = \{B_1, B_2, B_3\}$. Suppose there exist $B, B' \in \mathcal{B}$ such that $B \cup B' = F$. Because (Y, \mathcal{B}) is weakly union-free, we must have $\{B, B'\} = \{B_1, B_4\}$ or $\{B, B'\} = \{B_2, B_3\}$. We consider $\{B, B'\} = \{B_1, B_4\}$. We know that $|B_1 \cap B_2| \neq 0$ or 3 because \mathcal{B} contains no repeated blocks. If $|B_1 \cap B_2| = 2$, then |F| = 4, giving $\{B_1, B_2, B_3, B_4\} = {F \choose 3}$. This is a contradiction since $(F, {F \choose 3})$ is not weakly union-free. It follows that $|B_1 \cap B_2| = 1$. But then $B_2 \setminus B_1$ is a 2-subset that must also be contained in the blocks B_3 and B_4 , thus contradicting the assumption that (Y, \mathcal{B}) is a twofold triple system. Thus, only the case $\{B, B'\} = \{B_2, B_3\}$ can occur, and we have $\{B, B'\} \subseteq \mathbb{C}$. # 6.3 PBD-Closure Let W be the spectrum of weakly union-free twofold triple systems, that is, $W = \{n \mid \text{there exists a weakly union-free } TTS(n)\}.$ **Definition 6.3.1** Let K be a set of positive integers. A pairwise balanced design (PBD) of order v with block sizes from K, denoted PBD(v, K), is a set system (X, \mathcal{B}) of order v such that $|B| \in K$ for all $B \in \mathcal{B}$, and every 2-subset of X is contained in exactly one block of \mathcal{B} . **Definition 6.3.2** A set S of positive integers is PBD-closed if the existence of a PBD(v, S) implies that $v \in S$. **Definition 6.3.3** Let K be a set of positive integers and let $B(K) = \{v \mid \text{there exists a PBD}(v, K)\}$. Then B(K) is the PBD-closure of K. The theory of PBD-closure is developed by Wilson in his series of ground-breaking work on the existence of PBDs [151, 152, 153]. The importance of this theory lies in the following result of Wilson [153]. **Theorem 6.3.1 (Wilson [153])** Let K be a PBD-closed set. Then there exists a constant N(K), such that for every $k \in K$, $\{v \mid v \geq N(K) \text{ and } v \equiv k \pmod{\beta(K)}\} \subseteq K$, where $\beta(K) = \gcd\{k(k-1) \mid k \in K\}$. The next result, stated without proof in [62], shows the relevance of PBD-closure to weakly union-free twofold triple systems. Lemma 6.3.1 (Frankl and Füredi [62]) The set W is PBD-closed. **Proof.** Suppose that (X, \mathcal{G}) is a PBD(n, W). For each block $G \in \mathcal{G}$, replace G by the blocks of a weakly union-free twofold triple system, (G, \mathcal{B}_G) . This gives a twofold triple system (X, \mathcal{F}) of order n. Now suppose (X, \mathcal{F}) is not weakly union-free. Then there are four distinct blocks $A, B, C, D \in \mathcal{F}$ such that $A \cup B = C \cup D$. Without loss of generality, assume that $|A \cap C| = 2$ and $|B \cap D| = 2$. Hence, A and C are blocks of \mathcal{B}_G , and B and D are blocks of $\mathcal{B}_{G'}$ for some $G, G' \in \mathcal{G}$. Since (G, \mathcal{B}_G) is weakly union-free, we cannot have G = G'. But $|(A \cup C) \cap (B \cup D)| = |(A \cap B) \cup (A \cap D) \cup (B \cap C) \cup (C \cap D)| \ge 2$. Hence G and G' intersect in at least two points. This is impossible since (X, \mathcal{G}) is a PBD. Therefore, (X, \mathcal{F}) is weakly union-free, that is, $n \in W$. Our proof of the asymptotic existence of weakly union-free twofold triple systems uses the following idea. First we determine some subset $L \subseteq W$ which contains at least one integer from each of the congruence classes 0, 1, 3, and 4 (mod 6). According to Theorem 6.3.1, there then exists a constant N(L) such that for all n > N(L), $n \in L$ if and only if $n \equiv 0$ or 1 (mod 3). Unfortunately, Theorem 6.3.1 does not supply any explicit upper bound on N(L). Indeed, it has only been shown recently that $N(\{k\}) \leq \exp(\exp(k^{k^2}))$ [32]. Instead, we compute the PBD-closure of L with the help of a set of recursive constructions. This gives us an upper bound on N(L) that is reasonably small. #### 6.4 Nonexistence and Some Direct Constructions Obviously, the trivial TTS(0) and TTS(1) are both weakly union-free. So we assume throughout that the order is at least three. All twofold triple systems of order at most ten (without repeated blocks) have been enumerated. There is a unique 2-(6, 3, 2) design, a unique 2-(7, 3, 2) design, 13 nonisomorphic 2-(9, 3, 2) designs [98], and 394 nonisomorphic 2-(10, 3, 2) designs [39]. A quick computer search on these designs establishes the following. Lemma 6.4.1 There do not exist any nontrivial weakly union-free twofold triple systems of order ten or less. An infinite class of weakly union-free twofold triple systems have been constructed by Frankl and Füredi [62]. Lemma 6.4.2 (Frankl and Füredi [62]) Let $n \ge 13$, $n \equiv 1 \pmod{6}$, be a prime power. Then there exists a weakly union-free TTS(n). **Proof.** Let $$1, \zeta$$, and ζ^2 be the solutions to $x^3 = 1$ in $GF(n)$. Let $\mathcal{B} = \{\{a, b, c\} \in \binom{GF(n)}{3} \mid a + b\zeta + c\zeta^2 = 0\}$. Then $(GF(n), \mathcal{B})$ is a weakly union-free $TTS(n)$. We now construct some small weakly union-free TTS(n), where $n \equiv 0, 3$ or 4 (mod 6). Lemma 6.4.3 There exists a weakly union-free TTS(16). **Proof.** Let the point set be $X = \mathbb{Z}_8 \times \{0,1\}$ and define the permutation σ on X so that $$\sigma: (x,i) \mapsto (x+1 \pmod{8},i).$$ Develop the starter blocks $$\{(0,0),(1,0),(3,1)\} \quad \{(0,0),(4,0),(0,1)\} \quad \{(0,0),(2,0),(5,0)\} \quad \{(0,0),(2,0),(1,1)\}$$ $$\{(3,0),(0,1),(1,1)\} \quad \{(0,0),(1,1),(3,1)\} \quad \{(0,0),(1,0),(5,1)\} \quad \{(0,1),(2,1),(5,1)\}$$ $$\{(0,0),(2,1),(6,1)\} \quad \{(0,0),(0,1),(7,1)\}$$ with the group $\langle \sigma \rangle$ to obtain a TTS(16). That this design is weakly union-free can easily be checked with a computer. **Lemma 6.4.4** There exists a weakly union-free TTS(n) for $n \in \{21, 24, 30\}$. **Proof.** These designs are all 1-rotational and are constructed as follows. In each case, the point set is taken to be $X = \mathbf{Z}_{n-1} \cup \{\infty\}$, where n is the order of the design. Let σ be the permutation $$\sigma: x \mapsto \begin{cases} x+1 \pmod{n-1}, & \text{if } x \neq \infty; \\ \infty, & \text{otherwise.} \end{cases}$$ For n = 21, take the following as starter blocks: $$\{0,4,9\}$$ $\{0,2,4\}$ $\{0,1,7\}$ $\{0,3,8\}$ $\{0,1,9\}$ $\{0,3,13\}$ $\{0,6,\infty\}$ For n = 24, take the following as starter blocks: $$\{0,8,15\} \quad \{0,1,4\} \quad \{0,3,12\} \quad \{0,2,13\} \quad \{0,6,16\} \quad \{0,1,18\} \quad \{0,4,18\} \quad \{0,2,\infty\}$$ For n = 30, take the following as starter blocks: $$\{0,3,20\}$$ $\{0,14,27\}$ $\{0,20,\infty\}$ $\{0,21,27\}$ $\{0,24,25\}$ $\{0,4,5\}$ $\{0,10,22\}$ $\{0,15,26\}$ $\{0,7,13\}$ $\{0,11,19\}$ Developing each set of starter blocks with the group generated by the appropriate σ yields the required weakly union-free twofold triple systems. Let us denote by Q the set of prime powers congruent to 1 (mod 6) and at least 13, together with the numbers 16, 21, 24, and 30. By Lemma 6.3.1, we have $B(Q) \subseteq W$, and Theorem 6.3.1 gives $n \in B(Q)$ for all sufficiently large $n \equiv 0$ or 1 (mod 3). So, at this point, the conjecture of Frankl and Füredi is already established in the affirmative. #### 6.4.1 Computational Details It may appear that the set systems we presented in the foregoing lemmata are constructed magically. Therefore, an explanation is in order. The first thing we tried is a hill-climbing algorithm [140] that generates random TTS(n) (we are not claiming with uniform distribution). For each $n \equiv 0$ or 1
(mod 3), n not an odd prime power, and $12 \leq n \leq 33$, one million TTS(n) were generated and checked for the weakly union-free property. Rather surprisingly, this procedure yields no weakly union-free TTS(n). So it seems that weakly union-free TTS(n) are quite rare. It is well-known that hill-climbing algorithms tend to generate set systems without large automorphism groups [141]. We decided to restrict our search to several classes of TTS(n) having a certain degree of symmetry, in the hope that we have a better chance of finding one there which is weakly union-free. The three primary classes we focused on were (i) 1-rotational TTS(n): those that have the group generated by the permutation $$(0 \ 1 \ \cdots \ n-2)(\infty)$$ as an automorphism group; (ii) cyclic TTS(n): those that have the group generated by the permutation $$(0 \quad 1 \quad \cdots \quad n-1)$$ as an automorphism group; and (iii) bicyclic TTS(n): those that have the group generated by the permutation $$(0 \ 1 \ \cdots \ \frac{n}{2})(\frac{n}{2}+1 \ \frac{n}{2}+2 \ \cdots \ n)$$ as an automorphism group. All nonisomorphic 1-rotational TTS(n) have been enumerated by Chee and Royle [34], for $3 \le n \le 19$. We checked all of these set systems, for n = 12, 15, 16, and 18, but found none that were weakly union-free. We pushed further to the next case n=21. Employing essentially the same algorithm as in [34], we generated a set of 1-rotational TTS(21) which is guaranteed to contain all the nonisomorphic 1-rotational TTS(21). We found that it is much faster to check each of these set systems, as it is being generated, for the weakly union-free property, than to first carry out isomorph rejection, and then check the remaining designs. We chose the faster option. Here, our persistence paid off; we found our first example of a weakly union-free TTS(n), where n is not an odd prime power. Encouraged by our result for n = 21, we continued with the examination of 1-rotational TTS(22). However, there does not exist a weakly union-free 1-rotational TTS(22). For $n \geq 24$, the resources required to enumerate all 1-rotational TTS(n) are quite demanding. We therefore settled for the examination of randomly generated 1rotational TTS(n), using a hill-climbing algorithm similar to that described by Gibbons and Mathon [69]. Again, one million 1-rotational TTS(n) are constructed, for each $n \equiv 0$ or 1 (mod 3), and $24 \leq n \leq 33$. Only for n=24 and n=30 did we obtain any weakly union-free 1-rotational TTS(n) using this method. Cyclic TTS(n) exist only if $n \equiv 0, 1, 3, 4, 7$, or 9 (mod 12) [44]. For $3 \le n \le 21$, nonisomorphic cyclic TTS(n) have been completely enumerated by Colbourn [43]. Since we already have weakly union-free TTS(n), for n = 13, 16, 19, and 21, we only checked the nonisomorphic cyclic TTS(12) and TTS(15). These are all not weakly union-free. Hence, we move on to TTS(n) with smaller automorphism groups. Bicyclic TTS(n) can only exist if $n \equiv 0$ or 4 (mod 6). We enumerated all nonisomorphic bicyclic TTS(12) and bicyclic TTS(18) and found none that were weakly union-free. However, we obtained a weakly union-free bicyclic TTS(16). Since the automorphism group involved is small, the complete enumeration of nonisomorphic bicyclic TTS(n), for $n \geq 22$, seems to require much more time. It involves finding all $\{0,1\}$ -vectors \mathbf{x} that satisfy $A\mathbf{x} = 21$, where A is the Kramer-Mesner matrix (see [89]) on the orbits of $\binom{X}{2}$ and $\binom{X}{3}$. The matrix A has dimension 21×140 for the case n = 22. So again, we resort to hill-climbing algorithms that construct random bicyclic TTS(n). We did not manage to find any weakly union-free TTS(n) this way. The existence of small ingredients is very important in the recursive construction of PBDs. They can usually affect the asymptotic existence of PBDs in a drastic manner. We paid particular attention to the existence of weakly union-free TTS(12). It is hopeless to enumerate all nonisomorphic TTS(12). Royle [122] has constructed one million nonisomorphic TTS(12) with a hill-climbing algorithm. We attempted to enumerate all nonisomorphic TTS(12) with a nontrivial automorphism group. This was done for those whose full automorphism group has order divisible by an odd prime. None of them is weakly union-free. The amount of work required to enumerate the remaining case, where two divides the order of the full automorphism group, seems prohibitive at present. A more detailed account of this enumeration effort appears in Appendix B. **Definition 6.4.1** A Steiner triple system of order n, denoted STS(n), is a 2-(n, 3, 1) design. It is well-known that an STS(n) exists if and only if $n \equiv 1$ or 3 (mod 6) [15]. **Definition 6.4.2** Two STS(n), (X, A) and (X, B) are orthogonal if (i) $A \cap B = \emptyset$, and (ii) if $\{u, v, w\}, \{x, y, w\} \in \mathcal{A}$, and $\{u, v, s\}, \{x, y, t\} \in \mathcal{B}$, then $s \neq t$. It is known that there exists a pair of orthogonal STS(n) for all $n \equiv 1$ or 3 (mod 6) [40]. **Definition 6.4.3** A TTS(n), (X, A), is decomposable if there exists a partition $A = B \cup C$ such that (X, B) and (X, C) are both STS(n). Another avenue we explored is based on the following observation. **Lemma 6.4.5** If (X, A) is a weakly union-free TTS(n) that is decomposable into two STS(n), then these two STS(n) must be orthogonal. **Proof.** Let (X, \mathcal{A}) be decomposable into (X, \mathcal{B}) and (X, \mathcal{C}) . If (X, \mathcal{B}) and (X, \mathcal{C}) are not orthogonal, then there exist $\{u, v, w\}, \{x, y, w\} \in \mathcal{B}$ and $\{u, v, s\}, \{x, y, s\} \in \mathcal{C}$. But $\{u, v, w\} \cup \{x, y, s\} = \{x, y, w\} \cup \{u, v, s\}$, contradicting the fact that (X, \mathcal{A}) is weakly union-free. All nonisomorphic pairs of orthogonal STS(15) have been enumerated by Gibbons [68]. We checked all TTS(15) that are the union of a pair of orthogonal STS(15), but none of these is weakly union-free either. At this point, we decided to move on to the computation of the PBD-closure. ## 6.5 Product Constructions In this section, we describe two product constructions for weakly union-free TTS(n). **Theorem 6.5.1** Let $m \equiv 1$ or 3 (mod 6). If there exist a weakly union-free TTS(m) and a weakly union-free TTS(n), then there exists a weakly union-free TTS(mn). **Proof.** Let (X, A), (Y, B), and (X, C) be, respectively, a weakly union-free TTS(m), a weakly union-free TTS(n), and an STS(m). Define $Z = X \times Y$, and $$\begin{split} \mathfrak{D} &= \{ \{(a,y), (b,y), (c,y)\} \mid \{a,b,c\} \in \mathcal{A}, y \in Y \} \\ &\qquad \cup \{ \{(x,a'), (x,b'), (x,c')\} \mid \{a',b',c'\} \in \mathcal{B}, x \in X \} \\ &\qquad \cup \{ \{(a,a'), (b,b'), (c,c')\} \mid \{a,b,c\} \in \mathfrak{C}, \{a',b',c'\} \in \mathfrak{B} \}. \end{split}$$ It is a routine matter to verify that (Z, \mathcal{D}) is an TTS(mn). We now show that it is weakly union-free. The proof is by case analysis. Suppose on the contrary that we have four distinct blocks $A, B, C, D \in \mathcal{D}$ such that $A \cup B = C \cup D$. There are four cases to consider. Case (i). The four blocks A, B, C, and D have the following form: $$A = \{(a, a'), (b, b'), (c, c')\},$$ $$B = \{(d, d'), (e, e'), (f, f')\},$$ $$C = \{(a, a'), (b, b'), (f, f')\},$$ $$D = \{(c, c'), (d, d'), (e, e')\},$$ where $|A \cap B| = 0$. Consider the number of elements in the set $S = \{a', b', c', d', e', f'\}$. The definition of \mathcal{D} implies that each of the sets $\{a', b', c'\}$, $\{d', e', f'\}$, $\{a', b', f'\}$, and $\{c', d', e'\}$ has size one or three. Hence, $|S| \in \{1, 3, 6\}$. If |S| = 1, then it must be the case that $\{a, b, c\}, \{d, e, f\}, \{a, b, f\}, \{c, d, e\} \in A$. But then (X, A) is not weakly union-free, a contradiction. If |S|=3, we must have $\{a',b',c'\}=\{d',e',f'\}$ and c'=f'. If $|\{a,b,c,d,e,f\}|>1$, then $\{a,b,c\},\{d,e,f\},\{a,b,f\},\{c,d,e\}\in\mathbb{C}$. Since (X,\mathbb{C}) is an STS(m), this implies c=f. Hence, (c,c')=(f,f'), contradicting the assumption that $|A\cap B|=0$. If $|\{a,b,c,d,e,f\}|=1$, then it must be the case that $\{a',b',c'\}$, $\{d',e',f'\}$, $\{a',b',f'\}$, $\{c',d',e'\}\in\mathcal{B}$. But then (Y,\mathcal{B}) is not weakly union-free, a contradiction. If |S| = 6, then it must be the case that $\{a', b', c'\}, \{d', e', f'\}, \{a', b', f'\}, \{c', d', e'\} \in \mathcal{B}$. But then (Y, \mathcal{B}) is not weakly union-free, a contradiction. Case (ii). The four blocks A, B, C, and D have the following form: $$A = \{(a, a'), (b, b'), (c, c')\},$$ $B = \{(a, a'), (d, d'), (e, e')\},$ $C = \{(a, a'), (b, b'), (e, e')\},$ $D = \{(a, a'), (c, c'), (d, d')\},$ where $|A \cap B| = 1$. Consider the number of elements in the set $S = \{a', b', c', d', e'\}$. A bit of reflection reveals that $|S| \in \{1, 3, 5\}$. If |S| = 1, then it must be the case that $\{a, b, c\}$, $\{a, d, e\}$, $\{a, b, e\}$, $\{a, c, d\} \in A$. But then (X, A) is not weakly union-free, a contradiction. If |S|=3, we may assume without loss of generality that a',b', and c' are all distinct. Then we must have b'=d' and c'=e'. If $|\{a,b,c,d,e\}|=1$, then we have $\{a',b',c'\}$, $\{a',d',e'\}$, $\{a',b',e'\}$, $\{a',c',d'\}\in \mathcal{B}$. But then (Y,\mathcal{B}) is not weakly union-free, a contradiction. So we must have $|\{a,b,c,d,e\}|>1$. Hence, $\{a,b,c\}$, $\{a,d,e\}$, $\{a,b,e\}$, $\{a,c,d\}\in \mathcal{C}$. Since (X,\mathcal{C}) is an STS(m), this implies b=d and c=e. Thus (b,b')=(d,d') and (c,c')=(e,e'), contradicting the assumption that $|A\cap B|=1$. If |S| = 5, then it must be the case that $\{a', b', c'\}$, $\{a', d', e'\}$, $\{a', b', e'\}$, $\{a', c', d'\} \in \mathcal{B}$. But then (Y, \mathcal{B}) is not weakly union-free, a contradiction. Case (iii): The four blocks A, B, C, and D have the following form: $$A = \{(a, a'), (b, b'), (c, c')\},\$$ $$B =
\{(a, a'), (d, d'), (e, e')\},\$$ $$C = \{(a, a'), (b, b'), (d, d')\},\$$ $$D = \{(b, b'), (c, c'), (e, e')\},\$$ where $|A \cap B| = 1$. Consider the number of elements in the set $S = \{a', b', c', d', e'\}$. A bit of reflection reveals that $|S| \in \{1, 3, 5\}$. If |S| = 1, then it must be the case that $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\} \in A$. But then (X, A) is not weakly union-free, a contradiction. If |S|=3, we may assume without loss of generality that a',b', and c' are all distinct. Then we must have b'=e' and c'=d'. If $|\{a,b,c,d,e\}|=1$, then we have $\{a',b',c'\}$, $\{a',d',e'\}$, $\{a',b',e'\}$, $\{a',c',d'\}\in\mathcal{B}$. But then (Y,\mathcal{B}) is not weakly union-free, a contradiction. So we must have $|\{a,b,c,d,e\}|>1$. Hence, $\{a,b,c\}$, $\{a,d,e\}$, $\{a,b,d\}$, $\{b,c,e\}\in\mathcal{C}$. Since (X,\mathcal{C}) is an STS(m), we must have b=e and c=d. Thus (b,b')=(e,e') and (c,c')=(d,d'), contradicting the assumption that $|A\cap B|=1$. If |S| = 5, then it must be the case that $\{a', b', c'\}$, $\{a', d', e'\}$, $\{a', b', e'\}$, $\{a', c', d'\} \in \mathcal{B}$. But then (Y, \mathcal{B}) is not weakly union-free, a contradiction. Case (iv): The four blocks A, B, C, and D have the following form: $$A = \{(a, a'), (b, b'), (c, c')\},$$ $B = \{(a, a'), (b, b'), (d, d')\},$ $C = \{(a, a'), (c, c'), (d, d')\},$ $D = \{(b, b'), (c, c'), (d, d')\},$ where $|A \cap B| = 2$. Consider the number of elements in the set $S = \{a', b', c', d'\}$. A bit of reflection reveals that $|S| \in \{1, 4\}$. If |S| = 1, then it must be the case that $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\} \in A$. But then (X, A) is not weakly union-free, a contradiction. If |S|=4, then it must be the case that $\{a',b',c'\}$, $\{a',b',d'\}$, $\{a',c',d'\}$, $\{b',c',d'\} \in \mathcal{B}$. But then (Y,\mathcal{B}) is not weakly union-free, a contradiction. This completes the proof. The next construction is a singular direct product-type construction. **Theorem 6.5.2** Let $m \equiv 4 \pmod{6}$. If there exist a weakly union-free TTS(m) and a weakly union-free TTS(n), then there exists a weakly union-free TTS((m-1)n+1). **Proof.** Let (X, \mathcal{A}) and (Y, \mathcal{B}) be, respectively, a weakly union-free TTS(n) and a weakly union-free TTS(n). Let $x^* \in X$ be a distinguished element and let $(X \setminus \{x^*\}, \mathcal{C})$ be an $$STS(m-1)$$. Define $Z = ((X \setminus \{x^*\}) \times Y) \cup \{\infty\}$, and $$\begin{split} \mathfrak{D} &= \{ \{(a,y), (b,y), (c,y)\} \mid x^* \notin \{a,b,c\} \in \mathcal{A}, y \in Y \} \\ & \quad \cup \{ \{(a,y), (b,y), \infty\} \mid \{a,b,x^*\} \in \mathcal{A}.y \in Y \} \\ & \quad \cup \{ \{(x,a'), (x,b'), (x,c')\} \mid \{a',b',c'\} \in \mathcal{B}, x \in X, x \neq x^* \} \\ & \quad \cup \{ \{(a,a'), (b,b'), (c,c')\} \mid \{a,b,c\} \in \mathfrak{C}, \{a',b',c'\} \in \mathfrak{B} \}. \end{split}$$ It is straightforward to verify that (Z, \mathcal{D}) is a $\mathrm{TTS}((m-1)n+1)$. The proof of Theorem 6.5.1 shows that there are no four distinct blocks $A, B, C, D \in \mathcal{D}$ such that $A \cup B = C \cup D$, unless at least one of A, B, C, or D contains the point ∞ . If follows that if $A \cup B = C \cup D$, then It is not hard to see that this is also impossible unless (X, A) is not weakly union-free. \Box For a given set K of positive integers, let us define a sequence of sets, $(K_i)_{i\geq 0}$, as follows: $$K_0=K,\quad \text{and for }i\geq 1,$$ $$K_i=K_{i-1}$$ $$\cup \{k\mid k=mn \text{ for some } m,n\in K_{i-1}, \text{ and either } m \text{ or } n \text{ is } 1 \text{ or } 3 \text{ (mod 6)}\}$$ $$\cup \{k\mid k=(m-1)n+1 \text{ for some } m,n\in K_{i-1}, \text{ and either } m \text{ or } n \text{ is } 4 \text{ (mod 6)}\}.$$ Let $L = Q_{\infty}$. Theorem 6.5.1 and Theorem 6.5.2 imply that $L \subseteq W$. Hence $B(L) \subseteq W$. We shall improve on the asymptotic existence of weakly union-free twofold triple systems given in Section 6.4 by considering the PBD-closure of L. # 6.6 Eventual Periodicity of W In this section, we investigate the set W. We prove that for all $n \equiv 0$ or $1 \pmod{3}$, $n \in W$ except for a set of at most 7064 values of n, the largest of which is 137628. #### 6.6.1 Recursive Constructions for PBDs In this section, we describe several recursive constructions for PBDs. First, we need to introduce some terminology. **Definition 6.6.1** Let K be a set of positive integers. A group divisible design (GDD) of order v, denoted K-GDD, is a triple $(X, \mathcal{G}, \mathcal{B})$, where \mathcal{G} is a partition of X into parts, called groups, and (X, \mathcal{B}) is a set system which satisfies the properties: - (i) if $B \in \mathcal{B}$, then $|B| \in K$; - (ii) every 2-subset of X occurs in exactly one block or one group, but not both; - (iii) |9| > 1. The type of a GDD $(X, \mathcal{G}, \mathcal{B})$ is the multiset $\{|G| \mid G \in \mathcal{G}\}$. We usually use an "exponential" notation to describe types: a type $g_1^{u_1}g_2^{u_2}\cdots g_t^{u_t}$ denotes u_i occurrences of g_i , $1 \leq i \leq t$. A K-GDD of order v and type $g_1^{u_1}g_2^{u_2}\cdots g_t^{u_t}$ can be viewed as a PBD $(v,K\cup\{g_1,g_2,\ldots,g_t\})$ by considering the groups of the GDD to be blocks of the PBD also. A K-GDD of order v and type $g_1^{u_1}g_2^{u_2}\cdots g_t^{u_t}$ can also be used to create a PBD $(v+1,K\cup$ $\{g_1+1,g_2+1,\ldots,g_t+1\}$) by adjoining a new point to each group and considering the resulting subsets as blocks. **Definition 6.6.2** A transversal design TD(k, n) is a $\{k\}$ -GDD of type n^k . It is well-known that a TD(k, n) is equivalent to k-2 mutually orthogonal Latin squares (MOLS) of order n. For a list of lower bounds on the number of MOLS of all orders up to 10000, we refer the reader to [1]. We also need to define various types of incomplete designs. **Definition 6.6.3** An incomplete transversal design TD(k, n) - TD(k, m) is a quadruple $(X, \mathcal{G}, H, \mathcal{B})$, where - (i) (X, \mathcal{B}) is a set system of order kn; - (ii) \mathcal{G} is a partition of X into k parts, called groups, each of size n; - (iii) H is a subset of X, called a hole, with the property that $|G \cap H| = m$ for each $G \in \mathcal{G}$; - (iv) every 2-subset of X is - contained in the hole, and contained in no blocks; or - contained in a group, and contained in no blocks; or - contained in neither the hole nor a group, and contained in exactly one block. We also need PBDs containing subdesigns, or flats. Let (X, A) be a PBD. If a set of points $Y \subseteq X$ has the property that, for any $A \in A$, either $|Y \cap A| \le 1$ or $A \subseteq Y$, then we say that Y is a flat of (X, A). The order of the flat is |Y|. If Y is a flat, then we can delete all blocks $A \subseteq Y$, replace them by a single block, Y, and obtain a PBD. Any block or point of a PBD is itself a flat. Often we do not require that the flat be present. This gives rise to the notion of incomplete PBDs. **Definition 6.6.4** Let K be a set of positive integers and h a nonnegative integer. An incomplete pairwise balanced design (IPBD) of order v with a hole of order h, denoted IPBD(v, h, K), is a triple (X, H, \mathcal{B}) , where $|B| \in K$ for all $B \in \mathcal{B}$, $H \subseteq X$ such that |H| = h, and $(X, \mathcal{B} \cup \{H\})$ is a PBD. We begin with a useful construction for PBDs with two consecutive block sizes. Lemma 6.6.1 (Truncation of a Group in a Transversal Design (see [103])) Let k be a positive integer. Let $K = \{k, k+1\}$. Suppose that there exists a TD(k+1, n). Then there exists a K-GDD of type $n^k m$, for $0 \le m \le n$. **Proof.** Delete n-m points from one group of a TD(k+1,n). If instead of deleting points from a group, we delete points from a block, then we obtain the following well-known result. Lemma 6.6.2 (Truncation of a Block in a Transversal Design) Let k and m be integers such that $0 \le m \le k$. Let $K = \{k, m\}$. Suppose that there exists a TD(k, n). Then there exists a K-GDD of type $n^m(n-1)^{k-m}$. Below are two further constructions for PBDs with two consecutive block sizes. **Lemma 6.6.3 (Bennett** [13]) If n is a prime power, and $1 \le k \le n$, then for $0 \le t \le n - k$, there exists a PBD(kn + t, K), where $K = \{k, k + 1, k + t, n\}$. Lemma 6.6.4 (Spike Construction (see [103])) Let k and n be positive integers. Let $K = \{k, k+1, k+n\}$. If there exists a TD(k+n, m), then there exists a K-GDD of type $m^k 1^n$. The following constructions are also useful. **Lemma 6.6.5** (Greig (see [103])) Let k and n be positive integers. If there exists a TD(k+n,k+n-1), then there exists a $\{k-1,k+1\}$ -GDD of type $(k+n-2)^k n^1$. **Lemma 6.6.6 (Brouwer** [23]) Let q be a prime power, and let t be an integer satisfying $0 < t < q^2 - q + 1$. Then there exists a $\{t, q + t\}$ -GDD of type $t^{q^2 + q + 1}$. By adjoining a point to the GDDs constructed in Lemma 6.6.1, Lemma 6.6.2, and Lemma 6.6.5, we obtain the following three results. Lemma 6.6.7 Let k be a positive integer and suppose that there exists a TD(k+1, n). Let $0 \le m \le n$. Then there exists a PBD(kn+m+1, K), where $K = \{k, k+1, n+1, m+1\}$. If m = 0, there are no blocks of size k+1. If m = n, there are no blocks of size k. **Lemma 6.6.8** Let k and m be integers such that $0 \le m \le k$ and suppose that there exists a TD(k, n). Then there exists a PBD(k(n-1)+m+1, K), where $K = \{k, m, n, n+1\}$. If m = 0, there are no blocks of size n + 1, and if m = k, there are no blocks of size n. **Lemma 6.6.9** Let k and n be positive integers. If there exists a TD(k+n, k+n-1), then there exists a PBD(k(k+n-2)+n+1, K), where $K = \{k-1, k+1, n+1, k+n-1\}$. The remaining constructions are product type constructions. The most general of these constructions is the singular indirect product construction due to Mullin [102, 104].
