
Algorithmica (2015) 71:152–180
DOI 10.1007/s00453-013-9789-9

Polynomial Time Algorithm for Min-Ranks
of Graphs with Simple Tree Structures

Son Hoang Dau · Yeow Meng Chee

Received: 9 April 2012 / Accepted: 16 April 2013 / Published online: 27 April 2013
© Springer Science+Business Media New York 2013

Abstract The min-rank of a graph was introduced by Haemers (Algebr. Methods
Graph Theory 25:267–272, 1978) to bound the Shannon capacity of a graph. This
parameter of a graph has recently gained much more attention from the research
community after the work of Bar-Yossef et al. (in Proceedings of the 47th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 197–206, 2006).
In their paper, it was shown that the min-rank of a graph G characterizes the optimal
scalar linear solution of an instance of the Index Coding with Side Information (ICSI)
problem described by the graph G.

It was shown by Peeters (Combinatorica 16(3):417–431, 1996) that computing
the min-rank of a general graph is an NP-hard problem. There are very few known
families of graphs whose min-ranks can be found in polynomial time. In this work, we
introduce a new family of graphs with efficiently computed min-ranks. Specifically,
we establish a polynomial time dynamic programming algorithm to compute the min-
ranks of graphs having simple tree structures. Intuitively, such graphs are obtained by
gluing together, in a tree-like structure, any set of graphs for which the min-ranks can
be determined in polynomial time. A polynomial time algorithm to recognize such
graphs is also proposed.

Keywords Index coding · Network coding · Min-rank · Tree structure ·
Dynamic programming · Polynomial time

This work is supported in part by the National Research Foundation of Singapore
(Research Grant NRF-CRP2-2007-03).

S.H. Dau (�) · Y.M. Chee
Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
e-mail: dausonhoang84@gmail.com

Y.M. Chee
e-mail: ymchee@ntu.edu.sg

mailto:dausonhoang84@gmail.com
mailto:ymchee@ntu.edu.sg

Algorithmica (2015) 71:152–180 153

1 Introduction

1.1 Background

Building communication schemes which allow participants to communicate effi-
ciently has always been a challenging yet intriguing problem for information the-
orists. Index Coding with Side Information (ICSI) [5, 6] is a communication scheme
dealing with broadcast channels in which receivers have prior side information about
the messages to be transmitted. Exploiting the knowledge about the side information,
the sender may significantly reduce the number of required transmissions compared
with the naive approach (see Example 3.3). As a consequence, the efficiency of the
communication over this type of broadcast channels could be dramatically improved.
Apart from being a special case of the well-known (non-multicast) Network Coding
problem [1, 20], the ICSI problem has also found various potential applications on its
own, such as audio- and video-on-demand, daily newspaper delivery, data pushing,
and opportunistic wireless networks [2, 5, 6, 15, 18, 19].

In the work of Bar-Yossef et al. [2], the optimal transmission rate of scalar linear
index codes for an ICSI instance was neatly characterized by the so-called min-rank
of the side information graph corresponding to that instance. The concept of min-rank
of a graph was first introduced by Haemers [16], which serves as an upper bound for
the celebrated Shannon capacity of a graph [25]. This upper bound, as pointed out
by Haemers, although is usually not as good as the Lovász bound [22], is sometimes
tighter and easier to compute. However, as shown by Peeters [24], computing the min-
rank of a general graph (that is, the Min-Rank problem) is a hard task. More specifi-
cally, Peeters showed that deciding whether the min-rank of a graph is smaller than or
equal to three is an NP-complete problem. The interest in the Min-Rank problem has
grown significantly after the work of Bar-Yossef et al. [2]. Subsequently, Lubetzky
and Stav [23] constructed a family of graphs for which the min-rank over the binary
field is strictly larger than the min-rank over a nonbinary field. This disproved a con-
jecture by Bar-Yossef et al. [2] which stated that binary min-rank provides an optimal
solution for the ICSI problem. Exact and heuristic algorithms to find min-rank over
the binary field of a graph was developed in the work of Chaudhry and Sprintson
[8]. The min-rank of a random graph was investigated by Haviv and Langberg [17].
A dynamic programming approach was proposed by Berliner and Langberg [3] to
compute in polynomial time min-ranks of outerplanar graphs. Algorithms to approx-
imate min-ranks of graphs with bounded min-ranks were studied by Chlamtac and
Haviv [9]. They also pointed out a tight upper bound for the Lovász ϑ -function [22]
of graphs in terms of their min-ranks. It is also worth noting that approximating min-
ranks of graphs within any constant ratio is known to be NP-hard (see Langberg and
Sprintson [21]).

1.2 Our Contribution

So far, families of graphs whose min-ranks are either known or computable in poly-
nomial time are the following: odd cycles and their complements, perfect graphs,

154 Algorithmica (2015) 71:152–180

Fig. 1 A graph G with a simple
tree structure

and outerplanar graphs. Inspired by the work of Berliner and Langberg [3], we de-
velop a dynamic programming algorithm to compute the min-ranks of graphs having
simple tree structures. Loosely speaking, such a graph can be described as a com-
pound rooted tree, the nodes of which are induced subgraphs whose min-ranks can
be computed in polynomial time. As an illustrative example, a graph G with a simple
tree structure is depicted in Fig. 1. In this example, each induced subgraph (node) Gi

(i ∈ [9]) of G is either a perfect graph or an outerplanar graph (hence Gi ’s min-rank
can be efficiently computed). The dynamic programming algorithm (Algorithm 1)
computes the min-ranks of the subtrees, from the leaves to the root, in a bottom-up
manner. The task of computing the min-rank of a graph is accomplished when the
computation reaches the root of the compound tree. Let FP (c), roughly speaking,
denote the family of graphs with simple tree structures where each node in the tree
structure is connected to its child nodes via at most c vertices. For instance, the graph
G depicted in Fig. 1 belongs to the family FP (2). We prove that Algorithm 1 runs
in polynomial time if G ∈ FP (c), and also provide another algorithm (Algorithm 2)
that recognizes a member of FP (c) in polynomial time, for any constant c > 0.

In fact, Algorithm 1 still runs in polynomial time for graphs belonging to a larger
family FP (c log(·)). This family consists of graphs G with simple tree structures
where each node in the tree structure is connected to its child nodes via at most
c log |V (G)| vertices. However, finding a polynomial time recognition algorithm for
members of FP (c log(·)) is still an open problem.

Another way to look at our result is as follows. From a given set of graphs Gi (i ∈
[k]) whose min-ranks can be computed in polynomial time, one can build a new graph
G such that Gi (i ∈ [k]) are all the connected components of G . Then by Lemma 3.4,
the min-rank of G can be trivially computed by taking the sum of all the min-ranks
of Gi (i ∈ [k]). This is a trivial way to build up a new graph whose min-rank can be
efficiently computed from a given set of graphs whose min-ranks can be efficiently
computed. Our main contribution is to provide a method to build up in a nontrivial
way an infinite family of new graphs with min-ranks computable in polynomial time
from given families of graphs with min-ranks computable in polynomial time. This
new family can be further enlarged whenever a new family of graphs (closed under
induced subgraphs) with min-ranks computable in polynomial time is discovered.
Using this method, roughly speaking, from a given set of graphs, we build up a new
one by introducing edges that connect these graphs in such a way that a tree structure
is formed.

Algorithmica (2015) 71:152–180 155

It is also worth mentioning that the min-ranks of all non-isomorphic graphs of
order up to 10 can be found using a computer program that combines a SAT-based
approach [8] and a Branch-and-Bound approach.

1.3 Organization

The paper is organized as follows. Basic notation and definitions are presented in
Sect. 2. The ICSI problem is formally formulated in Sect. 3. The dynamic program-
ming algorithm that computes in polynomial time min-ranks of the graphs with sim-
ple tree structures is presented in Sect. 4. An algorithm that recognizes such graphs in
polynomial time is also developed therein. We mention the computation of min-ranks
of all non-isomorphic graphs of small orders in Sect. 5. Finally, some interesting open
problems are proposed in Sect. 6.

2 Notation and Definitions

We use [n] to denote the set of integers {1,2, . . . , n}. We also use Fq to denote the
finite field of q elements. For an n × k matrix M , let M i denote the ith row of M .
For a set E ⊆ [n], let ME denote the |E| × k sub-matrix of M formed by rows of
M that are indexed by the elements of E. For any matrix M over Fq , we denote by
rankq(M) the rank of M over Fq .

