
4804 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

Low-Power Cooling Codes With Efficient
Encoding and Decoding

Yeow Meng Chee , Tuvi Etzion , Fellow, IEEE, Han Mao Kiah , Member, IEEE,

Alexander Vardy , Fellow, IEEE, and Hengjia Wei

Abstract— In a bus with n wires, each wire has two states,
‘0’ or ‘1’, representing one bit of information. Whenever the
state transitions from ‘0’ to ‘1’, or ‘1’ to ‘0’, joule heating
causes the temperature to rise, and high temperatures have
adverse effects on on-chip bus performance. Recently, the class
of low-power cooling (LPC) codes was proposed to control such
state transitions during each transmission. As suggested in earlier
work, LPC codes may be used to control simultaneously both the
peak temperature and the average power consumption of on-chip
buses. Specifically, an (n, t, w)-LPC code is a coding scheme over
n wires that (i) avoids state transitions on the t hottest wires (thus
preventing the peak temperature from rising); and (ii) allows at
most w state transitions in each transmission (thus reducing
average power consumption). In this paper, for any fixed value
of w, several constructions are presented for large LPC codes
that can be encoded and decoded in time O(n log2(n/w)) along
with the corresponding encoding/decoding schemes. In particular,
we construct LPC codes of size (n/w)w−1, which are asymptot-
ically optimal. We then modify these LPC codes to also correct
errors in time O(n3). For the case where w is proportional to n,

Manuscript received August 9, 2018; revised October 30, 2019; accepted
February 15, 2020. Date of publication March 2, 2020; date of current version
July 14, 2020. The work of Yeow Meng Chee was supported in part by
the Singapore Ministry of Education under Grant MOE2017-T3-1-007 and
Grant MOE2015-T2-2-086. The work of Tuvi Etzion was supported in
part by the Binational Science Foundation-National Science Foundation
(BSF-NSF) under Grant 2016692 and in part by NSF under Grant CCF-
1719139. The work of Han Mao Kiah and Hengjia Wei was supported by
the Singapore Ministry of Education under Grant MOE2015-T2-2-086. The
work of Alexander Vardy was supported in part by the National Science
Foundation under Grant CCF-1405119 and Grant CCF-1719139, in part
by the Binational Science Foundation-National Science Foundation (BSF-
NSF) under Grant 2016692, and in part by NSF under Grant CCF-1719139.
This article was presented at the 2018 IEEE International Symposium on
Information Theory. (Corresponding author: Hengjia Wei.)

Yeow Meng Chee is with the Department of Industrial Systems Engineering
and Management, National University of Singapore, Singapore 117576
(e-mail: pvocym@nus.edu.sg).

Tuvi Etzion is with the Department of Computer Science, Technion—
Israel Institute of Technology, Haifa 3200003, Israel (e-mail: etzion@
cs.technion.ac.il).

Han Mao Kiah is with the School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371 (e-mail:
hmkiah@ntu.edu.sg).

Alexander Vardy is with the Department of Electrical and Computer Engi-
neering, University of California at San Diego, San Diego, CA 92093 USA,
and also with the Department of Computer Science and Engineering, Uni-
versity of California at San Diego, San Diego, CA 92093 USA (e-mail:
avardy@ucsd.edu).

Hengjia Wei is with the Department of Electrical and Computer Engineer-
ing, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel (e-mail:
hjwei05@gmail.com).

Communicated by P. Sadeghi, Associate Editor for Coding Techniques.
Color versions of one or more of the figures in this article are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2020.2977871

we further present a different construction of large LPC codes,
based on a mapping from cooling codes to LPC codes. Using
this construction, we obtain two families of LPC codes whose
encoding and decoding complexities are O(n3).

Index Terms— Cooling codes, low-power cooling (LPC) codes,
thermal-management coding.

I. INTRODUCTION

POWER and heat dissipation have emerged as first-order
design constraints for chips, whether targeted for

battery-powered devices or for high-end systems. High tem-
peratures have dramatic negative effects on bus performance.
Power-aware design alone is insufficient to address the thermal
challenges, since it does not directly target the spatial and
temporal behavior of the operating environment. For this rea-
son, thermally-aware approaches have emerged as one of the
most important domains of research in chip design today.
Numerous techniques have been proposed to reduce the overall
power consumption of on-chip buses (see [3] which uses
coding techniques and the references therein using non-coding
techniques). However, all the non-coding techniques do not
directly address peak temperature minimization.