Lemma 6.6.10 (Singular Indirect Product) Let K be a set of positive integers and $k \in K$. Let h be a nonnegative integer and suppose that the following designs exist: - (i) a TD(k, m+n)-TD(k, m); - (ii) an IPBD(m+n+h, m+h, K); and - (iii) a PBD(km + h, K). Then there exists a PBD(k(m+n)+h,K) containing flats of order k and km+h. If we let m = 0 in Lemma 6.6.10, we obtain the singular direct product construction. **Lemma 6.6.11** (Singular Direct Product) Let K be a set of positive integers and $k \in K$. Let h be a nonnegative integer and suppose there exist a $\mathsf{TD}(k,n)$, an $\mathsf{IPBD}(n+h,h,K)$, and a $\mathsf{PBD}(h,K)$. Then there exists a $\mathsf{PBD}(kn+h,K)$ containing flats of order k, n+h, and h. In order to apply the singular indirect product construction, we need incomplete transversal designs. We rely on the following result of Wilson (see [24]) to supply these. Lemma 6.6.12 (Wilson (see [24])) Let u and t be integers such that $0 \le m \le t$. If there exist a TD(k, n), a TD(k, n+1) and a TD(k+1, t), then there exists a TD(k, tn+m)-TD(k, m). We also use a well-known result of MacNeish [95]. **Lemma 6.6.13 (MacNeish [95])** Let $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ be the prime power factorization of n. Then there exists a $\mathsf{TD}(k,n)$ for all $k \leq 1 + \min\{p_i^{e_i} \mid 1 \leq i \leq k\}$. Finally, another set of important ingredients for our constructions is provided by Brouwer. Lemma 6.6.14 (Brouwer (see [1])) If $k \leq 32$, then there exists a TD(k, n) for all $n \geq 52503$. # 6.6.2 PBDs up to Order Thirteen Million In this section, we describe the construction of PBD(n, B(L)) for $n \equiv 0$ or 1 (mod 3), $n \leq 13000000$, in preparation for determining W. This was accomplished with a computer program that applied the constructions given in Section 6.6.1. It would take too much space to write down all the constructions, but we give a brief description which will enable anyone to easily duplicate our computations. Our computer program has a knowledge of all the results in Section 6.6.1. The transversal designs employed are those that exist by the MOLS table in [1], Lemma 6.6.13, and Lemma 6.6.14. The incomplete transversal designs used are those whose existence is given by Lemma 6.6.12. Given an integer $n \equiv 0$ or 1 (mod 3), the program attempts to construct a PBD(n, B(L)) by applying the following constructions (in the order indicated): - (1) Lemma 6.6.1 (truncate a group of a transversal design), - (2) Lemma 6.6.7 (adjoin a point to a group-truncated transversal design), - (3) Lemma 6.6.2 (truncate a block of a transversal design), - (4) Lemma 6.6.8 (adjoin a point to a block-truncated transversal design), - (5) Lemma 6.6.3 (Bennett's construction), - (6) Lemma 6.6.4 (spike construction), - (7) Lemma 6.6.5 (Greig's construction), - (8) Lemma 6.6.9 (adjoin a point to the GDD obtained by Greig's construction), - (9) Lemma 6.6.6 (Brouwer's construction), - (10) Lemma 6.6.11 (singular direct product), - (11) Lemma 6.6.10 (singular indirect product). 21, 24, 25, 31, 37, 43, 49}. Our program also keeps track of all flats appearing in the constructed PBDs. This information is used immediately by all subsequent constructions. Our computational results up to this point can be summarized as follows. **Theorem 6.6.1** If $12 \le n \le 13000000$, $n \equiv 0$ or 1 (mod 3), then $n \in B(L)$ with at most 8507 exceptions. Let L' be the set of integers in B(L) given by Theorem 6.6.1. Note that $L' \subseteq W$. Since our interest is in the set W, we next compute $B(L'_{\infty}) \subseteq W$ using the same program as in the computation of B(L). Let E be the set of 7058 numbers given in Appendix C. The result of this stage of computation is given below. **Theorem 6.6.2** If $12 \le n \le 13000000$, $n \equiv 0$ or 1 (mod 3), and $n \notin E$, then $n \in W$. ### 6.6.3 The Spectrum In this section, we show that all $n \equiv 0$ or 1 (mod 3) exceeding 13000000 are in W. **Lemma 6.6.15** If $n \equiv 0$ or 1 (mod 3) and $n \geq 1283140$, then $n \in W$. **Proof.** We prove this theorem by induction on n. First notice that for all $n \equiv 1 \pmod{3}$ and $52504 \leq n \leq 13000000$, we have $n \in W$. This can be verified easily with the list given in Appendix C. Now, any $n \equiv 0$ or $1 \pmod{3}$ and at least 1283140 can be written in the form n = 72m + 24 + g, where $m \in [17501, 4333333]$ and $g \equiv 0$ or $1 \pmod{3}$, $g \in [23044, 23115]$. Note that $g \in W$ for all g in this interval. By Lemma 6.6.14, there exists a TD(24, 3m+1). We can therefore apply Lemma 6.6.2 to obtain a $\{24, 25\}$ -GDD of type $(3m+1)^{24}g^1$. Our induction hypothesis gives $3m+1 \in W$. This implies $72m+24+g \in W$ by the PBD-closure of W. By induction, the proof is complete. \square We can now give the result for the spectrum of weakly union-free twofold triple systems. **Theorem 6.6.3** For all $n \equiv 0$ or 1 (mod 3), there exists a weakly union-free TTS(n), provided $n \geq 137629$. Below this bound, there are 7058 values of n (appearing in Appendix C) for which the existence of a TTS(n) is not decided. There are no nontrivial weakly union-free TTS(n) for $n \leq 10$. **Proof.** Follows directly from Theorem 6.6.2 and Lemma 6.6.15. # 6.7 Subsystem-Free Twofold Triple Systems **Definition 6.7.1** A (j,k)-configuration is a set system (X,\mathcal{A}) such that |X|=j, $|\mathcal{A}|=k$, and $\bigcup_{A\in\mathcal{A}}=X$. The problem of constructing Steiner triple systems of every admissible order avoiding (j+2,j)-configurations, $2 \le j \le r$, for every fixed r, was proposed by Erdös [56]. For r=4, the problem asks for the existence of Steiner triple systems avoiding the (6,4)-configuration below, known as the Pasch configuration. Such Steiner triple systems are called *anti-Pasch*, and we shall see more of them in the next few chapters. At the recent Tenth Ontario Combinatorics Workshop which was held at the Fields Institute for Research in Mathematical Sciences, Terry Griggs mentioned (April 27, 1996) to the author that one natural analogue of anti-Pasch Steiner triple systems for twofold triple systems is those that avoid TTS(4), the last configuration in Figure 6.1. The reason is that the Pasch configuration is the (j, 4)-configuration with the minimum possible j that a Steiner triple system can contain, while a TTS(4) is the (j, 4)-configuration with the minimum possible j that a twofold triple system can contain. A TTS(v) that avoids TTS(4) is called TTS(4)-free, and is called subsystem-free if it avoids TTS(w), for all w < v. **Definition 6.7.2** Let (X, \mathcal{A}) be a TTS(v). The *neighbourhood* of a point $x \in X$ is the graph G = (V, E), where $V = X \setminus \{x\}$ and $E = \{A \setminus \{x\} \mid x \in A \text{ and } A \in \mathcal{A}\}$. There is an intimate connection between embeddings of the complete graph K_n on orientable surfaces and twofold triple systems of order n. Heffter [78] seems to be the first to realize this connection. Heffter's ideas were later used by Emch [53] to compute the automorphism groups of some twofold triple systems. The article of Alpert [8] is a nice exposition on this topic. The following theorem of Ducrocq and Sterboul [49] is obtained by observing that some embeddings of K_n constructed by Ringel and Youngs [120] (see also [119]) give TTS(n) with the desired property. Theorem 6.7.1 (Ducrocq and Sterboul [49]) For every $v \equiv 0$ or 1 (mod 3), $v \geq 4$, there exists a TTS(v) in which the neighbourhood of every point is a cycle of length v - 1. Colbourn [37] observed that the TTS(v) in Theorem 6.7.1 is TTS(4)-free and avoids even the second configuration in Figure 6.1. In fact, more is true. We show that these TTS(v) are subsystem-free. Theorem 6.7.2 (Chee and Colbourn) There exists a subsystem-free TTS(v) for all $v \equiv 0$ or 1 (mod 3), except when v = 3. **Proof.** Suppose the TTS(v) in Theorem 6.7.1 contains a TTS(w). The neighbourhood of any point in this TTS(w) is a graph on w-1 vertices with w-1 edges, and must be a subgraph of a cycle of length v-1. This is possible only if w=v. The corresponding problem for Steiner triple systems has been solved by Doyen [47]. # Fault-Tolerant Group Testing ### 7.1 Introduction One of the most important issues in group testing that demands further investigation is fault-tolerance. In real life applications, tests are affected by too many factors to be rarely error-free. Let (X, r, f, Π) be a group testing problem and \mathcal{O} an oracle implementing f. A test on a pool $P \subseteq X$ performed by an algorithm with access to \mathcal{O} is called *erroneous* if the result returned is not f(P). Erroneous tests can happen as a result of incorrect implementation of \mathcal{O} or noise in the channel between the oracle and the processors. Very recently, the problem of designing nonadaptive group testing algorithms that can tolerate a certain number of erroneous tests has been studied by Balding and Torney [9]. **Definition 7.1.1** A set system (X, \mathcal{A}) is called (r, s)-fault-tolerant if for any $\mathcal{A}', \mathcal{A}'' \subseteq \mathcal{A}$ with $|\mathcal{A}'| \leq r$, $|\mathcal{A}''| \leq r$, we have $$\left|\left(\bigcup_{A\in\mathcal{A}'}A\right)\Delta\left(\bigcup_{A\in\mathcal{A}''}A\right) ight|>s,$$ unless A' = A''. An important observation made in [9] is the following characterization. Lemma 7.1.1 (Balding and Torney [9]) Let (X, r, f, Π) be a group testing problem with f the 1-threshold test function, and Π the exact identification criterion. Then (Y, \mathcal{B}) is the set system of a nonadaptive algorithm for (X, r, f, Π) that can tolerate up to s erroneous tests if and only if it is (r, s)-fault-tolerant. In fact, Balding and Torney [9] studied the more stringent set systems which are defined as in Definition 7.1.1, except with the condition $|A''| \leq r$ removed. These set
systems have the additional property that the nonadaptive algorithms they define can detect when the a priori guarantee r is violated. Such set systems have also been studied by Dyachkov, Rykov, and Rashad [52] in the context of random multiple access communication systems. The focus of Dyachkov, Rykov, and Rashad [52], and Balding and Torney [9] is on set systems without any restriction on block sizes. In this chapter, we are concerned with (2,1)-fault-tolerant set systems whose block sizes do not exceed three. Such set systems correspond to nonadaptive algorithms using the 1-threshold function that can exactly identify target sets of at most two elements, even in the presence of one erroneous test, and moreover each element is involved in at most three tests. To avoid triviality, we assume the order of the set systems to be at least three. Let us begin with some easy observations. First, there can be no blocks of size one in any (2,1)-fault-tolerant set system (X,A), since the existence of $\{x\} \in A$ implies that $|A\Delta(\{x\} \cup A)| \leq 1$ for any $A \in A$. Second, a (2,1)-fault-tolerant 2-uniform set system is a graph G = (V,E) consisting of only independent edges, since the existence of edges $e_1 = \{a,b\}$ and $e_2 = \{b,c\}$ in E implies $|e_1\Delta(e_1 \cup e_2)| = 1$. Hence the maximum number of blocks in a (2,1)-fault-tolerant 2-uniform set system of order n is $\lfloor n/2 \rfloor$. Next, we examine the case of 3-uniform set systems. We show that with the same number of blocks in an optimal 2-union-free 3-uniform set system, we can construct a (2, 1)-fault-tolerant 3-uniform set system. # 7.2 (2, 1)-Fault-Tolerant 3-Uniform Set Systems Let $\beta(n)$ denote the maximum number of blocks in a (2,1)-fault-tolerant 3-uniform set system of order n. Obviously, any (2,1)-fault-tolerant 3-uniform set system is 2-union-free. It therefore follows from (4.3) that $$\beta(n) \le \left\lfloor \frac{n(n-1)}{6} \right\rfloor. \tag{7.1}$$ We show that equality in (7.1) can be met for all n. **Definition 7.2.1** A set system (X, \mathcal{A}) is a quasi-design $QD(n, \{3, 4\})$, if |X| = n, $\mathcal{A} \subset (\binom{X}{3} \cup \binom{X}{2})$, such that - (i) $|A \cap A'| \leq 1$ for all $A, A' \in A$; and - (ii) there is at most one 2-subset of X that is not contained in any block of A. The concept of quasi-designs $QD(n, \{3, 4\})$ is first introduced by Frankl and Füredi [62] to settle the existence problem for optimal 2-union-free 3-uniform set systems. We use the same construction as that given in [62] and check that it is (2, 1)-fault-tolerant. **Lemma 7.2.1** Suppose that (X, A) is a $QD(n, \{3, 4\})$. Let $$\mathcal{B} = \{ A \in \mathcal{A} \mid |A| = 3 \} \cup \{ \{a, b, c\}, \{a, c, d\} \mid \{a, b, c, d\} \in \mathcal{A} \}.$$ Then (X, \mathcal{B}) is a (2, 1)-fault-tolerant set system with $\lfloor n(n-1)/6 \rfloor$ blocks. **Proof.** That $|\mathcal{B}| = \lfloor n(n-1)/6 \rfloor$ has been shown in [62]. Trivially, the symmetric difference of any two blocks in \mathcal{B} contains at least two points. Suppose that $A, B, C \in \mathcal{B}$, $B \neq C$, such that $|A\Delta(B \cup C)| \leq 1$. If $|B \cap C| \leq 1$, then $|B \cup C| \geq 5$, and hence $B \cup C$ contains at least two points not in A, a contradiction. If $|B \cap C| = 2$, then any block A must intersect $B \cup C$ in at most one point. Hence, A contains two points not in $B \cup C$, a contradiction. Next, suppose that $A, B, C, D \in \mathcal{B}$, $\{A, B\} \neq \{C, D\}$, such that $|(A \cup B)\Delta(C \cup D)| \leq 1$. We may assume that A, B, C, and D are all distinct, for otherwise we can reduce to the previously considered cases. Case (i): If $|A \cap B| \leq 1$, then each of C and D must be contained in $A \cup B$. Without loss of generality, $|A \cap C| = 2$ and $|B \cap C| = 1$, where $$(B\cap C)\not\subset (A\cap C). \tag{7.2}$$ Hence $A \cup C \in \mathcal{A}$. We cannot have $|A \cap D| = 2$ since it would mean $A \cup D \in \mathcal{A}$ and we have two blocks in \mathcal{A} , namely $A \cup C$ and $A \cup D$ which intersect in three points. So we must have $|A \cap D| = 1$ and $|B \cap D| = 2$, implying $B \cup D \in \mathcal{A}$. But the block $B \cup D$ contains two points, that in $A \cap D$, and that in $B \cap C$. We claim that these two points are distinct. Suppose not, then $A \cap D = B \cap C$. It follows that $A \cap C \supseteq A \cap B \cap C = A \cap D = B \cap C$, which is impossible by our assumption (7.2). Hence, the two blocks $B \cup D$ and $A \cup C$ of A intersect in two distinct points, a contradiction. Case (ii): If $|A \cap B| = 2$, then $A \cup B \in \mathcal{A}$. Since $\{A, B\} \neq \{C, D\}$, at least one of C and D must contain at most one point of $A \cup B$. This block then has two points not in $A \cup B$. It was shown in [62] that there exists a $QD(n, \{3, 4\})$ for all n, except when n = 5, 6 and 8, and possibly when n = 20 and 32. We settle the two remaining cases here. **Lemma 7.2.2** There exists a QD $(n, \{3, 4\})$ for all $n \equiv 2 \pmod{6}$, $n \ge 14$. **Proof.** Let $(X, \mathcal{G}, \mathcal{A})$ be a $\{3\}$ -GDD of type $3^{(n-2)/3}1^1$, which is known to exist [41]. Let $\infty \notin X$ and define $Y = X \cup \{\infty\}$ and $\mathcal{B} = \mathcal{A} \cup \{G \cup \{\infty\} \mid G \in \mathcal{G} \text{ and } |G| = 3\}$. Then (Y, \mathcal{B}) is a QD $(n, \{3, 4\})$. Corollary 7.2.1 There exists a QD $(n, \{3, 4\})$ for all $n \in \mathbb{N} \setminus \{5, 6, 8\}$. **Proof.** The cases for $n \notin \{20, 32\}$ are settled by Frankl and Füredi [62]. Existence of a QD(20, $\{3, 4\}$) and a QD(32, $\{3, 4\}$) follows from Lemma 7.2.2. Corollary 7.2.2 For all n, $\beta(n) = \lfloor n(n-1)/6 \rfloor$. # 7.3 (2, 1)-Fault-Tolerant Set Systems With Block Sizes Two and Three Let $\rho(n)$ denote the maximum number of blocks in a (2,1)-fault-tolerant set system, (X,\mathcal{A}) , such that $|A| \in \{2,3\}$ for every $A \in \mathcal{A}$. From Corollary 7.2.2, we have $$ho(n) \geq \left\lfloor rac{n(n-1)}{6} ight floor.$$ Let (X, \mathcal{A}) be a (2,1)-fault-tolerant set system with block sizes two and three. Let $\mathcal{B} = \{A \in \mathcal{A} \mid |A| = 2\}$. The same argument for 2-uniform set systems shows that $B \cap B' = \emptyset$ for all distinct $B, B' \in \mathcal{B}$. Let $A \in \mathcal{A}$ be any block of size three. Then $A \cap B = \emptyset$ for all $B \in \mathcal{B}$, since $A\Delta(A \cup B) = B \setminus A$. It follows that if $$X' = X \setminus \bigcup_{B \in \mathcal{B}} B$$, and $A' = A \setminus \mathcal{B}$, then (X', A') is a (2,1)-fault-tolerant 3-uniform set system. This gives the inequality $$\rho(n) < \beta(n-2b) + b,$$ where $b = |\mathcal{B}|$. But $$eta(n-2b)+b=\left\lfloor rac{n(n-1)}{6}- rac{2b(n-b-2)}{3} ight floor.$$ Since $\frac{2b(n-b-2)}{3} \ge 0$ for all $n \ge 3$, we have $\rho(n) = \lfloor n(n-1)/6 \rfloor$ for all $n \ge 3$. Trivially, this also holds for $n \in \{1,2\}$. We record this result below. **Lemma 7.3.1** For all positive integers n, $\rho(n) = \lfloor n(n-1)/6 \rfloor$. The set systems of order n achieving $\rho(n)$ blocks do not contain blocks of size two. # 7.4 Remarks In this chapter, we have seen that optimal (2,1)-fault-tolerant 3-uniform set systems are optimal even within the larger class of set systems where blocks of size two are allowed. (2,0)-fault-tolerant set systems with block sizes two and three have been characterized by Vakil and Parnes [147]. However, it seems hard to obtain a detailed characterization of (2,1)-fault-tolerant 3-uniform set systems. We know from [62] that in such a set system, the number of 2-subsets not contained in any block must be equal to the number of 2-subsets contained in precisely two blocks, and that no 2-subset is contained in more than two blocks. But there remain many flexibilities. Firstly, we can construct many nonisomorphic quasi-designs $QD(n, \{3, 4\})$. Secondly, there are many ways to replace the blocks of size four with two blocks of size three. # Erasure-Resilient Codes for Redundant Arrays of Inexpensive Disks #### 8.1 An Overview of Disk Arrays A phenomenal increase in processor speed has occurred over the last decade and this trend is likely to continue. Meanwhile, the performance of input/output (I/O) systems has lagged behind. Providing raw processing speed and large memories without balancing I/O capabilities is not sufficient in solving many real-world problems. This imbalance has transformed traditionally computation-bound applications to I/O-bound applications. To achieve application speedup, the bandwidth of I/O systems must be improved. This has led to the development of parallel I/O systems. Issues that must be addressed by any parallel I/O system include storage, support hardware, networking, and software technology. The most successful approach to the storage problem is an architecture known as a Redundant Array of Inexpensive Disks (RAID) [84, 92, 111, 124]. Rather than building one large expensive disk, the RAID architecture increases I/O bandwidth by using a Figure 8.1: A RAID layout. large array of small magnetic disks linked together as a single data store (see Figure 8.1). Small disks are preferable to large ones because they have a lower cost and consume less power. The idea is to spread data across these small disks (disk striping) so that subsequent data access can be done in parallel to reduce access time. Many commercial RAID systems exist today, for example, Fujitsu's DynaRAID, Storage Computer's RAID 7, Sun's SPARCstorage Array, and Thinking Machine Corporation's ScaleArray. It is estimated that the market for RAID systems will exceed thirteen billion dollars by the year 1997 [45]. Large disk arrays, however, are prone to failures, even though each individual disk making up the array may be highly reliable. If the probability of failure of a disk is p, then the
probability of failure for a disk array with N disks is $1-(1-p)^N$, assuming that disk failures are uncorrelated. Thus, for p close to zero, a disk array with N disks is about N times more likely to fail than an individual disk. Many applications, notably database and transaction processing, require both high throughput and high data availability of their storage systems. The most demanding of these applications requires continuous operation, which in terms of a storage system requires - (i) the ability to satisfy all user requests for data even in the presence of disk failures, and - (ii) the ability to reconstruct the content of a failed disk onto a replacement disk, thereby restoring itself to a fault-free state. The solution is to introduce redundancy into the system. The taxonomy of RAID is based on the amount of redundancies as well as the method of incorporating them. Eight levels of RAID organizations exist at present. We briefly describe these. - RAID Level 0: Offers disk striping with redundancy. Generally not considered a RAID. - RAID Level 1: Uses the traditional method of mirroring. All data is copied onto two separate disks. The disadvantage is in the overhead because twice as many physical drives are required. Tolerates one disk failure in the worst case. - RAID Level 2: Uses multiple dedicated parity disks in a Hamming code scheme. All disks are synchronized, which means that all disks must be accessed in parallel. This is ineffective for applications requiring many small reads and writes. For this reason, level 2 RAID is not commercially viable. Tolerates one disk failure in the worst case. - RAID Level 3: Like level 2, disks are synchronized. Data is interleaved bit-wise over the disks. All parity data is stored on a single parity drive. - RAID Level 4: Disks are not synchronized so that multiple reads to disks can be done independently. Data is interleaved block-wise over the disks. All parity data is still stored on a single parity drive. - RAID Level 5: Similar to level 4 RAID, but parity data is spread over all disks. - RAID Level 6: Similar to level 4 RAID but uses Reed-Solomon codes to tolerate up to two disk failures. - RAID Level 7: This is a patented architecture of Storage Computer Corporation that incorporates a totally asynchronous hardware environment with a multi-tiered cache memory controlled by an embedded real-time operating system. Parity data is held on one or more dedicated drives. One noticeable characteristic of these RAID organizations is that all of them, except level 6, are able to tolerate only one disk failure, and even level 6 can tolerate only two disk failures. This can be a serious problem for mission-critical applications, where very high reliability of data storage is required. This has prompted Hellerstein, Gibson, Karp, Katz, and Patterson [79] to examine coding in RAID that protects against catastrophic disk failures. When one deals with fault-tolerance issues in date storage systems, it is typical to model the data store as a binary symmetric channel (refer to Section 1.2). This enables one to use techniques from the theory of error-correcting codes to protect against data loss. However, disk controllers can easily identify which disk has failed. This makes the binary erasure channel (Figure 1.3) a more appropriate model for the RAID architecture. The purpose of this chapter is to generalize, as well as to extend, the work of Hellerstein et al. [79]. In particular, we provide a new view of the design of erasure-resilient codes for RAID systems, and develop new efficient coding schemes that tolerate a higher number of disk failures than those treated in [79]. Modern large-capacity, high-speed memory units also use erasure-resilient codes for error control [116]. The metrics of interest there are different from those in disk arrays. #### 8.2 Terminology and Important Metrics A data stripe is the minimum amount of contiguous user data allocated to one disk before any data is allocated to any other disk. The size of a data stripe must be an integral number of sectors, and is often the minimum unit of update used by system software. Because of this, we can view each disk as a collection of data stripes. **Definition 8.2.1** An [n, c, k]-erasure-resilient code is a function E that encodes n-tuples $D = (D_1, D_2, \ldots, D_n)$ of data stripes onto (n + c)-tuples $E(D) = (E_1(D), E_2(D), \ldots, E_{n+c}(D))$ of data stripes called *codewords* so that any n+c-k data stripes $E_{i_1}(D), E_{i_2}(D), \ldots, E_{i_{n+c-k}}(D)$ of E(D) together with the indices i_j uniquely determine D. We often call an [n, c, k]-erasure-resilient code a k-erasure-resilient code when the parameters n and c are not important in the context. To see the relevance of an [n, c, k]-erasure-resilient code to the protection of data loss in RAID, suppose that we have a piece of data which is partitioned into an n-tuple $D = (D_1, D_2, \ldots, D_n)$ of data stripes. Given an [n, c, k]-erasure-resilient code E, we can form the codeword $(E_1(D), E_2(D), \ldots, E_{n+c}(D))$ and store this onto a disk array of n+c disks (see Figure 8.2). The definition of an [n, c, k]-erasure-resilient code ensures that we can reconstruct the original data in the presence of up to k disk failures. We often call a disk failure an erasure, and the failure of a set of k disks a k-erasure. Figure 8.2: Data layout on a disk array. For performance reasons, we make the following two restrictions on erasure-resilient codes, as in [79]. - (i) We restrict ourselves to systematic erasure-resilient codes. These are erasure-resilient codes for which E_i(D) = D_i for 1 ≤ i ≤ n. The encodings E_i(D) for n+1 ≤ i ≤ n+c are called checks. This means that the encoding leaves the original data unmodified on some disks. This property is desirable to avoid read penalties when there are no disk failures. - (ii) We restrict ourselves to binary linear erasure-resilient codes over the field GF(2^L), where L is the bit-size of a data stripe. In this case, each data stripe is interpreted as an L-dimensional vector over GF(2), and E is a linear function. Hence, calculations used to form the encodings are restricted to modulo two arithmetic, that is, parity operations, ⊕. This ensures that encodings can be computed efficiently. Restriction (i) above allows us to separate disks into information disks, which contain the original data, and check disks, which contain the parity checks. In fact, both restrictions (i) and (ii) imply that an [n, c, k]-erasure-resilient code can be described in terms of a $c \times (n+c)$ matrix $H = [C \mid I]$ over GF(2), where I is the $c \times c$ identity matrix and C is a $c \times n$ matrix that determines the equations for the checks. This is a well-known result in the theory of error-correcting codes [96]. The matrix H is called the parity-check matrix of the code. Given the parity-check matrix $H = [C \mid I]$ of a k-erasure-resilient code, we can think of the rows of C (as well as the rows and columns of I) as being indexed by the check disks of a disk array, and the columns of C as being indexed by the information disks. The content of check disk i is the modulo two sum of the content of those information disks, whose columns they index in C have a one in row i. We consider the following metrics for the performance of an erasure-resilient code [79]. Check disk overhead: This is the ratio of the number of check disks to information disks. An [n, c, k]-erasure-resilient code has a check disk overhead of c/n. Update penalty: This is the number of check disks whose content must be changed when a change is made in the content of a given information disk. We call these disks the check disks associated with the information disk. If N check disks need to be involved in every write, then the parallelism of the disk array is reduced by a factor of N+1. Since parallelism is the reason behind using disk arrays, update penalties should be kept as small as possible. The update penalties of an erasure-resilient code are the numbers of ones in the columns of its parity-check matrix. Group size: This is the number of disks that must be accessed during the reconstruction of a single failed disk. The cost of reconstruction makes small group size desirable, while for load balancing reasons, uniform group size is desirable. The group sizes of an erasure-resilient code are the numbers of ones in the rows of its parity-check matrix. Since updates of data are usually much more frequent than the reconstruction of data due to disk failures, the update penalties are typically of more concern than the group size. Another assumption we make is that disk failures are uncorrelated. This assumption is valid for *catastrophic failures*, which are head crashes or failures of the read/write or controller electronics [79]. It should be pointed out that disk failures can be correlated. For example, the disks on a string are usually connected to the same power supply. So the failure of the power supply causes all disks on the string to fail simultaneously. We refer the reader to [106] for more information on this topic. Our interest in this chapter is solely on uncorrelated disk failures. #### 8.3 Properties of Parity-Check Matrices Let us consider the failure of k disks (both information disks and check disks can fail). If $H = [C \mid I]$ has a set of k or fewer linearly dependent columns (over GF(2)), then the failure of the corresponding disks makes reconstruction of data impossible. In fact, this is the only scenario for which disk failures are irrecoverable. Lemma 8.3.1 (Hellerstein et al. [79]) A set of disk failures is recoverable if and only if the corresponding set of columns in the parity-check matrix is linearly independent. Therefore, H is the parity-check matrix of a k-erasure-resilient code if and only if every set of k columns of H contains no nonempty set of linearly dependent columns. Precisely the same condition
determines when H is the parity-check matrix of a k-error-detecting code [96]. Corollary 8.3.1 A code is k-erasure-resilient if and only if it is k-error-detecting. This equivalence between k-erasure-resilient and k-error-detecting codes means that results on error-detecting codes can be brought to bear. However, the study of codes for error detection has not focussed on the metrics discussed in the previous section. Indeed, as observed in [79], many of these codes are not suitable for disk arrays because they have large update penalties. Recently, erasure-resilient codes have also been constructed to combat bursty losses in packet-switched networks [3, 7]. Again, the metrics of interest there are different from those in disk array applications. **Corollary 8.3.2** $H = [C \mid I]$ is the parity-check matrix of a k-erasure-resilient code if and only if for every $t \leq k$ columns, $\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_t$ of C, the vector $\mathbf{x} = \mathbf{c}_1 \oplus \mathbf{c}_2 \oplus \cdots \oplus \mathbf{c}_t$ has weight at least k + 1 - t. **Proof.** The condition is exactly what is needed for every set of at most k columns of H to be linearly independent. We have earlier discussed the importance of update penalties. It is easy to see that if an erasure-resilient code is able to tolerate k erasures, then every update must affect the content of at least k+1 disks (one information disk and k check disks). Thus, the update penalties of a k-erasure-resilient code are at least k. Henceforth, we consider only those k-erasure-resilient codes for which the update penalties are all equal to k, the minimum possible. We speak, therefore, of the update penalty, instead of the update penalties of an erasure-resilient code. The corresponding parity-check matrix $H = [C \mid I]$ has column sums for C all equal to k. Although an erasure-resilient code with update penalty k cannot tolerate all (k+1)-erasures, it can certainly tolerate some of them. Indeed, a (k+1)-erasure is irrecoverable if and only if it corresponds to the failure of an information disk and its k associated check disks. We call such (k+1)-erasures bad. It is observed in [79] that with update penalty k, one can nonetheless hope to tolerate $all\ (k+1)$ -erasures, except for bad ones. In fact, it can happen that all t-erasures are recoverable except for those that contain bad (k+1)-erasures. **Definition 8.3.1** A t-erasure, where $t \ge k + 1$, is called bad if it includes the failure of an information disk and its k associated check disks. With this in mind, we extend Definition 8.2.1 to encompass this notion of higher resilience. **Definition 8.3.2** An [n, c, k, l]-erasure-resilient code is an [n, c, k]-erasure-resilient code which can tolerate all t-erasures, for $k + 1 \le t \le l$, except for bad t-erasures. We often write (k, l)-erasure-resilient code for [n, c, k, l]-erasure-resilient code when the parameters n and c are not important in the context. Requirements for higher reliability of disk arrays make (k, l)-erasure-resilient codes attractive. Note that an [n, c, k, k]-erasure-resilient code is simply an [n, c, k]-erasure-resilient code. Corollary 8.3.2 can be extended as follows to handle the more general (k, l)-erasure-resilient codes. **Lemma 8.3.2** $H = [C \mid I]$ is the parity-check matrix of a (k, l)-erasure-resilient code if and only if for every t columns, $\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_t$ of C, where $2 \le t \le l$, the vector $\mathbf{x} = \mathbf{c}_1 \oplus \mathbf{c}_2 \oplus \cdots \oplus \mathbf{c}_t$ has weight at least l + 1 - t. **Proof.** First we prove necessity. Suppose there exists $\mathbf{x} = \mathbf{c}_1 \oplus \mathbf{c}_2 \oplus \cdots \oplus \mathbf{c}_t$ for some columns $\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_t$ of C, such that $\mathrm{wt}(\mathbf{x}) \leq l - t$. Then there exists $\mathrm{wt}(\mathbf{x})$ columns of I whose sum together with \mathbf{x} gives the zero vector. Hence, the corresponding s-erasure, where $s = \mathrm{wt}(\mathbf{x}) + t \leq l$, cannot be recovered. We may assume that this s-erasure is not bad, for otherwise we may discard information disks and their k associated check disks from this s-erasure and obtain an s'-erasure, for some s' < s, which is still irrecoverable. For sufficiency, suppose on the contrary that there exists an r-erasure which is irrecoverable. Then there exist columns $\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_t$ of C and columns $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_s$ of I, such that $\mathbf{c}_1 \oplus \mathbf{c}_2 \oplus \cdots \oplus \mathbf{c}_t \oplus \mathbf{e}_1 \oplus \mathbf{e}_2 \oplus \cdots \oplus \mathbf{e}_s = \mathbf{0}$ and t+s=r. This is possible if and only if the weight of $\mathbf{x} = \mathbf{c}_1 \oplus \mathbf{c}_2 \oplus \cdots \oplus \mathbf{c}_t$ is exactly s. Hence, we have $\mathrm{wt}(\mathbf{x}) = r - t \leq l - t$, a contradiction. Before we leave this section, let us make the following definition. **Definition 8.3.3** Given c, k, and l, define F(c, k, l) to be the maximum n such that there exists an [n, c, k, l]-erasure-resilient code. An [n, c, k, l]-erasure-resilient code with n = F(c, k, l) is said to have optimal check disk overhead. We also abbreviate F(c, k, k) to F(c, k). ### 8.4 Turán-Type Problems in Erasure-Resilient Codes Given any matrix $M \in \{0,1\}^{m \times n}$, one can define a set system (X,\mathcal{A}) , where $X = \{1,2,\ldots,m\}$ and \mathcal{A} contains precisely the supports of the columns of M. We call (X,\mathcal{A}) the set system associated with the matrix M. **Definition 8.4.1** Let (X, A) be a set system. The *replication number* of a point $x \in X$ is $r_x = |\{A \in A \mid x \in A\}|.$ Let $H = [C \mid I]$ be the parity-check matrix of an erasure-resilient code. The set system associated with C is called the set system of the erasure-resilient code. If (X, A) is the set system of an [n, c, k, l]-erasure-resilient code, then with our foregoing assumptions, (X, A) is k-uniform, |X| = c, |A| = n (and therefore the check disk overhead is |X|/|A|), and the group sizes are one more than the corresponding replications numbers. It is this correspondence between set systems and parity-check matrices that gives rise to Turántype problems in erasure-resilient codes. **Lemma 8.4.1** (X,A) is the set system of a (k,l)-erasure-resilient code if and only if it satisfies the following condition. For any $2 \le t \le l$, there do not exist t blocks A_1, A_2, \ldots, A_t in \mathcal{A} such that $|A_1 \Delta A_2 \Delta \cdots \Delta A_t| \leq l - t$. **Proof.** Simply translate Lemma 8.3.2 into the language of set systems and observe that $supp(\mathbf{u} \oplus \mathbf{v}) = supp(\mathbf{u}) \Delta supp(\mathbf{v})$ for any two vector $\mathbf{u}, \mathbf{v}, \in \{0, 1\}^n$. Lemma 8.4.1 implies that the construction of a (k, l)-erasure-resilient code with optimal check disk overhead is precisely the Turán-type problem of determining the maximum number of blocks in a set system satisfying the condition of Lemma 8.4.1. When considering (k,l)-erasure-resilient codes, we may assume $l \leq 2k-1$ for the following reason. Let (X,\mathcal{A}) be the set system of a (k,l)-erasure-resilient code. If \mathcal{A} contains at least two blocks A and A' with nonempty intersection, then $|A\Delta A'| \leq 2k-2$. It follows from Lemma 8.4.1 that l-2 < 2k-2, and this implies $l \leq 2k-1$. Hence, if $l \geq 2k$, then \mathcal{A} must consist of pairwise disjoint blocks. This corresponds to the scheme where the data on each information disk is replicated on k different check disks. This scheme is able to tolerate t-erasures for all t, except for bad ones. For fixed update penalty k, this scheme has the highest reliability, but suffers from a huge check disk overhead of k. Henceforth, we restrict our attention to $l \leq 2k-1$. In the next section, we give a general construction for [n, c, k, l]-erasure-resilient codes and establish a limit on how good an [n, c, k, l]-erasure-resilient code can be. ## 8.5 An Expander-Based Construction and an Upper Bound Given a set system (X, A), one can construct a bipartite graph $G = (X \cup A, E)$ as follows. The vertex sets of the bipartition are X and A. Two vertices $x \in X$ and $A \in A$ are adjacent if and only if $x \in A$. This graph is called the *point-block incidence graph of* (X, A). It is easy to see that (X, A) can be reconstructed from its point-block incidence graph. **Definition 8.5.1** Let S be a subset of vertices in a graph. The *neighbourhood* of S, denote N(S), is the set of all vertices not in S that are adjacent to some vertex in S. The elements of N(S) are called the *neighbours* of S. **Definition 8.5.2** Let S be a subset of vertices in a graph. A vertex v is an odd neighbour of S if v is adjacent to an odd number of vertices in S. **Lemma 8.5.1** Let $1 \le k \le l$ and $2 \le t \le l$. Let $G = (U \cup V, E)$ be a bipartite graph where each vertex in U has degree k, and such that for any subset $T \subseteq V$, |T| = t, we have $$|N(T)| \geq \frac{t(k-1)+l+1}{2}.$$ Then G is the point-block incidence graph of a set system of an (k,l)-erasure-resilient code. **Proof.** From Lemma 8.4.1, it suffices to show that any subset T of t vertices from V has at least l+1-t odd neighbours. Suppose that there are only $s \leq l-t$ odd neighbours of T. Then there are |N(T)|-s neighbours of T, each of which is adjacent to at least two vertices of T. Hence, $$2(|N(T)|-s)+s\leq tk,$$ which gives $$|N(T)| \le \frac{tk+s}{2}$$ $$\le \frac{tk+l-t}{2}$$ $$= \frac{t(k-1)+l}{2}.$$ This is a contradiction. Lemma 8.5.1 shows that bipartite graphs for which the neighbourhood of any set of vertices S is large relative to the size of S give erasure-resilient codes. This property is indeed what defines a special class of graphs known as expanders [16, 66]. Expanders are useful in many theoretical