A simple graph is a pair G = (V (G), E (G)) where V (G) is the set of vertices of G
and E (G) is a set of unordered pairs of distinct vertices of G . We refer to E (G) as the
set of edges of G . A typical edge of G is of the form {u,v} where u ∈ V (G), v ∈ V (G),
and u �= v. If e = {u,v} ∈ E (G) we say that u and v are adjacent. We also refer to u

and v as the endpoints of e. We denote by N G (u) the set of neighbors of u, namely,
the set of vertices adjacent to u.

Simple graphs have no loops and no parallel edges. In the scope of this paper, only
simple graphs are considered. Therefore, we use graphs to refer to simple graphs for
succinctness. The number of vertices |V (G)| is called the order of G , whereas the
number of edges |E (G)| is called the size of G . The complement of a graph G =
(V (G), E (G)), denoted by G = (V (G), E (G)), is defined as follows. The vertex set
V (G) = V (G). The arc set

E (G) = {{u,v} : u,v ∈ V (G), u �= v, {u,v} /∈ E (G)
}
.

A subgraph of a graph G is a graph whose vertex set V is a subset of that of
G and whose edge set is a subset of that of G restricted on the vertices in V . The
subgraph of G induced by V ⊆ V (G) is a graph whose vertex set is V , and edge
set is {{u,v} : u ∈ V,v ∈ V, {u,v} ∈ E (G)}. We refer to such a graph as an induced
subgraph of G .

A path in a graph G is a sequence of pairwise distinct vertices (u1, u2, . . . , u�),
such that {ui, ui+1} ∈ E (G) for all i ∈ [� − 1]. A cycle is a path (u1, u2, . . . , u�)

(� ≥ 3) such that u1 and u� are also adjacent. A graph is called acyclic if it contains
no cycles.

156 Algorithmica (2015) 71:152–180

A graph is called connected if there is a path from each vertex in the graph to
every other vertex. The connected components of a graph are its maximal connected
subgraphs. A bridge is an edge whose deletion increases the number of connected
components. In particular, an edge in a connected graph is a bridge if and only if its
removal renders the graph disconnected.

A collection of subsets V1,V2, . . . , Vk of a set V is said to partition V if
⋃k

i=1 Vi =
V and Vi ∩ Vj = ∅ for every i �= j . In that case, [V1,V2, . . . , Vk] is referred to as a
partition of V , and Vi ’s (i ∈ [k]) are called parts of the partition.

A tree is a connected acyclic graph. A rooted tree is a tree with one special vertex
designated to be the root. In a rooted tree, there is a unique path that connects the root
to each other vertex. The parent of a vertex v is the vertex connected to it on the path
from v to the root. Every vertex except the root has a unique parent. If v is the parent
of a vertex u then u is the child of v. An ancestor of v is a vertex other than v lying
on the path connecting v to the root. If w is an ancestor of v, then v is a descendant
of w. We use desT (w) to denote the set of descendants of w in a rooted tree T .

A graph G is called outerplanar (Chartrand and Harary [7]) if it can be drawn
in the plane without crossings in such a way that all of the vertices belong to the
unbounded face of the drawing.

An independent set in a graph G is a set of vertices of G with no edges connecting
any two of them. The cardinality of a largest independent set in G is referred to as the
independence number of G , denoted by α(G). The chromatic number of a graph G is
the smallest number of colors χ(G) needed to color the vertices of G so that no two
adjacent vertices share the same color.

A graph G is called perfect if for every induced subgraph H of G , it holds that
α(H) = χ(H). Perfect graphs include families of graphs such as trees, bipartite
graphs, interval graphs, and chordal graphs. For the full characterization of perfect
graphs, the reader can refer to [10].

3 The Index Coding with Side Information Problem

The ICSI problem is formulated as follows. Suppose a sender S wants to send a vector
x = (x1, x2, . . . , xn), where xi ∈ Fq for all i ∈ [n], to n receiver R1,R2, . . . ,Rn. Each
Ri possesses some prior side information, consisting of the messages xj ’s, j ∈ Xi �

[n], and is interested in receiving a single message xi . The sender S broadcasts a
codeword E(x) ∈ F

κ
q that enables each receiver Ri to recover xi based on its side

information. Such a mapping E is called an index code over Fq . We refer to κ as the
length of the index code. The objective of S is to find an optimal index code, that is,
an index code which has minimum length. The index code is called linear if E is a
linear mapping.

If it is required that xj ∈ Xi if and only if xi ∈ Xj for every i �= j , then the
ICSI instance is called symmetric. Each symmetric instance of the ICSI problem can
be described by the so-called side information graph [2]. Given n and Xi , i ∈ [n],
the side information graph G = (V (G), E (G)) is defined as follows. The vertex set
V (G) = {u1, u2, . . . , un}. The edge set E (G) = ⋃

i∈[n]{{ui, uj } : j ∈ Xi}. Sometimes
we simply take V (G) = [n] and E (G) = ⋃

i∈[n]{{i, j} : j ∈ Xi}.

Algorithmica (2015) 71:152–180 157

Fig. 2 An ICSI instance and the side information graph

Definition 3.1 [16] Let G = (V (G) = {u1, u2, . . . , un}, E (G)) be a graph of order n.

1. A matrix M = (mui,uj
) ∈ F

n×n
q (whose rows and columns are labeled by the ele-

ments of V (G)) is said to fit G if
{

mui,uj
�= 0, i = j,

mui,uj
= 0, i �= j, {ui, uj } /∈ E (G).

2. The min-rank of G over Fq is defined to be

minrkq(G)
�= min

{
rankq(M) : M ∈ F

n×n
q and M fits G

}
.

Theorem 3.2 [2, 23] The length of an optimal linear index code over Fq for the ICSI
instance described by G is minrkq(G).

Example 3.3 Consider an ICSI instance with n = 5 and X1 = {2,3,5}, X2 = {1,3},
X3 = {1,2,4}, X4 = {3,5}, and X5 = {1,4} (Fig. 2(a)).

The side information graph G that describes this instance is depicted in Fig. 2(b).
A matrix fitting G of rank two over F2, which is the minimum rank, is shown in
Fig. 3(b). By Theorem 3.2, an optimal linear index code over F2 for this instance has
length two. In other words, using linear index codes over F2, the smallest number of
transmissions required is two. The sender can broadcast two packets x1 +x2 +x3 and
x4 + x5. The decoding process goes as follows. Since R1 already knows x2 and x3,
it obtains x1 by adding x2 and x3 to the first packet: x1 = x2 + x3 + (x1 + x2 + x3).
Similarly, R2 obtains x2 = x1 +x3 + (x1 +x2 +x3); R3 obtains x3 = x1 +x2 + (x1 +
x2 + x3); R4 obtains x4 = x5 + (x4 + x5); R5 obtains x5 = x4 + (x4 + x5). This index
code saves three transmissions, compared with the trivial solution when the sender
simply broadcasts five messages x1, x2, x3, x4, and x5.

We may observe that the index code above encodes x by taking the dot products
of x and the first and the forth rows of the matrix M(2) (Fig. 3(b)). These two rows,
in fact, form a basis of the row space of this matrix. Therefore, this index code has
length equal to the rank of M(2), which is two. This argument partly explains why
the shortest length of a linear index code over Fq for the ICSI instance described by
G is equal to the minimum rank of a matrix fitting G (Theorem 3.2).

158 Algorithmica (2015) 71:152–180

M(1) =

⎛

⎜⎜⎜⎜
⎝

1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 0
1 0 0 0 1

⎞

⎟⎟⎟⎟
⎠

M(2) =

⎛

⎜⎜⎜⎜
⎝

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

⎞

⎟⎟⎟⎟
⎠

(a) A matrix of rank three that fits G (b) A matrix of rank two (minimum rank)
that fits G

Fig. 3 Examples of matrices fitting G

Lemma 3.4 (Folklore) Let G = (V (G), E (G)) be a graph. Suppose that G1, G2, . . . , Gk

are subgraphs of G that satisfy the following conditions:

1. The sets V (Gi)’s, i ∈ [k], partition V (G);
2. There is no edge of the form {u,v} where u ∈ V (Gi) and v ∈ V (Gj) for i �= j .

Then

minrkq(G) =
k∑

i=1

minrkq(Gi).

In particular, the above equality holds if G1, G2, . . . , Gk are all connected components
of G .

Proof The proof follows directly from the fact that a matrix fits G if and only if it
is a block diagonal matrix (relabeling the vertices if necessary) and the block sub-
matrices fit the corresponding subgraphs Gi ’s, i ∈ [k]. Note also that the rank of a
block diagonal matrix is equal to the sum of the ranks of its block sub-matrices. �

This lemma suggests that it is often sufficient to study the min-ranks of graphs that
are connected.