In an n-bit bus, each of the n wires is charged to one
of two voltages, representing the two states ‘0’ and ‘1’.
When the state is switched from ‘0’ to ‘1’, or ‘1’ to ‘0’,
joule heating causes temperature to rise regardless of the
direction of current flow (see [21] for an analysis). In other
words, the temperature of a wire increases whenever the wire
undergoes a state transition; conversely, in the absence of state
transitions, the temperature will gradually decrease.

Remark 1: In the literature, there are also differing thermal
models (see [16], [17]), wherein the heating rate and energy
consumption of a ‘0→ 1’ transition differ from that of a ‘1→
0’ transition. However, analysis of such models is beyond the
scope of this paper, and is deferred to future work.

Recently, a new class of codes, called cooling codes, was
introduced in [3] to directly control the peak temperature of a
bus by cooling its hottest wires. This is achieved by avoiding
state transitions on the hottest wires for as long as necessary
until their temperature drops off. Cooling codes are based on
differential encoding. Specifically, if the current state of the
wires is (s1, s2, . . . , sn), i.e., wire i is in state si, and we
want to transmit the binary vector (x1, x2, . . . , xn), we set
the wires to the state (s�1, s

�
2, . . . , s

�
n), where s�i is equal to

si + xi modulo 2 for 1 ≤ i ≤ n. Therefore, there is a state
transition on the wire i if and only if xi = 1 (see Figure 1).

0018-9448 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:16:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7823-8068
https://orcid.org/0000-0002-4315-4400
https://orcid.org/0000-0001-5611-0848
https://orcid.org/0000-0003-3303-9078
https://orcid.org/0000-0001-8136-1489

CHEE et al.: LOW-POWER COOLING CODES WITH EFFICIENT ENCODING AND DECODING 4805

Fig. 1. (a) The current state of the wires is 101101, which is stored in the buffers of both the sender and receiver modules. Suppose that the fifth and sixth
wires are the hottest wires and we choose a word 110000 to transmit. (b) To do so, since the word 110000 has ones on the first two positions, we invert the
state of the first two wires, thus changing the state to 011101. Observe that the vector 110000 is chosen so as to avoid state transitions on the hottest wires
(here, the hottest wires are the last two wires). Hence, only the first two wires may heat up, while the temperature of the remaining wires cool down. (c) The
receiver module sees that the wires’ states have changed. Comparing the new state 011101 with the buffer word 101101, the receiver module computes the
received word to be 110000. (d) Finally, both sender and receiver modules update their buffer to reflect the new state of the wires.

Given the t hottest wires, an (n, t)-cooling code allows
one to encode data into a vector of length n that has zero
entries in the corresponding t coordinates, thereby avoiding
state transitions on these t wires. A formal definition and an
example are given in Section II.

In this paper, we are particularly interested in low-power
cooling (LPC) codes as they control both the peak temperature
and the average power consumption simultaneously. Specifi-
cally, an (n, t, w)-LPC code is an (n, t)-cooling code in which
every codeword has Hamming weight at most w. Such a
coding scheme has the following two features:

(i) none of the transmissions cause state transitions on the
t hottest wires;

(ii) the number of state transitions on all the wires is at most
w in every transmission.

Using partial spreads, we constructed LPC codes with effi-
cient encoding and decoding schemes in [3]. When t ≤ 0.687n
and w ≥ (n − t)/2, these codes achieve optimal asymptotic
rates. However, when w is small, i.e., low-power coding
is used, the code rates are small and we proposed another
construction based on the decomposition of the complete
hypergraph into perfect matchings. While the construction
results in LPC codes of large size, efficient encoding and
decoding algorithms are generally not known.