as well as practical applications in computer science. Unfortunately, the study of (bipartite) expanders have focussed on the case when the sizes of the two partitions are linearly related [4, 94, 97, 113, 143]. This gives trivial results in our application. The probabilistic construction we give next yields bipartite expanders where the sizes of the two partitions are polynomially related. The construction is a modification of the usual probabilistic construction for expanders (see [100]). **Theorem 8.5.1** Let k and l be constants such that $1 \le k \le l$, and define $\alpha = (2k+1-l)/4$. Let $2 \le t \le l$. There is an integer n_0 such that for all $n > n_0$, there exists a bipartite graph $G = (U \cup V, E)$ with |U| = n and $|V| = \Omega(n^{\alpha})$ satisfying the following two conditions: - (i) each vertex in V has degree k; - (ii) for every subset T of t vertices from V, we have $|N(T)| \geq (t(k-1)+l+1)/2$. **Proof.** Let $|V| = dn^{\alpha}$ for some positive constant d. Consider a random bipartite graph on the vertices in U and V, in which each vertex of V chooses its k neighbours by sampling a k-subset of vertices from U independently and uniformly from $\binom{U}{k}$. It is clear that the bipartite graph so constructed satisfies condition (i). Let \mathcal{E}_t denote the event that a subset of t vertices of V has fewer than s = (t(k-1)+l+1)/2 neighbours in U. Fix any subset $T \subseteq V$ of size t and any subset $S \subseteq U$ of size s. There are $\binom{dn^a}{t}$ ways of choosing T and $\binom{n}{s}$ ways of choosing S. The probability that S contains N(T) is $\binom{s}{k}/\binom{n}{k}$. Thus, the probability of the event that all the edges emanating from some t vertices of V fall within any s vertices of U is bounded as follows: $$\mathbf{Pr}[\mathcal{E}_t] \leq inom{dn^lpha}{t}inom{n}{s}\left[rac{inom{s}{k}}{inom{n}{k}} ight]^t.$$ Using the inequalities $\binom{n}{k} \leq (ne/k)^k$ and $\binom{n}{k} \geq (n/k)^k$, we obtain $$\mathbf{Pr}[\mathcal{E}_t] \leq O(n^{-(t-2)(l+1)/4}).$$ The probability that the bipartite graph fails to satisfy (ii) is at most $$\sum_{t=2}^{l} \mathbf{Pr}[\mathcal{E}_t],$$ which can be made to be less than one for n large enough by an appropriate choice of d. The desired result follows. Next, we establish an upper bound on F(c, k, l). **Theorem 8.5.2** Let k, and l be constants such that $1 \leq k \leq l$. Then $F(c,k,l) = O(c^{k+1-\lfloor l/2 \rfloor})$. **Proof.** Consider all the configurations of two blocks of size k intersecting in at least $k+1-\lfloor l/2\rfloor$ points. Any set system (X,\mathcal{A}) for an [n,c,k,l]-erasure-resilient code must avoid all such configurations, for otherwise it would violate the condition of Lemma 8.3.2. Hence, any two blocks of (X,\mathcal{A}) intersect in at most $k-\lfloor l/2\rfloor$ points. It follows that (X, A) is a $(k+1-\lfloor l/2 \rfloor)$ -(c, k, 1) packing. Hence, $$|\mathcal{A}| \leq D(c,k,k+1-\lfloor l/2 floor) \leq rac{inom{c}{k+1-\lfloor l/2 floor}}{inom{k}{k+1-\lfloor l/2 floor}} = O(c^{k+1-\lfloor l/2 floor}).$$ Theorem 8.5.1 and Theorem 8.5.2 give the following. Corollary 8.5.1 For any fixed k and l such that $1 \le k \le l$, there exist positive constants a_1 and a_2 such that $$a_1 c^{(2k+1-l)/4} \le F(c, k, l) \le a_2 c^{k+1-\lfloor l/2 \rfloor},$$ for all $c \in \mathbb{N}$. For general k, the only lower bound on F(c, k, l) obtained by Hellerstein et al. [79] is for the case l = k. We give a new short proof here. **Theorem 8.5.3 (Hellerstein et al.** [79]) For any $k \in \mathbb{N}$, we have $F(c,k) \geq (1-o(1))\binom{c}{2}/\binom{k}{2}$. **Proof.** It is easy to see that every (k-1)-cover-free set system is the set system of a k-erasure-resilient code. By Lemma 5.1.1, any 2-(c, k, 1) packing is (k-1)-cover-free. Hence, $F(c, k) \ge D(c, k, 2) = (1 - o(1))\binom{c}{2}/\binom{k}{2}$; the last equality being from [59]. The (k,l)-erasure-resilient codes we built from expanders are at least as reliable and have asymptotically better check disk overheads than that provided by Theorem 8.5.3 as long as $k \le l \le 2k - 8$. The exponent in the upper bound of Corollary 8.5.1 is about twice that for the lower bound. We believe the upper bound to be the true asymptotic behaviour of F(c, k, l), but tightening the lower bound in general appears to be difficult. We can give tight bounds for several cases when k is small. #### 8.6 (3, l)-Erasure-Resilient Codes An extensive treatment of (3, l)-erasure-resilient codes, for l = 3 and 4, was given in [79]. We summarize their results below. **Lemma 8.6.1** (Hellerstein et al. [79]) $(X, \binom{X}{3})$ is the set system of a 3-erasure-resilient code with optimal check disk overhead. Hence, $F(c,3) = \binom{c}{3}$. **Lemma 8.6.2** (Hellerstein et al. [79]) For all $c \in \mathbb{N}$, $F(c, 3, 4) \leq c(c - 1)/6$, with equality if $c = 3^a$ for some nonnegative integer a. If $c \equiv 3 \pmod 6$, there exists a [c(c - 3)/6, c, 3, 4]-erasure-resilient code. We can improve on Lemma 8.6.2 by examining the set system of a (3, 4)-erasure-resilient code. First, consider the configuration P_1 in Figure 8.3(a) for which the symmetric difference of its two blocks has size two. By Lemma 8.3.2, this configuration must be avoided by the set system of any (3, 4)-erasure-resilient code. For $3 \le t \le 4$, the only configuration of t blocks of size 3 for which their symmetric difference has at most 4 - t points and which does not contain P_1 is that given in Figure 8.3(b). Lemma 8.3.2 implies that P_2 must also be avoided in the set system of any (3, 4)-erasure-resilient code. Forbidding P_1 from the set system (X, A) of an [n, c, 3, 4]-erasure-resilient code is equivalent to saying that (X, A) is a 2-(c, 3, 1) packing. The configuration P_2 is known in the design theory literature under various names: quadrilateral, Pasch configuration, Figure 8.3: Forbidden configurations for (3, 4)-erasure-resilient codes. fragment, or arrow (see [42]). A 2-(c, 3, 1) packing that does not contain a Pasch configuration is called anti-Pasch. The construction of (3, 4)-erasure-resilient codes with optimal check disk overhead is therefore equivalent to the following problem. **Problem 8.6.1** Determine the maximum number of blocks in an anti-Pasch 2-(v, 3, 1) packing. An anti-Pasch 2-(v, 3, 1) packing with D(v, 3, 2) blocks is said to be optimal. A complete solution to Problem 8.6.1 is not known. We believe that for all sufficiently large v, there exists an optimal anti-Pasch 2-(v, 3, 1) packing. The simple observation below shows that it is sufficient to treat the cases $v \equiv 1, 3, \text{ or } 5 \pmod{6}$. **Lemma 8.6.3** Let $v \equiv 1, 3, \text{ or } 5 \pmod{6}$. If there exists an optimal anti-Pasch 2-(v, 3, 1) packing, then there exists an optimal anti-Pasch 2-(v - 1, 3, 1) packing. **Proof.** Schönheim [127, 128] and Spencer [136] have shown that for $v \equiv 1, 3$, or 5 (mod 6), an optimal 2-(v-1,3,1) packing (X,\mathcal{A}) can be constructed from an optimal 2-(v,3,1) packing (Y,\mathcal{B}) as follows. Pick an element $y \in Y$ that is contained in the least number of blocks in \mathcal{B} , breaking ties arbitrarily. Take $X = Y \setminus \{y\}$ and $\mathcal{A} = \{B \in \mathcal{B} \mid y \in B\}$. Since $\mathcal{A} \subseteq \mathcal{B}$, it is clear that (X,\mathcal{A}) does not contain a Pasch configuration if (X,\mathcal{B}) does not. \square **Example 8.6.1** An optimal anti-Pasch 2-(17,3,1) packing (X,\mathcal{A}) : X is taken to be $\{0,1,\ldots,16\}$ and \mathcal{A} contains the following 3-subsets of X. $$\{6,8,11\} \quad \{3,7,13\} \quad \{2,5,7\} \quad \{3,11,12\} \quad \{3,5,16\} \quad \{4,8,13\} \quad \{0,10,11\} \\ \{1,5,12\} \quad \{2,10,13\} \quad \{1,8,16\} \quad \{5,11,14\} \quad \{1,9,15\} \quad \{0,7,8\} \quad \{4,12,16\} \\ \{6,7,15\} \quad \{7,9,12\} \quad \{12,14,15\} \quad \{3,8,15\} \quad \{2,4,6\} \quad \{3,9,10\} \quad \{2,11,15\} \\ \{0,1,13\} \quad \{1,7,11\} \quad \{0,15,16\} \quad \{0,2,12\} \quad \{2,9,16\} \quad \{0,3,14\} \quad \{1,10,14\} \\ \{5,13,15\} \quad \{1,3,6\} \quad \{2,8,14\} \quad \{4,7,14\} \quad \{11,13,16\} \quad \{4,9,11\} \quad \{4,10,15\} \\ \{7,10,16\} \quad \{8,10,12\} \quad \{9,13,14\} \quad \{6,12,13\} \quad \{5,8,9\} \quad \{6,14,16\} \quad \{0,4,5\} \\ \{5,6,10\} \quad \{0,6,9\}$$ When $v \equiv 1$ or 3 (mod 6), an optimal 2-(v, 3, 1) packing is a Steiner triple system, STS(v). Already twenty years ago, Erdös [56] made the conjecture that there exists an anti-Pasch STS(v) for all $v \equiv 1$ or 3 (mod 6) whenever v is sufficiently large. The unique STS(7) and the two nonisomorphic STS(13) contain Pasch configurations. Brouwer [21] refined Erdös' conjecture as follows. Conjecture 8.6.1 (Brouwer [21]) There exists an anti-Pasch STS(v) for all $v \equiv 1$ or 3 (mod 6), except when v = 7 or 13. Conjecture 8.6.1 is known to be true for $v \equiv 3 \pmod{6}$. Theorem 8.6.1 (Brouwer [21], Griggs, Murphy, and Phelan [72]) There exists an anti-Pasch STS(v) for all $v \equiv 3 \pmod{6}$. The results for $v \equiv 1 \pmod 6$ is more fragmented and we refer the reader to [42] for a survey. It appears that Griggs has recently constructed anti-Pasch STS(v) for a large fraction of $v \equiv 1 \pmod 6$. So by observing the equivalence between (n, c, 3, 4)-erasure-resilient codes with optimal check disk overhead and optimal anti-Pasch 2-(c, 3, 1) packings, we can easily improve Lemma 8.6.2 as follows. **Lemma 8.6.4** For all $c \in \mathbb{N}$, we have $F(c, 3, 4) \leq D(c, 3, 2)$, with equality if $c \equiv 2$ or 3 (mod 6). **Proof.** Follows from Theorem 8.6.1 and Lemma 8.6.3. We now turn our attention to (3,5)-erasure-resilient codes. It turns out that there are no additional configurations to P_1 and P_2 which must be avoided by the set system of an (3,5)-erasure-resilient code. Consequently, every (3,4)-erasure-resilient code is a (3,5)-erasure-resilient
code. **Lemma 8.6.5** For all $c \in \mathbb{N}$, we have F(c, 3, 5) = F(c, 3, 4). ### 8.7 (4, l)-Erasure-Resilient Codes The only previously-known result concerning (4, l)-erasure-resilient codes is the lower bound $F(c, 4) \ge c(c-1)/12$ given by Theorem 8.5.3. Hellerstein et al. [79] posed the open problem of determining F(c, 4). #### 8.7.1 The Cases l=4 and l=5 The proof of Theorem 8.5.2 shows that any set system (X, A) of an [n, c, 4]-erasure-resilient code must avoid the two configurations Q_1 and Q_2 in Figure 8.4, and hence is a 3-(c, 4, 1) packing¹. Therefore, $F(c, 4) \leq D(c, 4, 3)$. But being a 3-(c, 4, 1) packing is not sufficient. Lemma 8.3.2 implies that (X, A) must further avoid the four configurations Q_3, Q_4, Q_5 , and Q_6 in Figure 8.4. It follows that F(c, 4) = c(c-1)(c-2)/24 if and only ¹Our definition of a set system (see Section 2.3) automatically excludes the configuration Q_1 . This configuration is given here to remind the reader that Q_1 must be avoided even if set systems with repeated blocks are allowed. Figure 8.4: Forbidden configurations for 4-erasure-resilient codes. if there exists a 3-(c, 4, 1) design (known as a Steiner quadruple system of order c and denoted SQS(c)) that avoids all the configurations Q_3 , Q_4 , Q_5 , and Q_6 . At present, we do not know of any example of a nontrivial SQS(c) that avoids all these configurations. For a comprehensive survey on Steiner quadruple systems, we refer the reader to [76]. Here, we address the more difficult problem of constructing (4,5)-erasure-resilient codes, and in the process, obtain asymptotically-tight bounds (up to constant factors) on both F(c,4) and F(c,4,5). Let (X,A) be the set system of an [n,c,4,5]-erasure-resilient code. Naturally, (X,A) is a 3-(c,4,1) packing that avoids the four configurations Q_3 , Q_4 , Q_5 , and Q_6 . A short computation demonstrates that there are precisely nine other configurations that must be avoided. These configurations are shown in Figure 8.5. The remainder of this section discusses a finite field construction for (4,5)-erasure-resilient codes. **Definition 8.7.1** A set system (X, A) is k-partite if there is a partition of X into k parts, $X = X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$, such that for every block $A \in A$, we have $|A \cap X_i| \leq 1$ for $1 \leq i \leq k$. Figure 8.5: Forbidden configurations for (4,5)-erasure-resilient codes. One idea we use to simplify our construction is to restrict our attention to set systems of (4,5)-erasure-resilient codes that are 4-partite. It is known [60] that for every k-uniform set system (X,\mathcal{A}) , one can find a k-partite set system (X,\mathcal{B}) , where $\mathcal{B}\subseteq\mathcal{A}$, such that $|\mathcal{B}|\geq \frac{k!}{k^k}|\mathcal{A}|$. So our restriction to 4-partite set systems is not a severe one and affects F(c,4,l) by at most a constant factor of 32/3. It is easy to verify that the configurations $Q_3, Q_7, Q_8, Q_9, Q_{10}, Q_{11}, Q_{12}, Q_{13}, Q_{14}$, and Q_{15} are not 4-partite. Hence, they cannot be present in any 4-partite set system. It therefore suffices to construct 4-partite set systems that do not contain any of the configurations Q_1, Q_2, Q_4, Q_5 , and Q_6 . **Definition 8.7.2** An extension of a set system (X, A) by a point $\infty \notin X$ is the set system $(X \cup \{\infty\}, B)$, where $B = \{A \cup \{\infty\} \mid A \in A\}$. We now describe the finite field construction. Let q be an odd prime power and let ω be a primitive element of GF(q). For each i, $1 \le i \le (q-1)/2$, define a set system (X_i, \mathcal{B}_i) , where $$X_i = \mathrm{GF}(q) \times \{0,1,2\}, \qquad ext{and}$$ $\mathbb{B}_i = \{\{(a,0),(b,1),(a+\omega^i b,2)\} \mid a,b \in \mathrm{GF}(q) \text{ and } b \neq 0\}.$ Now let (Y_i, \mathcal{C}_i) be the extension of (X_i, \mathcal{B}_i) by the point ∞_i , for $1 \leq i \leq (q-1)/2$. Finally, define (Y, \mathcal{C}) so that $$Y = \bigcup_{i=1}^{(q-1)/2} Y_i$$ and $\mathfrak{C} = \bigcup_{i=1}^{(q-1)/2} \mathfrak{C}_i$. The next lemma shows that (Y, \mathcal{C}) is a set system, that is, (Y, \mathcal{C}) avoids the configuration Q_1 . **Lemma 8.7.1** The pair (Y, \mathbb{C}) is a set system. **Proof.** If (Y, \mathcal{C}) contains the configuration Q_1 , then it would mean that some (X_i, \mathcal{B}_i) contains the configuration below. But this contradicts the fact that (X_i, \mathcal{B}_i) is a 2-(3q, 3, 1) packing. It is now clear that (Y, \mathbb{C}) is a 4-uniform set system. Since each block in \mathbb{C} intersects each of the sets $GF(q) \times \{0\}$, $GF(q) \times \{1\}$, $GF(q) \times \{2\}$, and $\{\infty_1, \infty_2, \ldots, \infty_{(q-1)/2}\}$ in exactly one point, and these sets partition Y, (Y, \mathbb{C}) is also 4-partite. The sequence of lemmata below shows that (Y, \mathbb{C}) avoids several other configurations. **Lemma 8.7.2** The set system (Y, \mathbb{C}) avoids the configuration Q_2 . **Proof.** Suppose (Y, \mathcal{C}) contains the configuration below. Without loss of generality, either $x = \infty_i$, or $y = \infty_i$ and $z = \infty_j$, for some $i \neq j$. If $x = \infty_i$, then some (X_i, \mathcal{B}_i) must contain the following configuration. But this contradicts the fact that (X_i, \mathcal{B}_i) is a 2-(3q, 3, 1) packing. If $y = \infty_i$ and $z = \infty_j$, then there exists $\{(a,0), (b,1), (c,2)\} \in \mathcal{B}_i \cap \mathcal{B}_j$. This is only possible if b = 0. But the only set system that contains blocks of the form $\{(a,0), (0,1), (c,2)\}$ is (X_1, \mathcal{B}_1) . This is a contradiction. **Lemma 8.7.3** The set system (Y, \mathbb{C}) avoids the configuration Q_4 . **Proof.** Suppose (Y, \mathcal{C}) contains the configuration below. Without loss of generality, either $x = \infty_i$, or $y = \infty_i$ and $z = \infty_j$, for some $i \neq j$. If $x = \infty_i$, then (X_i, \mathcal{B}_i) contains the Pasch configuration. The only way a Pasch configuration can occur in (X_i, \mathcal{B}_i) is as follows. But this implies $c = a + \omega^i b = d + \omega^i e$ and $f = a + \omega^i e = d + \omega^i b$, which can only be satisfied if b = e. This is a contradiction. If $y = \infty_i$ and $z = \infty_j$, then (X_i, \mathcal{B}_i) and (X_j, \mathcal{B}_j) must contain four blocks (two from \mathcal{B}_i and two from \mathcal{B}_j) that occur in one of the following three ways. The blocks in \mathcal{B}_i are shown in solid lines and the blocks in \mathcal{B}_j are shown in dashed lines. In the first situation, we have $c=a+\omega^ib=a+\omega^jd$ and $e=a+\omega^id=a+\omega^jb$, which can only be satisfied if b-d. In the second situation, we have $c=d+\omega^ib=a+\omega^jb$ and $e=a+\omega^ib=d+\omega^jb$, which can only be satisfied if a=d. For the last situation, we have $c=a+\omega^ib=d+\omega^ie=a+\omega^je=d+\omega^jb$, which can only be satisfied if b=e. All these lead to contradictions. 118 It follows that (Y, \mathcal{C}) cannot contain the configuration Q_4 . **Lemma 8.7.4** The set system (Y, \mathcal{C}) avoids the configuration Q_5 . **Proof.** Suppose (Y, \mathcal{C}) contains the configuration below. Without loss of generality, we may assume $x = \infty_i$ and $y = \infty_j$ for some $i \neq j$. Then (X_i, \mathcal{B}_i) and (X_j, \mathcal{B}_j) must contain four blocks (two from \mathcal{B}_i and two from \mathcal{B}_j) that occur as follows. The blocks in \mathcal{B}_i are shown in solid lines and the blocks in B_j are shown in dashed lines. But this implies that $c=a+\omega^ib=d+\omega^jb$ and $f=a+\omega^ie=d+\omega^je$, which can only be satisfied if b=e. This is a contradiction. **Lemma 8.7.5** The set system (Y, \mathbb{C}) avoids the configuration Q_6 . **Proof.** Suppose (Y, \mathcal{C}) contains the configuration below. Without loss of generality, either $w = \infty_i$ and $z = \infty_j$, or $x = \infty_i$ and $y = \infty_j$, for some $i \neq j$. If $w = \infty_i$ and $z = \infty_j$, then (X_i, \mathcal{B}_i) and (X_j, \mathcal{B}_j) must contain four blocks (two from \mathcal{B}_i and two from \mathcal{B}_j) that occur as follows. This, as we have seen in the proof of Lemma 8.7.4, is impossible. If $x = \infty_i$ and $y = \infty_j$, then (X_i, \mathcal{B}_i) and (X_j, \mathcal{B}_j) must contain four blocks (two from \mathcal{B}_i and two from \mathcal{B}_j) that occur in one of the following three ways. The blocks in \mathcal{B}_i are shown in solid lines and the blocks in \mathcal{B}_j are shown in dashed lines. The first situation gives $c=a+\omega^ib=d+\omega^je$ and $f=a+\omega^ie=d+\omega^jb$, which can only be satisfied if b=e or $\omega^i=-\omega^j$. But $-\omega^j=\omega^{j+(q-1)/2}$ since q is odd, and $i\not\equiv j$ (mod (q-1)/2) since $1\le i,j\le (q-1)/2$. The second situation gives $c=a+\omega^ib=d+\omega^je$ and $f=d+\omega^ib=a+\omega^je$, which can only be satisfied if d=a. For the last situation, we have $c=a+\omega^ib=d+\omega^ie$ and $f=a+\omega^je=d+\omega^jb$, which can only be satisfied if b=e or $\omega^i=-\omega^j$. As before, $\omega^i=-\omega^j$ is impossible. All these lead to contradictions. It follows that (Y, \mathbb{C}) cannot contain the configuration Q_6 . We can now state the main result of this section. **Theorem 8.7.1** Let q be an odd prime power, and let λ be an integer such that $1 \le \lambda \le (q-1)/2$. Then there exists an [n, c, 4, 5]-erasure-resilient code, where $c = 3q - 1 + \lambda$ and $n = \lambda q(q-1)$. **Proof.** The set system $(\bigcup_{i=1}^{\lambda} Y_i, \bigcup_{i=1}^{\lambda} C_i)$ is a 4-uniform 4-partite set system of order $3q-1+\lambda$ having $\lambda q(q-1)$ blocks, which avoids the configurations Q_2 , Q_4 , Q_5 , and Q_6 by Lemmata 8.7.2, 8.7.3, 8.7.4, and 8.7.5. Hence, it is the set system of a
(4,5)-erasure-resilient code. The asymptotic behaviour of F(c, 4) and F(c, 4, 5) can now be determined. Corollary 8.7.1 $F(c, 4) = \Theta(c^3)$ and $F(c, 4, 5) = \Theta(c^3)$. **Proof.** Let q be the largest odd prime power, at most (2c+3)/7. Taking $\lambda = (q-1)/2$ in Theorem 8.7.1 gives a $[q(q-1)^2/2, (7q-3)/2, 4, 5]$ -erasure-resilient code. Hence, $$F(c,4,5) \ge F((7q-3)/2,4,5)$$ $$\ge \frac{q(q-1)^2}{2}$$ $$\ge \frac{4}{343}c^3 - O(c^{4893/1921+\epsilon}) \qquad \text{(by Theorem 2.5.1)}$$ for any $\epsilon > 0$. This, together with the inequalities $$F(c,4,5) \leq F(c,4) \leq D(c,4,3) \leq \frac{1}{24}c^3$$ gives the required result. The bound on F(c, 4, 5) in Corollary 8.7.1 is a significant improvement over the results of [79]. It is an order of magnitude better than even the bound on F(c, 4) obtained in [79]. One drawback of the (4,5)-erasure-resilient codes produced in Theorem 8.7.1 is that the group size is large and nonuniform. Among the $3q-1+\lambda$ points, 2q have replication number $\lambda(q-1)$, q-1 have replication number λq , and the remaining λ have replication number q(q-1). When $\lambda=(q-1)/2$, all groups have size $\Theta(q^2)$ but the largest group remains about twice as big as the smallest. However, the following splitting process can be used to make the group sizes more uniform. **Definition 8.7.3** Suppose (X, \mathcal{A}) is a set system and $x \in X$. Let $\mathcal{A}_x = \{A \in \mathcal{A} \mid x \in A\}$ and $\mathcal{A}_x = \mathcal{B}_1 \dot{\cup} \mathcal{B}_2$ be any partition of \mathcal{A}_x such that $||\mathcal{B}_1| - |\mathcal{B}_2|| \leq 1$. Define $W = X \cup \{x'\}$ and $\mathcal{D} = (\mathcal{A} \setminus \mathcal{B}_1) \cup \{(A \setminus \{x\}) \cup \{x'\} \mid A \in \mathcal{B}_2\}$. Then (W, \mathcal{D}) is the set system obtained by *splitting* x in (X, \mathcal{A}) , and is denoted split $_x(X, \mathcal{A})$. We can extend this definition to splitting a subset $S \subseteq X$ in (X, A) as follows. $$\mathrm{split}_S(X,\mathcal{A}) = egin{cases} \mathrm{split}_x(X,\mathcal{A}), & ext{if } S = \{x\}; \ & \mathrm{split}_{S\setminus\{x\}}(\mathrm{split}_x(X,\mathcal{A})), & ext{if } x \in S ext{ and } |S| \geq 2. \end{cases}$$ Next, we show that splitting preserves erasure-resilience. **Lemma 8.7.6** If (X, A) is the set system of a (k, l)-erasure-resilient code and $x \in X$, then $\mathrm{split}_x(X, A)$ is also the set system of a (k, l)-erasure-resilient code. **Proof.** Suppose not. Then by Lemma 8.3.2, there exist t blocks A_1, A_2, \ldots, A_t in $\operatorname{split}_x(X, \mathcal{A})$, where $2 \leq t \leq l$, such that $|A_1 \Delta A_2 \Delta \cdots \Delta A_t| \leq l - t$. For each of the blocks A_1, A_2, \ldots, A_t that contains x', replace x' by x. Note that this will not increase the size of their symmetric difference. But now, all these blocks are in \mathcal{A} , contradicting the assumption that (X, \mathcal{A}) is the set system of a (k, l)-erasure-resilient code. Figure 8.6: Forbidden configuration for (4,6)-erasure-resilient codes. Let $\infty = \{\infty_1, \infty_2, \dots, \infty_{(q-1)/2}\}$. It is not hard to see that $\mathrm{split}_{\infty}(Y, \mathbb{C})$ is a set system of order 4q-2 with $q(q-1)^2/2$ blocks and all replication numbers are $q^2/2$ or q(q-1)/2. It also follows from Lemma 8.7.6 that this is the set system of a (4,5)-erasure-resilient code. We record this result below. **Lemma 8.7.7** Let q be an odd prime power. Then there exists a $[q(q-1)^2/2, 4q-2, 4, 5]$ -erasure-resilient code where the group sizes are $q^2/2$ and q(q-1)/2. #### 8.7.2 The Cases l = 6 and l = 7 Let (X, A) be the set system of a (4, 6)-erasure-resilient code. Lemma 8.3.2 implies that (X, A) must avoid the configuration Q_{16} shown in Figure 8.6(a). Hence, (X, A) must be a 2-(c, 4, 1) packing and $F(c, 4, 6) \leq D(c, 4, 2)$. This obviates the need to consider many of the configurations treated for the case when l = 5. The only configurations that a 2-(c, 4, 1) packing must avoid in order for it to be the set system of a (4, 6)-erasure-resilient code are the configuration Q_{15} shown in Figure 8.5(i) and the configuration Q_{17} shown in Figure 8.6(b). Consider the standard construction of a transversal design TD(4, q), where q is a prime power. Let $$X = GF(q) \times \{0, 1, 2, 3\},\tag{8.1}$$ $$\mathfrak{G} = \{ \mathrm{GF}(q) \times \{i\} \mid i \in \{0, 1, 2, 3\} \}, \text{ and }$$ $$\mathcal{B} = \{\{(a,0), (b,1), (a+b,2), (a+2b,3)\} \mid a,b \in \mathrm{GF}(q)\}. \tag{8.2}$$ Then $(X, \mathcal{G}, \mathcal{B})$ is a $\mathrm{TD}(4, q)$. It is easy to see that the set system (X, \mathcal{B}) is a 4-partite 2-(4q, 4, 1) packing. Let $(X', \mathcal{G}', \mathcal{B}')$ be the $\mathrm{TD}(3, q)$ obtained by truncating the entire group $\mathrm{GF}(q) \times \{3\}$. **Lemma 8.7.8** The set system (X, \mathcal{B}) avoids the configuration Q_{17} . **Proof.** Suppose (X, \mathcal{B}) contains the configuration below. This configuration has a unique (up to isomorphism) partition of its points into four parts so that each block contains exactly one point from each part. This partition is indicated by the different shadings in the figure above. Hence, the points of one of the parts must belong to $GF(q) \times \{3\}$. It is easy to check that deleting all the points in any part gives the following configuration. So (X', \mathcal{B}') must contain the configuration above. There are six possibilities to consider, as shown below. Figure 8.7: Forbidden configurations for (4,7)-erasure-resilient codes. Each point is an element of $GF(q) \times \{0, 1, 2\}$. The label inside a point shows its first coordinate and the label outside a point shows its second coordinate. Consider the first possibility. We have c=a+b=f+i, e=b+f=d+h, and g=a+d=h+i, which can only be satisfied if b=d. This is a contradiction. The other five possibilities can be disposed of similarly. The set system of a (4,7)-erasure-resilient code must avoid the four configurations in Figure 8.7 in addition to all the forbidden configurations for set systems of (4,6)-erasure-resilient codes. **Theorem 8.7.2** Let q be a prime power. Then there exists an $[q^2, 4q, 4, 7]$ -erasure-resilient code. Moreover, this code has uniform group size q. **Proof.** It follows from Lemma 8.7.8 that the set system (X, \mathcal{B}) is the set system of a (4,6)-erasure-resilient code. It is easily verified that all the configurations in Figure 8.7 are not 4-partite. Since (X,\mathcal{B}) is 4-partite, these configurations are all avoided. Hence, (X,\mathcal{B}) is also the set system of a (4,7)-erasure-resilient code. It is straightforward to see that every point of X is contained in exactly q blocks of \mathcal{B} . Corollary 8.7.2 $F(c, 4, 6) = \Theta(c^2)$ and $F(c, 4, 7) = \Theta(c^2)$. **Proof.** Let q be the largest prime power, at most c/4. Theorem 8.7.2 gives a $[q^2, 4q, 4, 7]$ -erasure-resilient code. Hence, $$F(c,4,7) \ge F(4q,4,7)$$ $$\ge q^2$$ $$\ge \frac{1}{16}c^2 - O(c^{2972/1921+\epsilon}) \qquad \text{(by Theorem 2.5.1)}$$ for any $\epsilon > 0$. This, together with the inequalities $$F(c,4,7) \le F(c,4,6) \le D(c,4,2) \le \frac{1}{12}c^2$$ gives the required result. # 8.8 Controlling Group Sizes by Balanced Orderings Let $H = [C \mid I]$ be the parity-check matrix of an [n, c, k, l]-erasure-resilient code. Let g_1, g_2, \ldots, g_c be the group sizes of this code. By counting the ones in H in two different ways, we obtain $$\sum_{i=1}^{c} g_i = kn + c.$$ So the average group size is kn/c+1. Since the check disk overhead is c/n, the smaller the check disk overhead, the larger the average group size. In the previous sections, our focus has been on the construction of erasure-resilient codes with optimal (up to constant factors) check disk overheads. Therefore, inevitably, our codes have large average group size. It is however, possible to trade check disk overhead for a smaller average group size. Given the parity-check matrix $[C \mid I]$ of an erasure-resilient code, one can simply delete the appropriate number of columns of C so that the desired average group size is obtained. However, this process does not guarantee that the maximum group size will be lowered. We have indicated in Section 8.2 that for load balancing reasons, uniform group size is desirable. This raises the issue of whether it is possible to construct erasure-resilient codes for which there is a way of deleting columns from its parity-check matrix so that every group size is close to the average. Let us discuss this problem more formally. The terminology we use here generalizes those used in [79]. **Definition 8.8.1** Let α be a positive integer. An erasure-resilient code is said to have α -balanced group size if the following conditions hold: - (i) when the average group size is 1 (mod α), all groups are the same size; - (ii) when the average group size is not 1 (mod α), the maximum group size is at most α greater than the minimum group size. Let M be an $m \times n$ matrix. For any $1 \le i \le n$, M(i) denotes the $m \times i$ matrix comprising the first i columns of M. **Definition 8.8.2** Let $H = [C \mid I]$ be the parity-check matrix of an [n, c, k, l]-erasure-resilient code and α a positive integer. We say that the columns of C are arranged in an lpha-balanced ordering if, for any $1 \leq i \leq n$, $H = [C(i) \mid I]$ is the parity-check matrix of an [i,c,k,l]-erasure-resilient code with lpha-balanced group size. The existence of an α -balanced ordering for a (k,l)-erasure-resilient code allows us to derive from it other (k,l)-erasure-resilient codes with higher check disk overhead but smaller group sizes, and whose group sizes differ from one another by at most α . Another use of balanced orderings observed by Hellerstein et al. [79] is in the design of extensible disk
array systems. If we have chosen a code whose parity-check matrix have more columns then we need, then as more disks are added to the system, the extra columns are put to use. The existence of an α -balanced ordering for the original parity-check matrix ensures that we have α -balanced group size at all times if disks are associated with columns according to this ordering. The case $\alpha = 1$ was considered by Hellerstein et al. [79]. **Definition 8.8.3** Let α be a positive integer and (X, A) a set system. Let $\mathcal{B} \subseteq A$ be a subset of blocks. Then, - (i) \mathcal{B} is an α -resolution class if every element of X is contained in precisely α blocks of \mathcal{B} ; - (ii) $\mathcal B$ is a partial α -resolution class if every element of X is contained in at most α blocks of $\mathcal B$. **Definition 8.8.4** Let α be a positive integer. A set system (X, \mathcal{A}) is α -resolvable if \mathcal{A} can be partitioned into parts $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_r$, each of which is an α -resolution class. **Definition 8.8.5** Let α be a positive integer. A set system (X, \mathcal{A}) is almost α -resolvable if \mathcal{A} can be partitioned into parts $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_r$, each of which is an α -resolution class, except perhaps for one part which is a partial α -resolution class. If (X, A) is k-uniform, then (X, A) is α -resolvable or almost α -resolvable only if $\alpha |X| \equiv 0$ (mod k), since the number of blocks in each α -resolution class is exactly $\alpha |X|/k$. **Lemma 8.8.1** Let $H = [C \mid I]$ and (X, A) be the parity-check matrix and set system of an [n, c, k, l]-erasure-resilient code, respectively. Then C has an α -balanced ordering if and only if (X, A) is almost α -resolvable. **Proof.** Suppose (X, A) is almost α -resolvable with α -resolution classes $A_1, A_2, \ldots, A_{r-1}$ and a partial α -resolution class A_r (which can be empty). Order the matrix C so that $C = [C_1 \mid C_2 \mid \cdots \mid C_r]$, where each C_i contains precisely those columns whose supports are in A_i . The ordering of the columns within each C_i can be arbitrary. This is an α -balanced ordering for C. Now suppose C has an α -balanced ordering. Consider the first $\alpha c/k$ columns of C and the set of their supports A_1 . The erasure-resilient code formed by these columns has average group size $\alpha + 1$, and hence each group has size $\alpha + 1$. If follows that every point is contained in exactly α blocks in A_i . Now consider the first $i(\alpha c/k)$ columns of C, $2 \leq i \leq \lfloor nk/\alpha c \rfloor$, and the set of their supports $B \cup A_i$, where A_i is the set of supports of columns $(i-1)(\alpha c/k) + 1$ to $i(\alpha c/k)$ of C. The average group size of the erasure-resilient code formed by the first $i(\alpha c/k)$ columns of C is $i\alpha + 1$. Hence every point appears in exactly $i\alpha$ blocks of $B \cup A_i$. By the induction hypothesis, every point appears in exactly $(i-1)\alpha$ blocks of B. It follows that every point must appear in precisely α blocks of A_i . Consequently, A_i is an α -resolution class. The supports of the remaining columns of C constitute a partial α -resolution class. Hellerstein et al. [79] showed that the $[3^a(3^a-1)/6, 3^a, 3, 4]$ -erasure-resilient code they constructed (see Lemma 8.6.2) has a 1-balanced ordering. In fact, the set system of this erasure-resilient code is the *affine geometry* $AG_1(a, 3)$ (see, for example, [15]) whose 1-resolvability is a classical result in design theory. An STS(n) that is 1-resolvable is commonly known as a Kirkman triple system of order n, or KTS(n). The above discussion shows that the problem of constructing [n, c, 3, 4]-erasure-resilient codes with optimal check disk overhead having a 1-balanced ordering is equivalent to the following problem. ## Problem 8.8.1 Determine the existence of anti-Pasch Kirkman triple systems. The existence of KTS(n) has long been settled [93, 117]; the condition $n \equiv 3 \pmod{6}$ is both necessary and sufficient. Work on the existence problem for anti-Pasch STS(n) is also well under way. However, Problem 8.8.1 appears not to have been studied, perhaps due to the lack in motivation. As we have shown, this is not the case now. Here, we settle the existence problem for anti-Pasch almost 3-resolvable Steiner triple systems. ## Example 8.8.1 Let $X={f Z}_{21}$ and $$\begin{aligned} \mathcal{A}_1 &= \{\{i, 1+i, 3+i\} \mid i \in \mathbf{Z}_{21}\}, \\ \mathcal{A}_2 &= \{\{i, 4+i, 12+i\} \mid i \in \mathbf{Z}_{21}\}, \\ \mathcal{A}_3 &= \{\{i, 6+i, 11+i\} \mid i \in \mathbf{Z}_{21}\}, \\ \mathcal{A}_4 &= \{\{i, 7+i, 14+i\} \mid 0 \le i \le 6\}. \end{aligned}$$ Let $A = \bigcup_{1 \le i \le 4} A_i$. Then (X, A) is an anti-Pasch almost 3-resolvable STS(21). The 3-resolution classes are A_1 , A_2 , and A_3 . The partial 3-resolution class is A_4 . **Lemma 8.8.2** There exists an anti-Pasch almost 3-resolvable STS(3g) whenever g is odd and $g \not\equiv 0 \pmod{7}$. **Proof.** Let $X = \mathbb{Z}_g \times \{0, 1, 2\}$. Let \mathcal{A} contain the following blocks: - (i) $\{(a,0),(a,1),(a,2)\}$, for all $a \in \mathbb{Z}_q$; - (ii) $\{(a,i),(b,i),((a+b)2^{-1},i+1)\}$, for all $a,b\in \mathbf{Z}_g$, $a\neq b$, and all $i\in \mathbf{Z}_3$ (reducing subscripts modulo 3 as necessary). Brouwer [21] has shown that (X, A) is an anti-Pasch STS(3g) when $g \not\equiv 0 \pmod{7}$. We show that (X, A) is almost 3-resolvable. The partial 3-resolution class is taken to be $\{\{(a, 0), (a, 1), (a, 2)\} \mid a \in \mathbf{Z}_g\}$ (which is in fact a 1-resolution class). The other (g - 1)/2 3-resolution classes are $$\{\{(a,i),(a+j,i),((2a+j)2^{-1},i+1)\}\mid a\in \mathbf{Z}_g,i\in \mathbf{Z}_3\},\quad ext{for }1\leq j\leq (g-1)/2.$$ **Theorem 8.8.1** There exists an anti-Pasch almost 3-resolvable STS(n) for all $n \equiv 3 \pmod{6}$. **Proof.** Lemma 8.8.2 handles all cases except when $n \equiv 0 \pmod{7}$. So suppose that $n \equiv 3 \pmod 6$ and n = 7v. Then proceeding inductively, there is an anti-Pasch almost 3-resolvable STS(v), (X, A), with 3-resolution classes A_1, A_2, \ldots , $A_{(v-3)/6}$ and a partial 3-resolution class A^* . Let $Y = X \times \mathbb{Z}_7$. For each $A \in A^*$, construct an STS(21), $(A \times \mathbb{Z}_7, \mathcal{B}(A))$, which is isomorphic to that given in Example 8.8.1. Let $\mathcal{B}(A)_1$, $\mathcal{B}(A)_2$ and $\mathcal{B}(A)_3$ be the 3-resolution classes of this STS(21), and $\mathcal{B}(A)^*$ the partial 3-resolution class. Define $$\mathcal{B}_i = igcup_{A \in \mathcal{A}^*} \mathcal{B}(A)_i, \qquad ext{for } 1 \leq i \leq 3, \quad ext{and}$$ $\mathcal{B}^* = igcup_{A \in \mathcal{A}^*} \mathcal{B}(A)^*.$ Next, define $$\mathcal{B}_{i,j} = igcup_{A \in \mathcal{A}_i} \{ \{(a,h), (b,h+j), (c,2h+j)\} \mid A = \{a,b,c\} ext{ and } h \in \mathbf{Z}_7 \},$$ for $1 \leq i \leq (v-3)/6$ and $j \in \mathbf{Z}_7$. Finally, let $$\mathcal{B} = \left(\bigcup_{1 \leq i \leq 3} \mathcal{B}_i\right) \cup \left(\bigcup_{\substack{1 \leq i \leq (v-3)/6 \\ j \in \mathbf{Z}_7}} \mathcal{B}_{i,j}\right) \cup \mathcal{B}^*.$$ Brouwer [21] and Griggs, Murphy, and Phelan [72] have established that (Y, \mathcal{B}) is an anti-Pasch STS(7v). It is easy to check that \mathcal{B}_i , $1 \leq i \leq 3$, and $\mathcal{B}_{i,j}$, $1 \leq i \leq (v-3)/6$, $j \in \mathbb{Z}_7$, are 3-resolution classes of (Y, \mathcal{B}) , and \mathcal{B}^* is a partial 3-resolution class. The (4,7)-erasure-resilient code we construct in Theorem 8.7.2 has a 1-balanced ordering. This follows from the well-known result in design theory concerning the resolvability of transversal designs produced by the standard finite field construction (see [15]). We give the proof here for the sake of completeness. **Theorem 8.8.2** The (4, 7)-erasure-resilient code of Theorem 8.7.2 has a 1-balanced ordering. **Proof.** The set system (X, \mathcal{B}) of the code is given by (8.1) and (8.2). This set system is 1-resolvable, with 1-resolution classes $\{\{(a,0),(b,1),(a+b,2),(a+2b,3)\} \mid a+3b=\zeta\}$, for $\zeta \in \mathrm{GF}(q)$. ### 8.9 Complexity of Code Construction One of the most important issues associated with any family of codes is the question of how hard it is to encode and decode in the family [12, 125, 126]. The erasure-resilient codes we consider are systematic binary linear codes. All systematic binary linear codes have an extremely simple encoding procedure. Suppose $H = [C \mid I]$ is the parity-check matrix of such a code. Then the encoding of a (row) vector $\mathbf{x} \in \{0,1\}^n$ is the vector $(\mathbf{x} \mid \mathbf{x}C^T)$. The decoding of erasure-resilient codes is discussed at length by Hellerstein et al. [79]. It is straightforward to see that both encoding and decoding of erasure-resilient codes can be carried out efficiently. It has been pointed out by Bassalygo, Zyablov, and Pinsker [12] that in addition to considering the complexity of encoding and decoding procedures, we should also examine the complexity of building the encoding and decoding software and hardware. It is clear that this reduces to the complexity of constructing the parity-check matrices or their associated set systems. For the remainder of this section, we study the complexity of constructing the erasure-resilient codes described in this thesis. The model of computation we adopt is the unit-cost random access machine (RAM) (see [2]). The more realistic bit-cost RAM model can also be used, but this introduces only a polylogarithmic factor in our results. #### 8.9.1 Generating Anti-Pasch Steiner Triple Systems Anti-Pasch Steiner triple systems are set systems associated