4 On Min-Ranks of Graphs with Simple Tree Structures

We present in this section a new family of graphs whose min-ranks can be found in
polynomial time.

4.1 Simple Tree Structures

We denote by P an arbitrary collection of finitely many families of graphs that satisfy
the following properties:

(P1) Each family is closed under the operation of taking induced subgraphs, that
is, every induced subgraph of a member of a family in P also belongs to that
family;

(P2) There is a polynomial time algorithm to recognize a member of each family;
(P3) There is a polynomial time algorithm to find the min-rank of every member of

each family.

Algorithmica (2015) 71:152–180 159

For instance, we may choose such a P to be the collection of the following three
families: perfect graphs [2, 11], outerplanar graphs [3, 27], and graphs of orders
bounded by a constant. Instead of saying that a graph G belongs to a family in P ,
with a slight abuse of notation, we often simply say that G ∈ P . Note that if G ∈ P
then the min-rank of any of its induced subgraph can also be found in polynomial
time.

Let U and V be two disjoint nonempty sets of vertices of G . Let

sG (U,V) = ∣∣{{u,v} : u ∈ U,v ∈ V, {u,v} ∈ E (G)
}∣∣,

denotes the number of edges each of which has one endpoint in U and the other
endpoint in V .

Definition 4.1 Let P be a collection of finitely many families of graphs that satisfy
(P1), (P2), and (P3). A connected graph G = (V (G), E (G)) is said to have a (P)
simple tree structure if there exists a partition Γ = [V1, V2, . . . , Vk] of the vertex set
V (G) that satisfies the following three requirements:

(R1) The Vi -induced subgraph Gi of G belongs to a family in P , for every i ∈ [k];
(R2) sG (Vi , Vj) ∈ {0,1} for every i �= j ;
(R3) The graph T = (V (T), E (T)), where V (T) = [k] and

E (T) = {{i, j} : sG (Vi , Vj) = 1
}
,

is a rooted tree; The tree T can also be thought of as a graph obtained from G
by contracting each Vi to a single vertex.

The 2-tuple T = (Γ,T) is called a (P) simple tree structure of G .

Example 4.2 Suppose the Vi -induced subgraph Gi of G is either a perfect graph or an
outerplanar graph for every i ∈ [9] . Let P consist of the families of perfect graphs
and outerplanar graphs. Then T = ([V1, V2, . . . , V9], T) is a (P) simple tree structure
of G where T is depicted in Fig. 4.

If a (P) simple tree structure T = (Γ,T) of G is given, where Γ = [V1, V2, . . . , Vk],
then we can define the following terms:

Fig. 4 A (P) simple tree structure of a graph G

160 Algorithmica (2015) 71:152–180

1. Each Vi -induced subgraph Gi of G is called a node of T ;
2. If i is the parent of j in T , then Gi is called the parent (node) of Gj in T ; We also

refer to Gj as a child (node) of Gi ; A node in T with no children is called a leaf;
The node with no parent is called the root of T ;

3. If j is a descendant of i in T , then Gj is called a descendant (node) of Gi and Gi

is called an ancestor (node) of Gj in T ;
4. For each i ∈ [k] let Si be the subgraph of G induced by Vi ∪ (

⋃
j∈desT (i) Vj),

where desT (i) denotes the set of descendants of i in T ; In other words, Si is
obtained by merging Gi and all of its descendants in T ;

5. If Gj is a child of Gi , and {u,v} ∈ E (G), where u ∈ Vi and v ∈ Vj , then u is called
a downward connector (DC) of Gi and v is called the upward connector (UC) of
Gj ; Each node may have several DCs but at most one UC; We refer to the DCs
and UC of a node as connectors of that node.

6. Let mdc(T) denote the maximum number of DCs of a node of T .

For instance, for the (P) simple tree structure depicted in Fig. 4, suppose that G1 is
the root node, then the node G3 has two DCs and four children.

Let P be a collection of finitely many families of graphs that satisfy (P1), (P2),
and (P3). For any c > 0 we define the following family of connected graphs

FP (c)
�={

G : G is connected and has a (P) simple tree structure T with mdc(T)≤c
}
.

A (P) simple tree structure of a graph G that proves the membership of G in FP (c) is
called a relevant tree structure of G . The graph G in Example 4.2 belongs to FP (2).

Remark 4.3 Suppose that P consists of the perfect graphs and the outerplanar graphs.
Take G ∈ FP (c) (c ≥ 1) with a relevant tree structure T satisfying the following.
There exist a node Gi of T that is perfect but not outerplanar, and another node Gj

that is outerplanar but not perfect. Consequently, G is neither perfect nor outerplanar.
Hence G /∈ P . The same argument shows that in general, if P contains at least two
(irredundant) families of graphs then FP (c) properly contains the families of (con-
nected) graphs in P . Here, a family of graph in P is irredundant if it is not contained
in the union of the other families. Hence, FP (c) (c ≥ 1) always contains new graphs
other than those in P .

Remark 4.4 In general, we can consider k-multiplicity tree structure of a graph for
every integer k ≥ 0. In such a tree structure, a (parent) node is connected to each
of its child by at most k edges that share the same endpoint in the parent node.
The 0-multiplicity tree structures are trivial (see Lemma 3.4). The 1-multiplicity tree
structures are simple tree structures. In the scope of this paper, we only focus on
graphs with simple tree structures.

4.2 A Polynomial Time Algorithm for Min-Ranks of Graphs in FP (c)

In this section we show that the min-rank of a member of FP (c) can be found in
polynomial time.

Algorithmica (2015) 71:152–180 161

Theorem 4.5 Let P be a collection of finitely many families of graphs that satisfy
(P1), (P2), and (P3) (see Sect. 4.1). Let c > 0 be a constant and G ∈ FP (c). Suppose
further that a (P) simple tree structure T = (Γ,T) of G with mdc(T) ≤ c is known.
Then there is an algorithm that computes the min-rank of G in polynomial time.

To prove Theorem 4.5, we describe below an algorithm that computes the min-
rank of G when G ∈ FP (c) and investigate its complexity.

First, we introduce some notation which is used throughout this section. If v is any
vertex of a graph G , then G − v denotes the graph obtained from G by removing v

and all edges incident to v. In general, if V is any set of vertices, then G − V denotes
the graph obtained from G by removing all vertices in V and all edges incident to any
vertex in V . In other words, G − V is the subgraph of G induced by V (G) \ V . Note
that if G ∈ P then the min-rank of G − V can be computed in polynomial time for
every subset V ⊆ V (G). The union of two or more graphs is a graph whose vertex
set and edge set are the unions of the vertex sets and of the edge sets of the original
graphs, respectively.

The following results from [3] are particularly useful in our discussion. Their
proofs can be found in [4], which is the full version of [3].

Lemma 4.6 [3] Let v be a vertex of a graph G . Then

minrkq(G) − 1 ≤ minrkq(G − v) ≤ minrkq(G).

Lemma 4.7 [3] Let G1 and G2 be two graphs with one common vertex v. Then

minrkq(G1 ∪ G2) = minrkq(G1 − v) + minrkq(G2 − v)

+ (
minrkq(G1) − minrkq(G1 − v)

)

× (
minrkq(G2) − minrkq(G2 − v)

)
.

In other words, the min-rank of G1 ∪ G2 can be computed explicitly based on the
min-ranks of G1, G1 − v, G2, and G2 − v.

Algorithm 1 Suppose G ∈ FP (c) and a relevant tree structure T = (Γ,T) of G is
given. The algorithm computes the min-rank by dynamic programming in a bottom-
up manner, from the leaves of T to its root. Suppose that Γ = [V1, V2, . . . , Vk] and
Gi is induced by Vi for i ∈ [k]. Let vi be the UC (if any) of Gi for i ∈ [k]. Recall that
Si is the induced subgraph of G obtained by merging Gi and all of its descendants in
T . For each i, Algorithm 1 maintains a table which contains the two values, namely,
min-ranks of Si and Si −vi . The min-rank of the latter is omitted if Gi is the root node
of T . An essential point is that the min-ranks of Si and Si − vi can be computed in
polynomial time from the min-ranks of Sj ’s and (Sj − vj)’s where Gj ’s are children
of Gi , and from the min-ranks of at most 2c induced subgraphs of Gi . Each of these
subgraphs is obtained from Gi by removing a subset of a set that consists of at most
c vertices of G . When the min-rank of Si0 is determined, where Gi0 is the root of T ,
the min-rank of G = Si0 is found.