In this work, we focus on the latter regime (i.e., w small)
and construct LPC codes with efficient encoding and decoding
schemes. Specifically, our contributions are as follows:

(i) We propose a method that takes a linear erasure code
as input and constructs an LPC code. This method
is applicable whenever n/w is a prime power such
that n/w ≥ 2w − 2 and t < n/w. Using this
method, we construct a family of (n, t, w)-LPC codes
of size (n/w)w−1, which attains the asymptotic upper
bound O(nw−1) when w is fixed. We also use this
method to construct a class of LPC codes of size
(n/w)w−e−1 which is able to correct e transmission
errors.

(ii) We propose efficient encoding/decoding schemes for the
above family of LPC codes. In particular, we demon-
strate encoding with O(n) multiplications over Fq and
decoding with O(w3) multiplications over Fq, where
q = n/w. Furthermore, we present a decoding algorithm
for the related class of LPC codes that corrects e errors
with complexity O(n3).

(iii) We propose a new family of low-power cooling codes,
called constant-power cooling (CPC in short) codes,
which have the same weight for all the codewords. All
our previous constructions can be applied to obtain such
codes.

(iv) We provide a recursive construction of a class of
(nq, tq, w)-CPC codes (and also (nq, tq, w)-LPC codes)
from (n, t, w)-CPC codes (and a special type of
(n, t, w)-LPC codes).

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:16:52 UTC from IEEE Xplore. Restrictions apply.

4806 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

Compared with previous constructions, this recursive
construction admits a larger range of parameters. Specif-
ically, this method can produce CPC codes of high
cooling capability, t ≥ n/w.

(v) We construct a class of (n, t, w)-LPC codes based on
(m, t)-cooling codes. In an (m, t)-cooling code, each
codeword is a binary vector of length m. Our construc-
tion takes an (m, t)-cooling code C as input, where 2m ≤∑w

i=0

(
n
i

)
, and uses a mapping ϕ to send each codeword

x of C into a binary vector of length n and weight at
most w such that each coordinate of the resulting vector
ϕ(x) is “dominated” by a coordinate of the codeword x.
This property of being “dominated”, which is explained
in Section VI, guarantees that the cooling property of the
(m, t)-cooling code is preserved.

Our emphasis in this paper is on cooling codes in the context
controlling temperature of buses. We note however that such
codes have other applications too. One such application is
in the design of WOM (Write Once Memory) codes which
are very important in coding for flash memories (see [4]
and references therein). This application of codesets for the
construction of WOM codes was given in detail in [4] and
is described in short as follows. In a WOM code, we write
binary information messages into a memory of length n, and
the information can only be written in positions where there
are zeroes. The goal is to write as many rounds as possible
until there is no way to distinguish between some of the written
words. A coding solution is to identify each information
message with a codeset, and choose a codeword x from the
appropriate codeset that has ones on all positions where the
memory has ones. In other words, the ones in complement
x of x should have empty intersection with the ones of the
memory. If we set S to be the set of ones of the memory, then
the above property can rewritten as: supp(x)∩S = ∅, which
is analogous to Definition 1. We refer the interested reader
to [4] for more details. We believe that other applications will
arise in the future.

The rest of this paper is organized as follows. In Section II,
we present some necessary definitions for our exposition,
some of the known results, and new upper bounds on the
sizes of low-power cooling codes and constant-power cooling
codes. Then, the known constructions are presented and we
motivate our first construction based on disjoint Turán systems.
Section III suggests a construction for CPC codes based on
non-binary linear codes in general and on MDS codes in
particular. For these codes efficient encoding and decoding
algorithms are derived. We continue in Section IV and add
error-correction capabilities for such codes and provide effi-
cient algorithms also in this case. The construction that was
used in Section IV is modified in Section V to provide a
recursive construction for (nq, tq, w)-CPC codes (and related
(nq, tq, w)-LPC codes) from (n, t, w)-CPC codes (and some
special (n, t, w)-LPC codes). While in Section III the con-
structions are for t ≤ n/w − 1, the construction in Section V
admits larger values of t. In Section VI a method to transfer
an (m, t)-cooling code to an (n, t, w)-LPC code is given. This
method is based on a special injection from the set of all binary
words of length m into binary words of length n and weight

at most w. A product construction using this method implies
codes with efficient encoding and decoding algorithms. We
further analyze and compare between this construction and
constructions in previous works.