with optimal (3, l)-erasure-resilient codes, for l = 4 and 5. In this section, we consider the construction of anti-Pasch STS(v), where $v \equiv 3 \pmod{6}$. Our aim is to design an efficient algorithm which on input $v \equiv 3 \pmod{6}$, outputs the blocks of an anti-Pasch STS(v). We have to be careful here with the meaning of the word "efficient". The size of the input is $O(\log v)$ and the output ``` anti-Pasch-STS(v) if v \not\equiv 0 \pmod{7} then return the blocks obtained by applying Lemma 8.8.2; else if v = 21 then return the blocks in Example 8.8.1; else (X, \mathcal{B}) = \text{anti-Pasch-STS}(v/7); with (X, \mathcal{B}), return the blocks given in the proof of Theorem 8.8.1; ``` Figure 8.8: Algorithm for generating anti-Pasch STS(v), $v \equiv 3 \pmod{6}$. consists of v(v-1)/6 blocks, which has size exponential in the size of the input. Hence, we say that an algorithm is "efficient" if its running time is polynomial in the size of its output. Any algorithm for constructing anti-Pasch STS(v) must output v(v-1)/2 numbers in \mathbf{Z}_v , since each block contains precisely three elements, and there are exactly v(v-1)/6 blocks. It follows that any algorithm must take time $\Omega(v^2)$. We describe in Figure 8.8 an algorithm which achieves $O(v^2)$ time. **Theorem 8.9.1** Algorithm anti-Pasch-STS given in Figure 8.8 outputs the blocks of an anti-Pasch STS(v) in $O(v^2)$ time. **Proof.** Correctness of the algorithm follows from Lemma 8.8.2 and Theorem 8.8.1. Let T(v) denote the running time of the algorithm on input v. If $v \not\equiv 0 \pmod{7}$, we can efficiently determine 2^{-1} in $\mathbf{Z}_{v/3}$ using the extended Euclidean algorithm. An additional $O(v^2)$ additions and multiplications in $\mathbf{Z}_{v/3}$ suffice to construct all the required blocks. Hence $T(v) = O(v^2)$ when $v \not\equiv 0 \pmod{7}$. If $v \equiv 0 \pmod{7}$, we have the recurrence $$T(v) = T\left(\frac{v}{7}\right) + O(v^2),$$ which also gives $T(v) = O(v^2)$ by an easy induction. It is interesting to point out that it is only recently that Colbourn [38] began a study of complexity issues related to the construction of combinatorial designs. #### 8.9.2 Generating (4, l)-Erasure-Resilient Codes Our goal here is to design an algorithm that on input q, outputs the blocks of a set system associated with the (4, l)-erasure-resilient code given by Theorem 8.7.1 and Theorem 8.7.2. It is easy to see that these set systems can be constructed using a polynomial number (in q) of arithmetic operations in GF(q). Therefore, the main problem here is the synthesis of the finite field GF(q). Let $q = p^{\alpha}$, where p is prime and $\alpha \in \mathbb{N}$. Shoup [131] gave an algorithm for synthesizing finite fields with a running time of $O(\sqrt{p}(\alpha + \log p)^{O(1)})$. This time bound is not polynomial in the size of q but is polynomial in the size of the output (which is at least $\Omega(q^2)$). It follows that all our erasure-resilient codes can be constructed efficiently. # 8.10 From Erasure-Resilient Codes to Group Testing We consider the k-restricted nonadaptive exact identification parity PROBLEM(r). Specializing Lemma 4.2.2 to MOD_2 test functions gives the following. Lemma 8.10.1 Let (X, r, f, Π) be a group testing problem with the MOD₂ test function and the exact identification criterion. A set system (Y, \mathcal{B}) is the dual system of a nonadaptive algorithm for (X, r, f, Π) if and only if the following condition holds. For any blocks $A_1, A_2, \ldots, A_a \in \mathcal{B}$ and $B_1, B_2, \ldots, B_b \in \mathcal{B}$, where $a \leq r$ and $b \leq r$, we have $$A_1 \Delta A_2 \Delta \cdots \Delta A_a \neq B_1 \Delta B_2 \Delta \cdots \Delta B_b$$ unless $$\{A_1, A_2, \dots, A_a\} = \{B_1, B_2, \dots, B_b\}.$$ We call a set system satisfying the condition of Lemma 8.10.1 an r-difference-free set system. Let d(n,k,r) denote the maximum number of blocks in an r-difference-free k-uniform set system of order n. No previous results on nonadaptive algorithms for the k-restricted nonadaptive exact identification parity problem(r) or r-difference-free k-uniform set systems are known, although some results have been obtained by Chang, Hwang, and Weng [31] for the sequential case. In this section, we show how erasure-resilient codes can be used to construct r-difference-free k-uniform set systems, and hence nonadaptive algorithms for the k-restricted nonadaptive exact identification parity problem(r). **Theorem 8.10.1** If there exists an [n, c, k, l]-erasure-resilient code, then there exists an $\lfloor l/2 \rfloor$ -difference-free k-uniform set system of order c having n blocks. **Proof.** Let (X, \mathcal{A}) be the set system of an [n, c, k, l]-erasure-resilient code. We claim that (X, \mathcal{A}) is $\lfloor l/2 \rfloor$ -difference-free. Suppose not. Then there exist blocks $A_1, A_2, \ldots, A_a \in \mathcal{A}$ and $B_1, B_2, \ldots, B_b \in \mathcal{A}$, where $a \leq \lfloor l/2 \rfloor$, such that $$A_1 \Delta A_2 \Delta \cdots \Delta A_a = B_1 \Delta B_2 \Delta \cdots \Delta B_b$$. This gives $$|A_1 \Delta A_2 \Delta \cdots \Delta A_a \Delta B_1 \Delta B_2 \Delta \cdots \Delta B_b| = 0.$$ Since $a + b \le l$, this contradicts the fact that (X, A) is the set system of a (k, l)-erasure-resilient code. Corollary 8.10.1 Let k and r be positive integers such that $k \geq r$. Then $d(n,k,r) \geq \Omega(n^{(2(k-r)+1)/4})$. **Proof.** Follows from the codes obtained from expanders in Corollary 8.5.1. We can also determine the order of d(n, 3, 2) exactly. **Theorem 8.10.2** $d(n, 3, 2) = \Theta(n^2)$. **Proof.** There exist $[c^2/6 - O(c), c, 3, 4]$ -erasure-resilient codes (Lemma 8.6.4). Hence, by Theorem 8.10.1, $d(n, 3, 2) \ge n^2/6 - O(n)$. The upper bound can be proven using the same argument in [62] for weakly union-free 3-uniform set systems. We give the proof here for completeness. Let (X, A) be any 2-difference-free 3-uniform set system. Let us define, for $B \in {X \choose 2}$, $T(B) = \{x \in X \mid B \cup \{x\} \in A\}$. For every $i, 0 \le i \le n-2$, let $$G_i = \Big\{B \in inom{X}{2} \ | \ |T(B)| = i\Big\}.$$ Let $g_i = |G_i|$. Clearly, $\{G_0, G_1, \ldots, G_{n-2}\}$ is a partition of $\binom{X}{2}$. Thus, we have $$\sum_{i=0}^{n-2} g_i = \binom{n}{2}. \tag{8.3}$$ Counting the number of pairs (B, A) such that $B \in {X \choose 2}$, $A \in A$, and $B \subset A$, in two ways, we obtain $$\sum_{i=0}^{n-2} ig_i = 3|\mathcal{A}|. \tag{8.4}$$ We claim that $$\binom{T(B)}{2} \bigcap \binom{T(B')}{2} = \varnothing.$$ Suppose not. Let $\{x,x'\}$, $x \neq x'$, belong to the intersection. Then $A_1 = B \cup \{x\}$, $A_2 = B \cup \{x'\}$, $A_3 = B' \cup \{x\}$, $A_4 = B' \cup \{x'\}$ are four blocks of A. But $A_1 \Delta A_2 = A_3 \Delta A_4$, a contradiction. Hence, we have $$\sum_{i=2}^{n-2} \binom{i}{2} g_i \le \binom{n}{2}. \tag{8.5}$$ Adding (8.3) to (8.5) gives $$\sum_{i=0}^{n-2} \left(1 + {i \choose 2}\right) g_i \le n(n-1),$$ which implies $$\sum_{i=0}^{n-2} ig_i + \sum_{i=0}^{n-2} \left(1 + {i \choose 2} - i\right) g_i \le n(n-1). \tag{8.6}$$ The first term of (8.6) is just 3|A| by (8.4), while the second is nonnegative. Thus, $|A| \le n(n-1)/3$. This completes the proof. #### 8.11 Summary In this chapter, we have considered the construction of erasure-resilient codes for increasing the reliability of large disk arrays. We adopt a set systems approach different from those considered previously. As a result, we have at our disposal many tools from design theory, which enabled us to construct some classes of erasure-resilient codes better than any known. It is also observed that previous results in erasure-resilient codes follow easily or even trivially from existing results in design theory. This suggests that perhaps the approach considered here is the natural one. We close this chapter with a conjecture. Conjecture 8.11.1 For any integer $k \geq 2$, we have $F(c, k, l) = \Theta(n^{k+1-\lfloor l/2 \rfloor})$, for all l such that $k \leq l \leq 2k-1$. The 2d-parity code constructed in [79] shows that Conjecture 8.11.1 holds when k=2. Our work in this chapter shows that Conjecture 8.11.1 is true for k=3 and 4. ## Frameproof Codes for Digital Fingerprinting A procedure, called *fingerprinting*, commonly practiced by suppliers is to mark their products with an identifier, called a *fingerprint*, before distributing the products to the users. By fingerprinting, it is hoped that the following two objectives can be met: - (i) products can be distinguished; and - (ii) a product can be traced back to its user. Condition (ii) discourages users from unauthorized use of the products. So it is the wish of the users to destroy the fingerprints, while the supplier tries to prevent this from happening. Fingerprinting has been applied to a diverse spectrum of objects, including consumer goods, advertisements, explosives, mathematical tables, and maps [150]. For digital products, such as computer software or data, the difficulty in designing fingerprints is immense, since digital data can be processed and manipulated easily. For example, two or more users can compare their digital data and deduce that the fingerprints are where their copies differ. If the fingerprints are not carefully designed, it is also possible for a coalition of users to generate new fingerprints, allowing them to frame other users of unauthorized actions. The goal of the supplier is to produce undetectable and unalterable fingerprints. The problem discussed above is first studied by Boneh and Shaw [19], who showed that certain codes, known as frameproof codes, can be used to solve the problem. The combinatorics of frameproof codes is further investigated by Stinson and Wei [142], who observe the equivalence to a certain Turán-type problem. The purpose of this chapter is to establish several improved bounds for frameproof codes. #### 9.1 Technical Preliminaries Let $\mathbf{D} \in
\{0,1\}^d$ be a piece of binary digital data, which is to be made available to m users. A fingerprint, $\mathbf{w}^{(i)} \in \{0,1\}^n$, is generated for user $i, 1 \leq i \leq m$. The fingerprinted data $f(\mathbf{D}, \mathbf{w}^{(i)})$ is then distributed to user i, where f denotes the function performing the fingerprinting process. Owing to space limitations, it is not possible for us to survey the various techniques used for incorporating fingerprints into digital data. We refer the interested reader to [20, 150] for more information. We should point out, however, that the only information we obtain from two fingerprinted data $f(\mathbf{D}, \mathbf{w}^{(i)})$ and $f(\mathbf{D}, \mathbf{w}^{(j)})$ is exactly the information we would have obtained from $\mathbf{w}^{(i)}$ and $\mathbf{w}^{(j)}$. This gives rise to the first of the following three properties that a fingerprinted data should satisfy. - (i) Two users can detect the bit positions in which their respective fingerprints defer, and nothing else. - (ii) A user cannot change an undetected bit without rendering the data useless. - (iii) Any detected bit can be changed, or made unreadable. As in [19], we assume that methods exist to produce fingerprinted data satisfying the three properties above. With this assumption, it is obvious that if users do not collude, then assigning a unique fingerprint to each user would enable us to detect any unauthorized use. This is also true if users have no knowledge of the set of all fingerprints. In reality, we have to worry about collusions, as well as the possibility that the set of all fingerprints is known to the users. **Definition 9.1.1** Let $\mathbf{w}^{(1)}$, $\mathbf{w}^{(2)}$, ..., $\mathbf{w}^{(m)} \in \{0,1\}^n$ and $C \subseteq \{1, 2, ..., m\}$. For $i \in \{1, 2, ..., m\}$, bit position i is said to be undetectable for C if $|\{\mathbf{w}_i^{(j)} \mid j \in C\}| = 1$. Define U(C) to be the set of undetectable bit positions for C. Intuitively, a bit position is undetectable for a coalition C of users if the fingerprints assigned to users in C all agree in that position. **Definition 9.1.2** Let $\Gamma = \{\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(m)}\} \subseteq \{0, 1\}^n$ and C a coalition of users. The *feasible set of* C is $$F(C,\Gamma)=igg\{\mathbf{w}\in\{0,1\}^n\;igg|\;\mathbf{w}|_{U(C)}=\mathbf{w}^{(i)}|_{U(C)} ext{ for all } i\in Cigg\}.$$ The feasible set is the set of all possible vectors that match the undetected bits of C. Hence, the coalition C can only create a piece of data whose fingerprint lies in $F(C, \Gamma)$. It follows that a user (outside the coalition C) can be framed by C if and only if the fingerprint of his piece of data is in $F(C, \Gamma) \setminus \{\mathbf{w}^{(i)} \mid i \in C\}$. The desire for this not to happen motivates the following definition. **Definition 9.1.3** Let $\Gamma \subseteq \{0,1\}^n$. We call Γ an r-frameproof code of length n if for every $W \subseteq \Gamma$ such that $|W| \le r$, we have $F(W,\Gamma) \cap \Gamma = W$. The elements of Γ are called codewords. # 9.2 Bounds on Frameproof Codes The problem of designing frameproof codes is to construct for any given r, a family of r-frameproof codes having as high a rate as possible. The observation that this problem is equivalent to a Turán-type problem is made recently by Stinson and Wei [142]. **Definition 9.2.1** A set system (X, A) is r-frameproof if there do not exist r+1 blocks $A_1, A_2, \ldots, A_{r+1} \in A$ such that $$\bigcap_{i=1}^r A_i \subseteq A_{r+1} \subseteq \bigcup_{i=1}^r A_i,$$ unless $A_{r+1} \in \{A_1, A_2, \ldots, A_r\}$. **Theorem 9.2.1 (Stinson and Wei [142])** There exists an r-frameproof code of length n having m codewords if and only if there exists an r-frameproof set system of order n, having m blocks. **Proof.** Let M be the matrix whose columns are codewords of an r-frameproof code. Then M is the point-block incidence matrix of an r-frameproof set system. Let f(n, k, r) denote the maximum number of blocks in an r-frameproof k-uniform set system of order n. **Theorem 9.2.2** (Boneh and Shaw [19]) For any $r \in \mathbb{N}$, there exists a family of r-frameproof codes with rate at least $1/16r^2$. The bound in Theorem 9.2.2 was established using a probabilistic construction. For constant weight frameproof codes (or frameproof uniform set systems), we have the following result of Stinson and Wei [142]. **Theorem 9.2.3 (Stinson and Wei [142])** For any $n, k \in \mathbb{N}$, we have $f(n, k, k - 1) \ge D(n, k, 2)$. It is trivial to see that any r-cover-free set system is r-frameproof. Therefore, Theorem 9.2.3 is a simple corollary of Lemma 5.1.1. Indeed, many known bounds for r-cover-free set systems already supersede Theorem 9.2.2. It appears that neither Boneh and Shaw nor Stinson and Wei are aware of the work on r-cover-free set systems carried out by the data communications community [27, 50, 51, 52, 83, 107]. The r-cover-free set systems often appear under the guise of superimposed codes, which are introduced by Kautz and Singleton [83]. **Definition 9.2.2** A set $S \subseteq \{0,1\}^n$ is an r-superimposed code of length n if there are no r+1 codewords $S_1, S_2, \ldots, S_{r+1} \in S$ with the property that $S_{r+1} \preceq S_1 \vee S_2 \vee \cdots \vee S_r$, unless $S_{r+1} \in \{S_1, S_2, \ldots, S_r\}$. It is easy to see that a set of $\{0,1\}$ -vectors is an r-superimposed code if and only if the supports of these vectors form an r-cover-free set system. It is known long ago (see [88, 123]) that there exists a family of r-superimposed codes of rate c/r^2 , for some absolute constant c. Busschbach [27] (see also [48, 134]) gave a family of r-superimposed codes of rate $(1 - o(1))/3(r + 1)^2$. This was improved by Erdös, Frankl, and Füredi [58], and Hwang and Sós [81] to a rate of $\log(1 + 1/4r^2)$. Nguyen and Zeisel [107] obtained an even better rate of $(0.6617 - o(1))/(r+1)^2$. The best lower bound currently known is the following result of Dyachkov, Rykov, and Rashad [52]. Theorem 9.2.4 (Dyachkov, Rykov, and Rashad [52]) For any $r \in \mathbb{N}$, there exists a family of r-superimposed code with rate $(1 - o(1))A_r/r$, where $$A_r = \max_{0 \leq Q \leq 1} \max_{0 \leq q \leq 1} \left[-(1-Q)\log(1-q^r) + r\left(Q\log\frac{q}{Q} + (1-Q)\log\frac{1-q}{1-Q}\right) \right].$$ Theorem 9.2.4 implies the existence of a family of r-frameproof codes of length n with a rate of $(1 - o(1))A_r/r$. It is known that $\lim_{r \to \infty} A_r = \frac{\ln 2}{r}$ [52]. So the improvement on Theorem 9.2.2 is quite drastic. However, the less stringent defining conditions of an r-frameproof set system permit us to establish results better than those implied by r-cover-free set systems. In the next section, we give an improved bound on 2-frameproof codes using a probabilistic construction. # 9.3 A Probabilistic Construction for 2-Frameproof Codes **Definition 9.3.1** An r-frameproof array of order n and size m is an $n \times m$ matrix with entries from $\{0,1\}$ such that every $n \times (r+1)$ submatrix L of M has the property that for every $i \in \{1,2,\ldots,r+1\}$, either \mathbf{e}_i or $\mathbf{1}-\mathbf{e}_i$ appears as a row of L. We begin with the following property of frameproof codes. Lemma 9.3.1 The existence of an r-frameproof set system of order n with m blocks is equivalent to the existence of an r-frameproof array of order n and size m. **Proof.** Let M be the point-block incidence matrix of an r-frameproof set system. It is straightforward to verify that M is an r-frameproof array. For any fixed $\epsilon > 0$, let M be a $2n \times (1+\epsilon)m$ matrix² with entries from $\{0,1\}$ constructed as follows. Each column of M is a vector selected uniformly at random from the set of all vectors in $\{0,1\}^{2n}$ of weight n. Let $\mathbb{C} = \{1,2,\ldots,(1+\epsilon)m\}$ be the set of column indices of M. For $C \in \binom{\mathbb{C}}{3}$, define M(C) to be the $2n \times 3$ submatrix of M with ²Strictly speaking, we should write $\lceil (1+\epsilon)m \rceil$ instead of $(1+\epsilon)m$. However, this only introduces notational burden, and does not affect the results in any way. If the reader is uncomfortable, he/she can replace all occurrence of ϵm with $\lceil \epsilon m \rceil$. columns in C. Further define the indicator variables $$X(C,i) = egin{cases} 0, & ext{if } M(C) ext{ contains } \mathbf{e}_i ext{ or } \mathbf{1} - \mathbf{e}_i ext{ as a row;} \ 1, & ext{otherwise.} \end{cases}$$ The sum $X = \sum_{C \in \binom{e}{3}} \sum_{1 \le i \le 3} X(C, i)$, is an upper bound on the number of subsets $C \in \binom{e}{3}$ for which M(C) contains neither \mathbf{e}_i nor $1 - \mathbf{e}_i$, for at least one $i \in \{1, 2, 3\}$. For any $C \in \binom{\mathfrak{C}}{3}$ and $i \in \{1, 2, 3\}$, we have $$\mathbf{Pr}[X(C,i)=1] = \frac{\sum_{u=0}^{n} \binom{n}{u}^{2} \binom{2n-2u}{n-u}}{\binom{2n}{n}^{2}}.$$ (9.1) To see this, suppose without loss of generality that $C = \{1, 2, 3\}$ and i = 3. Permute the rows of M(C), if necessary, so that its first column consists of n zeroes followed by n ones. The total number of choices for the other 2 columns is $\binom{2n}{n}^2$. Let u be the number of common zeroes in columns one and two, and hence also the number of common ones in columns one and two. Then X(C,i)=1 if and only if the zeroes in column 3 are disjoint from the common ones, and the ones in column 3 are disjoint from the common zeroes. This event can happen in $\binom{n}{u}^2\binom{2n-2u}{n-u}$ ways. Asymptotically, the sum (9.1) is dominated by the terms near $u = \alpha n$. Let $\mathcal{H}(x) = -x \log x - (1-x) \log(1-x)$, for 0 < x < 1, be the binary entropy function. Using the well-known approximation (see, for example, [108]) $\binom{n}{\alpha n} = 2^{n\mathcal{H}(\alpha) + O(\log n)}$, we have $$\mathbf{Pr}[X(C,i)=1]=2^{2n(\mathcal{H}(\alpha)-1-\alpha)+O(\log n)}.$$ The
minimum of $\mathcal{H}(\alpha) - 1 - \alpha$ occurs at $\alpha = 1/3$. Hence, $$\mathbf{Pr}[X(C,i)=1] \leq 2^{2n\log rac{3}{4} + O(\log n)} = O\left(\left(rac{3}{4} ight)^{2n} ight).$$ It follows that $$\mathbf{E}[X] \le O\left(m^3 \left(\frac{3}{4}\right)^{2n}\right). \tag{9.2}$$ Now choose m to be the largest integer so that $\mathbf{E}[X] \leq \epsilon m$. It is easy to see from (9.2) that it suffices to choose $$m = \Omega\left(\left(\frac{4}{3}\right)^n\right). \tag{9.3}$$ It follows that, for m taking the value in (9.3), there exists a $2n \times (1+\epsilon)m$ matrix with entries from $\{0,1\}$, in which there are at most ϵm $2n \times 3$ submatrices that contain neither e_i nor $1-e_i$ as a row, for at least one $i \in \{1,2,3\}$. Hence, by deleting at most ϵm columns from this matrix, we obtain a 2-frameproof array of order 2n and size at least m. This gives $$f(2n,2) \geq \Omega\left(\left(rac{4}{3} ight)^n ight).$$ or $$f(n,2) \ge \Omega\left(\left(\frac{2}{\sqrt{3}}\right)^n\right).$$ (9.4) We summarize the foregoing results in the theorem below. **Theorem 9.3.1** There exists a family of 2-frameproof codes with rate $(1-o(1))\log(2/\sqrt{3})$. The family of 2-frameproof codes supplied by Theorem 9.2.2 has a rate of 1/64. So Theorem 9.3.1 provides a substantial improvement. # 9.4 Explicit Constructions for Superimposed and Frameproof Codes In this section, we discuss constructivity issues of superimposed codes and frameproof codes. A family of codes $\{\mathcal{C}_i\}_{i=1}^{\infty}$ is said to be constructive if for every $\mathcal{C}_i = \{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_m\}$, there exists an algorithm that on every input j, where $1 \leq j \leq m$, outputs the codeword \mathbf{c}_j in time that is polynomial in terms of the length of \mathcal{C}_i . So all codes constructed using probabilistic methods are not constructive, since the corresponding algorithms may not even halt. It is possible, however, to derandomized any such algorithm to give one that is guaranteed to halt, by sampling exhaustively the underlying sample spaces. Unfortunately, the sample spaces used in probabilistic constructions of codes often have exponential size, rendering the codes not constructive. The frameproof codes of Theorem 9.2.2 and Theorem 9.3.1 are both not constructive. The superimposed codes of Busschbach [27], Erdös, Frankl and Füredi [58], Hwang and Sós [81], Nguyen and Zeisel [107], and Dyachkov, Rykov, and Rashad [52], mentioned in Section 9.2 all involved probabilistic arguments at some point, and is therefore also not constructive. Hwang and Sós [81] actually gave a greedy algorithm for constructing the codes, but the algorithm involves an exponential size search space, and can be viewed also as a direct derandomization of the construction of Erdös, Frankl and Füredi [58]. In applications, it is desirable that constructive superimposed codes and frameproof codes be available. The frameproof codes in Theorem 9.2.3 are constructive but have rather poor rates. Boneh and Shaw provided an explicit construction for a family of frameproof codes but the rate of this family is not even bounded away from zero. Theorem 9.4.1 (Boneh and Shaw [19]) For any $r \in \mathbb{N}$, there exists an r-frameproof code of length n with $2^{\sqrt{n}/r}$ codewords. Stinson and Wei [142] has given a better explicit construction based on orthogonal arrays, but the rate of the code family is still not bounded away from zero. Theorem 9.4.2 (Stinson and Wei [142]) For any prime power q and any integer t < q, there exists a $\lfloor q/(t-1) \rfloor$ -frameproof code of length $q^2 + q$ having q^t codewords. A family of r-superimposed codes of similar rate can be constructed using Reed-Solomon codes, or polynomial codes in general [58]. To our knowledge, there is also no known constructive families of superimposed codes whose rate is bounded away from zero. We show in this section that for all $r \in \mathbb{N}$, there exists a constructive family of r-superimposed codes whose rate is bounded away from zero. This also implies for every $r \in \mathbb{N}$, the existence of a constructive family of r-frameproof codes whose rate is bounded away from zero. We make use of the following composition construction of Kautz and Singleton [83]. #### Lemma 9.4.1 (Kautz and Singleton [83]) If there exist - (i) an r-superimposed code, Γ , of length n having q codewords, and - (ii) a q-ary code, $\mathbb C$, of length n', where n'>r, with relative minimum distance at least 1-1/r, having N codewords, then there exists an r-superimposed code of length nn' having N codewords. **Proof.** Let $\Gamma = \{\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(q)}\}$. For each codeword $\mathbf{v} = (v_1, v_2, \dots, v_{n'}) \in \mathbb{C}$, let $\mathbf{u}^{(\mathbf{v})} = (\mathbf{w}^{(v_1)}, \mathbf{w}^{(v_2)}, \dots, \mathbf{w}^{(v_{n'})})$. The set $\{\mathbf{u}^{(\mathbf{v})} \mid \mathbf{v} \in \mathbb{C}\}$ is an r-superimposed code of length nn' having N codewords. Boneh and Shaw [19] have the same construction for r-frameproof codes. Let $\mathcal{H}_q(x) = x \log_q(q-1) - x \log_q x - (1-x) \log_q(1-x)$, 0 < x < 1-1/q. The following is a well-known bound in coding theory. **Theorem 9.4.3 (Zyablov [159])** For any $\delta \in [0, 1 - 1/q)$, there exists a family of q-ary codes of relative minimum distance δ and of rate $R \geq R_Z(\delta)$, where $$R_Z(\delta) = \max_{\delta \leq \mu \leq 1-1/q} (1 - \mathcal{H}_q(\mu)) \left(1 - \frac{\delta}{\mu}\right).$$ We have the following approximation of $R_Z(\delta)$ for δ near 1 - 1/q. **Lemma 9.4.2** Let $q \geq 2$ and $\epsilon > 0$ be fixed. Then for x sufficiently small, we have $$R_Z\left(1 - \frac{1}{q} - x\right) \ge \frac{q^3}{16(q-1)^2 \ln q} x^3 - \epsilon$$ (9.5) Proof. We have $$R_Z\left(1 - \frac{1}{q} - x\right) \ge \left(1 - \mathcal{H}_q\left(1 - \frac{1}{q} - \frac{x}{2}\right)\right) \left(1 - \frac{1 - \frac{1}{q} - x}{1 - \frac{1}{q} - \frac{x}{2}}\right).$$ (9.6) The series expansion of the right hand side in (9.6), with respect to x, about the point zero, is $$\frac{q^3}{16(q-1)^2 \ln q} x^3 - \frac{(q-5)q^4}{96(q-1)^3 \ln q} x^4 + \cdots,$$ which gives the required result. We need an explicit construction of Alon, Bruck, Naor, Naor, and Roth [6]. Theorem 9.4.4 (Alon et al. [6]) Let q be a prime power. Then there exists a constructive family of q-ary codes of relative minimum distance δ and rate at least $\gamma R_Z(\delta)$, where $\gamma = 1/(22 + 10\sqrt{5})$. **Theorem 9.4.5** For any $r \in \mathbb{N}$, there exists a constructive family of r-superimposed codes whose rate is bounded away from zero. **Proof.** We use Lemma 9.4.1 to produce such a family of r-superimposed codes. Let $r \in \mathbb{N}$, and q be the smallest prime power at least r + 1. The rows of a $q \times q$ identity matrix give an r-superimposed code of length q having q codewords. Take this as our first ingredient for Lemma 9.4.1. We now give the second ingredient required by Lemma 9.4.1. Let $\epsilon > 0$. Choose $x \leq 1/q(q-1)$ sufficiently small so that (9.5) holds. Theorem 9.4.4 gives an explicit family of q-ary codes of relative minimum distance 1 - 1/q - x and rate greater than $\gamma R_Z(1 - 1/q - x)$. Therefore, the number of codewords in a code of length n in this family is at least $$q^{\gamma n((qx)^3/16(q-1)^2\ln q-\epsilon)}=\Omega(a^n),$$ for some constant a. Now, $$1 - \frac{1}{q} - x \ge 1 - \frac{1}{q} - \frac{1}{q(q-1)} = 1 - \frac{1}{q-1} \ge 1 - \frac{1}{r},$$ So we can take this family of codes as the second ingredient for Lemma 9.4.1. It follows that there is a family of r-superimposed codes for which each code in this family of length qn has at least $\Omega(a^n)$ codewords. It follows that this family of r-superimposed codes has rate bounded away from zero. The constructivity of this construction follows from that of the composition construc- tion (Lemma 9.4.1) and the construction of Alon et al. (Theorem 9.4.4). Corollary 9.4.1 For any $r \in \mathbb{N}$, there exists a constructive family of r-frameproof codes whose rate is bounded away from zero. The family of codes in Theorem 9.4.5 is in fact explicit since the construction of Alon et al. (Lemma 9.4.4) is explicit. The constant a in the proof of Theorem 9.4.5 is probably very bad. But Theorem 9.4.5 and Corollary 9.4.1 appears to be the first explicit families of r-superimposed codes and r-frameproof codes whose rates are bounded away from zero. #### 9.5 Remarks In this chapter, we have given and analyzed a probabilistic construction for 2-frameproof codes. The bound we obtained with this construction is the best currently known. We have also established for every r, the first explicit families of r-superimposed codes and r-frameproof codes whose rates are bounded away from zero. Frameproof codes are studied only very recently, and many combinatorial properties remain to be discovered. ## Conclusion This dissertation examines three problems in computer science that have received much attention recently. The first is the study of nonadaptive algorithms for different group testing models. The second is the design of erasure-resilient codes for large disk arrays. The final problem is that of constructing frameproof codes for fingerprinting of digital data. All of these problems yield a unified treatment as Turán-type problems. We obtained new and improved results on several Turán-type problems that arise from these applications. These results, when interpreted in the context of group testing, give either stronger bounds on the test complexity of nonadaptive group testing algorithms, or characterizations of nonadaptive group testing algorithms with optimal test complexity. Nonadaptive algorithms for new models of group testing are also obtained. Our results on the construction of erasure-resilient codes for large disk arrays
established many families of codes with as many codewords as possible (up to a constant factor), having optimal update penalties. We have also shown how some properties of our erasure-resilient codes, namely, the existence of α -balanced orderings, can be used to trade the number of codewords for smaller α -balanced group sizes. In another connection, we illustrated that 154 Conclusion erasure-resilient codes can be used to construct nonadaptive algorithms for group testing problems in which the test function used is the MOD_2 test function. Our contribution in frameproof codes is the establishment of a better bound for 2-frameproof codes, as well as the exhibition of the first explicit family of r-frameproof codes whose rate is bounded away from zero. The most exciting aspect of this research³ is the serendipitous discovery that many mathematical problems (Turán-type problems in particular), studied long and not so long ago by mathematicians purely for reasons of aesthetics, are equivalent to problems faced by designers of erasure-resilient codes in practice. By this, we do not mean taking a mathematical problem and trying to come up with a problem corresponding to it that is perhaps practical. Such an approach, which unfortunately is quite pervasive, often gives artificial problems that never actually occur in real life. Rather, Hellerstein et al. [79] begin with the problem of designing erasure-resilient codes for large disk arrays, working their way through the requirements of the codes, and arrive at certain properties which must be possessed by the parity-check matrices. We carry this step further by examining the set systems corresponding to these parity-check matrices. The result is the discovery that some of what are desired are combinatorial designs that have been studied for quite some time without any apparent applications in mind. The same can be said about the work of Hwang and Sós [81] who demonstrated that r-union-free set systems correspond to nonadaptive algorithms for some group testing models. ³This opinion is expressed by C. J. Colbourn in his talk "Erasure Codes", presented at the University of Toronto Department of Computer Sciences Spring Colloquia on February 13, 1996 and in the Tutte Colloquium at the University of Waterloo on February 16, 1996. Part of what follows is a paraphrase of excerpts from his talk. #### 10.1 Open Problems We list two categories of open problems. The first, which is contained in Section 10.1.1, concerns group testing. The second, in Section 10.1.2 concerns erasure-resilient codes. We do not attempt to suggest any open problems here for frameproof codes, since the area is still in its infancy, and almost any problem one can conceive is open. #### 10.1.1 Group Testing For a given r, let us define $m(r) = \min\{n \mid \text{there exists an } r\text{-cover-free set system of order } n \text{ with at least } n+1 \text{ blocks}\}.$ Erdös, Frankl, and Füredi [58] raised the following open problem. Open Problem 10.1.1 Is $$\lim_{r \to \infty} \frac{m(r)}{r} = 1$$ or even $m(r) \geq (r+1)^2$? The importance of this problem for group testing stems from the following observation. Consider an instance of UNRESTRICTED NONADAPTIVE EXACT IDENTIFICATION PROBLEM(r), (X, r, f, Π) . If we have fewer than m(r) elements to test, that is, $|X| \leq m(r)$, then by the definition of m(r), any nonadaptive algorithm based on an r-cover-free set system must use at least |X| tests. Hence, we can do no better than the naive algorithm which tests every element individually. Therefore, m(r) determines when nonadaptive algorithms based on r-cover-free set systems become useful. Erdös, Frankl, and Füredi claimed (see [58]) that $$(1+o(1))\frac{5}{6}r^2 < m(r) < r^2 + o(r),$$ 156 Conclusion but no proof for the lower bound is published. The upper bound can be obtained from a $2-(q^2, q, 1)$ design (an affine plane of order q), where q is the smallest prime power at least r+1. Erdös, Frankl, and Füredi (see [58]) also claimed to have shown that $m(r) \geq (r+1)^2$ for $r \leq 3$. Again, no proof appears in print. The next problem is suggested by our results in Chapter 5. Open Problem 10.1.2 Is it true that for every r, there is a constant N, depending only on r, such that for all n > N, an r-cover-free (r+1)-uniform set system of order n is optimal if and only if it is an optimal 2-(n, r+1, 1) packing? We have made substantial progress on the existence problem for weakly union-free twofold triple systems. It would be interesting to improve our results. Open Problem 10.1.3 Determine the existence of weakly union-free TTS(n) for those values of n not decided by Theorem 6.6.3. In particular, does there exist a weakly union-free TTS(12)? #### 10.1.2 Erasure-Resilient Codes In view of the equivalence between (3,5)-erasure-resilient codes and anti-Pasch 2-(n,3,1) packings, we propose the following problems. **Open Problem 10.1.4** Determine those n for which there exists an anti-Pasch optimal 2-(n, 3, 1) packing. **Open Problem 10.1.5** Determine those $n \equiv 3 \pmod{6}$ for which there exists an anti-Pasch Kirkman triple system of order n. Let q be a prime power and (X, A) be the set system defined as follows: $$X = \mathrm{GF}(q) imes \mathbf{Z}_k,$$ and $\mathcal{A} = \{\{(a,0),(b,1),(a+b,2),(a+2b,3),\ldots,(a+(k-2)b,k-1)\} \mid a,b \in \mathrm{GF}(q)\}.$ It is easy to see that $(X, \{\operatorname{GF}(q) \times \{i\} \mid i \in \mathbf{Z}_k\}, \mathcal{A})$ is a $\operatorname{TD}(k, q)$. **Open Problem 10.1.6** Is the set system (X, A) defined above that of a $[q^2, kq, k, 2k-1]$ -erasure-resilient code? A positive answer to Open Problem 10.1.6 would imply that $$F(c, k, 2k-1) \ge \frac{1}{k^2}c^2 - O(c),$$ which compares favourably with the upper bound $F(c, k, 2k-1) \leq \frac{1}{k(k-1)}c^2$ of Theorem 8.5.2. We have shown that the answer to Open Problem 10.1.6 is yes if k=3 (this is implicit in the proof of Lemma 8.7.3) or k=4 (Theorem 8.7.2). A more difficult problem is: Open Problem 10.1.7 Prove that $$F(c, k, l) = \Theta(c^{k+1-\lfloor l/2 \rfloor}). \tag{10.1}$$ An even harder problem is to determine the constant factor in (10.1). We know that it is 1/6 for k=3 (and any $l \leq 5$), but we know nothing for $k \geq 4$. #### 10.2 Future Directions Sequential and nonadaptive algorithms for group testing lie at the two extreme ends of a spectrum of algorithms. Sequential algorithms are not limited by the number of steps they take, but are restricted to only one processor. Nonadaptive algorithms, on the other hand, must obtain all necessary information in one step, but can have any number of processors. The goal is to minimize the unrestricted resource, that is the number of steps for sequential algorithms, and the number of processors for nonadaptive algorithms. We can define an s-step group testing algorithm to be one that is limited to s steps. The problem then is to design, for any given s, an s-step algorithm that finds the target set using the minimum possible total number of tests. Such algorithms have been considered in other areas of computer science. For example, the problem of designing s-step algorithms for sorting (called sorting in rounds), has been studied in [5, 18, 73]. Two-step algorithms have been considered before for group testing as well [25]. However, the concept there is different. In [25], pools are designed probabilistically for the first step. The second step is used to test individually those elements for which membership in the target set cannot be decided after the first step. Other important issues in group testing that demand further study are given in a recent article written by Hwang [80] for CADCOM (Committee for the Advancement of Discrete and Combinatorial Mathematics). Quite recently, Buhrman, Hemaspaandra, and Longpré [26] have used r-cover-free set systems to show that any sparse set is conjunctive truth-table reducible to a tally set, thus refuting two conjectures of Ko [86] in complexity theory. Chaudhuri and Radhakrishnan [33] have also used r-cover-free set systems to derive new lower bounds for the circuit complexity of threshold functions. We are hopeful that more intimate connections between Turán-type problems and other problems in computer science will be uncovered. # Packing Pairs by Quintuples: $n \equiv 19 \pmod{20}$ Concerning the determination of D(n, 5, 2), there has not been any explicit work done on the case $n \equiv 19 \pmod{20}$. The reason is that no example of a 2-(n, 5, 1) packing with U(n, 5, 2) blocks is known in this case. For our application, the asymptotic existence of 2-(n, 5, 1) packings with at least U(n, 5, 2) - o(n) blocks suffices (see Section 5.3.2). In this appendix, we prove that there is a constant a so that $D(n, 5, 2) \geq U(n, 5, 2) - a$ for all sufficiently large $n \equiv 19 \pmod{20}$. We assume knowledge of various designs defined in Section 6.6. **Definition A.0.1** Let n and m be nonnegative integers. A maximum incomplete packing, denoted by MIP(v, w), is a triple (X, Y, A), where |X| = n, $Y \subseteq X$ with |Y| = m, and (X, A) is a 5-uniform set system with U(n, 5, 2) - U(m, 5, 2) blocks so that, - (i) each 2-subset of X not contained in Y is contained in at most one block of A, and - (ii) no block contains any 2-subset of Y. The concept of maximum incomplete packings originated in the work of Yin [156]. The following lemmata can be found in the work of Mullin and Yin [105]. Lemma A.0.1 (Mullin and Yin [105]) Suppose that there exist a $\{5\}$ -GDD of type $g_1g_2\cdots g_s$ and an MIP $(q+g_i,q)$ for each $i,\ 1\leq i\leq s-1$. Then there exists an MIP $\left(q+\sum_{i=1}^{s-1}g_i,q+g_s\right)$. **Lemma A.0.2** (Mullin and Yin [105]) Suppose that there exists a TD(6,t) and $0 \le u \le t$. Then an MIP(20t + 4u + q, 4u + q) exists if an MIP(4t + q, q) exists. Lemma A.0.3 (Mullin and Yin [105]) There exists an MIP(79, 19). We also use a recent result of Yin et al.