162 Algorithmica (2015) 71:152–180

Fig. 5 Gi has only one
downward connector

At the leaf-nodes: Suppose Gi is a leaf and vi is its UC. Since Gi has no children,
Si ≡ Gi . Hence,

minrkq(Si) = minrkq(Gi),

and

minrkq(Si − vi) = minrkq(Gi − vi).

Since Gi ∈ P , the graph Gi − vi , which is an induced subgraph of Gi , also belongs to
P (according to the property (P1) of P). Therefore, both minrkq(Gi) and minrkq(Gi −
vi) can be computed in polynomial time.

At the intermediate nodes: Suppose the min-ranks of Sj and Sj − vj are known
for every child Gj of Gi . The goal of the algorithm at this step is to compute the min-
ranks of Si and Si − vi in polynomial time. It is complicated to analyze directly the
general case where Gi has an arbitrary number (at most c) of downward connectors.
Therefore, we first consider a special case where Gi has only one downward connector
(Case 1). The results established in this case are then used to investigate the general
case (Case 2).

Case 1: Gi has only one DC u and has r children, namely Gj1, Gj2 , . . . , Gjr , all of
which are connected to Gi via u (Fig. 5).

Let K be the subgraph of G induced by the following set of vertices

V (K) = V (Sj1) ∪ V (Sj2) ∪ · · · ∪ V (Sjr) ∪ {u}.
Notice that the graphs Gi and K have exactly one vertex in common, namely, u.
Hence by Lemma 4.7, once the min-ranks of Gi , Gi − u, K, and K − u are known,
the min-rank of Si = Gi ∪ K can be explicitly computed. Similarly, if vi �= u and
the min-ranks of Gi − vi , Gi − vi − u, K, and K − u are known, the min-rank of
Si − vi = (Gi − vi) ∪ K can be explicitly computed. Observe also that if vi ≡ u then

Algorithmica (2015) 71:152–180 163

by Lemma 3.4,

minrkq(Si − vi) = minrkq(Gi − u) + minrkq(K − u).

Again by Lemma 3.4,

minrkq(K − u) =
r∑

�=1

minrkq(Sj�
),

which is known. Moreover, as Gi ∈ P , the min-ranks of Gi , Gi − vi , Gi − u, and
Gi − vi − u can be determined in polynomial time. Therefore it remains to compute
the min-rank of K efficiently. According to the following claim, the min-rank of
K can be explicitly computed based on the knowledge of the min-ranks of Sj�

and
Sj�

−vj�
for � ∈ [r]. Note that by Lemma 4.6, either minrkq(Sj�

−vj�
) = minrkq(Sj�

)

or minrkq(Sj�
− vj�

) = minrkq(Sj�
) − 1, � ∈ [r].

Lemma 4.8 The min-rank of K is equal to

{
minrkq(K − u), if ∃h ∈ [r] s.t. minrkq(Sjh

− vjh
) = minrkq(Sjh

) − 1,

minrkq(K − u) + 1, otherwise.

Proof Suppose there exists h ∈ [r] such that

minrkq(Sjh
− vjh

) = minrkq(Sjh
) − 1.

By Lemma 4.6,

minrkq(K) ≥ minrkq(K − u).

Therefore, in this case it suffices to show that a matrix that fits K and has rank equal
to minrkq(K − u) exists. Indeed, such a matrix M can be constructed as follows. The
rows and columns of M are labeled by the elements in V (K) (see Definition 3.1).
Moreover, M satisfies the following properties:

1. Its sub-matrix restricted to the rows and columns labeled by the elements in V (Sj�
)

(� �= h) fits Sj�
and has rank equal to minrkq(Sj�

);
2. Its sub-matrix restricted to the rows and columns labeled by the elements in

V (Sjh
) \ {vjh

} fits Sjh
− vjh

and has rank equal to minrkq(Sjh
− vjh

);
3. Mu = Mvjh

= eu + evjh
, where ev for v ∈ V (K) denotes the unit vector (with

coordinates labeled by the elements in V (K)) that has a one at the vth coordinate
and zeros elsewhere; Recall that Mu denotes the row of M labeled by u;

4. All other entries are zero.

Since the sets V (Sj�
) (� �= h), V (Sjh

) \ {vjh
}, and {u,vjh

} are pairwise disjoint, the
above requirements can be met without any contradiction arising. Clearly M fits K.

164 Algorithmica (2015) 71:152–180

Fig. 6 The base case when
r = 1

Moreover,

rankq(M) =
∑

��=h

rankq(MV (Sj�
)) + rankq(MV (Sjh

)\{vjh
}) + rankq(M{u,vjh

})

=
∑

��=h

minrkq(Sj�
) + minrkq(Sjh

− vjh
) + 1

=
∑

��=h

minrkq(Sj�
) + minrkq(Sjh

)

= minrkq(K − u).

We now suppose that minrkq(Sj�
− vj�

) = minrkq(Sj�
) for all � ∈ [r]. We prove

that

minrkq(K) = minrkq(K − u) + 1

by induction on r .

1. The base case: r = 1 (Fig. 6). In this case, Gi has only r = 1 child.
Let J = (V (J), E (J)) where V (J) = {u,vj1} and E (J) = {{u,vj1}}. Then

K = Sj1 ∪ J and V (Sj1) ∩ V (J) = {vj1}. Moreover,

minrkq(Sj1) = minrkq(Sj1 − vj1).

Therefore by Lemma 4.7,

minrkq(K) = minrkq(Sj1 − vj1) + minrkq(J − vj1)

= minrkq(Sj1) + 1

= minrkq(K − u) + 1.

2. The inductive step: suppose that the assertion holds for r ≥ 1. We aim to show that
it also holds for r + 1 (Fig. 7).

Let J be the subgraph of G induced by

{u} ∪
(

r⋃

�=1

V (Sj�
)

)

.

Algorithmica (2015) 71:152–180 165

Fig. 7 The inductive step

Since minrkq(Sj�
−vj�

) = minrkq(Sj�
) for all � ∈ [r], by the induction hypothesis,

we have

minrkq(J) = minrkq(J − u) + 1.

Let I be the subgraph of G induced by {u} ∪ V (Sjr+1). As

minrkq(Sjr+1 − vjr+1) = minrkq(Sjr+1),

similar arguments as in the base case yield

minrkq(I) = minrkq(I − u) + 1.

Applying Lemma 4.7 to the graphs I and J we obtain

minrkq(K) = minrkq(I ∪ J)

= minrkq(I − u) + minrkq(J − u) + 1

= minrkq(Sjr+1) +
r∑

�=1

minrkq(Sj�
) + 1

=
r+1∑

�=1

minrkq(Sj�
) + 1,

which is equal to minrkq(K − u) + 1. �

According to the discussion preceding Lemma 4.8, Case 1 is settled.

Case 2: Gi has d DCs (2 ≤ d ≤ c), namely, u1, u2, . . . , ud (Fig. 8). Let {Gj : j ∈ It }
be the set of children of Gi connected to Gi via ut , for 1 ≤ t ≤ d .

166 Algorithmica (2015) 71:152–180

Fig. 8 Gi has d downward
connectors. The solid ellipse on
the top represents Gi . The
dashed ellipses represent Kt ’s.
The dotted closed curves
represent Nt ’s

Recall that the goal of the algorithm is to compute the min-ranks of Si and Si − vi

in polynomial time, given that the min-ranks of Sj and Sj − vj are known for all
children Gj ’s of Gi .

For each t ∈ [d] let Kt be the subgraph of G induced by the following set of
vertices

{ut } ∪
(⋃

j∈It

V (Sj)

)
.

As proved in Case 1, based on the min-ranks of Sj and Sj − vj for j ∈ It , it is
possible to compute the min-ranks of Kt and Kt − ut explicitly for all t ∈ [d]. Let

N1 = Gi ∪ K1,

and

Nt = Nt−1 ∪ Kt ,

for every t ∈ [d] and t ≥ 2. Observe that Nd ≡ Si . Below we show how the algorithm
computes the min-ranks of Nd and Nd − vi recursively in polynomial time.

Lemma 4.9 For every t ∈ [d] and every U ⊆ {vi, ut+1, ut+2, . . . , ud}, the min-rank
of Nt − U can be calculated in polynomial time.

Proof

1. At the base case, the min-ranks of N1 − U , for every subset U ⊆ {vi, u2,

u3, . . . , ud}, are computed as follows.
If vi ≡ u1 and vi ∈ U , then

N1 − U = (Gi − U) ∪ (K1 − u1).