II. PRELIMINARIES

Given a positive integer n, the set {1, 2, . . . , n} is abbrevi-
ated as [n]. The Hamming weight of a vector x ∈ Fn

q , denoted
wt(x), is the number of nonzero positions in x, while the
support of x is defined as supp(x) � {i ∈ [n] : xi �= 0}.
A q-ary code C of length n is a subset of Fn

q , while the
minimum distance of C is the smallest Hamming distance
between any two of its codewords. The code size of C is its
cardinality |C|, while its rate is given by logq |C|/n.

Let S ⊆ [n] and suppose S represents a set of hot wires.
As described in Section I, in order to avoid state transitions
on these wires, we require the transmitted codeword to have
zeroes at the coordinates in S. However, as the choice of S
is arbitrary, instead of encoding each message to exactly one
codeword, we associate each message to a codeset of possible
codewords. Specifically, we have the following definition.

Definition 1: For n and t, an (n, t)-cooling code C of size
M is defined as a collection of codesets C1,C2, . . . ,CM , where
C1,C2, . . . ,CM are disjoint subsets of {0, 1}n satisfying the
following property: for any set S ⊆ [n] of size |S| = t
and for i ∈ [M], there exists a vector x ∈ Ci such that
supp(x) ∩ S = ∅. We refer to the vectors in

⋃M
i=1 Ci as

codewords.
Example 1: Consider the communication over a bus con-

sisting of 6 wires as depicted in Figure 1. We associate each
of the following five messages mi with a codeset Ci:

m1 : C1 = {110000, 001100, 000011},
m2 : C2 = {100001, 011000, 000110},
m3 : C3 = {100010, 010100, 001001},
m4 : C4 = {100100, 010001, 001010},
m5 : C5 = {101000, 010010, 000101}.

Suppose the last two wires are hottest wires. For each
message mi, one can choose the following vector from the
corresponding codeset to transmit. Observe that the last two
bits in the chosen vector are always zero.

m1 	→ 110000, m2 	→ 011000, m3 	→ 010100,
m4 	→ 100100, m5 	→ 101000.

In particular, for Figure 1, the sender module is sending
message m1 and chose to transmit the word 110000 to avoid
state transitions on the last two wires. Since the codesets are
mutually disjoint, we can always uniquely decode the message
from the transmitted vector. �

To limit the number of state transitions in each transmission,
i.e., limit the average power consumption, we introduce the
notion of low-power cooling codes. As discussed in Section I,
this corresponds to bounding the weight of each codeword.

Definition 2: For n, t and w with t+ w ≤ n, an (n, t, w)-
low-power cooling (LPC) code is an (n, t)-cooling code in
which every codeword has Hamming weight at most w.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:16:52 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: LOW-POWER COOLING CODES WITH EFFICIENT ENCODING AND DECODING 4807

In this paper, we focus on a class of (n, t, w)-LPC codes
where every transmission results in exactly w state transitions.
We call such codes (n, t, w)-constant-power cooling (CPC)
codes. In particular, let J(n,w) � {x ∈ {0, 1}n : wt(x) = w}.
Then an (n, t, w)-CPC code is an (n, t, w)-LPC code such that
Ci ⊆ J(n,w) for each i ∈ [M].

For given values of n, t, and w, our objective is to construct
(n, t, w)-LPC codes and (n, t, w)-CPC codes with the largest
possible code sizes, and therefore, the highest code rates. In
particular, Construction 1 yields a family of codes whose code
sizes are asymptotically optimal.

In addition to large code sizes, we also aim to equip the
codes with efficient encoding and decoding schemes that have
polynomial time complexity. Specifically, for an (n, t, w)-LPC
code C of size M , we define encoding and decoding as
follows.