[158]. Theorem A.0.1 (Yin et al. [158]) There exists a $\{5\}$ -GDD of type 60^s for all $s \geq 5$. Corollary A.O.1 There exists an MIP(60s + 19, 19) for all $s \ge 5$. **Proof.** Let $s \ge 5$. Since there is a $\{5\}$ -GDD of type 60^s0^1 (Theorem A.0.1) and an MIP(19 + 60, 19) (Lemma A.0.3), Lemma A.0.1 implies the existence of an MIP(60s + 19, 19). The following is the main result of this appendix. **Theorem A.0.2** For all $n \geq 319$ such that $n \equiv 19 \pmod{20}$, there exists an MIP(n, m), where $m \equiv 19 \pmod{20}$ and $19 \leq m \leq 299$. **Proof.** Every $n \ge 319$, $n \equiv 19 \pmod{20}$, can be written in the form 20t + 4u + 19, where $t \equiv 0 \pmod{15}$, and $0 \le u \le 70$, $u \equiv 0 \pmod{5}$. By Corollary A.0.1, there exists an MIP(4t + 19, 19). Since there exists a TD(6, t) for all positive $t \equiv 0 \pmod{15}$ [1], it then follows from Lemma A.0.2 that there exists an MIP(n, 4u + 19). Corollary A.0.2 There exists a constant a such that for all $n \ge 319$, $n \equiv 19 \pmod{20}$, $D(n,5,2) \ge U(n,5,2) - a$. **Proof.** For all $n \geq 319$, $n \equiv 19 \pmod{20}$, we have an MIP(n, m), where $m \equiv 19 \pmod{20}$ and $19 \leq m \leq 299$. This MIP(n, m) is a 2-(n, 5, 1) packing having at least U(n, 5, 2) - U(299, 5, 2) blocks. Stronger results can be obtained but Corollary A.0.2 suffices for our purpose. # Enumeration of A Class of Twofold Triple Systems of Order 12 In this appendix, we determine all TTS(12) having an automorphism group whose order is divisible by an odd prime. ## **B.1** Structure of Automorphism Groups Let Γ be the full automorphism group of a TTS(12). We develop some facts about the structure of Γ . **Lemma B.1.1** Let α be an automorphism of a TTS(12), where α has prime order $p \geq 3$. Then α fixes 0 or 1 point. **Proof:** Let (X, \mathcal{B}) be a TTS(12) with α as an automorphism, and F the set of fixed points of α . Let $\mathcal{B}_i = \{B \in \mathcal{B} \mid |B \cap F| = i\}$, $0 \le i \le 3$, and let $b_i = |\mathcal{B}_i|$. Henceforth, we assume that $f = |F| \ge 2$, since if $f \le 1$, then the lemma easily holds. So let $A \in \binom{F}{2}$ and let B be any block in \mathcal{B} such that $A \subseteq B$. Then the three blocks B, $\alpha(B)$, and $\alpha^2(B)$ all contain A, which is impossible unless $B \subseteq F$. Hence, $b_2 = 0$ and (F, \mathcal{B}_3) is a TTS(f). The necessary conditions for the existence of a TTS(f) with f < 12 require that f = 4, 6, 7, 9, or 10. But to cover pairs from $X \setminus F$ we need $$3b_0+b_1=\binom{12-f}{2},$$ and $$b_0 + b_1 + b_3 = 44$$ which cannot be satisfied for any $f \in \{4, 6, 7, 9, 10\}$. **Theorem B.1.1** Let p be a prime dividing the order of the automorphism group Γ of a TTS(12). Then $p \in \{2, 3, 11\}$. Furthermore, for $\alpha \in \Gamma$, we have - (i) α fixes no points if α has order 3, and - (ii) α fixes 1 point if α has order 11. **Proof:** Let α be an automorphism of order p of a TTS(12). If p = 5 or 7, then α fixes f points, where $f \in \{2, 5, 7\}$. Our result then follows from Lemma B.1.1. #### **B.2** Enumeration Having established the structure of Γ , we proceed to enumerate all TTS(12) having an automorphism group whose order is divisible by an odd prime. Henceforth, any TTS(12), (X, \mathcal{B}) , under consideration has point set $X = \{0, 1, \ldots, 9, a, b\}$. When Γ contains an automorphism of order 11, the TTS(12) is 1-rotational and all nonisomorphic 1-rotational TTS(12) have been enumerated by Chee and Royle [34]. There are precisely five nonisomorphic 1-rotational TTS(12). So it remains to examine the case when Γ contains an automorphism α of order three. Without loss of generality, let $$\alpha = (0 \ 1 \ 2)(3 \ 4 \ 5)(6 \ 7 \ 8)(9 \ a \ b),$$ and $G = \langle \alpha \rangle \leq \Gamma$. From the orbit structure of G on $\binom{X}{3}$, we see that \mathcal{B} must consist of two orbits of length one, and 14 orbits of length three on $\binom{X}{3}$. Without loss of generality, the two orbits of length one are taken to be $\{0,1,2\}$ and $\{3,4,5\}$. The pairs $\{0,1\}$ and $\{3,4\}$ must appear in some other blocks, and thus we can assume that the set of starter blocks for \mathcal{B} contains $\{0,1,2\}$, $\{3,4,5\}$, $\{0,1,\star\}$, and $\{3,4,\star\}$. Filling in the stars in all possible ways leads to five nonisomorphic starting configurations which are given below. | starting | starting | starting | starting | starting | |-----------------|-----------------|-----------------|-----------------|-----------------| | configuration A | configuration B | configuration C | configuration D | configuration E | | {0,1,2} | {0,1,2} | $\{0, 1, 2\}$ | $\{0, 1, 2\}$ | $\{0, 1, 2\}$ | | {3, 4, 5} | $\{3, 4, 5\}$ | $\{3, 4, 5\}$ | $\{3, 4, 5\}$ | $\{3, 4, 5\}$ | | $\{0, 1, 3\}$ | $\{0, 1, 3\}$ | $\{0, 1, 3\}$ | {0,1,6} | {0,1,6} | | {0,3,4} | $\{1, 3, 4\}$ | {3,4,6} | {3, 4, 6} | {3,4,9} | Beginning with each starting configuration above, we try to complete to a TTS(12) by adding 12 more starter blocks using a backtracking algorithm. All the TTS(12) constructed are subjected to an isomorphism test to sieve out isomorphic designs. This is carried out with McKay's Nauty program [99]. The result is that there are precisely 775 nonisomorphic TTS(12) having G as an automorphism group, 36 with starting configuration A, 16 with starting configuration B, 540 with starting configuration C, 88 with starting configuration D, and 95 with starting configuration E. The starter blocks for these designs are given in Sections B.3.1 through B.3.5. We only list the starter blocks required to complete the respective starting configurations to a TTS(12). To reduce space utilization in the tables, we omit braces and commas, and write a set $\{x, y, z\}$ as xyz. None of the 1-rotational TTS(12) have an automorphism group whose order is divisible by three. Consequently, we have the following theorem. **Theorem B.2.1** There are exactly 780 isomorphism classes of TTS(12) admitting an automorphism group whose order is divisible by an odd prime. An attempt was made to enumerate all TTS(12) with an automorphism of order two. In this case, we have about 80 starting configurations to try to complete to a TTS(12). When run on each of the first few starting configurations we picked, our backtracking algorithm did not stop even after a week, and we decided to abandon the search. #### **B.3** Catalogues #### B.3.1 Starter Blocks for TTS(12) With Starting Configuration A | Design # | | | | | St | artei | · Blo | cks | | | | | |----------|-----|-----|-----|-----|-----|-------|-------|-----|-----|-----|-----|-----| | 1 | 379 | 136 | 378 | 078 | 369 | 069 | 06a | 38a | 23b | 07Ъ | 0ab | 3ab | | 2 | 379 | 136 | 368 | 068 | 069 | 07a | 38a | 39a | 23Ъ | 37Ъ | 07ъ | 0ab | | 3 | 379 | 136 | 368 | 068 | 079 | 37a | 06a | 39a | 23ъ | 07b | 38Ъ | 0ab | | 4 | 379 | 236 | 378 | 078 | 13a | 36a | 06a | 09a | 08Ъ | 06Ъ | 39Ъ | 38ъ | | 5 | 379 | 137 | 067 | 368 | 089 | 36a | 07a | 38a | 08Ъ | 23ъ | 39Ъ | 0ab | | 6 | 379 | 137 | 368 | 068 | 089 | 23a | 07a | 39a | 09a | 36ъ | 07Ъ | 38ъ | | 7 | 379 | 137 | 368 | 078 | 239 | 079 | 36a | 06a | 08ъ | 09ъ | 38ъ | 3ab | | 8 | 379 | 137 | 368 | 078 | 089 | 23a | 06a | 07a | 39a | 36ъ | 09ъ | 38Ъ | | 9 | 379 | 237 | 067 | 368 | 079 | 13ъ | 36a | 06a | 39a | 08ъ | 09Ъ | 38Ъ | | 10 | 379 | 237 | 368 | 068 | 13a | 06a | 07a | 39a | 36ъ | 07ъ | 09Ъ | 38Ъ | | 11 | 379 | 378 | 067 | 238 | 13ъ | 089 | 36a | 07a | 39a | 08ъ | 36Ъ | 09Ъ | | 12 | 379 | 378 | 138 | 078 | 369 | 069 | 089 | 23a | 06a | 36Ъ | 0ab | 3ab | | · 13 | 379 | 367 | 138 | 068 | 36a | 06a | 07a | 38a | 480 | 23ъ | 39b | 09ъ | | 14 | 379 | 367 | 138 | 078 | 239 | 069 | 089 | 36a | 06ъ | 38ъ | 0ab | 3ab | | 15 | 136 | 378 | 067 | 069 | 37a | 389 | 23a | 08a | 09a | 36ъ | 07ъ | 39ъ | |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 16 | 136 | 367 | 067 | 389 | 07a | 38a | 39a | 09a | 08ъ | 23b | 06Ъ | 37ъ | | 17 | 136 | 368 | 078 | 239 | 069 | 37a | 38a | 09a | 06Ъ | 37ъ | 07ъ | 39b | | 18 | 236 | 378 | 067 | 369 | 13a | 089 | 08a | 39a | 06Ъ | 37b | 38b | 0ab | | 19 | 236 | 378 | 067 | 369 | 13a | 06a | 38a | 08a | 08Ъ | 37b | 39ъ | 09Ъ | | 20 | 137 | 378 | 067 | 389 | 36a | 07a | 08a | 39a | 480 | 36b | 23b | 09Ъ | | 21 | 137 | 067 | 368 | 239 | 37a | 089 | 38a | 09a | 08Ъ | 36b | 07ъ | 39Ъ | | 22 | 137 | 368 | 068 | 369 | 079 | 089 | 23a | 07a | 38a | 37b | 39ъ | 0ab | | 23 | 137 | 368 | 078 | 37a | 089 | 389 | 07a | 39a | 36b | 23b | 06b | 0ab | | 24 | 237 | 378 | 067 | 139 | 369 | 079 | 36a | 06a | 08a | 09Ъ | 38ъ | 3ab | | 25 | 237 | 368 | 068 | 079 | 13b | 37a | 389 | 36a | 07a | 06Ъ | 39Ъ | 09Ъ | | 26 | 378 | 367 | 238 | 139 | 069 | 089 | 07a | 08a | 39a | 36b | 07Ъ | 3ab | | 27 | 378 | 367 | 238 | 069 | 079 | 13b | 36a | 08a | 39a | d80 | 07ъ | 39Ъ | | 28 | 378 | 138 | 068 | 239 | 369 | 37a | 089 | 09a | 36Ъ | 06Ъ | 07b | 3ab | | 29 | 367 | 067 | 138 | 239 | 069 | 089 | 38a | 39a | 08Ъ | 36ъ | 37b | 0ab | | 30 | 367 | 238 | 068 | 369 | 13a | 07a | 38a | 08a | 37Ъ | 07Ъ | 39ъ | 09Ъ | | 31 | 367 | 238 | 078 | 139 | 069 | 079 | 36a | 08a | 39a | 37ъ | 38b | 0ab | | 32 | 367 | 138 | 068 | 239 | 369 | 089 | 07a | 38a | 06Ъ | 37ъ | 09ъ | 3ab | | 33 | 367 | 138 | 068 | 239 | 079 | 37a | 389 | 06a | 08р | 36Ъ | 09Ъ | Зab | | 34 | 367 | 138 | 078 | 239 | 369 | 069 | 089 | 38a | 06Ъ | 37Ъ | 0ab | 3ab | | 35 | 238 | 368 | 068 | 139 | 079 | 37a | 089 | 07a | 39a | 36b | 37ъ | 0ab | | 36 | 138 | 368 | 078 | 239 | 069 | 37a | 089 | 39a | 36b | 06Ъ | 37b | 0ab | # B.3.2 Starter Blocks for TTS(12) With Starting Configuration B | Design # | | | | | St | arter | Blo | cks | | | | | |----------|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----| | 1 | 379 | 236 | 378 | 068 | 089 | 23a | 06a | 07a |
39a | 36b | 09Ъ | 38Ъ | | 2 | 379 | 236 | 368 | 078 | 069 | 23a | 06a | 38a | 09a | 08Ъ | 37ъ | 39Ъ | | 3 | 236 | 378 | 067 | 239 | 37a | 089 | 06a | 38a | 08ъ | 36b | 39ъ | 09ъ | | 4 | 236 | 378 | 368 | 069 | 089 | 23a | 07a | 08a | 39a | 06ъ | 37ъ | 39Ъ | | 5 | 236 | 378 | 068 | 069 | 37a | 389 | 23a | 08a | 09a | 36ъ | 07Ъ | 39Ъ | | 6 | 236 | 368 | 068 | 37a | 389 | 07a | 08a | 39a | 23ъ | 06Ъ | 37ъ | 09Ъ | | 7 | 237 | 378 | 067 | 369 | 389 | 36a | 07a | 08a | 23b | 06Ъ | 09Ъ | 3ab | | 8 | 237 | 367 | 067 | 089 | 389 | 23a | 07a | 39a | 09a | 36ъ | 06Ъ | 38Ъ | | 9 | 237 | 367 | 068 | 239 | 069 | 079 | 36a | 38a | 07b | 39Ъ | 38ъ | 0ab | | 10 | 237 | 067 | 368 | 239 | 369 | 089 | 07a | 38a | 06Ъ | 37ь | 09Ъ | 3ab | | 11 | 237 | 067 | 078 | 369 | 069 | 389 | 23a | 38a | 09a | 36Ъ | 37b | 0ab | | 12 | 237 | 368 | 078 | 369 | 06a | 07a | 38a | 39a | 23b | 06Ъ | 37ъ | 09b | | 13 | 378 | 238 | 068 | 369 | 079 | 089 | 23a | 07a | 39a | 36ъ | 37b | 0ab | | 14 | 367 | 238 | 078 | 239 | 079 | 37a | 389 | 06a | 08ъ | 36Ъ | 09ъ | 3ab | | 15 | 367 | 238 | 078 | 069 | 37a | 389 | 23a | 08a | 09a | 36b | 07b | 39Ъ | | 16 | 238 | 368 | 078 | 239 | 37a | 089 | 07a | 39a | 36Ъ | 06b | 37b | 09ъ | ## B.3.3 Starter Blocks for TTS(12) With Starting Configuration C | Design # | | | | Si | arte | r Blo | cks | | | | | |----------|--------------------|-----|-----|-----|------|-------|-----|-----|-----|-----|------------| | 1 | 379 03 | 136 | 067 | 239 | 089 | 679 | 23a | 06a | 09Ъ | 38ъ | 3ab | | 2 | 379 037 | 136 | 067 | 069 | 389 | 23a | 08a | 67a | 23b | 0ab | 3ab | | 3 | 379 037 | 136 | 068 | 239 | 079 | 23a | 06a | 67a | 09ъ | 38ъ | 3ab | | 4 | 379 037 | 136 | 068 | 069 | 389 | 23a | 07a | 23ъ | 67ъ | 0ab | 3ab | | 5 | 379 03 | 136 | 068 | 679 | 23a | 06a | 39a | 09a | 23ъ | 07ъ | 38Ъ | | 6 | 379 037 | 136 | 078 | 239 | 069 | 23a | 06a | 67ъ | 09ъ | 38ъ | 3ab | | 7 | 379 037 | 136 | 078 | 069 | 679 | 389 | 23a | 06a | 23ъ | 0ab | 3ab | | 8 | 379 037 | 136 | 078 | 23a | 06a | 67a | 39a | 09a | 23ъ | 06b | 38b | | 9 | 379 037 | 236 | 068 | 139 | 089 | 679 | 23a | 06a | 09a | 38Ъ | 3ab | | 10 | 379 037 | 236 | 068 | 069 | 13ъ | 389 | 23a | 09a | 480 | 67b | 3ab | | 11 | 379 037 | 236 | 068 | 13ъ | 089 | 679 | 23a | 06a | 39a | 09Ъ | 38Ъ | | 12 | 379 037 | 236 | 068 | 13ъ | 089 | 23a | 67a | 39a | 09a | 06Ъ | 38ъ | | 13 | 379 037 | 236 | 068 | 13a | 089 | 679 | 23a | 06a | 39ъ | 38ъ | 0ab | | 14 | 379 037 | 236 | 068 | 13a | 679 | 389 | 06a | 08ъ | 23b | 0ab | 3ab | | 15 | 379 037 | 236 | 068 | 13a | 23a | 06a | 09a | 08ъ | 67Ъ | 39ъ | 38ъ | | 16 | 379 037 | 236 | 068 | 13a | 06a | 39a | 08ъ | 23b | 67ъ | 38Ъ | 0ab | | 17 | 379 037 | 067 | 238 | 139 | 36a | 08a | 67a | 09a | 08Ъ | 23Ъ | 3ab | | 18 | 379 037 | 067 | 238 | 369 | 13b | 089 | 23a | 08a | 67a | 09Ъ | 3ab | | 19 | 379 037 | 067 | 238 | 369 | 13b | 089 | 23a | 09a | Ф8р | 67b | 3ab | | 20 | 379 037 | 067 | 238 | 13b | 36a | 08a | 67a | 39a | 08Ъ | 23Ъ | 09Ъ | | 21 | 379 037 | 067 | 068 | 239 | 13Ъ | 089 | 23a | 36a | 09ъ | 38ъ | 69Ъ | | 22 | 379 037 | 238 | 068 | 139 | 089 | 679 | 36a | 07a | 23ъ | 0ab | 3ab | | 23 | 379 037 | 238 | 068 | 139 | 36a | 07a | 09a | 08b | 23b | 67b | 3ab | | 24 | 379 037 | 238 | 068 | 239 | 079 | 13Ъ | 36a | 67a | 08Ъ | 09Ъ | 3ab | | 25 | 379 037 | 238 | 068 | 369 | 079 | 13b | 089 | 23a | 67a | 0ab | 3ab | | 26 | 379 037 | | | | | | | | | | | | 27 | 379 037 | | | | | | | | | | | | 28 | 379 037 | | | | | | | | | | | | 29 | 379 037 | | | | | | | | | | | | 30 | 379 037 | | | | | | | | | | | | 31 | 379 037 | | | | | | | | | | | | 32 | 379 037 | | | | | | | | | | | | 33 | 379 037 | | | | | | | | | | | | 34 | 379 037 | | | | | | | | | | | | 35 | 379 037 | | | | | | | | , | | | | 36
37 | 379 037 | | | | | | | | | | | | 37 | 379 037 | | | | | | | | | | | | 38
20 | 379 037 | | | | | | | | | | | | 39
40 | 379 037 | | | | | | | | | | | | 40 | 379 136
370 136 | | | | | | | | | | | | 41 | 379 136 | | | | | | | | | | | | 42 | 379 136 | 231 | 100 | 069 | 209 | ∠3a | ura | υya | USD | 0/0 | Jab | 43 379 136 237 067 079 03a 23a 06a 67a 39b 09b 38b 379 136 237 067 679 03a 06a 39a 23b 07b 09b 38b 44 45 379 136 237 067 389 03a 07a 67a 23b 06b 09b 3ab 46 379 136 237 067 03a 67a 39a 09a 23b 06b 07b 38b 379 136 378 067 069 03a 23a 08a 69a 23b 07b 39b 47 379 136 378 067 089 03a 23a 07a 69a 23b 06b 39b 48 49 379 136 378 068 039 23a 06a 07a 23b 07b 69b 3ab 50 379 136 378 078 039 23a 06a 07a 69a 23b 06b 3ab 51 379 136 038 067 679 23a 06a 07a 39a 23b 37b 09b 52 379 136 067 238 079 03a 23a 67a 09a 08b 37b 39b 53 379 136 067 238 089 679 03a 23a 07a 37b 39b 09b 379 136 067 238 679 03a 39a 09a 08b 23b 37b 07b 54 379 136 067 068 039 23a 07a 38a 69a 23b 37b 0ab 55 56 379 136 238 068 079 37a 03a 67a 23b 07b 39b 0ab 57 379 136 238 078 039 069 23a 07a 37b 67b 0ab 3ab 58 379 136 238 078 239 069 679 03a 37b 07b 09b 3ab 59 379 136 238 078 03a 07a 67a 39a 23b 06b 37b 09b 379 036 137 078 239 079 089 23a 67a 38b 0ab 3ab 60 61 379 036 137 078 239 38a 67a 09a 08b 23b 07b 3ab 62 379 036 137 078 089 23a 07a 39a 23b 67b 38b 0ab 63 379 036 237 067 239 13a 089 679 07b 38b 0ab 3ab 379 036 237 067 239 13a 08a 67a 07b 09b 38b 3ab 64 379 036 237 067 079 13b 389 23a 67a 09a 08b 3ab 65 66 379 036 237 067 13b 089 679 23a 39a 09a 07b 38b 67 379 036 237 068 239 13a 07a 07b 67b 09b 38b 3ab 68 379 036 237 068 079 13b 389 23a 07a 67a 09b 3ab 379 036 237 068 13b 07a 38a 67a 39a 23b 07b 09b 69 70 379 036 237 068 13a 23a 07a 09a 07b 67b 39b 38b 379 036 237 078 239 069 13b 38a 67a 07b 09b 3ab 71 72 379 036 237 078 069 079 13b 389 23a 67a 0ab 3ab 73 379 036 237 078 079 13a 23a 06a 67a 39b 38b 0ab 379 036 237 078 13a 679 23a 06a 09a 07b 39b 38b 74 75 379 036 237 078 13a 389 07a 67a 23b 06b 0ab 3ab 76 379 036 237 078 13a 23a 06a 07a 67b 39b 09b 38b 77 379 036 378 067 13b 089 23a 07a 39a 08b 23b 6ab 379 036 378 078 239 13a 06a 08b 23b 07b 69b 3ab 78 79 379 036 378 078 069 13b 23a 08a 39a 69a 23b 07b 379 036 378 078 13b 089 23a 07a 39a 69a 23b 06b 80 379 036 067 078 13b 37a 389 23a 08a 69a 23b 09b 81 82 379 036 238 078 139 37a 08a 67a 09a 23b 07b 3ab 83 379 036 238 078 13b 37a 089 23a 07a 67b 39b 09b 379 036 138 068 239 37a 089 679 23b 07b 0ab 3ab 84 85 379 036 138 078 239 069 089 679 23a 37b 0ab 3ab 86 379 036 138 078 069 23a 08a 67a 39a 23b 37b 0ab 87 379 236 137 067 239 089 38a 67a 09a 03b 08b 3ab ``` 88 379 236 137 067 089 03a 23a 09a 08b 67b 39b 38b 89 379 236 137 067 089 03a 38a 67a 08b 23b 39b 0ab 90 379 236 137 067 089 03a 39a 08b 23b 67b 38b 0ab 91 379 236 137 068 039 23a 08a 67a 09a 07b 38b 3ab 92 379 236 137 068 089 679 03a 23a 09a 07b 39b 38b 379 236 137 068 089 23a 07a 38a 67a 09a 03b 39b 93 379 236 137 068 089 07a 38a 67a 39a 03b 23b 0ab 94 95 379 236 137 078 239 069 089 38a 67a 03b 0ab 3ab 96 379 236 137 078 069 089 03a 23a 67b 39b 38b 0ab 97 379 236 137 078 089 679 03a 23a 06a 39b 09b 38b 98 379 236 137 078 089 03a 67a 39a 23b 06b 38b 0ab 99 379 236 137 078 679 389 03a 06a 08b 23b 09b 3ab 100 379 236 137 078 03a 06a 38a 67a 08b 23b 39b 09b 379 236 237 067 139 069 089 03a 67b 38b 0ab 3ab 101 102 379 236 237 067 039 13a 06a 08b 67b 38b 0ab 3ab 103 379 236 237 067 069 13b 389 03a 08b 67b 09b 3ab 379 236 237 067 13a 089 03a 67a 06b 39b 38b 0ab 104 105 379 236 237 067 13a 679 389 06a 09a 03b 08b 3ab 106 379 236 237 067 13a 06a 39a 09a 03b 08b 67b 38b 107 379 236 237 068 139 069 03a 09a 07b 67b 38b 3ab 108 379 236 237 068 139 079 03a 06a 67a 09b 38b 3ab 109 379 236 237 068 069 13b 03a 38a 67a 07b 39b 09b 110 379 236 237 068 13a 679 389 06a 07a 03b 09b 3ab 111 379 236 237 068 13a 389 07a 67a 09a 03b 06b 3ab 379 236 237 078 139 069 06a 38a 67a 09a 03b 3ab 112 113 379 236 237 078 069 13b 389 03a 67a 06b 09b 3ab 114 379 236 237 078 13a 06a 67a 39a 09a 03b 06b 38b 115 379 236 378 067 13a 06a 08a 39a 69a 03b 08b 23b 116 379 236 378 068 039 069 13b 23a 08a 69a 07b 3ab 379 236 378 068 039 079 13b 23a 06a 69a 08b 3ab 117 118 379 236 378 068 039 13b 089 23a 07a 69a 06b 3ab 379 236 378 068 239 079 13a 06a 69a 03b 08b 3ab 119 120 379 236 378 068 239 13a 089 07a 69a 03b 06b 3ab 121 379 236 378 068 069 13b 089 23a 07a 39a 03b 6ab 379 236 378 078 069 13b 089 03a 23a 69a 06b 39b 122 123 379 236 038 067 139 37a 06a 08a 67a 23b 09b 3ab 124 379 236 038 068 069 079 13b 23a 67a 39a 37b 0ab 125 379 236 038 068 13a 679 23a 06a 07a 37b 39b 09b 126 379 236 038 078 13b 37a 06a 67a 39a 23b 06b 09b 127 379 236 038 078 37a 13a 06a 67a 23b 06b 39b 0ab 128 379 236 067 238 13a 03a 08a 67a 08b 37b 39b 09b 129 379 236 238 068 039 13a 07a 08b 37b 67b 0ab 3ab 130 379 236 238 078 039 13a 679 06a 08b 37b 0ab 3ab 131 379 236 238 078 37a 13a 06a 08a 67a 03b 39b 09b 132 379 236 238 078 13a 679 03a 06a 08b 37b 39b 09b ``` ``` 379 236 138 068 239 069 37a 089 03b 67b 0ab 3ab 133 379 236 138 068 239 37a 089 679 06a 03b 09b 3ab 134 379 236 138 068 069 089 679 03a 23a 37b 39b 0ab 135 379 236 138 068 37a 089 679 23a 06a 09a 03b 39b 136 379 236 068 078 139 069 03a 23a 09a 37b 38b 6ab 137 379 236 068 078 039 069 13b 23a 38a 69a 37b 0ab 138 379 236 068 078 039 13a 23a 06a 37b 38b 0ab 69b 139 379 236 068 078 239 069 13a 38a 69a 03b 37b 0ab 140 379 137 038 067 369 089 23a 07a 23b 67b 0ab 3ab 141 379 137 038 067 089 23a 07a 67a 39a 36b 23b 0ab 142 379 137 038 067 23a 36a 07a 09a 08b 23b 67b 39b 143 379 137 038 068 679 23a 36a 07a 09a 23b 07b 39b 144 379 137 067 368 239 089 03a 08b 23b 07b 69b 3ab 145 379 137 067 078 039 23a 36a 08a 69a 23b 38b 0ab 146 379 137 067 078 239 089 03a 23a 69a 36b 09b 38b 147 379 137 067 078 239 089 23a 36a 09a 03b 38b 69b 148 379 137 238 078 039 089 23a 07a 67a 36b 0ab 3ab 149 379 137 238 078 369 03a 08a 67a 23b 07b 09b 3ab 150 379 137 238 078 089 23a 07a 67a 39a 09a 03b 36b 151 379 137 368 078 239 069 03a 08b 23b 07b 6ab 3ab 152 379 137 068 078 389 03a 23a 07a 69a 36b 23b 09b 153 379 237 038 067 139 36a 07a 67a 09a 23b 06b 3ab 154 379 237 038 067 069 13b 679 23a 36a 09a 07b 39b 155 379 237 038 067 13a 23a 06a 07a 67a 36b 39b 09b 156 379 237 067 238 139 089 03a 07a 67a 36b 09b 3ab 157 379 237 067 238 039
079 13b 36a 67a 08b 0ab 3ab 158 379 237 067 238 369 13a 08a 67a 09a 03b 07b 3ab 159 379 237 067 138 039 23a 06a 67a 09a 08b 36b 3ab 160 379 237 067 138 239 069 089 679 36a 03b 0ab 3ab 161 379 237 067 368 139 079 03a 06a 69a 08b 23b 3ab 162 379 237 067 368 039 079 13b 23a 06a 69a 08b 3ab 163 379 237 067 368 069 13b 03a 39a 08b 23b 07b 6ab 164 379 237 067 068 139 03a 36a 07a 23b 09b 38b 6ab 165 379 237 067 068 139 03a 36a 09a 23b 07b 38b 69b 166 379 237 067 068 239 079 13a 36a 69a 03b 38b 0ab 167 379 237 067 068 239 13a 36a 09a 03b 07b 38b 69b 168 379 237 067 068 369 13b 03a 38a 69a 23b 07b 09b 169 379 237 067 068 369 13a 03a 23b 07b 38b 0ab 6ab 170 379 237 067 068 13a 389 36a 07a 03b 23b 0ab 69b 171 379 237 067 078 139 069 03a 36a 23b 38b 0ab 6ab 172 379 237 067 078 039 13b 23a 36a 09a 69a 06b 38b 173 379 237 067 078 369 13a 06a 38a 69a 03b 23b 0ab 174 379 237 238 068 369 13a 07a 09a 03b 07b 67b 3ab 175 379 237 238 068 13a 07a 67a 39a 09a 03b 36b 07b 176 379 237 238 078 139 069 36a 07a 09a 03b 67b 3ab 177 ``` 178 379 237 238 078 369 13a 679 06a 09a 03b 07b 3ab 379 237 238 078 13a 679 36a 06a 07a 03b 39b 09b 179 379 237 138 068 369 069 03a 23b 07b 67b 0ab 3ab 180 379 237 138 068 369 679 03a 06a 23b 07b 09b 3ab 181 379 237 138 068 069 679 03a 36a 23b 07b 39b 0ab 182 183 379 237 138 068 069 03a 23a 67a 09a 36b 07b 39b 379 237 138 078 239 069 36a 67a 09a 03b 06b 3ab 184 379 237 138 078 369 069 23a 06a 09a 03b 67b 3ab 185 379 237 138 078 069 679 23a 36a 06a 09a 03b 39b 186 379 038 367.067 13a 23a 06a 07a 08b 23b 39b 6ab 187 379 038 367 068 239 069 079 13b 23a 69a 07b 3ab 188 379 038 367 068 239 13a 07a 69a 23b 06b 07b 3ab 189 190 379 038 367 068 13a 23a 06a 07a 23b 07b 39b 69b 379 038 367 078 069 13b 23a 06a 39a 23b 07b 69b 191 379 038 367 078 13a 23a 06a 07a 69a 23b 06b 39b 192 193 379 038 067 068 369 13b 37a 23a 09a 23b 07b 6ab 379 038 067 078 239 13b 37a 36a 69a 23b 06b 09b 194 379 367 067 238 079 13b 089 03a 23a 69a 08b 39b 195 379 367 067 138 039 23a 06a 08a 69a 08b 23b 3ab 196 379 367 067 138 239 069 089 23a 08a 69a 03b 3ab 197 379 367 067 138 239 089 03a 69a 08b 23b 06b 3ab 198 379 367 238 068 13a 03a 07a 08b 23b 07b 39b 6ab 199 200 379 367 238 068 13a 07a 08a 39a 69a 03b 23b 07b 379 367 238 078 039 13b 089 23a 07a 69a 06b 3ab 201 379 367 238 078 069 13b 03a 39a 08b 23b 07b 6ab 202 203 379 367 138 068 089 23a 06a 07a 39a 03b 23b 69b 204 379 367 138 078 239 069 089 23a 06a 03b 69b 3ab 205 379 367 138 078 069 03a 23a 06a 08b 23b 39b 6ab 379 067 238 078 239 13a 03a 69a 08b 36b 37b 09b 206 379 067 238 078 239 13a 36a 09a 03b 08b 37b 69b 207 208 379 067 138 068 239 37a 089 23a 09a 69a 03b 36b 209 379 067 138 068 239 37a 36a 08a 69a 03b 23b 09b 379 067 138 068 369 03a 23a 09a 08b 23b 37b 6ab 210 379 238 068 078 039 13a 23a 07a 69a 36b 37b 0ab 211 379 238 068 078 369 13a 03a 23b 37b 07b 0ab 69b 212 213 037 136 378 239 079 06a 67a 39a 08b 23b 06b 3ab 037 136 067 239 37a 089 23a 09a 06b 67b 39b 38b 214 037 136 067 239 37a 389 09a 08b 23b 06b 67b 3ab 215 037 136 067 069 37a 389 23a 08a 23b 67b 39b 0ab 216 037 136 068 239 069 079 23a 39a 37b 67b 38b 0ab 217 037 136 068 239 069 37a 38a 23b 07b 67b 39b 0ab 218 037 136 068 239 069 679 23a 38a 09a 37b 07b 39b 219 037 136 068 239 37a 679 389 09a 23b 06b 07b 3ab 220 221 037 136 068 239 07a 38a 67a 39a 23b 06b 37b 09b 037 136 068 679 389 23a 07a 39a 09a 23b 06b 37b 222 | 223 | 037 | 136 | 078 | 239 | 069 | 679 | 389 | 23a | 09a | 06Ъ | 37ъ | 3ab | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 224 | 037 | 236 | 378 | 139 | 069 | 06a | 08a | 39a | 08ъ | 23ъ | 67ъ | 3ab | | 225 | 037 | 236 | 378 | 13a | 06a | 08a | 67a | 39a | Ф8р | 23ъ | 06b | 39Ъ | | 226 | 037 | 236 | 068 | 239 | 13a | 679 | 389 | 09a | овъ | 06b | 37ъ | 3ab | | 227 | 037 | 236 | 068 | 13ъ | 37a | 089 | 679 | 389 | 23a | 09a | 06ъ | 39Ъ | | 228 | 037 | 137 | 067 | 239 | 089 | 23a | 38a | 67a | 09a | о8ъ | 36ъ | 39b | | 229 | 037 | 137 | 067 | 239 | 36a | 08a | 39a | 08Ъ | 23ъ | 67b | 09Ъ | 38ъ | | 230 | 037 | 137 | 067 | 369 | 389 | 23a | 08a | 09a | 08Ъ | 23b | 67ъ | 3ab | | 231 | 037 | 137 | 368 | 239 | 069 | 089 | 679 | 23a | 08a | 07ъ | 39ъ | 3ab | | 232 | 037 | 137 | 068 | 239 | 369 | 079 | 089 | 23a | 67b | 38ъ | 0ab | 3ab | | 233 | 037 | 137 | 068 | 239 | 079 | 089 | 679 | 23a | 36a | 39Ъ | 38Ъ | 0ab | | 234 | 037 | 137 | 068 | 239 | 079 | 089 | 23a | 67a | 39a | 36b | 38Ъ | 0ab | | 235 | 037 | 137 | 068 | 239 | 079 | 679 | 389 | 36a | 08Ъ | 23b | 0ab | 3ab | | 236 | 037 | 137 | 068 | 239 | 079 | 389 | 23a | 67a | 09a | 08Ъ | 36b | 3ab | | 237 | 037 | 137 | 068 | 239 | 079 | 36a | 38a | 67a | 08Ъ | 23Ъ | 39b | 0ab | | 238 | 037 | 137 | 068 | 239 | 089 | 679 | 389 | 23a | 07a | 36Ъ | 09ъ | 3ab | | 239 | 037 | 137 | 078 | 239 | 069 | 389 | 23a | 09a | Ф80 | 36ъ | 67b | 3ab | | 240 | 037 | 137 | 078 | 239 | 069 | 36a | 38a | d80 | 23ъ | 67b | 39b | 0ab | | 241 | 037 | 137 | 078 | 369 | 23a | 06a | 38a | 09a | 08р | 23Ъ | 67ъ | 39Ъ | | 242 | 037 | 237 | 067 | 139 | 069 | 389 | 23a | 08a | 67a | 09a | 36ъ | 3ab | | 243 | 037 | 237 | 067 | 139 | 06a | 38a | 67a | 39a | 09a | 08Ъ | 36b | 23b | | 244 | 037 | 237 | 067 | 239 | 369 | 13b | 089 | 38a | 67a | 06Ъ | 09b | 3ab | | 245 | 037 | 237 | 067 | 239 | 13a | 679 | 389 | 06a | 08Ъ | 36Ъ | 09Ъ | 3ab | | 246 | 037 | 237 | 067 | 239 | 13a | 389 | 67a | 09a | 08Ъ | 36Ъ | 06b | 3ab | | 247 | 037 | 237 | 067 | 369 | 069 | 13ъ | 389 | 23a | 08a | 67b | 09Ъ | 3ab | | 248 | 037 | 237 | 067 | 369 | 13Ъ | 089 | 23a | 39a | 09a | 06Ъ | 67Ъ | 38b | | 249 | 037 | 237 | 067 | 069 | 13b | 389 | 23a | 08a | 67a | 39a | 36b | 09Ъ | | 250 | 037 | 237 | 068 | 139 | 369 | 06a | 07a | 38a | 23ъ | 67b | 09Ъ | 3ab | | 251 | 037 | 237 | 068 | 139 | 069 | 36a | 07a | 38a | 23b | 67Ъ | 39Ъ | 0ab | | 252 | 037 | 237 | 068 | 139 | 079 | 23a | 06a | 67a | 39a | 09a | 36Ъ | 38Ъ | | 253 | 037 | 237 | 068 | 139 | 36a | 07a | 39a | 09a | 23b | 06Ъ | 67b | 38ъ | | 254 | 037 | 237 | 068 | 069 | 13ъ | 679 | 389 | 23a | 39a | 09a | 36Ъ | 07ъ | | 255 | 037 | 237 | 068 | 069 | 13a | 389 | 23a | 07a | 36Ъ | 67Ъ | 39Ъ | 0ab | | 256 | 037 | 237 | 068 | 13b | 679 | 389 | 36a | 07a | 39a | 23Ъ | 06Ъ | 09ъ | | 257 | 037 | 237 | 078 | 139 | 069 | 23a | 06a | 38a | 67a | 09a | 36Ъ | 39Ъ | | 258 | 037 | 237 | 078 | 239 | 069 | 13a | 389 | 67a | 36b | 06Ъ | 0ab | 3ab | | 259 | 037 | 237 | 078 | 239 | 13a | 06a | 67a | 39a | 36b | 06Ъ | 09ъ | 38Ъ | | 260 | 037 | 237 | 078 | 369 | 13a | 06a | 38a | 67a | 23b | 06Ъ | 39ъ | 0ab | | 261 | 037 | 237 | 078 | 069 | 13ъ | 679 | 389 | 23a | 06a | 39a | 36b | 09Ъ | | 262 | 037 | 237 | 078 | 069 | 13ъ | 679 | 389 | 36a | 39a | 23Ъ | 06b | 0ab | | 263 | 037 | 237 | 078 | 069 | 13a | 679 | 389 | 23a | 06a | 36b | 39Ъ | 0ab | | 264 | 037 | 378 | 067 | 239 | 13a | 36a | 08a | 69a | 08ъ | 23Ъ | 06Ъ | 39ъ | | 265 | 037 | 378 | 068 | 139 | 239 | 069 | 089 | 23a | 07a | 36Ъ | 6ab | 3ab | | 266 | 037 | 378 | 068 | 139 | 239 | 079 | 36a | 06a | 08Ъ | 23b | 69Ъ | 3ab | | 267 | 037 | 378 | 068 | 139 | 369 | 079 | 23a | 06a | 08a | 69a | 23ъ | 3ab | | | | | | | | | | | | | | | 268 037 378 068 139 069 23a 36a 07a 08a 23b 39b 6ab 269 037 378 078 139 369 069 23a 06a 08a 23b 6ab 3ab 270 037 378 078 239 069 13a 23a 06a 08b 36b 39b 6ab 037 367 238 239 069 13a 08a 08b 07b 67b 39b 3ab 271 272 037 367 238 069 13b 089 679 23a 08a 39a 07b 39b 273 037 367 068 139 079 23a 06a 08a 39a 69a 23b 38b 274 037 367 068 239 069 13b 38a 39a 08b 23b 07b 6ab 275 037 367 068 239 13a 089 23a 07a 06b 39b 38b 6ab 276 037 367 068 239 13a 06a 38a 08b 23b 07b 39b 69b 277 037 367 068 079 13b 389 23a 06a 39a 08b 23b 69b 278 037 367 078 139 069 23a 06a 08a 39a 23b 38b 6ab 279 037 367 078 239 069 13b 089 389 23a 06b 69b 3ab 280 037 067 238 239 13b 37a 089 39a 08b 36b 67b 09b 281 037 067 368 239 069 13a 23a 08a 08b 37b 39b 6ab 282 037 067 068 239 369 13a 23a 08a 37b 09b 38b 6ab 283 037 238 068 139 37a 08a 67a 39a 09a 36b 23b 07b 037 238 068 369 079 13b 089 679 23a 39a 37b 0ab 284 285 037 238 078 139 37a 06a 39a 09a 08b 36b 23b 67b 286 037 238 078 239 369 13a 08a 67a 06b 37b 09b 3ab 287 037 238 078 239 369 13а 09а 08ь 06ь 37ь 67ь 3аь 288 037 138 068 239 069 23a 08a 67a 39a 36b 37b 09b 289 037 368 068 239 079 13b 37a 089 23a 69a 06b 39b 290 037 368 068 239 37a 13a 08a 69a 23b 06b 07b 39b 291 037 368 078 239 069 13a 23a 08a 69a 06b 37b 39b 292 037 368 078 239 37a 13a 06a 08b 23b 06b 39b 6ab 293 037 368 078 239 13a 06a 39a 08b 23b 06b 37b 69b 294 037 068 078 239 369 13a 23a 09a 06b 37b 38b 6ab 037 068 078 369 13b 37a 389 23a 09a 23b 06b 6ab 295 296 136 237 067 039 239 07a 38a 67a 06b 37b 09b 3ab 297 136 237 067 039 679 389 23a 07a 09a 06b 37b 3ab 298 136 237 067 239 069 079 38a 67a 39a 03b 37b 0ab 136 237 067 239 069 679 03a 38a 37b 07b 39b 09b 299 300 136 038 067 239 079 37a 23a 67a 09a 06b 37b 39b 301 136 038 067 239 37а 07а 39а 23ь 06ь 37ь 67ь 09ь 136 067 238 039 37a 679 23a 08a 09a 37b 07b 39b 302 303 136 067 238 039 37a 679 08a 39a 23b 37b 07b 0ab 304 136 067 238 239 079 37а 03а 08b 37b 67b 39b 09b 305 136 067 238 239 079 37a 08a 67a 39a 03b 37b 09b 306 136 067 238 239 079 37a 39a 09a 03b 08b 37b 67b 307 136 067 068 039 239 079 37a 23a 37b 38b 0ab 6ab 308 136 067 078 039 239 37a 38a 69a 23b 06b 37b 0ab 309 136 238 078 239 079 37a 03a 67a 06b 37b 39b 09b 310 036 137 378 239 079 08a 67a 39a 08b 23b 07b 3ab 036 137 078 239 37a 089 679 38a 23b 07b 39b 0ab 311 312 036 137 078 079 37a 389 23a 08a 67a 23b 39b 0ab | 313 | 036 | 237 | 378 | 239 | 079 | 13a | 679 | 06a | д80 | 07Ъ | 39Ъ | 3ab | |-----|-----|-----|-----|-----|-----|-----|-----|-----|--------------|-----|--------------|-----| | 314 | 036 | 237 | 067 | 139 | 079 | 23a | 08a | 67a | 39a | 09a | 37b | 38b | | 315 | 036 | 237 | 067 | 139 | 37a | 679 | 389 | 08a | 09a | 23Ъ | 07ъ | 3ab | | 316 | 036 | 237 | 067 | 139 | 37a | 38a | 08a | 67a | 09a | 23ъ | 07ъ | 39Ъ | | 317 | 036 | 237 | 067 | 239 | 079 | 13Ъ | 37a | 389 | 08b | 67Ъ | 09Ъ | 3ab | | 318 | 036 | 237 | 067 | 239 | 079 | 13a | 679 | 389 | 08Ъ | 37ъ | 0ab | 3ab | | 319 |