Algorithmica (2015) 71:152–180 167

Since

V (Gi − U) ∩ V (K1 − u1) = ∅,

by Lemma 3.4,

minrkq(N1 − U) = minrkq(Gi − U) + minrkq(K1 − u1),

which is computable in polynomial time.
Suppose that either vi �≡ u1 or vi /∈ U . By Lemma 4.7, since

N1 − U = (Gi − U) ∪ K1,

and

V (Gi − U) ∩ V (K1) = {u1},
the min-rank of N1 − U can be determined based on the min-ranks of Gi − U ,
Gi − U − u1, K1, and K1 − u1. The min-ranks of these graphs are either known
or computable in polynomial time. As mdc(T) ≤ c, there are at most 2d ≤ 2c

(a constant) such subsets U . Hence, the total computation in the base case can be
done in polynomial time.

2. At the recursive step, suppose that the min-rank of Nt−1 − U , t ≥ 2, for every
subset U ⊆ {vi, ut , ut+1, . . . , ud} is known. Our goal is to show that the min-rank
of Nt − V for every subset V ⊆ {vi, ut+1, ut+2, . . . , ud} can be determined in
polynomial time. Note that there are at most 2d ≤ 2c such subsets V .

If vi ≡ ut and vi ∈ V , then

Nt − V = (Nt−1 − V) ∪ (Kt − ut).

Moreover, as we have

V (Nt−1 − V) ∩ V (Kt − ut) = ∅,

by Lemma 3.4,

minrkq(Nt − V) = minrkq(Nt−1 − V) + minrkq(Kt − ut),

which is known. Note that minrkq(Nt−1 −V) is known from the previous recursive
step since

V ⊆ {vi, ut+1, ut+2, . . . , ud} ⊆ {vi, ut , ut+1, . . . , ud}.
Suppose that either vi �≡ ut or vi /∈ V . Since

Nt − V = (Nt−1 − V) ∪ Kt ,

and

V (Nt−1 − V) ∩ V (Kt) = {ut },
the min-rank of Nt − V can be computed based on the min-ranks of Nt−1 − V ,
Nt−1 −V −ut , Kt , and Kt −ut , which are all available from the previous recursive
step. �

168 Algorithmica (2015) 71:152–180

When the recursive process described in Lemma 4.9 reaches t = d , the min-ranks
of Nd and Nd − vi are found, as desired. Moreover, as there are d ≤ c steps, and
in each step, the computation can be done in polynomial time, we conclude that the
min-ranks of these graphs can be found in polynomial time. The analysis of Case 2
is completed.

Let P be a collection of finitely many families of graphs that satisfy (P1), (P2),
and (P3) (see Sect. 4.1). For any c > 0, let FP (c log(·)) denote the following family
of graphs
{

G :G is connected and has a (P) simple tree structure T with mdc(T)≤c log|V (G)|}.
Note that FP (c log(·)) properly contains FP (c) as a sub-family. If G ∈ FP (c log(·))
for some constant c > 0, then the time complexity of Algorithm 1 is still polynomial
in n = |V (G)|. Indeed, since 2d ≤ 2c logn = nc, Lemma 4.9 still holds. As all other
tasks in Algorithm 1 require polynomial time in n, we conclude that the running time
of the algorithm is still polynomial in n. However, as discussed in Sect. 4.3, we are
not able to find a polynomial time algorithm to recognize a graph in FP (c log(·)).

Theorem 4.10 Let P be a collection of finitely many families of graphs that satisfy
(P1), (P2), and (P3) (see Sect. 4.1). Let c > 0 be a constant and G ∈ FP (c log(·)).
Suppose further that a (P) simple tree structure T = (Γ,T) of G with mdc(T) ≤
c log |V (G)| is known. Then there is an algorithm that computes the min-rank of G in
polynomial time.

4.3 An Algorithm to Recognize a Graph in FP (c)

In order for Algorithm 1 to work, it is assumed that a relevant tree structure of the
input graph G ∈ FP (c) is given. Therefore, the next question is how to design an
algorithm that recognizes a graph in that family and subsequently finds a relevant
tree structure for that graph in polynomial time.

Theorem 4.11 Let P be a collection of finitely many families of graphs that satisfy
(P1), (P2), and (P3) (see Sect. 4.1). Let c > 0 be any constant. Then there is a poly-
nomial time algorithm that recognizes a member of FP (c). Moreover, this algorithm
also outputs a relevant tree structure of that member.

In order to prove Theorem 4.11, we introduce Algorithm 2 (Fig. 9). This algorithm
consists of two phases: Splitting Phase (Fig. 10), and Merging Phase (Fig. 12). The
general idea behind Algorithm 2 is the following. Suppose G ∈ FP (c) and T is a rel-
evant tree structure of G . In the Splitting Phase, the algorithm splits G into a number
of components (induced subgraphs), which form the set of nodes of a (P) simple tree
structure T ′ of G . It is possible that mdc(T ′) > c, that is, T ′ is not a relevant tree
structure of G . However, it can be shown that each node of T ′ is actually an induced
subgraph of some node of T . Based on this observation, the main task of the algo-
rithm in the Merging Phase is to merge suitable nodes of T ′ in order to turn it into a
relevant tree structure of G . Note though that this tree structure might not be the same
as T .

Algorithmica (2015) 71:152–180 169

Algorithm 2
Input: A connected graph G = (V (G), E (G)) and a constant c > 0.
Output: If G ∈ FP (c), the algorithm prints out a confirmation message,
namely “G ∈ FP (c)”, and then returns a relevant tree structure of G .
Otherwise, it prints out an error message “G /∈ FP (c)”.
Splitting Phase
Merging Phase

Fig. 9 Algorithm 2

Splitting Phase
Initialization: Create two empty queues, Q1 and Q2, which contains graphs
as their elements. Push G into Q1.

while Q1 �= ∅ do
for A = (V (A), E (A)) ∈ Q1 do

Pop A out of Q1;
if there exist U and V that partition V (A) and sA(U,V) = 1∗ then

Let B and C be subgraphs of A induced by U and V , respectively;
Push B and C into Q1;

else if A ∈ P then
Push A into Q2;

else
Print the error message “G /∈ FP (c)” and exit;

end if
end for

end while
Suppose Q2 contains h graphs A1, A2, . . . , Ah. Let T ′ be a graph with

V (T ′) = [h] and E (T ′) = {{�,m} : sG (V (A�), V (Am)) = 1}.
Fig. 10 Algorithm 2: Splitting phase (∗ This condition is equivalent to that of A having a bridge)

Suppose G successfully passes the Splitting Phase, that is, no error messages are
printed out during this phase. In the Splitting Phase, the algorithm first splits G into
two components (induced subgraphs) that are connected to each other by exactly
one edge (bridge) in G . It then keeps splitting the existing components, whenever
possible, each into two new smaller components that are connected to each other by
exactly one edge in the original component (see Fig. 11). A straightforward inductive
argument shows the following:

1. Throughout the Splitting Phase, the vertex sets that induce the components of G
partition V (G); Hence V (Am)’s, m ∈ [h], partition V (G);

2. Throughout the Splitting Phase, any two different components of G are connected
to each other by at most one edge in G ; Therefore, sG (V (A�), V (Am)) ∈ {0,1} for
every � �= m, �,m ∈ [h];

170 Algorithmica (2015) 71:152–180

Fig. 11 Splitting phase of Algorithm 2

3. At any time during the Splitting Phase, the graph that is obtained from G by con-
tracting the vertex set of each component of G to a single vertex is a tree; There-
fore, T ′ is a tree;

4. Throughout the Splitting Phase, every component of G remains connected;

It is also clear that each Am (m ∈ [h]) belongs to a family in P . Since G passes the
Splitting Phase successfully, T ′ = (Γ ′ = [V (A1), . . . , V (Ah)], T ′) is already quali-
fied to be a (P) simple tree structure of G .