• Encoding refers to a function ENC that maps a message
i ∈ [M] and a t-subset S of [n] to a codeword x ∈ Ci.
Here, S represents a set of t hottest wires and we require
supp(x) ∩ S = ∅ so that we avoid state transitions on
the wires corresponding to S.
In Section III, we present a class of (n, t, w)-LPC codes
C of size M = (n/w)w−1. A naive encoding method
stores all (n/w)w−1 codesets in a codebook. Given a
message i ∈ [M] and a t-subset S of [n], the naive
encoder then finds Ci in O(logM) time and determines x
in O(n) time. In contrast, for our LPC code, we demon-
strate that it suffices to store a matrix G with O(nw)
entries over Fq , where q = n/w. For this matrix G,
we provide a corresponding encoder that computes the
codeword x using O(n) arithmetic operations over Fq.

• Decoding refers to a function DEC that maps a codeword
x ∈ Ci back to the message i. Unless otherwise stated,
we assume that the word x is read without errors. For
the codes constructed in Section III, given the Fq-matrix
G, we provide a decoder that computes the message i in
O(w3) time. In the presence of errors, we modify our
decoder to correct the errors and compute the message i
in O(n3) time.

A. Set Systems

For a finite set X of size n, 2X denotes the collection of
all subsets of X , i.e., 2X � {A : A ⊆ X}. A set system
of order n is a pair (X,B), where X is a finite set of n
points, B ⊆ 2X , and the elements of B are called blocks. Two
set systems (X,B1) and (X,B2) with the same point set are
called disjoint if B1 ∩ B2 = ∅, i.e., they do not have any
block in common.

A partial parallel class of a set system (X,B) is a collection
of pairwise disjoint blocks. If a partial parallel class partitions
the point set X , it is called parallel class.

There is a canonical one-to-one correspondence between the
set of all codes of length n and the set of all set systems of
order n: the coordinates of vectors in {0, 1}n correspond to
the points in [n], and each vector x ∈ {0, 1}n corresponds
to the block defined by supp(x). Thus we may speak of the
set system of a code or the code of a set system. With slight

abuse of notation, we sometimes do not distinguish between
the two different notations and this can be readily observed in
the text.

B. Upper Bounds

Given a t-subset (i.e., a subset of size t) S of [n] and a vector
x ∈ {0, 1}n, we shall say that x avoids S if supp(x)∩S = ∅.
The following bounds on LPC codes and CPC codes are easily
derived.

Lemma 1: Let C be an (n, t, w)-LPC code of size M , then

M ≤
w∑

i=0

(
n− t
i

)
.

Furthermore, if C is an (n, t, w)-CPC code, then

M ≤
(
n− t
w

)
.

Proof: For any given t-subset S of [n], each codeset
should have at least one codeword which avoids S. The
number of words with weight i which avoid S is

(n-t
i

)
and

hence there are no more than
(
n−t
w

)
codesets in an (n, t, w)-

CPC code and no more than
∑w

i=0

(
n−t

i

)
codesets in an

(n, t, w)-LPC code.
Lemma 1 implies that both CPC codes and LPC codes

share the same asymptotic upper bound O(nw) on the number
of codewords, whenever w is fixed. The upper bound of
Lemma 1 can be improved for some parameters. For this
purpose, we need to define and to introduce some results on
Turán systems.

Let n ≥ k ≥ r, and let X be a finite set with n distinct
elements. The set

(
X
r

)
is the collection of all r-subsets of X .

A Turán (n, k, r)-system is a set system (X,B), where |X | =
n and B ⊆ (

X
r

)
is the set of blocks such that each k-subset

of X contains at least one of the blocks. The Turán number
T (n, k, r) is the minimum number of blocks in such a system.
This number is determined only for r = 2 and some sporadic
examples (see [12], [15] and references therein). De Caen [6]
proved the following general lower bound:

T (n, k, r) ≥ n− k + 1
n− r + 1

·
(
n
r

)
(
k−1
r−1

) . (1)

Note that a codeword x avoids a t-subset S if and only if
the complement of S, which is an (n − t)-subset, contains
supp(x). Thus from a CPC code we can obtain a collection
of disjoint Turán systems by simply taking the supports of the
codewords, and vice versa.

Proposition 2: A family of codesets {C1,C2, . . . ,CM} is
an (n, t, w)-CPC code if and only if the set system of each Ci

is a Turán (n, n− t, w)-system and these M set systems are
pairwise disjoint.