036 | 237 | 067 | 239 | 13a | 679 | 38a | 09a | 08Ъ | 37b | 07ъ | 39ъ | | 320 | 036 | 237 | 067 | 13b | 37a | 679 | 389 | 08a | 39a | 23ъ | 07ъ | 09Ъ | | 321 | 036 | 237 | 067 | 37a | 13a | 679 | 389 | 08a | 23Ъ | 07ъ | 39Ъ | Oab | | 322 | 036 | 237 | 067 | 13a | 679 | 389 | 23a | 07a | 08a | 37ъ | 39ъ | 09Ъ | | 323 | 036 | 237 | 068 | 239 | 13a | 679 | 07a | 38a | 37b | 07ъ | 39ъ | 09ъ | | 324 | 036 | 237 | 078 | 239 | 079 | 13b | 37a | 389 | 67a | 06Ъ | 09Ъ | 3ab | | 325 | 036 | 378 | 078 | 239 | 069 | 079 | 13b | 23a | 39a | 08b | 37ъ | 6ab | | 326 | 036 | 067 | 138 | 239 | 37a | 089 | 679 | 23a | 08a | 37ъ | 39Ъ | 09Ъ | | 327 | 036 | 238 | 078 | 239 | 37a | 13a | 679 | 08a | 37ъ | 07Ъ | 39ъ | 09ъ | | 328 | 036 | 138 | 068 | 239 | 079 | 37a | 23a | 09a | 08Ъ | 37ъ | 67ъ | 39b | | 329 | 036 | 138 | 078 | 239 | 069 | 37a | 23a | 08a | 3 7 b | 67b | 39Ъ | 09Ъ | | 330 | 036 | 068 | 078 | 139 | 239 | 079 | 37a | 23a | 09a | 37b | 38Ъ | 6ab | | 331 | 036 | 068 | 078 | 139 | 239 | 079 | 37a | 38a | 69a | 23b | 37ъ | 0ab | | 332 | 036 | 068 | 078 | 139 | 239 | 37a | 38a | 09a | 23Ъ | 37ъ | 07ъ | 69b | | 333 | 036 | 068 | 078 | 239 | 079 | 13b | 37a | 389 | 23a | 37ъ | 09Ъ | 69b | | 334 | 236 | 137 | 378 | 239 | 079 | 089 | 03a | 67a | 08Ъ | 06Ъ | 39Ъ | 3ab | | 335 | 236 | 137 | 067 | 37a | 089 | 679 | 389 | 23a | 08a | 09a | 03b | 39b | | 336 | 236 | 137 | 068 | 039 | 079 | 23a | 08a | 67a | 39a | 37Ъ | 38Ъ | 0ab | | 337 | 236 | 137 | 068 | 039 | 37a | 679 | 389 | 08a | 23b | 07b | 0ab | 3ab | | 338 | 236 | 137 | 068 | 039 | 37a | 38a | 08a | 67a | 23b | 07ъ | 39Ъ | 0ab | | 339 | 236 | 137 | 068 | 039 | 679 | 389 | 23a | 07a | 08a | 37ъ | 09Ъ | Зab | | 340 | 236 | 137 | 068 | 239 | 37a | 089 | 07a | 38a | 03b | 67b | 39Ъ | 09Ъ | | 341 | 236 | 137 | 068 | 079 | 37a | 389 | 23a | 08a | 67a | 09a | 03Ъ | 39Ъ | | 342 | 236 | 137 | 068 | 079 | 679 | 389 | 03a | 39a | 08р | 23Ъ | 37ъ | 0ab | | 343 | 236 | 137 | 068 | 37a | 679 | 389 | 03a | 08a | 23ъ | 07Ъ | 39Ъ | 09Ъ | | 344 | 236 | 137 | 078 | 039 | 23a | 08a | 67a | 39a | 09a | 06Ъ | 37Ъ | 38Ъ | | 345 | 236 | 137 | 078 | 069 | 679 | 389 | 23a | 08a | 39a | 09a | 03Ъ | 37ъ | | 346 | 236 | 237 | 378 | 039 | 079 | 13ъ | 06a | 67a | 39a | 08Ъ | 06Ъ | Заъ | | 347 | 236 | 237 | 378 | 039 | 13a | 06a | 07a | 08р | 06Ъ | 67ъ | 39ъ | Заъ | | 348 | 236 | 237 | 067 | 139 | 069 | 679 | 389 | 03a | 08a | 37ъ | 09Ъ | 3ab | | 349 | 236 | 237 | 067 | 37a | 13a | 389 | 08a | 67a | 09a | 03ъ | 06Ъ | 39Ъ | | 350 | | | | | | | | | | | 0ab | | | 351 | 236 | 237 | 068 | 139 | 039 | 07a | 38a | 67a | 09a | 06Ъ | 3 7 b | 3ab | | 352 | 236 | 237 | 068 | 139 | 069 | 079 | 679 | 389 | 03a | 37ъ | 0ab | 3ab | | 353 | 236 | 237 | 068 | 139 | 069 | 679 | 03a | 38a | 09a | 37ъ | 07Ъ | 39Ъ | | 354 | | | | | | | | | | | 03ъ | | | 355 | 236 | 237 | 068 | 139 | 079 | 37a | 03a | 06a | 67b | 39b | 09ъ | 38ъ | | 356 | 236 | 237 | 068 | 039 | 079 | 13b | 37a | 389 | 67a | 06b | 0ab | 3ab | | 357 | 236 | 237 | 068 | 039 | 13a | 07a | 39a | 06b | 37ъ | 67b | 38Ъ | 0ab | | | | | | | | | | | | | | | 358 236 237 078 139 069 03a 38a 67a 09a 06b 37b 39b 359 236 237 078 069 13b 37a 389 03a 06b 67b 39b 09b 360 236 378 067 239 069 13a 08a 39a 03b 08b 37b 6ab 361 236 378 067 239 13a 089 03a 08b 06b 37b 39b 69b 362 236 378 068 139 089 03a 07a 39a 23b 06b 37b 69b 363 236 378 068 039 13b 089 23a 07a 39a 06b 37b 69b 364 236 378 068 239 069 37a 13a 08a 03b 07b 39b 6ab 236 378 078 139 37a 089 03a 06a 23b 06b 39b 69b 365 366 236 378 078 039 13b 37a 089 23a 06a 06b 39b 69b 367 236 378 078 239 069 13b 37a 089 39a 03b 06b 6ab 368 236 038 067 139 37a 08a 67a 39a 09a 23b 06b 37b 369 236 038 068 139 239 079 37a 679 06a 37b 09b 3ab 370 236 038 068 139 239 079 37a 67a 09a 06b 37b 3ab 371 236 038 068 139 079 37a 679 06a 39a 23b 37b 0ab 372 236 038 068 239 37a 13a 07a 06b 37b 67b 39b 09b 373 236 038 078 139 37a 679 06a 39a 09a 23b 06b 37b 374 236 038 078 239 069 37a 13a 06b 37b 67b 39b 0ab 375 236 067 238 139 37a 089 679 03a 08a 37b 39b 09b 376 236 067 238 039 37a 13a 08a 08b 37b 67b 39b 0ab 377 236 067 068 139 039 37a 38a 08a 69a 23b 37b 0ab 378 236 067 068 039 239 13b 37a 38a 08b 37b 09b 6ab 379 236 238 068 139 039 079 37a 08a 67a 37b 0ab 3ab 380 236 238 068 139 039 37a 07a 08a 37b 67b 09b 3ab 381 236 238 068 139 079 37a 03a 08a 67a 37b 39b 09b 236 238 068 039 079 13b 37a 39a 08b 37b 67b 0ab 382 383 236 238 068 039 13b 37a 679 08a 39a 37b 07b 09b 384 236 238 078 039 13b 37a 089 679 39a 06b 37b 0ab 236 138 068 039 239 37a 089 679 06b 37b 0ab 3ab 385 386 236 138 068 039 239 37a 08a 67a 06b 37b 09b 3ab 236 138 068 239 37a 089 679 03a 06b 37b 39b 09b 387 388 137 237 067 039 389 23a 07a 09a 08b 36b 67b 3ab 389 137 237 067 239 079 089 679 36a 39a 03b 38b 0ab 390 137 237 067 239 089 679 03а 39а 36ь 07ь 09ь 38ь 391 137 237 067 369 079 389 03a 08b 23b 67b 0ab 3ab 392 137 237 067 369 38a 08a 67a 39a 09a 03b 23b 07b 393 137 237 067 079 389 03a 23a 67a 09a 08b 36b 39b 394 137 237 067 679 389 36a 07a 08a 39a 03b 23b 09b 395 137 237 067 389 03a 07a 39a 08b 36b 23b 67b 09b 396 137 237 368 039 069 23a 07a 08a 07b 67b 39b 3ab 397 137 237 368 039 07a 08a 67a 39a 23b 06b 07b 3ab 398 137 237 368 239 069 079 08a 67a 39a 03b 07b 3ab 399 137 237 068 039 679 389 23a 07a 09a 36b 07b 3ab 400 137 237 068 039 679 36a 07a 38a 23b 07b 39b 0ab 401 137 237 068 369 079 03a 39a 23b 07b 67b 38b 0ab 402 137 237 078 039 239 679 36a 09a 06b 07b 38b 3ab | 403 | | | | | | | | | | | 0ab | | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 404 | | | | | | | | | | | 0ab | | | 405 | 137 | 237 | 078 | 039 | 23a | 36a | 07a | 09a | 06Ъ | 67b | 39Ъ | 38ъ | | 406 | 137 | 237 | 078 | 039 | 36a | 07a | 39a | 23Ъ | 06р | 67b | 38Ъ | 0ab | | 407 | 137 | 237 | 078 | 239 | 069 | 679 | 36a | 38a | 09a | 03ъ | 07Ъ | 39ъ | | 408 | 137 | 237 | 078 | 239 | 079 | 03a | 36a | 67a | 06Ъ | 39Ъ | Ф9Ъ | 38ъ | | 409 | 137 | 237 | 078 | 239 | 079 | 36a | 67a | 39a | 09a | 03ъ | 06Ъ | 38Ъ | | 410 | 137 | 237 | 078 | 369 | 679 | 389 | 03a | 09a | 23ъ | 06Ъ | 07Ъ | 3ab | | 411 | 137 | 237 | 078 | 369 | 03a | 39a | 09a | 23Ъ | 06ъ | 07Ъ | 67b | 38b | | 412 | 137 | 237 | 078 | 069 | 679 | 389 | 03a | 23a | 09a | 36ъ | 07ъ | 39ъ | | 413 | 137 | 378 | 067 | 039 | 239 | 36a | 08a | 08р | 23ъ | 07Ъ | 69Ъ | 3ab | | 414 | 137 | 378 | 067 | 039 | 23a | 36a | 07a | 08a | 08Ъ | 23b | 39Ъ | 6ab | | 415 | 137 | 378 | 067 | 369 | 089 | 03a | 23a | 08a | 23Ъ | 07ъ | 39Ъ | 69b | | 416 | 137 | 378 | 068 | 039 | 239 | 089 | 23a | 07a | 36b | 07ъ | 69b | 3ab | | 417 | 137 | 378 | 068 | 039 | 369 | 23a | 07a | 08a | 23ъ | 07ъ | 6ab | 3ab | | 418 | 137 | 378 | 078 | 039 | 23a | 06a | 07a | 39a | 08Ъ | 36ъ | 23Ъ | 6ab | | 419 | 137 | 378 | 078 | 369 | 079 | 03a | 23a | 06a | d80 | 23ъ | 39b | 6ab | | 420 | 137 | 038 | 367 | 239 | 089 | 679 | 07a | 39a | 23Ъ | 06ъ | 07ъ | 3ab | | 421 | 137 | 038 | 067 | 239 | 079 | 37a | 089 | 23a | 67a | 36b | 39b | 0ab | | 422 | 137 | 038 | 067 | 239 | 37a | 08a | 67a | 39a | 36Ъ | 23ъ | 07Ъ | 09b | | 423 | 137 | 038 | 078 | 239 | 069 | 079 | 679 | 23a | 36a | 37ъ | 39Ъ | 0ab | | 424 | 137 | 367 | 067 | 039 | 239 | 089 | 23a | 08a | 07ъ | 38Ъ | 69ъ | 3ab | | 425 | 137 | 367 | 067 | 039 | 239 | 38a | 08a | 69a | 08ъ | 23b | 07b | 3ab | | 426 | 137 | 367 | 068 | 039 | 239 | 07a | 38a | 08Ъ | 23ъ | 07ъ | 6ab | 3ab | | 427 | 137 | 367 | 068 | 039 | 23a | 07a | 08a | 39a | 23ъ | 07ъ | 38Ъ | 6ab | | 428 | 137 | 367 | 068 | 239 | 079 | 03a | 39a | 08b | 23ъ | 07ъ | 38ъ | 6ab | | 429 | 137 | 367 | 078 | 039 | 239 | 079 | 23a | 06a | 08Ъ | 38ъ | 6ab | 3ab | | 430 | 137 | 367 | 078 | 039 | 23a | 06a | 07a | 38a | 08ъ | 23Ъ | 39Ъ | 6ab | | 431 | 137 | 367 | 078 | 239 | 089 | 07a | 38a | 39a | 69a | 03Ъ | 23Ъ | 06b | | 432 | 137 | 067 | 368 | 239 | 079 | 089 | 03a | 23a | 08Ъ | 37ъ | 39Ъ | 69ъ | | 433 | 137 | 067 | 078 | 039 | 239 | 37a | 089 | 23a | 36ъ | 38Ъ | Оаъ | 6ab | | 434 | 137 | 067 | 078 | 239 | 369 | 37a | 089 | 38a | 03ъ | 23Ъ | 0ab | 6ab | | 435 | 137 | 238 | 078 | 039 | 239 | 079 | 679 | 36a | овъ | 37Ъ | 0ab | 3ab | | 436 | 137 | 238 | 078 | 239 | 079 | 37a | 089 | 679 | 36a | 03ъ | 39Ъ | 0ab | | 437 | 137 | 238 | 078 | 239 | ó79 | 37a | 089 | 67a | 39a | 03Ъ | 36b | 0ab | | 438 | 137 | | | | | | | | | | 39Ъ | | | 439 | | | | | | | | | | | 07ъ | | | 440 | | | | | | | | | | | 69Ъ | | | 441 | | | | | | | | | | | 69b | | | 442 | | | | | | | | | | | 69b | | | 442 | | | | | | | | | | | 38Ъ | | | 444 | | | | | | | | | | | 03Ъ | | | 445 | | | | | | | | | | | 09Ъ | | | | - | | | | | | | | | | 23b | | | 446 | | | | | | | | | | | | | | 447 | 237 | 3/8 | 067 | 139 | 079 | usa | Joa | voa | UQD | 230 | 39ъ | 020 | ``` 448 237 378 067 139 089 03a 07a 39a 69a 36b 23b 06b 237 378 067 039 13b 089 23a 07a 39a 69a 36b 06b 449 450 237 378 067 239 069 13a 03a 08b 36b 07b 39b 6ab 237 378 068 139 239 069 079 03a 69a 36b 07b 3ab 451 237 378 078 139 039 069 23a 06a 07a 36b 6ab 3ab 452 453 237 378 078 139 039 36a 06a 07a 23b 06b 69b 3ab 454 237 378 078 139 069 03a 36a 07a 23b 06b 39b 6ab 455 237 378 078 039 239 069 13b 36a 06b 07b 69b 3ab 237 038 367 239 069 079 13b 67a 39a 06b 07b 3ab 456 457 237 038 367 239 069 13a 07a 06b 07b 67b 39b 3ab 458 237 038 067 239 13а 07а 67а 39а 36ь 06ь 37ь 09ь 459 237 038 067 369 13a 07a 39a 23b 06b 37b 67b 0ab 237 367 067 139 089 389 03a 07a 23b 06b 69b 3ab 460 461 237 367 067 039 239 069 13b 38a 08b 07b 6ab 3ab 237 367 067 039 079 13b 389 23a 06a 08b 69b 3ab 462 463 237 367 067 039 13b 089 389 23a 07a 06b 69b 3ab 464 237 367 067 039 13b 089 23a 07a 38a 69a 06b 39b 465 237 367 067 239 13a 089 07a 38a 69a 03b 06b 39b 237 367 067 069 079 13b 389 03a 23a 08b 39b 6ab 466 467 237 367 067 069 079 13b 389 23a 08a 39a 69a 03b 468 237 367 067 069 13a 389 23a 07a 08a 03b 39b 6ab 469 237 367 067 079 13b 389 03a 39a 69a 08b 23b 06b 470 237 367 238 079 13a 06a 07a 39a 03b 08b 67b 39b 471 237 367 138 069 079 23a 06a 08a 67a 39a 03b 39b 472 237 367 138 069 03a 08a 67a 39a 23b 06b 07b 39b 473 237 367 068 039 069 13b 23a 07a 38a 07b 39b 6ab 474
237 367 068 239 079 13a 06a 39a 03b 07b 38b 69b 475 237 367 068 069 079 13b 389 03a 23a 07b 39b 69b 476 237 367 078 139 039 06a 07a 38a 69a 23b 06b 3ab 477 237 367 078 139 069 389 03a 07a 23b 06b 6ab 3ab 478 237 367 078 139 069 06a 07a 38a 39a 03b 23b 6ab 479 237 367 078 039 069 13b 389 23a 07a 06b 6ab 3ab 480 237 367 078 039 069 13b 23a 06a 38a 07b 39b 69b 481 237 367 078 039 13a 23a 06a 07a 06b 39b 38b 6ab 237 067 238 139 039 37a 08a 67a 09a 36b 07b 3ab 482 483 237 067 238 139 369 079 089 679 03a 37b 0ab 3ab 484 237 067 238 139 369 079 03a 08a 67a 37b 09b 3ab 485 237 067 238 139 37a 089 07a 39a 09a 03b 36b 67b 486 237 067 238 369 079 13b 37a 089 39a 03b 67b 0ab 487 237 067 138 369 089 679 03a 23a 09a 06b 37b 39b 488 237 067 368 139 039 37a 06a 08a 23b 07b 69b 3ab 489 237 067 368 139 079 03a 06a 39a 08b 23b 37b 69b 237 067 368 139 089 03a 07a 39a 23b 06b 37b 69b 490 491 237 067 368 039 13b 37a 08a 39a 69a 23b 06b 07b 492 237 067 368 239 13a 089 07a 39a 03b 06b 37b.69b ``` | 493 | 237 | 067 | | | | | | | | | | | |-----|-----|-----|-----|-----|-----|-----|------|-------------|-----|-----|-----|-----| | 494 | 237 | | 078 | | | | | | | | | | | 495 | 237 | | 078 | | | | | | | | | | | 496 | 237 | | 078 | | | | | | | | | | | 497 | 237 | | 078 | | | | | | | | | | | 498 | 237 | | 068 | | | | | | | | | | | 499 | 237 | | 068 | | | | | | | | | | | 500 | 237 | | 068 | | | | | | | | | | | 501 | 237 | | 078 | | | | | | | | | | | 502 | 237 | | 078 | | | | | | | | | | | 503 | 237 | | 068 | | | | | | | | | | | 504 | 237 | | 068 | | | | | | | | | | | 505 | 237 | 138 | 068 | 039 | 679 | 23a | 36a | 07a | 09a | 06Ъ | 37ъ | 39ъ | | 506 | 237 | 138 | 068 | 239 | 069 | 37a | 03a | 36b | 07Ъ | 67b | 39Ъ | 09Ъ | | 507 | 237 | 138 | 068 | 369 | 079 | 03a | 67a | 39a | 23ъ | 06b | 37ъ | 0ab | | 508 | 237 | 138 | 068 | 369 | 37a | 03a | 09a | 23Ъ | 06Ъ | 07ъ | 67b | 39ъ | | 509 | 237 | 138 | 068 | 369 | 679 | 03a | 39a | 09a | 23ъ | 06Ъ | 37ъ | 07b | | 510 | 237 | 138 | 078 | 039 | 369 | 37a | 06a | 23b | 06Ъ | 67b | 0ab | 3ab | | 511 | 237 | 138 | 078 | 369 | 37a | 03a | 06a | 23b | 06ъ | 67ъ | 39Ъ | 09Ъ | | 512 | 237 | 368 | 068 | 139 | 039 | 079 | 23a | 06a | 07a | 37b | 69Ъ | 3ab | | 513 | 237 | 368 | 068 | 039 | 079 | 13b | 23a | 07a | 39a | 69a | 06b | 37Ъ | | 514 | 237 | 368 | 078 | 139 | 239 | 069 | 079 | 37a | 06a | 03Ъ | 6ab | 3ab | | 515 | 237 | 368 | 078 | 139 | 239 | 069 | 079 | 03a | 69a | 06Ъ | 37ъ | 3ab | | 516 | 237 | 368 | 078 | 139 | 069 | 03a | 07a | 39a | 23b | 06Ъ | 37b | 6ab | | 517 | 237 | 368 | 078 | 039 | 239 | 069 | 13b | 37a | 06Ъ | 07ъ | 6ab | 3ab | | 518 | 237 | 368 | 078 | 039 | 069 | 13b | 23a | 07a | 39a | 06Ъ | 37b | 6ab | | 519 | 038 | 367 | 067 | 139 | 239 | 069 | 37a | 08a | 23Ъ | 07ъ | 6ab | 3ab | | 520 | 038 | 367 | 067 | 139 | 079 | 37a | 23a | 06a | 08a | 69a | 23b | 39ъ | | 521 | 038 | 367 | 067 | 239 | 079 | 13b | 37a | 089 | 23a | 69a | 06b | 39ъ | | 522 | 038 | 367 | 067 | 239 | 37a | 13a | 08a | 69a | 23Ъ | 06b | 07ъ | 39ъ | | 523 | 038 | 367 | 068 | 239 | 079 | 13a | 23a | 07a | 69a | 06b | 37ъ | 39b | | 524 | 038 | 067 | 068 | 239 | 369 | 079 | 13b | 37a | 23a | 37b | 09Ъ | 6ab | | 525 | 367 | 067 | 238 | 139 | 079 | 03a | 08a | 39a | 69a | 08ъ | 23Ъ | 37b | | 526 | 367 | 067 | 238 | 039 | 13a | 23a | 07a | 08a | 08Ъ | 37ъ | 39Ъ | 6ab | | 527 | 367 | 067 | 238 | 239 | 079 | 13a | 08a | 39a | 69a | 03Ъ | 08Ъ | 37ъ | | 528 | 367 | | 068 | | | | | | | | | | | 529 | | 238 | | | | | | | | | | | | 530 | | 238 | | | | | | | | | | | | 531 | | 238 | | | | | | | | | | | | 532 | 367 | | 078 | | | | | | | | | | | 533 | 367 | | 068 | | | | | | | | | | | 534 | 367 | | 068 | | | | | | | | | | | 535 | 367 | | 078 | | | | | | | | | | | | | 238 | | | | | | | | | | | | 536 | | 238 | | | | | | | | | _ | _ | | 537 | 067 | ∠38 | 018 | 029 | 203 | TOD | ्रास | 20 d | vod | OID | 030 | oan | | 538 | 067 | 238 | 078 | 239 | 369 | 37a | 13a | 08a | 03ъ | 37ъ | 09ъ | 6ab | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 539 | 238 | 068 | 078 | 139 | 369 | 079 | 37a | 03a | 23b | 37ъ | 0ab | 6ab | | 540 | 138 | 068 | 078 | 039 | 239 | 37a | 23a | 06a | 36b | 37b | 09b | 69h | ## B.3.4 Starter Blocks for TTS(12) With Starting Configuration D | | Design # | | | | | Si | arte | r Blo | cks | | | | | |---|----------|-----|-----|-----|-----|-----|------|-------|-----|-----|-----|------|-----| | Ī | 1 | 379 | 037 | 136 | 067 | 13b | 389 | 03a | 23a | 67a | 23Ъ | 09Ъ | 69b | | | 2 | 379 | 037 | 136 | 238 | 239 | 13a | 679 | 67a | 09a | 03ъ | 07Ъ | 3ab | | | 3 | 379 | 037 | 136 | 238 | 239 | 13a | 07a | 67a | 03Ъ | 67b | 09Ъ | 3ab | | | 4 | 379 | 037 | 136 | 238 | 13a | 23a | 07a | 67a | 09a | 03ъ | 67ъ | 39Ъ | | | 5 | 379 | 037 | 136 | 138 | 679 | 03a | 23a | 06a | 67a | 23Ъ | 39ъ | 09ъ | | | 6 | 379 | 037 | 036 | 138 | 13ъ | 089 | 679 | 23a | 67a | 39a | 23Ъ | 0ab | | | 7 | 379 | 037 | 036 | 078 | 13b | 13a | 389 | 23a | 67a | 23Ъ | 0ab | 69Ъ | | | 8 | 379 | 037 | 236 | 068 | 039 | 13ъ | 13a | 23a | 67a | 38b | 0ab | 6ab | | | 9 | 379 | 037 | 038 | 067 | 239 | 13b | 13a | 23a | 67a | 69a | 36ъ | 09Ъ | | | 10 | 379 | 037 | 038 | 067 | 369 | 13Ъ | 13a | 23a | 69a | 23b | 67b | 0ab | | | 11 | 379 | 037 | 067 | 368 | 139 | 13b | 089 | 03a | 23a | 69a | 23ъ | 69Ъ | | | 12 | 379 | 037 | 238 | 078 | 239 | 13Ъ | 13a | 679 | 36a | 69a | 03ъ | 09b | | | 13 | 379 | 136 | 067 | 138 | 239 | 37a | 03а | 67a | озъ | 23Ъ | 09Ъ | 6ab | | | 14 | 379 | 036 | 237 | 138 | 13ъ | 679 | 03a | 67a | 39a | 23b | 07ъ | 09Ъ | | | 15 | 379 | 036 | 237 | 138 | 13a | 23a | 07a | 67a | 09a | 03ъ | 67ъ | 39Ъ | | | 16 | 379 | 036 | 138 | 078 | 239 | 37a | 13a | 69a | 03b | 23b | 67b | 0ab | | | 17 | | | 137 | | | | | | | | | | | | 18 | | | 137 | | | | | | | | | | | | 19 | | | 137 | | | | | | | | | | | | 20 | | | 237 | | | | | | | | | | | | 21 | | | 237 | | | | | | | | | | | | 22 | | | 237 | | | | | | | | | | | | 23 | | | 238 | | | | | | | | | | | | 24 | | | 138 | | | | | | | | | | | | 25 | | | 138 | | | | | | | | | | | | 26 | | | 067 | | | | | | | | | | | | 27 | | | 238 | | | | | | | | | | | | 28 | | | 138 | | | | | | | | | | | | 29 | | | 137 | | | | | | | | | | | | 30 | | | 378 | | | | | | | | | | | | 31 | | | 378 | | | | | | | | | | | | 32 | | | 378 | | | | | | | | | | | | 33 | | | 237 | | | | | | | | | | | | 34 | | | 078 | | | | | | | | | | | | 35
36 | 037 | | | | | | | | | | | | | | 36 | 037 | | | | | | | | | | | | | | 37 | 037 | 236 | 137 | 239 | 13a | 679 | 389 | U8a | 67a | 03b | 09P. | 3ab | | 38 | | | | 039 | | | | | | | | | |-----------|-----|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-----|-----| | 39 | | | | 039 | | | | | | | | | | 40 | | | | 139 | | _ | | | | | | | | 41 | | | | 239 | | | | | | _ | | _ | | 42 | 037 | | | 139 | | | | | | | | | | 43 | 037 | 137 | | 239 | | | | | | | | | | 44 | 037 | 137 | | 039 | | | | | | | | | | 45 | 037 | 137 | 138 | 039 | 679 | 23a | 36a | 08a | 67a | 23Ъ | 39Ъ | 0ab | | 46 | 037 | 137 | 138 | 369 | 23a | 08a | 67a | 39a | 09a | 03b | 23b | 67b | | 47 | 037 | | | 139 | | | | | | | | | | 48 | 037 | 237 | 067 | 139 | 239 | 13a | 03a | 67a | 36Ъ | 09Ъ | 38ъ | 6ab | | 49 | 037 | 237 | 067 | 139 | 369 | 13ъ | 03a | 38a | 67a | 23b | 09Ъ | 6ab | | 50 | 037 | 237 | 067 | 139 | 369 | 13b | 03a | 38a | 69a | 23Ъ | 67ъ | 09Ъ | | 51 | 037 | 237 | 067 | 369 | 13Ъ | 13a | 679 | 389 | 23a | 09a | 03ъ | 6ab | | 52 | 037 | 237 | 238 | 139 | 13a | 03a | 07a | 67a | 36Ъ | 67Ъ | 39Ъ | 09Ъ | | 53 | 037 | 237 | 238 | 369 | 13Ъ | 13a | 679 | 03a | 07Ъ | 67ъ | 39Ъ | 09b | | 54 | 037 | 237 | 138 | 139 | 239 | 069 | 03a | 67a | 36b | 67b | Ф0 | 3ab | | 55 | 037 | 237 | 138 | 239 | 13a | 679 | 06a | 67a | 39a | 03Ъ | 36ъ | 09Ъ | | 56 | 037 | 237 | 138 | 369 | 13a | 679 | 06a | 39a | 03Ъ | 23Ъ | 67ъ | 0ab | | 57 | 037 | 237 | 368 | 139 | 239 | 079 | 13a | 679 | 06a | 69a | 03Ъ | 3ab | | 58 | 037 | 237 | 368 | 139 | 13a | 679 | 06a | 07a | 39a | 03Ъ | 23Ъ | 6ab | | 59 | 037 | 378 | 067 | 139 | 039 | 13b | 23a | 36a | 08a | 69a | 23ь | 69ъ | | 60 | 037 | 378 | 068 | 139 | 239 | 13a | 36a | 07a | 03Ъ | 23ъ | 69Ъ | 6ab | | 61 | 037 | 367 | 238 | 139 | 079 | 13ъ | 089 | 679 | 03a | 23a | 69a | 39Ъ | | 62 | 037 | 367 | 238 | 239 | 079 | 13b | 13a | 67a | 39a | 03Ъ | 08Ъ | 6ab | | 63 | 037 | 367 | 238 | 239 | 079 | 13Ъ | 13a | 39a | 69a | 03Ъ | 08Ъ | 67b | | 64 | 037 | 367 | 138 | 139 | 239 | 089 | 679 | 03a | 69a | 23b | 06Ъ | 3ab | | 65 | 037 | 367 | 138 | 139 | 239 | 089 | 03a | 67a | 23b | 06b | 69Ъ | 3ab | | 66 | 037 | 367 | 138 | 239 | 13a | 0 8a | 67a | 39a | 69a | 03b | 23b | 06b | | 67 | 037 | 138 | 068 | 039 | 239 | 13a | 679 | 23a | 69a | 36Ъ | 37b | 0ab | | 68 | 037 | 138 | 068 | 239 | 369 | 13a | 23a | 09a | 03Ъ | 37b | 67b | 69b | | 69 | 036 | 237 | 378 | 239 | 079 | 13b | 13a | 679 | 39a | 69a | 03Ъ | 07ъ | | 70 | 036 | 237 | 378 | 239 | 079 | 13ъ | 13a | 67a | 39a | 03ъ | 07ъ | 69Ъ | | 71 | 036 | 237 | 138 | 239 | 079 | 37a | 13a | 67a | 03ъ | 67b | 39ъ | 0ab | | 72 | 236 | 137 | 237 | 139 | 039 | 079 | 03a | 67a | 67ъ | 38₽ | 0ab | 3ab | | 73 | 236 | 137 | 237 | 139 | 079 | 679 | 389 | 03a | 67a | 09a | 03Ъ | 3ab | | 74 | 236 | 137 | 378 | 039 | 079 | 13b | 03a | 23a | 67a | Ф80 | 39Ъ | 6ab | | 75 | 236 | 137 | 378 | 039 | 079 | 13Ъ | 03a | 23a | 69a | 08Ъ | 67Ъ | 39Ъ | | 76 | 236 | 137 | 378 | 239 | 13a | 089 | 679 | 03a | 03ъ | 07ъ | 39Ъ | 69Ъ | | 77 | 236 | 137 | 038 | 239 | 079 | 13a | 679 | 67a | 39a | 03ъ | 37Ъ | Оаъ | | 78 | 236 | 137 | 138 | 039 | 239 | 679 | 03a | 08Ъ | 37b | 67b | 09Ъ | Заb | | 79 | 236 | 137 | 078 | 039 | 13Ъ | 679 | 389 | 03a | 23a | 37ъ | 09Ъ | 69Ъ | | 80 | 236 | 237 | 378 | 139 | 039 | 069 | 13Ъ | 679 | 03a | 07ъ | 6ab | 3ab | | 81 | 236 | 237 | 067 | 139 | 039 | 13b | 37a | 03a | 67Ъ | 09b | 38Ъ | 6ab | | 82 | 236 | 237 | 067 | 039 | 13b | 37a | 13a | 679 | 389 | 03Ъ | 0ab | 6ab | | | | | | | | | | | | | | | ``` 83 137 237 368 239 079 13a 679 03a 69a 03b 07b 39b 84 137 038 367 039 13b 679 23a 07a 39a 23b 07b 6ab 85
237 367 067 039 13b 13a 389 23a 07a 03b 69b 6ab 86 237 367 138 039 13b 679 03a 39a 69a 23b 06b 07b 87 237 367 138 039 13a 679 23a 06a 07a 03b 39b 6ab 88 237 067 368 039 239 13b 37a 13a 03b 07b 69b 6ab ``` #### B.3.5 Starter Blocks for TTS(12) With Starting Configuration E | | | | | | • | | | | | | | | | |---|----------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|------| | _ | Design # | | | | | St | arte | Blo | cks | | | | | | | 1 | 379 | 037 | 136 | 138 | 368 | 03a | 23a | 06a | 67a | 23ъ | 09ъ | 69Ъ | | | 2 | 379 | 036 | 236 | 237 | 138 | 13a | 03a | 67a | 67ъ | 09b | 38b | 0ab | | | 3 | 379 | 036 | 237 | 138 | 368 | 13a | 23a | 07a | 67a | 09a | 03ъ | 6ab | | | 4 | 379 | 036 | 038 | 367 | 138 | 13a | 23a | 07a | 69a | 23Ъ | 67ъ | 0ab | | | 5 | 379 | 236 | 038 | 367 | 138 | 069 | 13ъ | 03a | 23a | 69a | 67b | 09b | | | 6 | 379 | 236 | 038 | 367 | 138 | 13a | 23a | 06a | 67a | 09a | 03Ъ | 69Ъ | | | 7 | 037 | 136 | 036 | 378 | 239 | 13a | 23a | 09a | 07ъ | 67Ъ | 38ъ | 69b | | | 8 | 037 | 136 | 036 | 138 | 239 | 37a | 38a | 67a | 23ъ | 67Ъ | 09Ъ | 0ab | | | 9 | 037 | 136 | 236 | 378 | 239 | 069 | 13a | 38a | 67a | 03Ъ | 0ab | 6ab | | | 10 | 037 | 136 | 236 | 378 | 13a | 679 | 389 | 23a | 06a | 09a | 03ъ | 69ъ | | | 11 | 037 | 136 | 236 | 238 | 37a | 13a | 679 | 389 | 09a | 03ъ | 67b | 0ab | | | 12 | 037 | 136 | 137 | 368 | 079 | 679 | 389 | 03a | 23a | 69a | 23ъ | 0ab | | | 13 | 037 | 136 | 378 | 238 | 139 | 03a | 36a | 07a | 23ъ | 67ъ | 09Ъ | 69Ъ | | | 14 | 037 | 136 | 378 | 238 | 039 | 079 | 13b | 679 | 23a | 36a | 69a | 0ab | | | 15 | 037 | 136 | 378 | 238 | 239 | 13a | 03a | 67a | 36b | 07ъ | 09Ъ | 69Ъ | | | 16 | 037 | 136 | 378 | 238 | 239 | 13a | 36a | 07a | 03ъ | 67b | 09Ъ | 69Ъ | | | 17 | 037 | 136 | 367 | 238 | 239 | 079 | 13a | 38a | 67a | 69a | 03b | 0ab | | | 18 | 037 | 136 | 238 | 368 | 139 | 079 | 679 | 03a | 23a | 09a | 69a | 37ъ | | | 19 | 037 | 136 | 238 | 368 | 039 | 13b | 37a | 23a | 09а | 07ъ | 67Ъ | 69ъ | | | 20 | 037 | 136 | 138 | 368 | 239 | 37a | 03a | 69a | 23b | 06Ъ | 67Ъ | 09Ъ | | | 21 | 037 | 036 | 236 | 237 | 139 | 13a | 38a | 67a | 09a | 67ъ | 38Ъ | 0ab | | | 22 | 037 | 036 | 236 | 378 | 239 | 13b | 13a | 38a | 67a | 480 | 09ъ | 6ab | | | 23 | 037 | 036 | 236 | 378 | 13ъ | 13a | 679 | 389 | 23a | 08a | 69a | 09Ъ | | | 24 | 037 | 036 | 236 | 378 | 13b | 13a | 679 | 389 | 23a | 09a | 08Ъ | 6ab | | | 25 | 037 | 036 | 236 | 378 | 13b | 13a | 389 | 23a | 09a | 08b | 67b | 69b | | | 26 | 037 | 036 | 378 | 138 | 239 | 13a | 23a | 08a | 67a | 69a | 36b | Ф9Ъ | | | 27 | 037 | 036 | 378 | 138 | 239 | 13a | 23a | 67a | 09a | 08Ъ | 36Ъ | 6ab | | | 28 | 037 | 036 | 367 | 138 | 239 | 13b | 089 | 23a | 38a | 67a | 09b | 69b | | | 29 | 037 | 236 | 137 | 368 | 139 | 03a | 38a | 08a | 67a | 69a | 23ъ | 09Ъ | | | 30 | 037 | 236 | 137 | 368 | 039 | 13ъ | 23a | 38a | 09a | 69a | 08Ъ | 67Ъ | | | 31 | 037 | 236 | 137 | 368 | 039 | 13a | 23a | 08a | 69a | 67b | 38ъ | 0ab | | | 32 | 037 | 236 | 137 | 368 | 239 | 13a | 38a | 08a | 67a | 69a | 03Ъ | 09Ъ | | | 33 | 037 | 236 | 237 | 368 | 139 | 13a | 679 | 06a | 38a | 09a | 69a | 03ъ | | | 34 | 037 | 236 | 378 | 038 | 139 | 069 | 13b | 23a | 36a | 09a | 67ъ | .69Ъ | | | | | | | | | | | | | | | | 037 236 378 038 369 13b 13a 23a 67a 09a 06b 6ab 35 037 236 378 238 139 13a 36a 08a 67a 09a 03b 69b 36 037 236 378 238 369 13b 13a 03a 08b 67b 09b 6ab 37 037 236 378 368 139 069 13b 089 03a 23a 69b 6ab 38 39 037 236 038 368 139 069 13b 37a 23a 09a 67b 6ab 037 236 038 368 139 37a 13a 06a 23b 67b 0ab 69b 40 037 236 367 238 039 13b 13a 38a 69a 08b 67b 0ab 41 037 236 238 368 139 13a 03a 09a 08b 37b 67b 69b 42 037 236 238 368 039 13b 37a 13a 08b 67b 0ab 6ab 43 037 137 038 368 139 679 23a 36a 07a 09a 23b 6ab 44 037 137 038 368 239 13a 679 23a 09a 69a 36b 07b 45 037 237 238 368 139 13a 679 03a 09a 69a 36b 07b 46 037 237 138 368 239 13a 03a 67a 69a 36b 06b 09b 47 037 038 367 238 369 13b 13a 23a 07a 67b 09b 6ab 48 037 038 367 138 369 13a 23a 06a 23b 67b 0ab 69b 49 037 367 238 138 039 13b 23a 36a 08a 67a 09b 69b 50 037 367 238 138 239 13a 03a 69a 08b 36b 67b 09b 51 037 367 238 138 239 13a 36a 08a 67a 03b 09b 69b 52 136 236 137 378 039 03a 38a 67a 23b 07b 0ab 69b 53 136 236 137 378 039 23a 07a 38a 67a 09a 03b 6ab 54 136 236 378 238 139 079 37a 03a 09a 69a 03b 67b 55 136 236 378 238 039 37a 13a 07a 03b 67b 0ab 6ab 56 136 236 378 138 239 069 37a 03a 03b 67b 09b 6ab 57 136 367 238 138 039 079 679 03a 23a 69a 37b 0ab 58 136 367 238 138 239 079 37a 03a 67a 03b 09b 6ab 59 036 236 378 038 139 13a 679 23a 07a 09a 37b 6ab 60 036 237 378 138 139 03a 36a 07a 23b 67b 09b 69b 61 036 237 378 138 039 079 13b 23a 36a 67a 0ab 69b 62 036 237 378 138 369 13a 23a 07a 09a 03b 67b 6ab 63 036 237 367 138 079 13b 389 03a 23a 67a 09b 69b 64 036 237 138 368 239 37a 13a 679 09a 03b 07b 6ab 65 036 237 138 368 239 37a 13a 07a 03b 67b 09b 6ab 66 036 237 138 368 239 37a 13a 09a 03b 07b 67b 69b 67 036 378 367 138 239 13a 089 23a 07a 03b 69b 6ab 68 69 036 038 367 138 239 37a 13a 679 23b 07b 0ab 6ab 236 137 237 368 039 13a 07a 38a 69a 03b 67b 0ab 70 236 137 237 368 079 13a 389 03a 67a 03b 0ab 69b 71 236 137 378 038 139 03a 36a 07a 23b 67b 09b 69b 72 236 137 378 038 039 13b 679 23a 36a 09a 07b 69b 73 236 137 378 138 039 089 03a 23a 67a 36b 0ab 69b 74 236 137 378 138 039 03a 23a 08a 67a 69a 36b 09b 75 236 137 378 368 039 13a 23a 07a 08a 69a 03b 6ab 76 236 137 038 367 139 079 03a 23a 67a 09a 38b 6ab 77 236 137 038 367 139 079 03a 38a 67a 69a 23b 0ab 78 236 137 038 367 239 13a 38a 67a 09a 03b 07b 69b 79 | 80 | 236 | 137 | 038 | 367 | 079 | 13ъ | 389 | 03a | 23a | 67a | 09ъ | 69b | |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------------|-----|-----| | 81 | 236 | 137 | 038 | 368 | 039 | 13b | 37a | 23a | 09a | 07ъ | 67b | 69Ъ | | 82 | 236 | 137 | 038 | 368 | 239 | 079 | 37a | 13a | 69a | 03ъ | 67ъ | 0ab | | 83 | 236 | 137 | 367 | 138 | 039 | 03a | 23a | 08a | 69a | 67ъ | 09b | 38ъ | | 84 | 236 | 237 | 378 | 138 | 369 | 13a | 679 | 03a | 06a | 03Ъ | 09b | 6ab | | 85 | 236 | 237 | 378 | 138 | 369 | 13a | 03a | 67a | 09a | 03Ъ | 06Ъ | 6ab | | 86 | 236 | 237 | 138 | 368 | 039 | 13a | 03a | 67a | 06b | 37ъ | 0ab | 69Ъ | | 87 | 236 | 038 | 367 | 238 | 139 | 37a | 13a | 07a | 09a | 03Ъ | 67ъ | 6ab | | 88 | 236 | 038 | 367 | 138 | 139 | 069 | 679 | 03a | 23a | 09a | 37ъ | 6ab | | 89 | 236 | 038 | 367 | 138 | 139 | 069 | 03a | 23a | 09a | 37ъ | 67ъ | 69b | | 90 | 236 | 038 | 367 | 138 | 139 | 37a | 03a | 09a | 69a | 23ъ | 06Ъ | 67ъ | | 91 | 236 | 038 | 367 | 138 | 239 | 37a | 13a | 09a | 69a | 03ъ | 06ъ | 67b | | 92 | 236 | 367 | 238 | 138 | 039 | 13a | 03a | 08Ъ | 37ъ | 6 7 b | 0ab | 69ъ | | 93 | 137 | 237 | 138 | 368 | 239 | 079 | 03a | 36a | 67a | 03ъ | 09ъ | 69ъ | | 94 | 137 | 038 | 367 | 368 | 139 | 079 | 03a | 23a | 07a | 69a | 23b | 6аЪ | | 95 | 137 | 367 | 138 | 368 | 039 | 03a | 23a | 08a | 69a | 23ъ | 07ъ | 69Ъ | # List of Possible Exceptions for W This appendix gives a list of elements in E, the set of possible exceptions for W. We use the notation x.y to represent the y numbers congruent to 0 or 1 (mod 3) immediately following and including x. | 12 | 15 | 18 | 22 | 27.2 | 33.3 | 39.3 | 45.3 | 51.7 | 63.3 | 69.3 | 75.3 | |--------|--------|--------|--------|--------|---------|--------|--------|--------|---------|--------|--------| | 81.11 | 99.3 | 105.3 | 111.7 | 123.3 | 129.7 | 141.7 | 153.3 | 159.3 | 165.3 | 171.7 | 183.7 | | 195.3 | 201.5 | 210 | 213.7 | 225.3 | 231.7 | 243.3 | 249.5 | 258.9 | 274.2 | 279.3 | 285 | | 288 | 291.6 | 301.2 | 306 | 309.2 | 315 | 318.5 | 327.3 | 333.2 | 339.3 | 345.3 | 351.7 | | 363.3 | 370.2 | 375 | 381.6 | 391.4 | 402 | 405.3 | 411.7 | 423.7 | 435.2 | 442.6 | 453.2 | | 459.3 | 468.5 | 477.3 | 483 | 486 | 489.5 | 498 | 501.2 | 505.12 | 526.2 | 531.7 | 543.3 | | 549.2 | 555 | 558 | 561.6 | 573.3 | 579.7 | 591 | 594.4 | 603.3 | 609 | 612 | 615 | | 618 | 622 | 627.2 | 634.2 | 639.3 | 645 | 648.2 | 652.6 | 663.7 | 675.9 | 690 | 693.3 | | 699.3 | 705.3 | 711 | 714 | 718 | 723.2 | 729.3 | 735 | 738 | 741.2 | 747.2 | 753.3 | | 759 | 762 | 772 | 778.4 | 786 | 789.3 | 795.11 | 813.3 | 819.3 | 825.3 | 831.7 | 843.7 | | 855.3 | 861.3 | 867.3 | 873.3 | 879.3 | 885.2 | 891.2 | 897.3 | 906 | 910 | 915 | 921.3 | | 927.2 | 933.3 | 939.3 | 945 | 948 | 952 | 957.2 | 963.3 | 969.5 | 978.9 | 993.3 | 999.5 | | 1008 | 1011.7 | 1023.3 | 1030 | 1035.2 | 1041.3 | 1047 | 1050 | 1054 | 1059.2 | 1065.3 | 1071 | | 1074 | 1077.7 | 1089.3 | 1095 | 1098.8 | 1113.3 | 1119.3 | 1125 | 1128 | 1132 | 1137.2 | 1143.3 | | 1149.3 | 1155.3 | 1161.5 | 1170 | 1173.2 | 1179.2 | 1185 | 1188 | 1191 | 1194 | 1198 | 1203.2 | | 1209.3 | 1215.3 | 1221.3 | 1227.3 | 1233.3 | 1239.3 | 1245.3 | 1251.7 | 1263 | 1266.5 | 1275.3 | 1282.5 | | 1293.3 | 1299.3 | 1305 | 1308 | 1312 | 1317.2 | 1323.3 | 1329.3 | 1335.3 | 1341.19 | 1371.7 | 1383.3 | | 1389.7 | 1401.4 | 1408.6 | 1419.3 | 1425.3 | 1431.11 | 1449.3 | 1455 | 1458 | 1461.2 | 1467.2 | 1473.3 | | 1479 | 1482 | 1492 | 1497.2 | 1503.3 | 1509.3 | 1515.3 | 1521.3 | 1527.3 | 1534.6 | 1545 | 1548 | | | | | | | | | | | | | | | 4554 | 1554.0 | 1740.0 | 1575.0 | 4 F.O | | | | | | | | |---------|----------------|--------|---------|---------|--------|--------|--------|--------|---------|---------|---------| | 1551 | | 1569.3 | | 1581.7 | | | | 1617.3 | | 1626 | 1630 | | 1635 | 1641.3 | | 1650 | 1653.3 | 1660.2 | 1665.3 | | 1677.3 | 1683.7 | 1695.3 | 1701.15 | | 1725.11 | | 1746 | 1749.2 | 1755.2 | 1761.3 | 1767 | 1770 | 1774 | 1779.2 | 1785.3 | 1791.3 | | 1797.3 | | 1809.3 | 1815 | 1818 | 1821.3 | 1827.2 | | | 1845 | 1848 | 1852 | | 1857.2 | | 1869.3 | 1875.3 | 1881.7 | 1893.2 | 1899.2 | 1905 | 1908 | 1911 | 1914 | 1918 | | 1923.2 | 1929.3 | | 1938 | 1941.3 | 1947.3 | 1953.3 | | 1965.3 | | 1977.7 | 1989.3 | | 1995.3 | | 2013.3 | 2019.3 | 2025 | 2028 | 2038 | | | 2055.3 | 2061.7 | 2073.3 | | 2079.3 | 2085 | 2088 | 2091.11 | 2109.3 | 2115.3 | 2121.7 | 2133.3 | 2139.3 | 2145.11 | 2164.10 | 2181.6 | | 2193.3 | 2199.3 | | 2208 | 2212 | 2217.2 | 2223 |