Lemma 4.12 Suppose G ∈ FP (c) and T = (Γ = [V1, V2, . . . , Vk], T) is a relevant
tree structure of G . Then at any time during the Splitting Phase, for any A ∈ Q1,
either of the following two conditions must hold:

1. A has a bridge;
2. V (A) ⊆ Vi for some i ∈ [k].

Proof Suppose the second condition does not hold. Since V1, V2, . . . , Vk partition
V (G) ⊇ V (A), there exist some r ≥ 2 and some subset {i1, i2, . . . , ir } of [k] such that

V (A) ⊆
r⋃

�=1

Vi� ,

and

V (A) ∩ Vi� �= ∅, ∀� ∈ [r].
We are to show that A has a bridge. Without loss of generality, suppose that Gir

has no children (in T) among Gi1, Gi2, . . . , Gir−1 . Let U = V (A) ∩ Vir �= ∅ and V =
V (A) ∩ ⋃

1≤�≤r−1 Vi� �= ∅. Then

sA(U,V) ≤ sG

(
Vir ,

⋃

1≤�≤r−1

Vi�

)
≤ 1,

where the second inequality follows from the property of a (P) simple tree structure
and from the assumption that Gir has no children among Gi1, Gi2 , . . . , Gir−1 . As U ∪

Algorithmica (2015) 71:152–180 171

V = V (A) and A is connected, it must hold that sA(U,V) = 1. Hence, A has a
bridge. �

Lemma 4.13 If G ∈ FP (c) then G passes the Splitting Phase successfully.

Proof Suppose T = (Γ = [V1, V2, . . . , Vk], T) is a relevant tree structure of G . By
Lemma 4.12, for any A ∈ Q1, either A has a bridge or V (A) ⊆ Vi for some i ∈ [k].
The latter condition implies that A is an induced subgraph of Gi , and hence, A ∈ P .
Therefore, G passes the Splitting Phase without any error message printed out. �

Lemma 4.14 Suppose G ∈ FP (c) and T = (Γ = [V1, V2, . . . , Vk], T) is a relevant
tree structure of G . Then for each m ∈ [h], there exists a unique i ∈ [k] such that
V (Am) ⊆ Vi .

Proof According to the algorithm, Am does not have any bridge for every m ∈ [h].
By Lemma 4.12, for each m ∈ [h], V (Am) ⊆ Vi for some i ∈ [k]. The uniqueness of
such i follows from the fact that Vi ∩ Vj = ∅ for every i �= j . �

As discussed earlier, after a successful completion of the Splitting Phase, a (P)
simple tree structure of G , that is T ′ = (Γ ′ = [V (A1), . . . , V (Ah)], T ′), is obtained.
In the Merging Phase (Fig. 12), the algorithm first assigns a root node for T ′. It then
traverses T ′ in a bottom-up manner, tries to merge every node it visits with a suitable
set of the node’s leaf child-nodes (if any) to reduce the number of DCs of the node
below the threshold c. If such a set of children of the node cannot be found, then the
algorithm restarts the whole merging process by assigning a different root node to the
(original) tree structure T ′ and traversing the tree structure again, from the leaves to
the root. The algorithm stops when it finds a relevant tree structure, whose maximum
number of DCs of every node is at most c. If no relevant tree structures are found
after trying out all possible assignments for the root node, the algorithm claims that
G /∈ FP (c) and exits.

To preserve the tree structure T ′ throughout the phase, only a copy of it, namely
T ′

r , is used when the node Ar is assigned as a root. Let Lr be an ordered list of nodes
of T ′

r such that every node appears in the list later than all of its child-nodes. The
algorithm visits each node in the list sequentially. The merging operation is described
in more details as follows. Suppose Am is the currently visited node, and Cm is a set
of its leaf child-nodes, which is to be merged. The merging operation enlarges Am by
merging its vertex set with the vertex sets V (A�) for all A� ∈ Cm. At the same time,
the node A� is deleted from the tree structure T ′

r for every A� ∈ Cm. Observe that
since Am can only be merged with its leaf child-nodes, no new DCs are introduced as
a result of the merging operation. Therefore, the merging operation never increases
the number of DCs of the visited node. Observe also that a new (P) simple tree
structure of G is obtained after every merging operation.

Lemma 4.15 If Algorithm 2 terminates successfully then G ∈ FP (c).

Proof According to the discussion before Lemma 4.12, if G passes the Splitting
Phase successfully then T ′ is a (P) simple tree structure of G . Suppose G also passes

172 Algorithmica (2015) 71:152–180

Merging Phase
for r = 1 to h do

Let T ′
r be a copy of T ′;

Assign Ar to be the root node of T ′
r ;

if mdc(T ′
r) ≤ c then

Print “G ∈ FP (c)”, return T ′
r , and exit;

else
Let Lr be an ordered list of nodes of T ′

r such that every node appears
in the list later than all of its children;
for Am ∈ Lr do

Let Dm be the list of all Am’s DCs;
Find a maximum subset Em of Dm with |Em| ≥ |Dm| − c, such that

(1) The set Cm of all children of Am connected to Am via DCs
in Em consists of only leaf nodes, and

(2) The set V (Am) ∪ (
⋃

A�∈Cm
V (A�)) induces a subgraph of G

which belongs to P ;
if there exists such a set Em then

Merge Am and its children in Cm;
else if r = h then

Print “G /∈ FP (c)” and exit;
else

Return to the outermost “for” loop;
end if

end for
Print “G ∈ FP (c)”, return T ′

r , and exit;
end if

end for

Fig. 12 Algorithm 2: Merging phase

the Merging Phase successfully. According to the algorithm, there exists a copy T ′
r

of T ′ with root node Ar such that either mdc(T ′
r) ≤ c (hence G ∈ FP (c)) or the fol-

lowing condition holds. At every node Am of T ′
r that the algorithm visits during the

Merging Phase, there always exists a set of DCs Em of Am satisfying:

1. The set Cm of all children of Am connected to Am via DCs in Em consists of only
leaf nodes; and

2. The set V (Am) ∪ (
⋃

A�∈Cm
V (A�)) induces a subgraph of G which belongs to P .

Moreover, |Em| ≥ |Dm| − c, where Dm is the set of DCs of Am in T ′
r . Therefore,

after merging Am and its leaf child-nodes in Cm, Am has |Dm| − |Em| ≤ c DCs. As
this situation applies for every node Am of T ′

r , once the algorithm reaches the root
node Ar , we obtain a relevant tree structure of G , which proves the membership of G
in FP (c). �

Lemma 4.16 If G ∈ FP (c) then Algorithm 2 terminates successfully.

Algorithmica (2015) 71:152–180 173

To prove Lemma 4.16, we need a few more observations. We hereafter assume that
G ∈ FP (c) and T = (Γ = [V1, V2, . . . , Vk], T) is a relevant tree structure of G . By
Lemma 4.14, for each m ∈ [h], there exists a unique i ∈ [k] such that V (Am) ⊆ Vi .

Then iT (Am)
�= i is called the T -index of Am. For brevity, we often use i(m) to

refer to iT (Am). The T -index of a node Am is simply the index of the node in the
tree structure T that contains Am as an induced subgraph. Hence we always have
V (Am) ⊆ Vi(m) for every m ∈ [h].

From now on, let r0 ∈ [h] be such that i(r0) = i0, which is the root of the tree T .
Moreover, suppose Ar0 is assigned to be the root node in T ′. Recall that Gi denotes
the Vi -induced subgraph of G (i ∈ [k]).

Lemma 4.17 If A� is a child of Am in T ′ then either i(�) = i(m) or Gi(�) is a child
of Gi(m) in T .

Proof We prove this claim by induction on the node Am.

Base case: Let m = r0 and let A� be a child of the root node Am. Since
sG (V (A�), V (Am)) = 1 and V (Am) ⊆ Vi(m) = Vi0 , we conclude that either V (A�) ⊆
Vi0 or V (A�) ⊆ Vi for some child-node Gi of Gi0 (in T). Therefore, either i(�) =
i0 = i(m) or Gi(�) = Gi is a child of Gi(m) = Gi0 .

Inductive step: Suppose the assertion of Lemma 4.17 holds for all ancestors Am′
(and their corresponding children A�′) of Am. Take A� to be a child of Am. We aim
to show that the assertion also holds for Am and A�.

As sG (V (A�), V (Am)) = 1, there are three cases to consider, due to Lemma 4.14.

Case 1: There exists some i ∈ [k] such that V (A�) ⊆ Vi and V (Am) ⊆ Vi . Then
i(�) = i(m) = i.

Case 2: There exist i ∈ [k] and j ∈ [k] such that V (A�) ⊆ Vj , V (Am) ⊆ Vi , and Gj

is a child of Gi . In this case, since i(�) = j and i(m) = i, we deduce that Gi(�) is a
child of Gi(m).

Case 3: There exist i ∈ [k] and j ∈ [k] such that V (A�) ⊆ Vi , V (Am) ⊆ Vj , and Gj

is a child of Gi . We are to derive a contradiction in this case.