Combining the bound in (1) and Proposition 2, we have the
following upper bounds on the size of CPC codes and LPC
codes.

Corollary 3: If C is an (n, t, w)-CPC code of size M , then

M ≤ n− w + 1
t+ 1

(
n− t− 1
w − 1

)
.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:16:52 UTC from IEEE Xplore. Restrictions apply.

4808 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

Proof: Proposition 2 implies that

M ≤
(

n
w

)
T (n, n− t, w)

. (2)

The corollary then follows from (1).
Corollary 4: If C is an (n, t, w)-LPC code of size M , then

M ≤
w−1∑
i=0

(
n

i

)
+
n− w + 1
t+ 1

(
n− t− 1
w − 1

)
.

Proof: If we consider an (n, t, w)-CPC code C, then
to form an (n, t, w)-LPC code we can add to C at most∑w−1

i=0

(
n
i

)
codesets, each one containing exactly one code-

word of weight less than w.
When t = Θ(n), we have that (n−w+1)/(t+1) = O(1),

and so the upper bound on the size of (n, t, w)-CPC codes
is improved from O(nw) implied by Lemma 1 to O(nw−1)
implied by Corollary 3.

For an (n, t, w)-LPC code, we have by Corollary 4 that the
size of such a code is at most

w−1∑
i=0

(
n

i

)
+
n− w + 1
t+ 1

(
n− t− 1
w − 1

)
,

which is also O(nw−1) when t and n are of the same order
of magnitude.

We end this subsection with an example of Proposition 2.
Example 2: Consider the (6, 2, 2)-CPC code in Example 1.

By taking the supports of the codewords we can obtain a
set system from each codeset with the set of points being
X � {1, 2, 3, 4, 5, 6} and the set of blocks Bi as follows:

B1 : {{1, 2}, {3, 4}, {5, 6}}
B2 : {{1, 6}, {2, 3}, {4, 5}}
B3 : {{1, 5}, {2, 4}, {3, 6}}
B4 : {{1, 4}, {2, 6}, {3, 5}}
B5 : {{1, 3}, {2, 5}, {4, 6}}

Now, for the 4-subset {1, 2, 3, 4}, we consider the last
two wires. As shown in Example 1, there is a codeword
from each codeset that avoids {5, 6}. Thus the blocks,
{1, 2}, {2, 3}, {2, 4}, {1, 4}, and {1, 3}, are contained in the
4-subset {1, 2, 3, 4}. In general, for a 4-subset {a, b, c, d}
of X , we consider its complement, which is 2-subset of X .
According to the definition of CPC codes, from each codeset
we can always find a codeword which avoids the 2-subset
X\{a, b, c, d} and then the support of this codeword is con-
tained in the 4-subset {a, b, c, d}. Thus, each (X,Bi) is a
(6, 4, 2)-Turán system. The disjointness of these Turán systems
comes from that of the corresponding codesets.

C. Some Known Constructions

Chee et. al [3] provided the following construction of
LPC/CPC codes.

Proposition 5 (Decomposition of Complete Hypergraphs):
If n = (t + 1)w, then there exists an (n, t, w)-CPC code of
size

(
n−1
w−1

)
.

When w is fixed, we have that t and n are of the same
order of magnitude and the above construction attains the

asymptotic upper bound O(nw−1). Unfortunately, usually no
efficient encoding and decoding methods are known for this
construction and generally the only known encoding method
involves listing all the

(
n−1
w−1

)
codesets. The exceptions are

for small n or when w is very small, e.g., when w = 2 or
w = 3 [1], [7].

Chee et. al [3] also proposed the following constructions
of LPC codes that have both efficient encoding and decoding
schemes. We remark that to apply the sunflower construction
in Proposition 7, we require known upper bounds on the
dimensions of linear codes [11].

Proposition 6 (Concatenation): Suppose that q ≤∑w′

i=0

(
s
i

)
and q is a prime power and t ≤ s.

(i) If t + 1 ≤ m/2, then there exists an (ms, t,mw�)-LPC
code of size qm−t−1.