2226 | 2229.3 | 2235.3 | 2241.7 | 2253.3 | | 2259.3 | 2265 | 2268 | 2271.7 | 2283.3 | 2290.2 | 2295.3 | 2301.7 | 2313.3 | 2319.6 | 2331.2 | 2337.3 | | 2343 | 2346 | 2350 | 2355 | 2361.3 | 2367.2 | 2373.3 | 2379.3 | 2385 | 2388 | 2392 | 2397.2 | | 2403.3 | 2409.3 | 2415 | 2418 | 2421.3 | 2427.3 | 2433.3 | 2439.3 | 2445 | 2448 | 2451.11 | 2469.2 | | 2475.2 | 2481.3 | 2487 | 2490 | 2494 | 2499.2 | 2505.3 | 2511 | 2514 | 2517.3 | 2523.3 | 2529.3 | | 2535 | 2538 | 2544 | 2547.3 | 2553.3 | 2559.7 | 2571 | 2574 | 2577.7 | 2589.3 | 2595.9 | 2610.4 | | 2619.2 | 2625.3 | 2631 | 2634 | 2638 | 2643.2 | 2650.2 | 2655.3 | 2661.3 | 2668.2 | 2673.3 | 2679.3 | | 2685.3 | 2691.3 | 2697.3 | 2703 | 2706 | 2709.3 | 2715 | 2718 | 2721 | 2724 | 2727.3 | 2733.3 | | 2739.3 | 2745.3 | 2751 | 2754.9 | 2769.15 | 2793.3 | 2799.3 | 2805.3 | 2811 | 2814.9 | 2829.3 | 2835.11 | | 2853.3 | 2859.7 | 2871 | 2874.5 | 2883.3 | 2889.5 | 2898 | 2901 | 2907.2 | 2913.3 | 2922 | 2932 | | 2937.2 | 2943.3 | 2949,3 | 2955.3 | 2961.3 | 2967.3 | 2973.3 | 2979.3 | 2985 | 2988 | 2991 | 2994.5 | | 3003.3 | 3009.3 | 3015.3 | 3021 | 3024 | 3027.7 | 3039.6 | 3051.2 | 3057.3 | 3063 | 3066 | 3070 | | 3075.2 | 3081.3 | 3087 | 3093.3 | 3099.3 | 3105 | 3108 | 3112 | 3117.2 | 3123.3 | 3129.3 | 3135.3 | | 3141.3 | 3147.3 | 3153.3 | 3159.3 | 3165 | 3168 | 3174 | 3177.3 | 3183 | 3186 | 3189.3 | 3195.5 | | 3204.5 | 3213.3 | 3219.7 | 3231 | 3234.9 | 3249.3 | 3255.3 | 3261 | 3264.4 | 3273.3 | 3279.3 | 3285 | | 3288 | 3292 | 3298 | 3303.3 | 3309.3 | 3315.3 | 3321.5 | 3330 | 3333.2 | 3339.2 | 3345 | 3348 | | 3351 | 3354 | 3358 | 3363.2 | 3369.3 | 3375 | 3378 | 3381 | 3384 | 3387.3 | 3393.3 | 3399.3 | | 3405.3 | 3411.3 | 3417.3 | 3424.2 | 3429.3 | 3435 | 3438 | 3441 | 3444 | 3447.3 | 3453.3 | 3459.3 | | 3465.3 | 3471.3 | 3477.3 | 3483.3 | 3489.7 | 3501.7 | 3513.3 | 3519.3 | 3525.3 | 3531.4 | 3538.2 | 3543.3 | | 3550.6 | 3561 | 3564.3 | 3570 | 3573.3 | 3579.3 | 3585.3 | 3591.7 | 3603.3 | 3609.3 | 3615 | 3618.4 | | 3627.2 | 3633.3 | 3639 | 3642 | 3652 | 3657.2 | 3663 | 3666 | 3669.3 | 3675.3 | 3681.3 | 3687.3 | | 3693.3 | 3699.3 | 3705 | 3708 | 3711 | 3714.3 | 3720 | 3723 | 3726 | 3729.3 | 3735.3 | 3741 | | 3744 | 3747.3 | 3753.3 | 3759 | 3762 | 3765.2 | 3771.2 | 3777.3 | 3783 | 3786 | 3790 | 3795.2 | | 3804 | 3807.2 | 3813.3 | 3819.3 | 3825 | 3828 | 3832 | 3837.2 | 3843.3 | 3849.3 | 3855 | 3858 | | 3861.3 | 3867.3 | 3873.3 | 3879.3 | 3885.2 | 3891 | 3894 | 3897.2 | 3903.3 | 3909.2 | 3915.2 | 3921.3 | | 3927 | 3930 | 3934 | 3939.2 | 3945.3 | 3951 | 3954 | 3957.3 | 3963.3 | 3969.3 | 3975.3 | 3981.3 | | 3987.3 | 3993.3 | 3999.3 | 4005.3 | 4011.3 | 4017.3 | 4023.3 | 4029.3 | 4035.3 | 4041.2 | 4047.3 | 4054 | | 4059.2 | 4065 | 4068 | 4071 | 4074 | 4078 | 4083.2 | 4089.3 | 4095 | 4098 | 4101 | 4104 | | 4107 | 4110 | 4113.3 | 4119.3 | 4125.3 | 4131.3 | 4137.3 | 4143.3 | 4149.3 | 4155 | 4158 | 4164 | | 4167 | 4173.3 | 4180.2 | 4185 | 4188 | 4192 | | 4203.3 | | 4215.3 | 4221.3 | 4227.3 | | 4233.3 | 4239.3 | 4245 | 4248 | 4251.7 | 4263.3 | | 4275.3 | | 4293.3 | 4299.3 | 4305.3 | | 4311.11 | 4329.5 | 4338 | 4341.2 | 4347.2 | 4354.2 | 4359 | 4362 | 4366 | 4371.2 | 4377.3 | 4383.3 | | | · - | | | | | | | | | | | ``` 4389.2 4395.3 4401.3 4407.3 4413.3 4419.3 4425.3 4434.5 4443.3 4449.3 4455.3 4461.3 4467.3 4473.3 4479.3 4485.3 4491.3 4497.3 4503.3 4509.3 4515.3 4521.3 4527 4533.3 4557.2 4563.3 4569.3 4575.3 4581.7 4593.3 4599.3 4608 4539.3 4545 4548 4552 4611.7 4623 4650 4654 4659.2 4665.3 4671.3 4626 4629.2 4635.2 4641.3 4647 4701.3 4707.2 4713.3 4719.3 4725 4728 4732 4677.3 4684.2 4689.3 4695 4698 4737.2 4743.3 4749.3 4755.3 4761.3 4767 4770 4773.2 4779.2 4786.2 4791 4794 4798 4803.2 4810.2 4815.3 4821.3 4827.3 4833.3 4839.3 4845.3 4851.3 4857.3 4863 4881.3 4887 4893.3 4899 4905 4908 4917 4923.3 4866 4869.3 4875 4878 4978.2 4983.3 4989.3 4929.3 4935.3 4941.3 4947.3 4953.3 4959.3 4965 4968 4971.3 5043.3 5049.3 5055 5062 4995.3 5001.5 5010 5013.3 5019.3 5025.3 5031.5 5040 5103.3 5109.3 5115.3 5122.2 5127 5130 5067.2 5073.3 5079 5082 5092 5097 5151.7 5163.3 5169.3 5175.3 5181.3 5188.2 5193.3 5199 5133.3 5139.3 5145 5148 5205.3 5211.3 5217.3 5223.3 5229.3 5235 5238 5241.3 5247 5250 5253.3 5202 5259.3 5265.5 5274 5277 5280 5283.3 5289.3 5295 5298.13 5319.3 5325.3 5331.7 5379.2 5385.3 5391 5394 5397 5343.3 5349.2 5355.2 5361.3 5367 5370 5374 5427.2 5433 5436 5439.3 5445 5403.3 5409.3 5415 5421 5424 5400 5418 5505 5448 5457 5463.2 5469.3 5475.3 5481.3 5487 5493.2 5499.2 5508 5511 5541.3 5547.3 5553.3 5559 5562 5565.3 5571.3 5514 5523.2 5529.3 5535 5538 5607 5613.3 5601 5604 5610 5577 5580 5583 5586 5589.3 5595 5598 5643.3 5649.3 5655.3 5661.2 5667.3 5673.3 5619.3 5625.3 5631 5634 5637 5640 5734.2 5709.7 5722.2 5727.4 5739.3 5745.3 5751 5679 5688 5697.2 5703 5706 5754.3 5760.5 5769.3 5775 5778 5781 5787.2 5793.3 5799 5802 5812 5823.3 5829.3 5835.3 5841.3 5847.3 5854.2 5859.3 5865.3 5871 5874.5 5883.3 5890.2 5895.3 5940 5944.2 5949.3 5955 5901 5907.2 5913.2 5919 5922 5925.2 5931.3 5937 5997 6003 6009.3 6015.3 6021.3 5958 5961.3 5967 5973.3 5979.3 5985 5988 6054 6063 6066 6070.2 6057 6060 6027.3 6034.2 6039 6042 6048 6051 6075 6078 6084 6087 6090 6093.3 6099.3 6105.3 6111 6114 6117 6120 6159 6162 6166 6171.2 6177 6138 6141 6147.2 6153.3 6123.3 6129.3 6135 6226.2 6231 6183.3 6189 6192 6195.3 6201.3 6207.3 6213.3 6219 6222 6180 6267.3 6273.3 6279 6249.3 6255 6258 6261 6264 6234 6237 6240 6243.3 6297.2 6303.3 6309.3 6315 6318 6324 6327 6333.3 6282 6285.3 6291 6294 6372 6375 6378 6381.2 6387.3 6393.3 6339.3 6345 6348 6357 6363.3 6369 6435.3 6441 6444 6426 6429 6432 6399 6402 6405.3 6411.3 6417.3 6423 6450 6453.3 6459 6462 6465.3 6471.3 6477 6480 6483.3 6489.3 6495 6498 6501.2 6522 6526 6531 6537 6543 6546 6549 6555.3 6507 6513.3 6519 6603.3 6609 6594 6597.3 6612 6561.3 6567.3 6574.2 6580.2 6585 6588 6591 6651.2 6657 6660 6615 6618 6621 6624 6627.3 6633.2 6639 6642 6645.2 6663 6684 6687 6693.3 6699 6702 6705 6708 6717 6666 6675.2 6681 6729.3 6735 6741.3 6747.3 6753.3 6759 6762 6765 6768 6771 6724.2 6738 6795.2 6801.3 6807 6810 6814 6819 6826.2 6831 6774 6777.3 6783.3 6789 ``` | 6834 | 6837 | 6840 | 6843.3 | 6849 | 6852 | 6855 | 6858 | 6861.3 | 6867 | 6873.3 | 6879 | |--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | 6882 | 6885 | 6888 | 6892 | 6903 | 6906 | 6909 | 6912 | 6915.3 | 6922.2 | 6927 | 6930 | | 6933.2 | 6939.2 | 6945 | 6954 | 6963.2 | 6969.3 | 6975 | 6978 | 6981 | 6984 | 6987.2 | 6994.2 | | 6999 | 7002 | 7005.3 | 7012.2 | 7017 | 7020 | 7023 | 7026 | 7029 | 7032 | 7035.3 | 7044 | | 7047 | 7050 | 7053.2 | 7059 | 7062 | 7066.2 | 7071 | 7074 | 7080 | 7083.3 | 7089 | 7092 | | 7095.3 | 7101.3 | 7107.3 | 7113.3 | 7119 | 7122 | 7125 | 7128 | 7131.3 | 7137.3 | 7143 | 7146 | | 7149 | 7152 | 7155.3 | 7161 | 7167 | 7170 | 7173 | 7179.2 | 7186.2 | 7191 | 7194 | 7197 | | 7204.2 | 7212 | 7215 | 7218 | 7221 | 7224 | 7227 | 7233.3 | 7239 | 7242 | 7245 | 7248 | | 7252 | 7257 | 7263.3 | 7272 | 7275.3 | 7282.2 | 7287.3 | 7293 | 7296 | 7299.3 | 7305 | 7308 | | 7311 | 7314 | 7317.3 | 7323.3 | 7332 | 7335.3 | 7341 | 7344 | 7347.3 | 7353 | 7356 | 7359 | | 7362 | 7365.2 | 7371.2 | 7377.3 | 7383 | 7386 | 7395.2 | 7401 | 7404 | 7407 | 7413.3 | 7419.3 | | 7426.2 | 7431.3 | 7437 | 7443.3 | 7449 | 7452 | 7455 | 7458 | 7461.3 | 7467.3 | 7473.3 | 7479 | | 7482 | 7491 | 7497.2 | 7503.3 | 7509.2 | 7515.2 | 7524 | 7527 | 7530 | 7539 | 7545.3 | 7551 | | 7554 | 7557 | 7560 | 7563.3 | 7569.3 | 7575 | 7578 | 7584 | 7587.3 | 7593.3 | 7599 | 7602 | | 7605 | 7608 | 7611.3 | 7618.2 | 7623 | 7626 | 7629 | 7632 | 7635.3 | 7642 | 7647 | 7650 | | 7653 | 7656 | 7659.3 | 7665.2 | 7671 | 7674 | 7677 | 7683.3 | 7689 | 7692 | 7695 | 7698 | | 7702 | 7708 | 7713 | 7716 | 7719 | 7722 | 7725 | 7728 | 7731.3 | 7740 | 7743 | 7746 | | 7752 | 7755 | 7758 | 7767 | 7770 | 7773 | 7779 | 7782 | 7786 | 7791 | 7794 | 7797 | | 7803.3 | 7809 | 7815 | 7818 | 7822 | 7827.3 | 7834.2 | 7839 | 7842 | 7845 | 7848 | 7851 | | 7854 | 7860 | 7863 | 7866 | 7869.3 | 7875 | 7878 | 7881.3 | 7887 | 7890 | 7893 | 7899 | | 7902 | 7905 | 7908 | 7911 | 7914 | 7917 | 7920 | 7923.3 | 7929 | 7932 | 7935 | 7939.2 | | 7947.2 | 7953.3 | 7962 | 7971.2 | 7977 | 7983 | 7986 | 7989 | 7992 | 7995 | 7998 | 8002.2 | | 8007 | 8010 | 8013 | 8016 | 8019.3 | 8025.3 | 8031 | 8034 | 8037 | 8040 | 8043.3 | 8052 | | 8055 | 8058 | 8061 | 8064 | 8067.3 | 8074.2 | 8079 | 8082 | 8085 | 8091.2 | 8097.2 | 8103 | | 8106 | 8115 | 8121 | 8124 | 8127 | 8133.3 | 8139.3 | 8145 | 8148 | 8157 | 8163.3 | 8169 | | 8172 | 8175 | 8181.3 | 8187.2 | 8194.2 | 8199 | 8202 | 8205 | 8208 | 8211.3 | 8218 | 8223 | | 8226 | 8235 | 8241 | 8247 | 8250 | 8259 | 8265.3 | 8271 | 8274 | 8277 | 8280 | 8283.3 | | 8289 | 8292 | 8298 | 8301 | 8307 | 8313.3 | 8319 | 8325 | 8328 | 8332 | 8343 | 8346 | | 8349 | 8352 | 8355 | 8358 | 8362 | 8367 | 8370 | 8373 | 8385 | 8391 | 8394 | 8403 | | 8409 | 8412 | 8415 | 8418 | 8427.3 | 8433 | 8436 | 8439 | 8442 | 8445 | 8448 | 8451.3 | | 8457 | 8460 | 8466 | 8469.3 | 8475.3 | 8484 | 8487 | 8493 | 8496 | 8499 | 8502 | 8517 | | 8523 | 8526 | 8529 | 8535 | 8538 | 8541.2 | 8550 | 8556 | 8559 | 8562 | 8565 | 8571 | | 8574 | 8577.3 | 8586 | 8592 | 8595 | 8598 | 8601.3 | 8607 | 8610 | 8613 | 8616 | 8619 | | 8622 | 8628 | 8631 | 8634 | 8637 | 8640 | 8643.3 | 8650 | 8655 | 8658 | 8661 | 8667 | | 8673.2 | 8679 | 8682 | 8697 | 8703.3 | 8709 | 8715 | 8718 | 8721.3 | 8727.3 | 8736 | 8739.3 | | 8745 | 8748 | 8751 | 8754 | 8757.3 | 8764.2 | 8769.3 | 8775 | 8778 | 8781 | 8784 | 8787.3 | | 8793 | 8796 | 8799 | 8802 | 8805 | 8811.2 | 8820 | 8823 | 8826 | 8844 | 8847 | 8850 | | 8853 | 8859 | 8862 | 8865 | 8868 | 8871 | 8874 | 8877 | 8880 | 8883.3 | 8889 | 8892 | | 8895 | 8898 | 8901.3 | 8907 | 8910 | 8916 | 8919 | 8922 | 8925 | 8928 | 8931 | 8934 | | 8938 | 8946 | 8949 | 8955 | 8967 | 8970 | 8974 | 8979 | 8985 | 8988 | 8991 | 8994 | | | | | | | | | | | | | | | 8997.2 | 9003.3 | 9009 | 9012 | 9015 | 9018 | 9021 | 9024 | 9027.3 | 9034.2 | 9039 |
9042 | |---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | 9045 | 9048 | 9051.3 | 9063 | 9066 | 9069 | 9072 | 9075 | 9078 | 9082 | 9087 | 9090 | | 9099 | 9111 | 9114 | 9118 | 9123 | 9129 | 9132 | 9135 | 9141 | 9147.3 | 9153.3 | 9159 | | 9162 | 9168 | 9171.3 | 9177.3 | 9183 | 9186 | 9189 | 9192 | 9195 | 9204 | 9207 | 9213 | | 9216 | 9220.2 | 9237 | 9243 | 9246 | 9249 | 9255 | 9258 | 9262 | 9267 | 9270 | 9273.3 | | 9279 | 9282 | 9285 | 9291 | 9294 | 9298 | 9303 | 9306 | 9309 | 9312 | 9315 | 9318 | | 9324 | 9327 | 9330 | 9333 | 9336 | 9339 | 9342 | 9363.2 | 9370 | 9375 | 9378 | 9381 | | 9387 | 9393.2 | 9399 | 9402 | 9405 | 9417 | 9423 | 9429 | 9435 | 9442.2 | 9447 | 9456 | | 9459.3 | 9468 | 9477.2 | 9486 | 9489 | 9492 | 9495 | 9498 | 9501 | 9504 | 9507 | 9513 | | 9516 | 9519 | 9522 | 9525 | 9531.2 | 9537 | 9540 | 9543 | 9546 | 9555 | 9561 | 9564 | | 9567 | 9570 | 9573.2 | 9579 | 9582 | 9588 | 9591 | 9594 | 9604.2 | 9612 | 9615 | 9618 | | 9627.2 | 9639 | 9645 | 9651 | 9654 | 9657.2 | 9666 | 9669.2 | 9675 | 9678 | 9687 | 9699.2 | | 9708 | 9711 | 9717 | 9720 | 9729 | 9732 | 9735 | 9738 | 9741 | 9747.2 | 9753.3 | 9759 | | 9762 | 9768 | 9771 | 9774 | 9780 | 9783 | 9789 | 9792 | 9795 | 9798 | 9802 | 9807 | | 9810 | 9813 | 9819 | 9825 | 9831 | 9834 | 9843 | 9849 | 9852 | 9855 | 9858 | 9861 | | 9867 | 9870 | 9874.2 | 9879 | 9885 | 9888 | 9891.2 | 9900 | 9903 | 9909.3 | 9915 | 9924 | | 9927 | 9933 | 9939.3 | 9948 | 9957 | 9963.3 | 9978 | 9981.2 | 9987.3 | 9993 | 9996 | 9999 | | 10002 | 10005.3 | 10011 | 10014 | 10017.3 | 10026 | 10029.3 | 10035 | 10038 | 10041.3 | 10047 | 10053 | | 10056 | 10059 | 10068 | 10071 | 10074 | 10077 | 10080 | 10083 | 10086 | 10095 | 10098 | 10107 | | 10113 | 10119 | 10122 | 10137 | 10143 | 10146 | 10149 | 10155 | 10158 | 10162 | 10167 | 10176 | | 10179 | 10188 | 10197.2 | 10209 | 10218 | 10221 | 10224 | 10228 | 10233 | 10236 | 10239 | 10245 | | 10248 | 10251.3 | 10257 | 10260 | 10263 | 10266 | 10269 | 10272 | 10275.3 | 10281 | 10284 | 10287 | | 10293 | 10296 | 10299 | 10302 | 10305 | 10308 | 10317 | 10323.3 | 10329 | 10332 | 10335 | 10338 | | 10341.3 | 10347.3 | 10356 | 10359 | 10362 | 10365 | 10368 | 10371 | 10374 | 10378 | 10386 | 10389 | | 10395 | 10401 | 10407 | 10419 | 10425 | 10428 | 10431 | 10434 | 10443 | 10452 | 10455 | 10461 | | 10464 | 10467 | 10476 | 10485 | 10492 | 10497 | 10506 | 10509 | 10512 | 10515 | 10518 | 10521.3 | | 10527 | 10530 | 10539 | 10545 | 10548 | 10551 | 10554 | 10569.2 | 10575 | 10578 | 10581 | 10587.2 | | 10593 | 10599 | 10605 | 10608 | 10611.3 | 10617.3 | 10623 | 10629 | 10632 | 10635 | 10638 | 10644 | | 10647 | 10650 | 10653 | 10656 | 10659.3 | 10671 | 10674 | 10677 | 10683 | 10686 | 10689 | 10695 | | 10698 | 10701 | 10707 | 10710 | 10716 | 10722 | 10725 | 10731.3 | 10749 | 10755 | 10764 | 10773 | | 10779 | 10788 | 10794 | 10797 | 10800 | 10803 | 10815 | 10818 | 10821 | 10827 | 10833.2 | 10839 | | 10842 | 10845 | 10857 | 10863 | 10866 | 10869 | 10875 | 10878 | 10882.2 | 10887 | 10893 | 10896 | | 10899.2 | 10908 | 10917.3 | 10923 | 10929 | 10932 | 10938 | 10941 | 10944 | 10947.2 | 10953 | 10956 | | 10962 | 10965 | 10972 | 10977 | 10980 | 10986 | 10995 | 11001 | 11004 | 11007 | 11013 | 11016 | | 11019 | 11028 | 11037 | 11043.3 | | 11052 | 11055 | 11058 | 11061.3 | 11067 | 11076 | 11079 | | 11082 | 11085 | 11088 | 11091 | 11094 | 11097.2 | 11106 | 11115 | 11122.2 | 11127 | 11139 | 11148 | | 11151 | 11154 | 11157 | 11163 | 11169 | 11172 | 11175 | 11178 | 11181.3 | 11187 | 11193 | 11196 | | 11199 | 11202 | 11205 | 11208 | 11226 | 11229 | 11232 | 11235 | 11238 | 11242 | 11247 | 11250 | | 11259 | 11265 | 11271 | 11274 | 11277 | 11286 | 11289 | 11295 | 11298 | 11301 | 11307 | 11319 | | 11325 | 11328 | 11331.2 | 11340 | 11349 | 11352 | 11355 | 11364 | 11373 | 11376 | 11379 | 11397 | | 11403 | 11415 | 11418 | 11422 | 11427 | 11436 | 11442 | 11445 | 11451 | 11454 | 11458 | 11469.2 | |---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | 11475 | 11484 | 11493 | 11499.2 | 11514 | 11517 | 11523 | 11535 | 11538 | 11541 | 11547 | 11562 | | 11565 | 11571.3 | 11577 | 11580 | 11583 | 11586 | 11589 | 11595 | 11598 | 11604 | 11607 | 11616 | | 11619.2 | 11628 | 11631 | 11637.2 | 11646 | 11649 | 11655 | 11658 | 11661 | 11664 | 11667.2 | 11673 | | 11679 | 11685 | 11697.2 | 11703 | 11715 | 11721 | 11724 | 11727 | 11733 | 11736 | 11740 | 11745 | | 11751 | 11754 | 11757 | 11760 | 11763.3 | 11769 | 11772 | 11775 | 11778 | 11781.3 | 11787.3 | 11793 | | 11796 | 11802 | 11805 | 11808 | 11811 | 11814 | 11818.2 | 11823 | 11826 | 11829.3 | 11835 | 11838 | | 11847 | 11850 | 11853 | 11859 | 11862 | 11865 | 11868 | 11871 | 11874 | 11877 | 11880 | 11883 | | 11886 | 11890.2 | 11895 | 11898 | 11901 | 11904 | 11907 | 11916 | 11922 | 11925 | 11928 | 11932 | | 11946 | 11949 | 11955 | 11958 | 11962 | 11967 | 11973 | 11979 | 11985 | 11994 | 12003 | 12009.3 | | 12015 | 12018 | 12021 | 12028 | 12034.2 | 12045 | 12051 | 12069 | 12072 | 12075 | 12081 | 12084 | | 12099 | 12111 | 12114 | 12123.2 | 12132 | 12135 | 12138 | 12141.2 | 12147 | 12150 | 12156 | 12159 | | 12162 | 12165 | 12168 | 12171 | 12174 | 12177 | 12186 | 12189.2 | 12195 | 12198 | 12202.2 | 12207 | | 12213 | 12219 | 12228 | 12231 | 12234 | 12237 | 12243 | 12255 | 12261 | 12267 | 12282 | 12285 | | 12297 | 12303 | 12306 | 12309 | 12315 | 12318 | 12322.2 | 12327 | 12333 | 12339 | 12348 | 12357 | | 12360 | 12364 | 12370 | 12378 | 12381 | 12387 | 12394.2 | 12399 | 12405 | 12411.2 | 12420 | 12423 | | 12426 | 12429 | 12435 | 12438 | 12444 | 12447 | 12453 | 12456 | 12459 | 12465.2 | 12474 | 12477 | | 12483.3 | 12489 | 12492 | 12495 | 12498 | 12501.3 | 12507 | 12516 | 12519 | 12522 | 12525 | 12531.3 | | 12546 | 12549 | 12555 | 12561 | 12564 | 12567 | 12579 | 12585 | 12588 | 12591 | 12594 | 12597 | | 12603 | 12612 | 12615 | 12624 | 12627.2 | 12633 | 12636 | 12642 | 12645 | 12652 | 12657 | 12663 | | 12666 | 12672 | 12675 | 12678 | 12681.3 | 12687 | 12690 | 12693 | 12699 | 12705 | 12708 | 12711 | | 12714 | 12723.2 | 12729.3 | 12735 | 12738 | 12741 | 12744 | 12748.2 | 12753 | 12756 | 12759 | 12762 | | 12765 | 12768 | 12771.3 | 12777 | 12780 | 12783 | 12786 | 12792 | 12795 | 12798 | 12804 | 12807 | | 12813 | 12816 | 12819.3 | 12831 | 12834 | 12837 | 12843 | 12846 | 12849 | 12855 | 12858 | 12861 | | 12867 | 12870 | 12876 | 12879 | 12882 | 12885 | 12891 | 12894 | 12909 | 12915 | 12922.2 | 12933 | | 12939 | 12948 | 12954 | 12957 | 12960 | 12963 | 12975 | 12981 | 12987 | 13002 | 13023 | 13026 | | 13035 | 13038 | 13042.2 | 13047 | 13053 | 13059 | 13068 | 13080 | 13083.2 | 13089 | 13092 | 13098 | | 13101 | 13107 | 13114.2 | 13119 | 13122 | 13131 | 13140 | 13143 | 13146 | 13155 | 13164 | 13167 | | 13179 | 13182 | 13185 | 13188 | 13203.3 | 13209 | 13215 | 13218 | 13222.2 | 13227 | 13236 | 13239 | | 13242 | 13245 | 13248 | 13252.2 | 13258 | 13266 | 13269 | 13275 | 13278 | 13281 | 13287 | 13299 | | 13305 | 13308 | 13311 | 13314 | 13317 | 13323 | 13332 | 13335 | 13341 | 13347 | 13356 | 13365 | | 13371 | 13386 | 13392 | 13395 | 13407 | 13410 | 13419 | 13431 | 13434 | 13437 | 13446 | 13455 | | 13458 | 13461 | 13467 | 13479 | 13491 | 13500 | 13512 | 13521 | 13524 | 13533 | 13536 | 13551 | | 13554 | 13557 | 13563.2 | 13572 | 13575 | 13581 | 13587 | 13590 | 13605 | 13611 | 13620 | 13626 | | 13635 | 13638 | 13641 | 13644 | 13647 | 13654.2 | 13659 | 13665 | 13674 | 13683.2 | 13692 | 13695 | | 13698 | 13701 | 13707.2 | 13713 | 13719 | 13722 | 13732 | 13737 | 13743 | 13746 | 13749 | 13752 | | 13755 | 13762.2 | 13767 | 13770 | 13773 | 13779 | 13782 | 13785 | 13788 | 13791 | 13797 | 13809 | | 13812 | 13815 | 13818 | 13821 | 13824 | 13827.2 | 13833.3 | 13839 | 13842 | 13845 | 13851 | 13857 | | 13860 | 13863 | 13866 | 13875 | 13887 | 13893 | 13896 | 13899 | 13902 | 13905 | 13908 | 13917 | | 13923 | 13926 | 13932 | 13938 | 13941 | 13944 | 13947 | 13959 | 13962 | 13965 | 13971 | 13974 | | | | | | | | | | | | | | | 13989 | 13995 | 13998 | 14001 | 14007 | 14013 | 14019 | 14028 | 14043 | 14052 | 14061 | 14064 | |---------|---------|-------|---------|---------|---------|---------|---------|---------|---------|---------|-------| | 14067 | 14076 | 14085 | 14091.2 | 14106 | 14115 | 14127 | 14130 | 14139 | 14154 | 14175 | 14178 | | 14187 | 14199 | 14211 | 14220 | 14235 | 14244 | 14253 | 14277 | 14283.2 | 14292 | 14295 | 14302 | | 14307 | 14310 | 14319 | 14322 | 14325 | 14334 | 14337.3 | 14355 | 14358 | 14361 | 14364 | 14367 | | 14379 | 14388 | 14391 | 14403 | 14409 | 14412 | 14421 | 14427.2 | 14433 | 14436 | 14439 | 14442 | | 14451.2 | 14457 | 14460 | 14463 | 14466 | 14469 | 14472 | 14475 | 14478 | 14481.3 | 14487 | 14490 | | 14493 | 14496 | 14499 | 14502 | 14505 | 14508 | 14514 | 14517 | 14520 | 14523.3 | 14529 | 14532 | | 14538 | 14547.3 | 14553 | 14556 | 14559 | 14562 | 14565 | 14571 | 14580 | 14583 | 14586 | 14595 | | 14601 | 14604 | 14607 | 14613 | 14616 | 14619.3 | 14625 | 14628 | 14643.3 | 14652 | 14655 | 14658 | | 14661 | 14664 | 14667 | 14670 | 14679 | 14682 | 14685 | 14691 | 14694 | 14709 | 14715 | 14722 | | 14727 | 14739 | 14748 | 14751 | 14757 | 14772 | 14781 | 14784 | 14787 | 14796 | 14805 | 14811 | | 14826 | 14829 | 14835 | 14847 | 14850 | 14871 | 14874 | 14898 | 14907 | 14919 | 14931 | 14940 | | 14955 | 14964 | 14997 | 15003 | 15027 | 15039 | 15042 | 15054 | 15060 | 15063 | 15082.2 | 15099 | | 15108 | 15117 | 15123 | 15135 | 15147 | 15159 | 15162 | 15171 | 15180 | 15183 | 15186 | 15189 | | 15198 | 15204 | 15207 | 15219 | 15228 | 15279 | 15285 | 15291 | 15303 | 15315 | 15324 | 15327 | | 15333 | 15342 | 15351 | 15364 | 15372 | 15387 | 15423 | 15429 | 15447 | 15450 | 15471 | 15474 | | 15477 | 15483 | 15492 | 15495 | 15507 | 15516 | 15537 | 15540 | 15549 | 15562.2 | 15567 | 15573 | | 15579 | 15591 | 15603 | 15606 | 15612 | 15615 | 15618 | 15627 | 15630 | 15633 | 15636 | 15639 | | 15642 | 15651 | 15654 | 15657 | 15660 | 15663 | 15675 | 15684 |
15687 | 15693 | 15699 | 15702 | | 15717 | 15723 | 15726 | 15735 | 15738 | 15747 | 15753 | 15756 | 15759 | 15762 | 15780 | 15783 | | 15789 | 15792 | 15795 | 15804 | 15813.3 | 15819 | 15828 | 15834 | 15837 | 15840 | 15843 | 15852 | | 15855 | 15858 | 15861 | 15876 | 15879 | 15882 | 15903 | 15906 | 15909 | 15915 | 15918 | 15921 | | 15924 | 15927 | 15930 | 15939.3 | 15945 | 15948 | 15951 | 15954 | 15966 | 15969 | 15975 | 15981 | | 15987 | 15993 | 15999 | 16005 | 16011.3 | 16017 | 16020 | 16035 | 16044 | 16047 | 16071 | 16074 | | 16077 | 16083.2 | 16092 | 16095 | 16102.2 | 16107 | 16119 | 16122 | 16134 | 16161 | 16167 | 16179 | | 16185 | 16188 | 16197 | 16203 | 16212 | 16215 | 16221 | 16224 | 16227 | 16236 | 16245 | 16257 | | 16266 | 16272 | 16284 | 16287 | 16290 | 16293 | 16299 | 16314 | 16323 | 16332 | 16338 | 16341 | | 16350 | 16353 | 16356 | 16359 | 16362 | 16371 | 16380 | 16386 | 16398 | 16404 | 16407 | 16413 | | 16419 | 16422 | 16437 | 16443 | 16449 | 16455 | 16458 | 16467 | 16476 | 16479 | 16482 | 16509 | | 16524 | 16533 | 16539 | 16545 | 16548 | 16554 | 16557 | 16560 | 16563 | 16572 | 16575 | 16581 | | 16587 | 16596 | 16602 | 16611 | 16623 | 16626 | 16635 | 16647 | 16650 | 16659 | 16662 | 16674 | | 16689 | 16701 | 16707 | 16713 | 16719 | 16731 | 16737 | 16740 | 16743 | 16764 | 16767 | 16797 | | 16804.2 | 16812 | 16815 | 16824 | 16827 | 16830 | 16839 | 16842 | 16863 | 16869 | 16887 | 16890 | | 16893 | 16899 | 16902 | 16908 | 16911 | 16917 | 16923 | 16926 | 16932 | 16941 | 16944 | 16947 | | 16956 | 16965 | 16971 | 16980 | 16989 | 16995 | 17002.2 | 17007 | 17010 | 17013 | 17019 | 17028 | | 17034 | 17052 | 17055 | 17058 | 17061 | 17067 | 17073 | 17076 | 17079 | 17097 | 17103 | 17106 | | 17115 | 17118 | 17121 | 17124 | 17127 | 17133 | 17139 | 17142 | 17145 | 17163 | 17166 | 17172 | | 17175 | 17178 | 17187 | 17196 | 17199 | 17223 | 17226 | 17229 | 17232 | 17241 | 17244 | 17247 | | 17250 | 17253 | 17256 | 17259 | 17262 | 17268 | 17295 | 17298 | 17301 | 17307 | 17319 | 17322 | | 17325 | 17337 | 17346 | 17349 | 17355 | 17358 | 17367 | 17376 | 17379 | 17388 | 17397 | 17427 | ``` 17445 17451 17463 17475 17484 17487 17493 17502 17505 17514 17523 17532 17547 17559 17577 17601 17607 17628 17631 17676 17703 17706 17715 17727 17730 17733 17739 17754 17763 17772 17787 17796 17811 17820 17829 17844 17859 17871 17874 17883 17895 17898 17901 17910 17916 17919 17922 17931 17934 17940 17943 17955 17964 17979 17988 17997 18003 18015 18027 18042 18063 18066 18084 18087 18123 18147 18156 18159 18180 18183 18186 18195 18204 18207 18228 18246 18249 18252 18255 18258 18267 18276 18279 18315 18327 18351 18354 18372 18375 18381 18396 18405 18447 18450 18459 18498 18501 18507 18519 18531 18564 18597 18603 18615 18627 18639 18642 18678 18681 18687 18699 18708 18711 18723 18747 18753 18783 18786 18804 18807 18849 18858 18867 18879 18891 18903 18927 18933 18945 18966 18975 18987 19029 19059 19068 19071 19101 19113 19116 19143 19146 19155 19167 19179 19209 19218 19227 19239 19260 19284 19335 19347 19359 19377 19380 19407 19419 19428 19431 19437 19446 19449 19461 19467 19473 19476 19479 19491 19503 19506 19527 19545 19548 19575 19578 19587 19593 19599 19611 19617 19620 19644 19647 19671 19674 19683 19686 19692 19695 19704 19707 19710 19719 19734 19743 19749 19761 19767 19770 19779 19788 19791 19797 19806 19821 19824 19827 19836 19845 19848 19857 19869 19872 19875 19887 19899 19908 19932 19935 19938 19941 19947 19950 19956 19959 19962 19974 19977 19980 19983 19986 19998 20004 20013 20019 20022 20031 20037 20043 20046 20049 20058 20067 20076 20079 20082 20109 20124 20133 20139 20148 20154 20163 20175 20187 20202 20223 20226 20244 20247 20259 20283 20289 20292 20301 20316 20319 20331 20340 20343 20346 20364 20367 20388 20391 20394 20406 20409 20415 20418 20427 20436 20439 20487 20508 20514 20532 20535 20541 20544 20556 20565 20571 20577 20586 20595 20604 20607 20610 20619 20634 20652 20658 20676 20679 20682 20691 20697 20700 20703 20706 20718 20724 20727 20733 20739 20763 20769 20775 20778 20787 20796 20799 20802 20829 20832 20844 20853 20856 20859 20868 20874 20883 20895 20898 20907 20919 20922 20940 20943 20946 20964 20967 20979 21021 21027 21039 21045 21051 21060 21063 21075 21084 21087 21111 21132 21147 21150 21153 21159 21180 21183 21207 21210 21228 21231 21258 21264 21273 21276 21279 21285 21303 21315 21327 21339 21372 21375 21378 21396 21399 21405 21408 21411 21420 21429 21432 21435 21444 21459 21471 21474 21477 21483 21495 21498 21516 21519 21522 21525 21531 21534 21555 21564 21579 21585 21597 21603 21612 21615 21627 21636 21642 21651 21663 21684 21690 21702 21714 21723 21732 21747 21771 21777 21780 21783 21786 21804 21807 21828 21837 21846 21849 21852 21855 21867 21876 21879 21897 21915 21924 21927 21930 21951 21954 21972 21981 21984 21987 21993 21996 22002 22023 22029 22047 22050 22089 22098 22101 22107 22119 22128 22131 22155 22161 22173 22239 22257 22278 22281 22299 22308 22341 22347 22353 22383 22386 22407 22437 22467 ``` | 22479 | 22491 | 22503 | 22524 | 22572 | 22587 | 22650 | 22713 | 22719 | 22779 | 22839 | 22872 | |-------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 22875 | 22881 | 22884 | 22932 | 22998 | 23001 | 23019 | 23028 | 23031 | 23037 | 23043 | 23127 | | 23142 | 23157 | 23187 | 23193 | 23196 | 23223 | 23268 | 23277 | 23283 | 23286 | 23289 | 23292 | | 23295 | 23298 | 23307 | 23316 | 23319 | 23322 | 23325 | 23346 | 23349 | 23355 | 23379 | 23385 | | 23388 | 23403 | 23412 | 23415 | 23445 | 23451 | 23466 | 23475 | 23487 | 23499 | 23514 | 23517 | | 23532 | 23538 | 23541 | 23547 | 23550 | 23556 | 23571 | 23601 | 23604 | 23613 | 23619 | 23652 | | 23658 | 23676 | 23679 | 23682 | 23706 | 23718 | 23724 | 23727 | 23739 | 23748 | 23763 | 23769 | | 23772 | 23799 | 23844 | 23847 | 23862 | 23865 | 23868 | 23871 | 23874 | 23877 | 23886 | 23895 | | 23898 | 23913 | 23919 | 23931 | 23937 | 23997 | 24003 | 24006 | 24027 | 24030 | 24039 | 24042 | | 24054 | 24069 | 24081 | 24099 | 24108 | 24123 | 24141 | 24147 | 24156 | 24165 | 24171 | 24186 | | 24189 | 24195 | 24207 | 24219 | 24252 | 24255 | 24258 | 24267 | 24270 | 24276 | 24279 | 24291 | | 24315 | 24321 | 24333 | 24363 | 24396 | 24399 | 24402 | 24420 | 24423 | 24438 | 24441 | 24444 | | 24447 | 24450 | 24459 | 24471 | 24483 | 24495 | 24507 | 24513 | 24519 | 24543 | 24546 | 24564 | | 24567 | 24576 | 24597 | 24609 | 24618 | 24627 | 24639 | 24651 | 24684 | 24732 | 24747 | 24759 | | 24783 | 24789 | 24801 | 24810 | 24819 | 24828 | 24861 | 24885 | 24897 | 24915 | 24927 | 24939 | | 24975 | 24978 | 24999 | 25011 | 25014 | 25023 | 25035 | 25053 | 25083 | 25149 | 25173 | 25179 | | 25188 | 25227 | 25263 | 25266 | 25287 | 25299 | 25329 | 25332 | 25356 | 25359 | 25371 | 25446 | | 25449 | 2 5452 | 25476 | 25479 | 25527 | 25548 | 25551 | 25554 | 25572 | 25575 | 25581 | 25626 | | 25650 | 25659 | 25692 | 25731 | 25740 | 25767 | 25779 | 25803 | 25818 | 25827 | 25836 | 25869 | | 25884 | 25893 | 25908 | 25914 | 25923 | 25935 | 25983 | 25986 | 26019 | 26049 | 26061 | 26091 | | 26124 | 26166 | 26172 | 26187 | 26250 | 26268 | 26298 | 26301 | 26313 | 26319 | 26346 | 26385 | | 26412 | 26436 | 26445 | 26556 | 26595 | 26625 | 26628 | 26652 | 26655 | 26667 | 26676 | 26682 | | 26706 | 26724 | 26742 | 26769 | 26793 | 26799 | 26817 | 26820 | 26844 | 26847 | 26874 | 26877 | | 26886 | 26892 | 26970 | 27021 | 27033 | 27069 | 27099 | 27105 | 27129 | 27132 | 27156 | 27165 | | 27189 | 27213 | 27276 | 27282 | 27300 | 27324 | 27357 | 27402 | 27411 | 27420 | 27444 | 27468 | | 27540 | 27543 | 27564 | 27627 | 27633 | 27639 | 27657 | 27660 | 27663 | 27681 | 27690 | 27753 | | 27765 | 27774 | 27777 | 27783 | 27807 | 27819 | 27825 | 27885 | 27915 | 27933 | 28020 | 28029 | | 28059 | 28077 | 28146 | 28155 | 28167 | 28188 | 28209 | 28212 | 28227 | 28236 | 28251 | 28263 | | 28332 | 28356 | 28359 | 28362 | 28371 | 28407 | 28455 | 28461 | 28476 | 28485 | 28506 | 28515 | | 28539 | 28554 | 28563 | 28572 | 28653 | 28671 | 28683 | 28692 | 28695 | 28698 | 28707 | 28716 | | 28791 | 28815 | 28818 | 28839 | 28842 | 28866 | 28893 | 28899 | 28908 | 28911 | 28923 | 28929 | | 28932 | 28938 | 28953 | 28962 | 28986 | 29025 | 29037 | 29043 | 29049 | 29052 | 29067 | 29076 | | 29079 | 29082 | 29085 | 29091 | 29139 | 29145 | 29148 | 29163 | 29172 | 29181 | 29196 | 29205 | | 29217 | 29226 | 29250 | 29259 | 29319 | 29337 | 29343 | 29391 | 29403 | 29415 | 29427 | 29442 | | 29469 | 29472 | 29523 | 29538 | 29559 | 29583 | 29586 | 29619 | 29622 | 29625 | 29628 | 29652 | | 29655 | 29679 | 29685 | 29691 | 29715 | 29766 | 29772 | 29796 | 29802 | 29811 | 29823 | 29826 | | 29835 | 29847 | 29850 | 29871 | 29895 | 29901 | 29907 | 29946 | 29949 | 29967 | 29979 | 29994 | | 30027 | 30060 | 30075 | 30081 | 30084 | 30093 | 30111 | 30123 | 30132 | 30147 | 30159 | 30162 | | 30201 | 30207 | 30231 | 30267 | 30273 | 30306 | 30327 | 30357 | 30369 | 30372 | 30378 | 30396 | | 30399 | 30402 | 30411 | 30483 | 30486 | 30489 | 30492 | 30516 | 30519 | 30525 | 30555 | 30579 | ``` 30621 30663 30699 30714 30738 30756 30759 30762 30771 30780 30786 30807 30816 30837 30843 30849 30858 30867 30876 30909 30915 30924 30933 30939 30948 30963 30975 31002 31023 31026 31059 31101 31119 31131 31140 31146 31167 31215 31227 31239 31275 31287 31332 31341 31410 31419 31491 31719 31743 31746 31788 31809 31815 31932 31983 32010 32061 32085 32127 32139 32187 32211 32253 32283 32319 32367 32487 32571 32646 32649 32652 32676 32679 32697 32715 32745 32823 32826 32829 32865 32871 32874 32925 32931 32940 32997 33003 33027 33042 33057 33081 33111 33117 33141 33171 33177 33183 33186 33195 33207 33219 33237 33249 33252 33258 33279 33309 33339 33363 33366 33369 33372 33396 33399 33405 33429 33435 33438 33459 33471 33495 33501 33546 33579 33588 33591 33594 33615 33651 33657 33675 33681 33705 33717 33723 33729 33732 33738 33747 33756 33801 33804 33831 33834 33855 33867 33882 33906 33924 33927 33939 33957 33969 33978 33981 33999 34011 34083 34092 34107 34119