Since Gi(m) = Gj is a child of Gi(�) = Gi , i(m) �= i0. Thus Am has at least one
ancestor, namely Ar0 (i(r0) = i0), with a different T -index. Let Ap be the closest
ancestor of Am that satisfies i(p) �= i(m) = j . Then the child Aq of Ap that lies on
the path from Ap down to Am must have T -index i(q) = i(m) = j . By the inductive
hypothesis, Gj = Gi(m) = Gi(q) is a child of Gi(p) in T . Therefore, i(p) ≡ i. Let

S = {s : As is a descendant of Ap and an ancestor of Am}.

By the definition of Ap , we have i(s) = j for all s ∈ S. Therefore

Wj
�= V (Am) ∪

(⋃

s∈S

V (As)

)
⊆ Vj .

174 Algorithmica (2015) 71:152–180

Fig. 13 Case 3

Moreover, since i(p) = i = i(�),

Wi
�= V (Ap) ∪ V (A�) ⊆ Vi .

Hence

1 = sG (Vi , Vj) ≥ sG (Wi,Wj) ≥ 2,

which is impossible. The last inequality is explained as follows. The two different
edges that connect Ap and Aq , A� and Am both have one end in Wi and the other
end in Wj (Fig. 13). �

For each � ∈ [h] let B� be the collection of nodes of T ′ that consists of A� and
all of its descendant nodes in T ′. If A� is a child of Am, we refer to B� as a branch
of Am in T ′. A branch of Am is called nonessential if all of its nodes have the same
T -index as Am. Otherwise it is called essential. A DC of Am that connects it to at
least one of its essential branches is called an essential DC. Otherwise it is called a
nonessential DC.

Lemma 4.18 For each m ∈ [h], the number of essential DCs of Am is at most c.

Proof Suppose by contradiction that some node Am has more than c essential DCs.
Our goal is to show that in T , the number of DCs of Gi(m) would be larger than c,
which is impossible. For each essential DC u of Am, let A�u be the closest descendant
of Am (connected to Am via u) whose T -index is different from that of Am. In
other words, i(�u) �= i(m). Let Apu be the parent node of A�u . Then clearly i(pu) =
i(m). By Lemma 4.17, Gi(�u) is a child of Gi(m) = Gi(pu) in T . Let u′ be the DC that
connects Apu and A�u in T ′. Note that u′ and u are identical when pu ≡ m. Since
V (Apu) ⊆ Vi(pu) = Vi(m) and V (A�u) ⊆ Vi(�u), u′ is also the DC that connects Gi(m)

and its child Gi(�u) in T .
We use similar notations for another essential DC v �= u of Am. Then another child

of Gi(m), namely Gi(�v), is connected to Gi(m) via the DC v′ of Gi(m) (Fig. 14).

Algorithmica (2015) 71:152–180 175

Fig. 14 DCs of Am in T ′ and
corresponding DCs of Gi(m)

in T

If either u′ or v′ does not belong to Am, then as T ′ is a (P) simple tree structure
of G , it is straightforward that u′ �= v′. If both of the DCs are in Am then u′ ≡ u and
v′ ≡ v, which in turn implies that u′ �= v′. Hence, distinct essential DCs of Am in T ′
correspond to distinct DCs of Gi(m) in T . Therefore, Gi(m) would have more than c

DCs in T . �

Lemma 4.19 In the Merging Phase the algorithm merges each nonessential branch
of T ′ into a leaf.

Proof Suppose B� is a nonessential branch of T ′. All nodes in B� have the same
T -index i for some i ∈ [k]. Hence for every node Ap ∈ B�, V (Ap) ⊆ Vi . Therefore
any arbitrary set of nodes in B� can be merged into an induced subgraph of Gi , which
also belongs to P since Gi ∈ P . Recall that in the Merging Phase, the algorithm tries
to merge a node with a set of leaf child-nodes connected to it via a maximum set of
DCs. Hence a node in B� whose children are all leaves is always merged with all of
its children and turned into a leaf thereafter. As a result, in the Merging Phase, the
algorithm traverses the branch in a bottom up manner, and keeps merging the leaf
nodes with their parents to turn the parents into leaves. Finally, when the algorithm
reaches the top node of the branch, the whole branch is merged into a leaf. �

Now we are in position to prove Lemma 4.16.

Proof of Lemma 4.16 As G ∈ FP (c), due to Lemma 4.13, G passes the Splitting
Phase successfully. It remains to show that G also passes the Merging Phase success-
fully. In fact, we show that the algorithm finds a relevant tree structure of G as soon
as Ar0 (i(r0) = i0) is assigned to be the root node of T ′.

As shown in Lemma 4.19, when the algorithm visits a node Am, every nonessen-
tial branch of Am has already been merged into a leaf node. The other branches of
Am are essential. By Lemma 4.18, there are at most c DCs of Am that connect Am

to those essential branches. A set Em that satisfies the requirements mentioned in the

176 Algorithmica (2015) 71:152–180

Merging Phase always exists. Indeed, let Em be the set of all nonessential DCs of Am

then

• As there are at most c essential DCs, |Em| ≥ |Dm| − c;
• As every branch connected to Am via DCs in Em is nonessential, it is already

merged into a leaf; Hence Cm contains only leaf nodes;
• Since all the branches connected to Am via DCs in Em are nonessential, a similar

argument as in the proof of Lemma 4.19 shows that the leaf child-nodes of Am in
Cm can be merged with Am to produce a graph that belongs to P .

After being merged, Am has at most c DCs. When the algorithm reaches the root
node, T ′ is turned into a relevant tree structure of G . Thus, when Ar0 is chosen as
the root of T ′, the algorithm runs smoothly in the Merging Phase and finds a relevant
tree structure of G . �

Lemma 4.20 The running time of Algorithm 2 is polynomial with respect to the order
of G .

Proof Every single task in the Splitting Phase can be accomplished in polynomial
time. Those tasks include: finding a bridge in a connected graph (see Tarjan [26]),
deciding whether a graph belongs to P , and building a tree based on the components
of G .

Let us examine the “while” loop and the “for” loop in the Splitting Phase. After
each intermediate iteration in the while loop, as at least one component gets split into
two smaller components, the number of components of G is increased by at least one.
Since the vertex sets of the components are pairwise disjoint, there are no more than
n = |V (G)| components at any time. Hence, there are no more than n iterations in
the while loop. Since the number of graphs in Q1 cannot exceed n, the number of
iterations in the for loop is also at most n. Therefore, the Splitting Phase finishes in
polynomial time with respect to n.

We now look at the running time of the Merging Phase. Each “for” loop has at
most n iterations and therefore does not raise any complexity issue. The only task
that needs an explanation is the task of finding a maximum subset Em of DCs of Am

that satisfies certain requirements. This task can be done by examining all s-subsets
of Dm with s runs from |Dm| down to |Dm| − c. There are

|Dm|∑

s=|Dm|−c

(|Dm|
s

)
=

c∑

i=0

(|Dm|
i

)
≤

c∑

i=0

(
n

i

)
= O

(
nc

)

such subsets. For each subset, the verification of the two conditions specified in the
algorithm can also be done in polynomial time. Therefore, the Merging Phase’s run-
ning time is polynomial with respect to n. �

Proof of Theorem 4.11 Lemmas 4.15, 4.16, and 4.20 qualify Algorithm 2 as a polyno-
mial time algorithm to recognize a member of FP (c). Thus Theorem 4.11 follows. �

Algorithm 2 can be adjusted, by replacing c by c log |V (G)|, to recognize a graph
G in FP (c log(·)), for any constant c > 0. However, according to the proof of

Algorithmica (2015) 71:152–180 177

Fig. 15 Running time for
finding min-ranks of graphs or
small orders

Order Number of
non-isomorphic graphs

Total running time

1 1 <1 seconds
2 2 <1 seconds
3 4 <1 seconds
4 11 <1 seconds
5 34 <1 seconds
6 156 <1 seconds
7 1,044 <1 seconds
8 12,346 25 seconds
9 274,668 56 minutes
10 12,005,168 4.3 days

Lemma 4.20, the running time of the algorithm in this case is roughly O(nc logn)

(n = |V (G)|), which is no longer polynomial in n.

5 Min-Ranks of Graphs of Small Orders

To aid further research on the behavior of min-ranks of graphs, we have carried out a
computation of binary min-ranks of all non-isomorphic graphs of orders up to 10.