(ii) If t+ 1 ≤ m ≤ q+ 1, then there exists an (ms, t,mw�)-
LPC code of size qm−t.

Proposition 7 (Sunflower Construction): Let r + t ≤
(n + s)/2. If a linear [n, s, w + 1]2 code exists and a linear
[n − t, r, w + 1]2 code does not exist, then there exists an
(n, t, w)-LPC code of size 2n−t−r.

Finally, Proposition 2 also motivates a new method to
construct (n, t, w)-CPC codes. We just have to find a set
with large number of pairwise disjoint Turán (n, n − t, w)-
systems. One work in this direction was done in [10], where
pairwise disjoint Turán (n,w+1, w)-systems were considered.
Another possible construction based on Proposition 2 is to
consider complements of pairwise disjoint Steiner systems.
Such pairwise disjoint systems were considered in [2], [18];
and in [8] for Steiner quadruple systems which will be used
in the sequel.

III. CONSTRUCTION OF CONSTANT-POWER COOLING

CODES WITH EFFICIENT ENCODING AND DECODING

In this section, we present a new construction of CPC codes
that have efficient encoding and decoding algorithms. When
n approaches infinity and w is fixed, the codes obtained by
this construction asymptotically attain the bound of Corol-
lary 3. As was mentioned before, there are three types of
constructions for LPC codes in [3]. The first one is based
on decomposition of the complete hypergraph, the second one
is a concatenation method based on q-ary cooling codes, and
the third one is a Sunflower Construction. The construction in
this section, is an explicit construction for CPC codes which
combines the advantages of the first two types of constructions.
We first rephrase the construction based on decomposition of
the complete hypergraph in terms of set systems. The construc-
tion is based on the following generalization of Proposition 5.

Proposition 8: Let (X,B) be a set system of order n,
where B is partitioned into M partial parallel classes
P1,P2, . . . ,PM . If B ⊆ (

X
w

)
and each Pi has at least

t + 1 blocks, then the codesets P1,P2, . . . ,PM form an
(n, t, w)-CPC code.

Proof: By definition, each codeword of a codeset has
weight w. Hence, to show that P1,P2, . . . ,PM form an
(n, t, w)-CPC code, we only have to prove that given a t-subset
S of X with the list of hottest wires and a codeset Pi,

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:16:52 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: LOW-POWER COOLING CODES WITH EFFICIENT ENCODING AND DECODING 4809

1 ≤ i ≤M , there exists a block B ∈ Pi such that B∩S = ∅.
Since Pi is a partial parallel class with at least t+1 codewords,
it follows that S intersects at most t blocks of Pi. Hence, there
exists a block B ∈ Pi such that B ∩ S = ∅.

A complete k-uniform hypergraph G = (V,E) has a
vertex set V with n ≥ k vertices, and each subset of

(
V
k

)
is connected by a hyperedge. The decomposition of G into
perfect matchings is a partition of the set of edges E in G into
sets of vertex-disjoint edges, where each vertex of V appears
exactly once in each set of the partition. In other words, such
a decomposition is a partition of

(
V
k

)
into parallel classes.

The celebrated Baranyai’s theorem [19, p. 536] asserts that
such a decomposition always exists if k divides the number
of vertices in V . Therefore, we recover Proposition 5.

A. CPC Codes Based on Linear Codes

A key ingredient of our construction is a q-ary linear code.
A q-ary code C ⊆ FN

q is a linear code if C is an Fq-linear
subspace of FN

q . A linear code C is an [N,K,D]q code if C has
dimension K and minimum Hamming distance D. Using the
codewords of C, we will show how to construct a set system
with qK−1 partial parallel classes, where each parallel class
has blocks of the same size. As a consequence, Proposition 8
yields a CPC code D. To equip D with efficient encoding and
decoding schemes, we utilize the erasure-correcting algorithms
of the linear code C. These schemes are discussed in detail in
Section III-B.

For a set of coordinates T and a vector σσσ ∈ F
|T |
q , we say

that σσσ appears λ times in C at T if there are λ codewords
in C whose restriction on T is σσσ. Since any two codewords
of C differ in at least D coordinates, it follows that they agree
in at most N − D positions. Hence, we have the following
observations.