34191 34233 34263 34266 34338 34359 34362 34371 34443 34449 34476 34515 34524 34575 34623 34626 34659 34701 34725 34731 34740 34755 34767 34806 34812 34815 34827 34836 34884 34911 34941 34953 34956 34965 34971 34974 34983 34986 34995 35007 35019 35052 35076 35091 35100 35109 35139 35163 35196 35235 35244 35295 35343 35346 35388 35532 35547 35601 35661 35676 35706 35715 35727 35739 35748 35811 35940 35949 36099 36108 36171 36228 36291 36351 36372 36474 36516 36531 36579 36588 36675 36684 36705 36714 36891 37035 37074 37179 37188 37194 37218 37260 37335 37362 37506 37527 37539 37599 37611 37686 37692 37716 37791 38331 38340 38367 38403 38409 38427 38436 38445 38475 38481 38556 38586 38607 38619 38634 38655 38658 38679 38763 38772 38787 38838 38859 38862 38883 38907 38913 38976 38988 38997 39018 39123 39132 39159 39276 39306 39327 39453 39771 39915 39996 40047 40131 40323 40383 40452 40491 40572 40650 40857 40923 40929 41004 41067 41139 41148 41181 41211 41220 41289 41292 41355 41361 41364 41391 41394 41415 41433 41436 41442 41499 41577 41580 41598 41604 41613 41616 41619 41643 41649 41724 41745 41754 41775 41802 41823 41826 41850 41874 41901 41931 41940 41967 41997 42006 42018 42027 42036 42075 42111 42114 42135 42186 42189 42219 42234 42300 42315 42363 42375 42399 42420 42507 42519 42567 42588 42726 42732 42753 42756 42780 42795 42801 42876 42906 42927 42939 42954 43005 43020 43053 43083 43107 43197 43227 43263 43266 43287 43449 43452 43476 43515 43626 43659 43674 43803 43827 43947 43956 43983 43986 44172 44349 44379 44388 44475 44532 44559 44583 44601 44739 44748 44892 45531 45609 45675 45681 45834 45933 45963 46044 46143 46506 46539 46683 46722 47049 47175 47259 47268 47340 47355 47403 47553 47619 47625 47628 47691 47772 47817 47871 47943 47949 47985 48075 48093 48123 48159 48204 48267 48306 48327 48492 48519 ``` | 48555 | 48612 | 48699 | 48732 | 48756 | 48771 | 48801 | 48852 | 48876 | 48924 | 48951 | 49026 | |--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------| | 49203 | 49206 | 49227 | 49644 | 49767 | 49779 | 49788 | 49851 | 49929 | 49935 | 49938 | 49959 | | 49995 | 50001 | 50052 | 50127 | 50154 | 50253 | 50463 | 50466 | 50571 | 50859 | 51003 | 51135 | | 51183 | 51186 | 51300 | 51327 | 51372 | 51387 | 51546 | 51579 | 51723 | 51756 | 51780 | 51.804 | | 51867 | 51876 | 51903 | 51906 | 51927 | 51945 | 51948 | 51954 | 52011 | 52017 | 52020 | 52086 | | 52092 | 52107 | 52236 | 52257 | 52266 | 52269 | 52272 | 52287 | 52299 | 52308 | 52413 | 52443 | | 52452 | 52476 | 52479 | 52482 | 52506 | 52509 | 52521 | 52524 | 52533 | 52587 | 52623 | 52626 | | 52647 | 52659 | 52731 | 52812 | 52827 | 52911 | 52986 | 53019 | 53058 | 53079 | 53163 | 53343 | | 53346 | 53388 | 53451 | 53526 | 53532 | 53559 | 53595 | 53601 | 53676 | 53706 | 53727 | 53739 | | 53754 | 53811 | 53820 | 53847 | 53853 | 54099 | 54171 | 54276 | 54315 | 54351 | 54474 | 54540 ' | | 54627 | 54684 | 54783 | 54786 | 54996 | 55347 | 55506 | 55527 | 55548 | 55611 | 55692 | 55716 | | 55761 | 55836 | 55887 | 55914 | 55977 | 56427 | 56511 | 56679 | 56985 | 57165 | 57267 | 57276 | | 57411 | 57579 | 57771 | 58674 | 58695 | 58809 | 58815 | 58818 | 58947 | 59001 | 59073 | 59106 | | 59127 | 59148 | 59319 | 59361 | 59364 | 59385 | 59505 | 59565 | 59571 | 59580 | 59667 | 59757 | | 59868 | 59919 | 59943 | 60006 | 60027 | 60141 | 60156 | 60195 | 60546 | 60732 | 60876 | 60906 | | 61083 | 61905 | 62457 | 62487 | 62817 | 62919 | 62988 | 63243 | 63279 | 63324 | 63423 | 63465 | | 63495 | 63540 | 63684 | 63756 | 63972 | 64002 | 64188 | 64287 | 64332 | 64401 | 64476 | 64539 | | 64866 | 64908 | 65052 | 65121 | 65196 | 65340 | 65373 | 65484 | 65628 | 65772 | 65916 | 65946 | | 65988 | 66129 | 66201 | 66204 | 66213 | 66306 | 66381 | 66492 | 66633 | 66852 | 66876 | 66924 | | 66945 | 67137 | 67197 | 67206 | 67209 | 67212 | 67227 | 67305 | 67839 | 67932 | 68076 | 68283 | | 68499 | 68652 | 68751 | 68826 | 68832 | 68874 | 68940 | 68961 | 69039 | 69183 | 69186 | 69363 | | 69372 | 69615 | 69660 | 69759 | 69903 | 69906 | 69993 | 70092 | 70119 | 70221 | 70236 | 70287 | | 70311 | 70371 | 70479 | 70539 | 71244 | 71346 | 71.385 | 71457 | 71547 | 71631 | 71919 | 71949 | | 72252 | 72351 | 72783 | 72786 | 72861 | 72891 | 73113 | 73116 | 73179 | 73245 | 73332 | 73611 | | 73755 | 74076 | 77355 | 77643 | 77652 | 78183 | 78327 | 78435 | 78687 | 78759 | 78876 | 78927 | | 79308 | 79839 | 80706 | 81099 | 82188 | 82332 | 82764 | 83052 | 84132 | 84201 | 84492 | 85140 | | 85356 | 85407 | 85533 | 85572 | 85587 | 85746 | 85932 | 86076 | 86466 | 86652 | 86667 | 86793 | | 86796 | 86847 | 86940 | 87003 | 87186 | 87228 | 87927 | 88809 | 88827 | 89244 | 89775 | 89964 | | 90684 | 90966 | 90972 | 91146 | 91404 | 95436 | 96012 | 96732 | 96876 | 97452 | 104139 | 104283 | | 104652 | 105228 | 108972 | 109287 | 109683 | 109692 | 110268 | 110439 | 110844 | 110943 | 110988 | 111699 | | 111867 | 113292 | 114012 | 121932 | 127692 | 128412 | 131292 | 137628 | | | | | ## **Bibliography** - [1] ABEL, R. J. R., BROUWER, A. E., COLBOURN, C. J., AND DINITZ, J. H. Mutually orthogonal Latin squares (MOLS). In *The CRC Handbook of Combinatorial Designs*, C. J. Colbourn and J. H. Dinitz, Eds. CRC Press, Inc., Boca Raton, 1996, ch. II.2, pp. 111-142. - [2] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The Design and Analysis of Computer Algorithms. Addison-Wesley, Massachusetts, 1974. - [3] Albanese, A., Blömer, J., Edmonds, J., Luby, M., and Sudan, M. Priority encoding transmission. In *Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science* (1994), IEEE, pp. 604-612. - [4] Alon, N. Eigenvalues and expanders. Combinatorica 6 (1986), 83-96. - [5] Alon, N. Eigenvalues, geometric expanders, sorting in rounds, and Ramsey theory. Combinatorica 6 (1986), 207-219. - [6] ALON, N., BRUCK, J., NAOR, J., NAOR, M., AND ROTH, R. M. Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE Trans. Inform. Theory 38 (1992), 509-516. - [7] Alon, N., Edmonds, J., and Luby, M. Linear time erasure codes with nearly optimal recovery (extended abstract). In *Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science* (1995), IEEE, pp. 512-519. - [8] ALPERT, S. R. Twofold triple systems and graph imbeddings. J. Combin. Theory Ser. A 18 (1975), 101-107. - [9] Balding, D. J., and Torney, D. C. Optimal pooling designs with error detection. J. Combin. Theory Ser. A 74 (1996), 131-140. - [10] BARILLOT, E., LACROIX, B., AND COHEN, D. Theoretical analysis of library screening using an n-dimensional pooling strategy. Nucleic Acids Research 19 (1991), 6241-6247. - [11] Bassalygo, L. A., and Pinsker, M. S. Limited multiple-access of a non-synchronous channel. *Problemy Peredachi Informatsii* 19 (1983), 92-96. - [12] BASSALYGO, L. A., ZYABLOV, V. V., AND PINSKER, M. S. Problems of complexity in the theory of correcting codes. *Problems Inform. Transmission* 13 (1977), 166-175. - [13] Bennett, F. E. Latin squares with pairwise orthogonal conjugates. *Discrete Math.* 36 (1981), 117-137. - [14] BERGER, T., MEHRAVARI, N., TOWSLEY, D., AND WOLF, J. Random multipleaccess communications and group testing. *IEEE Trans. Commun.* 32 (1984), 769– 778. - [15] Beth, T., Jungnickel, D., and Lenz, H. Design Theory. Cambridge University Press, Cambridge, 1993. - [16] BIEN, F. Constructions of telephone networks by group representations. Notices Amer. Math. Soc. 36 (1989), 5-22. - [17] Bollobás, B. Combinatorics: Set Systems, Hypergraphs, Families of Vectors, and Combinatorial Probability. Cambridge University Press, Cambridge, 1986. - [18] BOLLOBÁS, B., AND ROSENFELD, M. Sorting in one round. Israel J. Math. 38 (1981), 154-160. - [19] BONEH, D., AND SHAW, J. Collusion-secure fingerprinting for digital data. In Advances in Cryptology - CRYPTO '95, D. Coppersmith, Ed., vol. 963 of Lecture Notes in Computer Science. Springer-Verlag, Berline, 1995, pp. 452-465. - [20] BRASSIL, J. T., LOW, S., MAXEMCHUK, N. F., AND O'GORMAN, L. Electronic marking and identification techniques to discourage document copying. IEEE J. Selected Areas in Commun. 13 (1995), 1495-1504. - [21] BROUWER, A. E. Steiner triple systems without subconfigurations. Technical report ZW 104/77, Mathematisch Centrum Amsterdam, Amsterdam, 1977. - [22] BROUWER, A. E. Optimal packings of K_4 's into a K_n . J. Combin. Theory Ser. A 26 (1979), 278-297. - [23] BROUWER, A. E. A series of separable designs with application to pairwise orthogonal Latin squares. European J. Combin. 1 (1980), 39-41. - [24] Brouwer, A. E., and van Rees, G. H. J. More mutually orthogonal Latin squares. Discrete Math. 39 (1982), 263-281. - [25] BRUNO, W. J., BALDING, D. J., KNILL, E. H., BRUCE, D., WHITTAKER, C., DOGGETT, N., STALLINGS, R., AND TORNEY, D. C. Design of efficient pooling experiments. Genomics 26 (1995), 21-30. - [26] BUHRMAN, H., HEMASPAANDRA, E., AND LONGPRÉ, L. SPARSE reduces conjunctively to TALLY. SIAM J. Comput. 24 (1995), 673-681. - [27] Busschbach, P. Constructive methods to solve the problems of: s-surjectivity, conflict resolution, coding in defective memories. Tech. Rep. 84D005, École Nationale Supér. Télécomm., Paris, 1984. - [28] Capetanakis, J. I. Generalized TDMA: The multi-accessing tree protocol. *IEEE Trans. Commun.* 27 (1979), 1479–1485. - [29] CAPETANAKIS, J. I. Tree algorithms for packet broadcast channels. IEEE Trans. Inform. Theory 25 (1979), 505-515. - [30] CHANG, X. M., AND HWANG, F. K. The minimax number of calls for finite population multi-access channels. In *Computer Networking and Performance Evaluation*, T. Hasegawa, H. Takagi, and Y. Takahashi, Eds. Elsevier, Amsterdam, 1986, pp. 381-388. - [31] CHANG, X. M., HWANG, F. K., AND WENG, J. F. Optimal detection of two defectives with a parity check device. SIAM J. Discrete Math. 1 (1988), 38-44. - [32] CHANG, Y. A bound for Wilson's theorem (II). J. Combin. Des. 4 (1996), 11-26. - [33] CHAUDHURI, S., AND
RADHAKRISHNAN, J. Deterministic restrictions in circuit complexity. In *Proceedings of the 28th Annual ACM Symposium on the Theory of Computing* (1996), ACM, pp. 30-36. - [34] CHEE, Y. M., AND ROYLE, G. F. Enumeration of small nonisomorphic 1-rotational twofold triple systems. *Math. Comp.* 59 (1992), 609-612. - [35] CHEN, C. C., AND HWANG, F. K. Detecting and locating electrical shorts using group testing. *IEEE Trans. Circuits Systems* 36 (1989), 1113-1116. - [36] CHEN, R. W., AND HWANG, F. K. K-definite group testing and its application to polling in computer networks. Congr. Numer. 47 (1985), 145-159. - [37] COLBOURN, C. J. Private communication. - [38] Colbourn, C. J. Generating Kirkman triple systems quickly. Unpublished manuscript, 1995. - [39] COLBOURN, C. J., COLBOURN, M. J., HARMS, J. J., AND ROSA, A. A complete census of (10, 3, 2) block designs and of Mendelsohn triple systems of order ten, III: (10, 3, 2) block designs without repeated blocks. Congr. Numer. 39 (1983), 211-234. - [40] COLBOURN, C. J., GIBBONS, P. B., MATHON, R., MULLIN, R. C., AND ROSA, A. The spectrum of orthogonal Steiner triple systems. Canad. J. Math. 46 (1994), 239-252. - [41] COLBOURN, C. J., HOFFMAN, D. G., AND REES, R. A new class of group divisible designs with block size three. J. Combin. Theory Ser. A 59 (1992), 73-89. - [42] COLBOURN, C. J., AND ROSA, A. Leaves, excesses and neighbourhoods in triple systems. Australas. J. Combin. 4 (1991), 143-178. - [43] COLBOURN, M. J. Cyclic Block Designs: Computational Aspects of Their Construction and Analysis. PhD thesis, Department of Computer Science, University of Toronto, Toronto, August 1980. - [44] Colbourn, M. J., and Colbourn, C. J. Cyclic block designs with block size 3. European J. Combin. 2 (1981), 21-26. - [45] DISK/TREND, Inc. 1994 DISK/TREND Report: Disk Drive Arrays. 1925 Landings Drive, Mountain View, California, April 1994. - [46] DORFMAN, R. The detection of defective members of large populations. Ann. Math. Statist. 14 (1943), 437-440. - [47] DOYEN, J. Sur la structure de certains système triples de Steiner. *Math. Z. 111* (1969), 289-300. - [48] Du, D.-Z., and Hwang, F. K. Combinatorial Group Testing and its Applications. World Scientific, Singapore, 1993. - [49] DUCROCQ, P. M., AND STERBOUL, F. Les G-systèmes triples. Ann. Discrete Math. 9 (1980), 141-145. - [50] DYACHKOV, A. G., AND RYKOV, V. V. Bounds on the lengths of disjunctive codes. Problemy Peredachi Informatsii 18 (1982), 7-13. - [51] DYACHKOV, A. G., AND RYKOV, V. V. Обзор теории дизъюнктивных кодов. Problems Control Inform. Theory 12 (1983), 229-242. - [52] DYACHKOV, A. G., RYKOV, V. V., AND RASHAD, A. M. Superimposed distance codes. Problems Control Inform. Theory 18 (1989), 237-250. - [53] EMCH, A. Triple and multiple systems, their geometric configurations and groups. Trans. Amer. Math. Soc. 31 (1929), 25-42. - [54] Erdős, P. On sequences of integers no one of which divides the product of two others and some related problems. Izv. Naustno-Issl. Inst. Mat. i Meh. Tomsk. 2 (1938), 74-82. - [55] Erdős, P. Problems and results in combinatorial analysis. In Colloq. Internat. Sulle Teorie Combinatorie, vol. 2. Acad. Naz. Lincei, Roma, 1976, pp. 3-17. - [56] Erdős, P. Problems and results in combinatorial analysis. Creation in Mathematics 9 (1976), 25. - [57] ERDÖS, P., FRANKL, P., AND FÜREDI, Z. Families of finite sets in which no set is covered by the union of two others. J. Combin. Theory Ser. A 33 (1982), 158-166. - [58] ERDÖS, P., FRANKL, P., AND FÜREDI, Z. Families of finite sets in which no set is covered by the union of r others. *Israel J. Math.* 51 (1985), 79-89. - [59] ERDÖS, P., AND HANANI, H. On a limit theorem in combinatorial analysis. Publ. Math. Debrecen 10 (1963), 10-13. - [60] Erdős, P., and Kleitman, D. J. On coloring graphs to maximize the proportion of multicolored k-edges. J. Combin. Theory 5 (1968), 164-169. - [61] Erdös, P., and Moser, L. Problem 35. In Proceedings of the Conference on Combinatorial Structures and Applications (Calgary, 1969, 1970), Gordon and Breach, p. 506. - [62] FRANKL, P., AND FÜREDI, Z. A new extremal property of Steiner triple systems. Discrete Math. 48 (1984), 205-212. - [63] FRANKL, P., AND FÜREDI, Z. Union-free hypergraphs and probability theory. European J. Combin. 5 (1984), 12-131. - [64] FRANKL, P., AND FÜREDI, Z. Union-free families of sets and equations over fields. J. Number Theory 23 (1986), 210-218. - [65] FÜREDI, Z. Turán type problems. In Surveys in Combinatorics, 1991, A. D. Keedwell, Ed., no. 166 in London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1991, pp. 253-300. - [66] GABBER, O., AND GALIL, Z. Explicit construction of linear-sized superconcentrators. J. Comput. System Sci. 22 (1981), 407-420. - [67] GAREY, M. R., JOHNSON, D. S., AND SO, H. C. An application of graph coloring to printed circuit testing. IEEE Trans. Circuits Systems 23 (1976), 591-599. - [68] GIBBONS, P. B. A census of orthogonal Steiner triple systems of order 15. Ann. Discrete Math. 26 (1985), 165-182. - [69] GIBBONS, P. B., AND MATHON, R. The use of hill-climbing to construct orthogonal Steiner triple systems. J. Combin. Des. 1 (1993), 27-50. - [70] GRABLE, D. More-than-nearly-perfect packings and partial designs. Preprint, 1994. - [71] GREENBERG, A. G., AND WINOGRAD, S. A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels. J. Assoc. Comput. Mach. 32 (1985), 589-596. - [72] GRIGGS, T. S., MURPHY, J., AND PHELAN, J. S. Anti-Pasch Steiner triple systems. J. Combin. Inform. System Sci. 15 (1990), 79-84. - [73] HÄGGKVIST, R., AND HELL, P. Parallel sorting with constant time for comparisons. SIAM J. Comput. 10 (1981), 465-472. - [74] HAMEL, A. M., MILLS, W. H., MULLIN, R. C., REES, R., STINSON, D. R., AND YIN, J. The spectrum of PBD($\{5, k^*\}, v$) for k = 9, 13. Ars Combin. 36 (1993), 7-26. - [75] HANANI, H. Balanced incomplete block designs and related designs. Discrete Math. 11 (1975), 255-369. - [76] HARTMAN, A., AND PHELPS, K. T. Steiner quadruple systems. In Contemporary Design Theory: A Collection of Surveys, J. H. Dinitz and D. R. Stinson, Eds. John Wiley & Sons, New York, 1992, ch. 6, pp. 205-240. - [77] HAYES, J. F. An adaptive technique for local distribution. *IEEE Trans. Commun.* 26 (1978), 1178-1186. - [78] HEFFTER, L. Über das problem der nachbargebiete. Math. Ann. 38 (1891), 477-508. - [79] HELLERSTEIN, L., GIBSON, G. A., KARP, R. M., KATZ, R. H., AND PATTERSON, D. A. Coding techniques for handling failures in large disk arrays. Algorithmica 12 (1994), 182–208. - [80] HWANG, F. K. Combinatorial group testing⁴ - [81] HWANG, F. K., AND Sós, V. T. Non-adaptive hypergeometric group testing. Studia Sci. Math. Hungar. 22 (1987), 257-263. - [82] JOHNSON, S. M. A new upper bound for error-correcting codes. *IEEE Trans. Inform. Theory 8* (1962), 203-207. ⁴Available from URL http://www.dms.auburn.edu/~rodgec1/cadcom/applications/hwansnap/hwansnap.html. This URL may not be stable. - [83] KAUTZ, W. H., AND SINGLETON, R. R. Nonrandom binary superimposed codes. IEEE Trans. Inform. Theory 10 (1964), 363-377. - [84] Kim, M. Synchronized disk interleaving. IEEE Trans. Comput. 35 (1986), 978-988. - [85] KNILL, E., AND MUTHUKRISHNAN, S. Group testing problems in experimental molecular biology (preliminary report). Los Alamos Combinatorics E-print Server⁵, LACES-94B-95-26 (1995). - [86] Ko, K. Distinguishing conjunctive and disjunctive reducibilities by sparse sets. Inform. and Comput. 81 (1989), 62-87. - [87] Komlós, J., and Greenberg, A. G. An asymptotically fast nonadaptive algorithm for conflict resolution in multiple access channels. *IEEE Trans. Inform. Theory 31* (1985), 302-306. - [88] KÖRNER, J. On the extremal combinatorics of the Hamming space. J. Combin. Theory Ser. A 71 (1995), 112-126. - [89] KRAMER, E. S., AND MESNER, D. M. t-Designs on hypergraphs. Discrete Math. 15 (1976), 263-296. - [90] LEFMANN, H., PHELPS, K. T., AND RÖDL, V. Extremal problems for triple systems. J. Combin. Des. 1 (1993), 379-394. - [91] LING, A. C. H. Private communication. - [92] LIVNY, M., KHOSHAFIAN, S., AND BORAL, H. Multi-disk management algorithms. In Proceedings of the ACM SIGMETRICS Conference (1987), ACM, pp. 69-77. ⁵Available from URL http://www.c3.lanl.gov/dm/cgi/docOptions.cgi?document_name=94B-95-26. This URL may not be stable. - [93] Lu, J. Collected Works on Combinatorial Designs. Inner Mongolia People's Press, Mongolia, 1990. - [94] LUBOTZKY, A., PHILLIPS, R., AND SARNAK, P. Ramanujan graphs. Combinatorica 8 (1988), 261-277. - [95] MACNEISH, H. F. Euler squares. Ann. of Math. 23 (1922), 221-227. - [96] MACWILLIAMS, F. J., AND SLOANE, N. J. A. The Theory of Error-Correcting Codes. North Holland, Amsterdam, 1977. - [97] MARGULIS, G. A. Explicit group theoretical constructions of combinatorial schemes and their application to the design of expanders and concentrators. Problems Inform. Transmission 24 (1988), 39-46. - [98] MATHON, R., AND ROSA, A. A census of Mendelsohn triple systems of order nine. Ars Combin. 4 (1977), 309-315. - [99] McKay, B. D. Nauty user's guide (version 1.2). Technical report TR-CS-90-02, Department of Computer Science, Australian National University, Canberra, Australia, 1990. - [100] MOTWANI, R., AND RAGHAVAN, P. Randomized Algorithms. Cambridge University Press, Cambridge, 1995. - [101] MOZZOCHI, J. On the difference between consecutive primes. J. Number Theory 24 (1986), 181-187. - [102] Mullin, R. C. A generalization of the singular direct product with application to skem Room squares. J. Combin. Theory Ser. A 29 (1980), 306-318. - [103] MULLIN, R. C., AND GRONAU, H.-D. O. F. PBDs: Recursive constructions. In The CRC Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz, Eds. CRC Press, Inc., Boca Raton, 1996, ch. III.2, pp. 193-203. - [104] MULLIN, R. C., SCHELLENBERG, P. J., VANSTONE, S. A., AND WALLIS, W. D. On the existence
of frames. *Discrete Math.* 37 (1981), 79-104. - [105] Mullin, R. C., and Yin, J. On packings of pairs by quintuples: $v \equiv 3$, 9, or 17 (mod 20). Ars Combin. 35 (1993), 161–171. - [106] Newberg, L., and Wolfe, D. String layouts for a redundant array of inexpensive disks. Algorithmica 12 (1994), 209-224. - [107] NGUYEN, Q. A., AND ZEISEL, T. Bounds on constant weight binary superimposed codes. Problems Control Inform. Theory 17 (1988), 223-230. - [108] Оргуско, А. М. Asymptotic enumeration methods. In *Handbook of Combinatorics*, R. L. Graham, M. Grötschel, and L. Lovász, Eds., vol. II. North-Holland, Amsterdam, 1995, ch. 22, pp. 1063–1229. - [109] OLSON, M. V., HOOD, L., CANTOR, C., AND BOTSTEIN, D. A common language for physical mapping of the human genome. Science 245 (1989), 1334-1335. - [110] ÖZDEN, B., RASTOGI, R., AND SILBERSCHATZ, A. Research issues in multimedia storage servers. ACM Comput. Surveys 27 (1995), 617-620. - [111] PATTERSON, D. A., GIBSON, G. A., AND KATZ, R. H. A case for redundant arrays of inexpensive disks (RAID). In *Proceedings of ACM Conference on Management of Data* (1988), ACM, pp. 109-116. - [112] PEVZNER, P. A., AND LIPSHUTZ, R. Towards DNA sequencing chips. In 19th International Conference on Mathematical Foundations of Computer Science (1994), Lecture Notes in Computer Science, Springer-Verlag, pp. 143-158. - [113] PIPPENGER, N. Superconcentrators. SIAM J. Comput. 6 (1977), 298-304. - [114] PIPPENGER, N. Bounds on the performance of protocols for a multiple-access broadcast channel. *IEEE Trans. Inform. Theory* 27 (1981), 145-151. - [115] RABIN, M. O. Efficient dispersal of information for security, load balancing, and fault tolerance. J. Assoc. Comput. Mach. 36 (1989), 335-348. - [116] RAO, T. R. N., AND FUJIWARA, E. Error-Control Coding for Computer Systems. Prentice Hall, New Jersey, 1989. - [117] RAY-CHAUDHURI, D. K., AND WILSON, R. M. Solution of Kirkman's schoolgirl problem. Proc. Symp. Pure Math. Amer. Math. Soc. 19 (1971), 187-204. - [118] REIMAN, I. über ein problem von Zarankiewicz. Acta Math. Acad. Sci. Hungar. 9 (1958), 269-278. - [119] RINGEL, G. Map Color Theorem. Springer-Verlag, Berlin, 1974. - [120] RINGEL, G., AND YOUNGS, J. W. T. Solution of the Heawood map-coloring conjecture. Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 438-445. - [121] RIVEST, R. L. Cryptography. In Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, J. van Leeuwen, Ed. Elsevier, 1990, ch. 13, pp. 717-755. - [122] ROYLE, G. 1000000 2-(12, 3, 2) designs. Abstracts Amer. Math. Soc. 10 (1989), 482. - [123] Ruszinkó, M. On the upper bound of the size of the r-cover-free families. J. Combin. Theory Ser. A 66 (1994), 302-310. - [124] SALEM, K., AND GARCIA-MOLINA, H. Disk stripping. In *Proceedings of the 2nd IEEE International Conference on Data Engineering* (1986), IEEE, pp. 336-342. - [125] SAVAGE, J. E. The complexity of decoders part I: Decoder classes. *IEEE Trans. Inform. Theory 15* (1969), 689-695. - [126] SAVAGE, J. E. The complexity of decoders part II: Computational work and decoding time. IEEE Trans. Inform. Theory 17 (1971), 77-85. - [127] Schönheim, J. On maximal systems of k-tuples. Studia Sci. Math. Hungar. 1 (1966), 363-368. - [128] Schönheim, J. On the number of mutually disjoint triples in Steiner systems and related maximal packing and minimal covering systems. In Recent Progress in Combinatorics, Proceedings of the Third Waterloo Conference on Combinatorics, May 1968, W. T. Tutte, Ed. Academic Press, New York, 1969, pp. 311-318. - [129] Schultz, D. J. Topics in Nonadaptive Group Testing. PhD thesis, Department of Statistics, Temple University, Philadelphia, 1992. - [130] SHANNON, C. E. A mathematical theory of communication. Bell System Tech. J. 27 (1948), 379-423. - [131] Shoup, V. New algorithms for finding irreducible polynomials over finite fields. Math. Comp. 54 (1990), 435-447. - [132] SKILLING, J. K. Method of electrical short testing and the like. U.S. Patent 4342959 (1982). - [133] SLOANE, N. J. A. A Short Course on Error Correcting Codes. Springer-Verlag, Wien, 1975. - [134] SLOANE, N. J. A. Covering arrays and intersecting codes. J. Combin. Des. 1 (1993), 51-63. - [135] Sobel, M., and Groll, P. A. Group testing to eliminate efficiently all defectives in a binomial sample. *Bell System Tech. J. 28* (1959), 1179-1252. - [136] Spencer, J. Maximal consistent families of triples. J. Combin. Theory 5 (1968), 1-8. - [137] Spencer, J. Asymptotic packing via a branching process. Random Structures Algorithms 7 (1995), 167-172. - [138] Sperner, E. Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27 (1928), 544-548. - [139] SPIELMAN, D. A. Computationally Efficient Error-Correcting Codes and Holographic Proofs. PhD thesis, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, June 1995. - [140] STINSON, D. R. Hill-climbing algorithms for the construction of combinatorial designs. Ann. Discrete Math. 26 (1985), 321-334. - [141] STINSON, D. R., AND FERCH, H. 2000000 Steiner triple systems of order 19. Math. Comp. 44 (1985), 533-535. - [142] STINSON, D. R., AND WEI, R. Combinatorial properties and constructions of traceability schemes and frameproof codes. Preprint, 1996. - [143] TANNER, R. M. Explicit constructions of concentrators from generalized n-gons. SIAM J. Algebraic Discrete Methods 5 (1984), 287-293. - [144] TSYBAKOV, B. S., AND MIKHAILOV, V. A. Free synchronous packet access in a broadcast channel with feedback. Problems Inform. Transmission 14 (1978), 259-280. - [145] TURÁN, P. On an extremal problem in graph theory. Mat. Fiz. Lapok 48 (1941), 436-452. - [146] TURÁN, P. On the theory of graphs. Colloq. Math. 3 (1954), 19-30. - [147] VAKIL, F., AND PARNES, M. On the structure of a class of sets useful in nonadaptive group testing. J. Statist. Plann. Inference 39 (1994), 57-69. - [148] VALIANT, L. G. Bulk-synchronous parallel computers. In Parallel Processing and Artificial Intelligence, M. Reeve and S. E. Zenith, Eds. Wiley, Chichester, 1989. - [149] Valiant, L. G. General purpose parallel architectures. In Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, J. van Leeuwen, Ed. Elsevier, 1990, ch. 18, pp. 943-971. - [150] WAGNER, N. R. Fingerprinting. In Proceedings of the 1983 Symposium on Security and Privacy. IEEE Computer Society Press, Maryland, 1984, pp. 18-22. - [151] WILSON, R. M. An existence theory for pairwise balanced designs I: Composition theorems and morphisms. J. Combin. Theory Ser. A 13 (1972), 220-245. - [152] WILSON, R. M. An existence theory for pairwise balanced designs II: The structure of PBD-closed sets and the existence conjecture. J. Combin. Theory Ser. A 13 (1972), 246-273. - [153] WILSON, R. M. An existence theory for pairwise balanced designs III: Proof of the existence conjectures. J. Combin. Theory Ser. A 18 (1975), 71-79. - [154] WORMALD, N. Differential equations for random processes and random graphs. Preprint, 1994. - [155] YIN, J. Private communication through R. C. Mullin. - [156] Yin, J. On the packing of pairs by quintuples with index 2. Ars Combin. 31 (1991), 287-301. - · [157] YIN, J. Packing pairs by quintuples: the case v congruent to 0 (mod 4). Preprint, 1992. - [158] YIN, J., LING, A. C. H., COLBOURN, C. J., AND ABEL, R. J. R. The existence of uniform 5-GDDs. Preprint, 1996. - [159] ZYABLOV, V. V. An estimate of the complexity of constructing binary linear cascade codes. *Problems Inform. Transmission* 7 (1971), 3-10.