A reduction to SAT (Satisfiability) problem [8] provides us with an elegant method
to compute the binary min-rank of a graph. We observed that while the SAT-based
approach is very efficient for graphs having many edges, it does not perform well
for simple instances, such as a graph on 10 vertices with no edges (min-rank 10).
For such naive instances, the SAT-solver that we used, Minisat [14], was not able
to terminate after hours of computation. This might be attributed to the fact that the
SAT instances corresponding to a graph with fewer edges contain more variables than
those corresponding to a graphs with more edges on the same set of vertices.

To achieve our goal, we wrote a sub-program which used a Branch-and-Bound
algorithm to find min-ranks in an exhaustive manner. When the input graph was of
large size, that is, its size surpasses a given threshold, a sub-program using a SAT-
solver was invoked; Otherwise, the Branch-and-Bound sub-program was used. We
noticed that there are graphs of order 10 that have around 21–22 edges, for which the
Branch-and-Bound sub-program could find the min-ranks in less than one second,
while the SAT-based sub-program could not finish computations after 3–4 hours.
For graphs of order 10, we observed that the threshold 24, which we actually used,
did work well. The most time-consuming task is to compute the min-ranks of all
12,005,618 non-isomorphic graphs of order 10. This task took more than four days
to finish. The running time of our program for graphs of orders at most 10 is given in
Fig. 15.

The charts in Fig. 16 and Fig. 17 present the distributions of min-ranks of non-
isomorphic graphs of orders from three to ten. In each chart, the x-axis shows the
minranks, and the y-axis shows the number of non-isomorphic graphs that have a

178 Algorithmica (2015) 71:152–180

Fig. 16 Min-rank distributions for graphs of orders 3–6

Fig. 17 Min-rank distributions for graphs of orders 7–10

certain minrank. The minranks and the corresponding matrices that achieve the min-
ranks of all non-isomorphic graphs of orders up to 10 are available at [12]. Interested
reader may also visit [13] to calculate the min-rank of a graph.

6 Open Problems

For future research, we would like to tackle the following open problems.

Open Problem I Currently, in order for Algorithm 1 to work, we restrict ourselves
to FP (c log(·)), the family of graphs G having a (P) simple tree structure T with
mdc(T) ≤ c log |V (G)| for some constant c. An intriguing question is: can we go
beyond FP (c log(·))?

Open Problem II Find an algorithm that recognizes a member of FP (c log(·)) in
polynomial time, or show that there does not exist such an algorithm.

Open Problem III Computation of min-ranks of graphs with k-multiplicity tree
structures is open for every k ≥ 2. The 2-multiplicity tree structure is the simplest
next case to consider. In such a tree structure, a node can be connected to another

Algorithmica (2015) 71:152–180 179

node by at most two edges. The idea of using a dynamic programming algorithm to
compute min-ranks is almost the same. However, there are two main issues for us
to tackle. Firstly, we need to study the effect on min-rank when an edge is removed
from the graph. In other words, we must know the relation between minrkq(G) and
minrkq(G −e) for an edge e of G . This relation was investigated for outerplanar graphs
by Berliner and Langberg [3, Claims 4.2, 4.3]. We need to extend their result to a new
scenario. Secondly, as now the two nodes in the tree structure can be connected by
two edges, a recognition algorithm for graphs with 2-multiplicity tree structures could
be more complicated than that for graphs with simple tree structures.

Open Problem IV Extending the current results to directed graphs.

Acknowledgements We thank Vitaly Skachek for useful comments on the draft of the paper. We also
thank Michael Langberg for providing the preprints [3, 17].

References

1. Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theory
46, 1204–1216 (2000)

2. Bar-Yossef, Z., Birk, Z., Jayram, T.S., Kol, T.: Index coding with side information. In: Proceedings
of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 197–206
(2006)

3. Berliner, Y., Langberg, M.: Index coding with outerplanar side information. In: Proceedings of the
IEEE Symposium on Information Theory (ISIT), Saint Petersburg, Russia, pp. 869–873 (2011)

4. Berliner, Y., Langberg, M.: Index coding with outerplanar side information. Manuscript (2011). Avail-
able at http://www.openu.ac.il/home/mikel/papers/outer.pdf

5. Birk, Y., Kol, T.: Informed-source coding-on-demand (ISCOD) over broadcast channels. In: Proceed-
ings of the IEEE Conference on Computer Communications (INFOCOM), San Francisco, CA, pp.
1257–1264 (1998)

6. Birk, Y., Kol, T.: Coding-on-demand by an informed source (ISCOD) for efficient broadcast of differ-
ent supplemental data to caching clients. IEEE Trans. Inf. Theory 52(6), 2825–2830 (2006)

7. Chartrand, G., Harary, F.: Planar permutation graphs. Ann. Inst. Henri Poincaré B, Probab. Stat. 3(4),
433–438 (1967)

8. Chaudhry, M.A.R., Sprintson, A.: Efficient algorithms for index coding. In: Proceedings of the IEEE
Conference on Computer Communications (INFOCOM), pp. 1–4 (2008)

9. Chlamtac, E., Haviv, I.: Linear index coding via semidefinite programming. In: Proceedings of the
23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 406–419 (2012)

10. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann.
Math. 164, 51–229 (2006)

11. Cornuejols, G., Liu, X., Vuskovic, K.: A polynomial time algorithm for recognizing perfect graphs.
In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 20–27 (2003)

12. Dau, S.H.: See web.spms.ntu.edu.sg/~daus0001/mr-small-graphs.html (2011)
13. Dau, S.H.: See web.spms.ntu.edu.sg/~daus0001/mr.html (2011)
14. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Theory and Applications of Satisfiability Test-

ing. Lecture Notes in Computer Science, vol. 2919, pp. 333–336. Springer, Berlin (2004)
15. El Rouayheb, S., Sprintson, A., Georghiades, C.: On the index coding problem and its relation to

network coding and matroid theory. IEEE Trans. Inf. Theory 56(7), 3187–3195 (2010)
16. Haemers, W.: An upper bound for the Shannon capacity of a graph. Algebr. Methods Graph Theory

25, 267–272 (1978)
17. Haviv, I., Langberg, M.: On linear index coding for random graphs. In: Proceedings of the IEEE

International Symposium on Information Theory (ISIT), pp. 2231–2235 (2012)
18. Katti, S., Rahul, H., Hu, W., Katabi, D., Médard, M., Crowcroft, J.: Xors in the air: practical wireless

network coding. ACM SIGCOMM Comput. Commun. Rev. 36(4), 243–254 (2006)

http://www.openu.ac.il/home/mikel/papers/outer.pdf
http://web.spms.ntu.edu.sg/~daus0001/mr-small-graphs.html
http://web.spms.ntu.edu.sg/~daus0001/mr.html

180 Algorithmica (2015) 71:152–180

19. Katti, S., Katabi, D., Balakrishnan, H., Médard, M.: Symbol-level network coding for wireless mesh
networks. ACM SIGCOMM Comput. Commun. Rev. 38(4), 401–412 (2008)

20. Koetter, R., Médard, M.: An algebraic approach to network coding. IEEE/ACM Tranans. Netw. 11,
782–795 (2003)

21. Langberg, M., Sprintson, A.: On the hardness of approximating the network coding capacity. In:
Proceedings IEEE Symp. on Inform. Theory (ISIT), Toronto, Canada, pp. 315–319 (2008)

22. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 1–7 (1979)
23. Lubetzky, E., Stav, U.: Non-linear index coding outperforming the linear optimum. In: Proceedings

of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 161–168
(2007)

24. Peeters, R.: Orthogonal representations over finite fields and the chromatic number of graphs. Com-
binatorica 16(3), 417–431 (1996)

25. Shannon, C.E.: The zero-error capacity of a noisy channel. IRE Trans. Inf. Theory 3, 3–15 (1956)
26. Tarjan, R.E.: A note on finding the bridges of a graph. Inf. Proces. Lett. 160–161 (1974)
27. Wiegers, M.: Recognizing outerplanar graphs in linear time. In: Proceedings of the International

Workshop WG ’86 on Graph-Theoretic Concepts in Computer Science, pp. 165–176 (1987)

	Polynomial Time Algorithm for Min-Ranks of Graphs with Simple Tree Structures
	Abstract
	Introduction
	Background
	Our Contribution
	Organization

	Notation and Definitions
	The Index Coding with Side Information Problem
	On Min-Ranks of Graphs with Simple Tree Structures
	Simple Tree Structures
	A Polynomial Time Algorithm for Min-Ranks of Graphs in FP(c)
	An Algorithm to Recognize a Graph in FP(c)

	Min-Ranks of Graphs of Small Orders
	Open Problems
	Acknowledgements
	References