Lemma 9: Let C be an [N,K,D]q linear code.

(i) For any (N −D + 1)-subset of coordinates T and any
σσσ ∈ FN−D+1

q , σσσ appears in at most one codeword of C

at T .
(ii) For any (N −D)-subset of coordinates T and any τττ ∈

F
N−D
q , τττ appears in at most q codewords of C at T .

Proof:

(i) If σσσ ∈ FN−D+1
q appears twice in codewords of C at an

(N−D+1)-subset of coordinates T , then the two related
codewords have distance at most D− 1, a contradiction.

(ii) If τττ ∈ FN−D
q appears in q + 1 codewords of C at an

(N −D)-subset of coordinates T , then let t be a coor-
dinate not in T . In at least two of the related codewords
coordinate t has the same symbol. We add this symbol
to τττ to obtain σσσ ∈ FN−D+1

q which appears in two
codewords of C at the (N − D + 1)-subset T ∪ {t},
contradicting claim (i) of this lemma. �

For a code C and a subset of coordinates T , let C|T denote
the set of codewords restricted to the coordinates of T , i.e., the
projection of C into the set of coordinates indexed by T . For
a word u, let u|T denote the restriction of u to the coordinates
of T . Finally, for a matrix G, let G|T denote the submatrix of
G obtained from the columns indexed by T .

Lemma 10: Let C be a linear [N,K,D]q code. If G is a
generator matrix of C, then every K × (N −D) submatrix of
G has rank either K or K − 1. Furthermore, there exists a
K × (N −D) submatrix of G whose rank is K − 1.

Proof: Let T be a subset of N −D coordinate positions
and assume the corresponding K × (N −D) submatrix G|T
has rank r, where r ≤ K . Let φT be the linear map from FK

q

to F
N−D
q defined by φT (u) = uG|T . Clearly, the dimension of

the kernel of φT is K−r. Hence, the all-zero vector of length
N −D appears in qK−r codewords of C|T . By Lemma 9 the
all-zero vector appears in at most q codewords of C|T at T ,
which implies that K-r ≤ 1 and therefore r ≥ K − 1.

Let x be a codeword of C with minimum weight D, T be
the complement of supp(x) in [N]. Let u be the information
vector of length K such that x = uG. Since x has weight D,
it follows that |supp(x)| = D and hence the size of T is
N −D. Since x has zeroes in the coordinates of T , it follows
that for the K × (N −D) submatrix G|T of G we have that
uG|T = 0. Therefore, the rank of GT is at most K − 1.

Thus the rank of G|T is at least K − 1 by the first part of
the proof and at most K − 1 by the second part of the proof,
which implies that the rank of G|T is K − 1.

We are now ready to present the first new construction
for CPC codes. The corresponding encoding and decoding
schemes are presented in the next subsection.

Construction 1: Let C be a linear [N,K,D]q code and G
be a generator matrix of C, where the last N −D columns of
G form a K× (N −D) submatrix of G whose rank is K− 1.

• Partition the codewords of C into disjoint codesets such
that two codewords x and y are in the same codeset if
and only if they agree on their last N−D symbols. Note
that the submatrix consisting of the last N −D columns
has rank K − 1. There are qK−1 such codesets and we
label them as Cσσσ , where σσσ ∈ FK−1

q .
• For each σσσ ∈ FK−1

q , truncate the codewords in Cσσσ to
length w by removing their last N −w symbols. In other
words, set C�

σσσ � {x|[w] : x ∈ Cσσσ} for each σσσ ∈ F
K−1
q .

• For each σσσ ∈ FK−1
q construct the set system (X,Dσσσ),

where X = Fq × [w] and

Dσσσ = {(xj , j) : x = x1x2 · · ·xw ∈ C�
σσσ, j ∈ [w]}.

In the construction above, each Dσσσ is a collection of subsets
of X . Using the notational convention introduced in Section II,
we may treat it as a codeset of binary words of length |X |.

Theorem 11: If N −D + 1 ≤ w ≤ D, then the collection
of codesets D = {Dσσσ : σσσ ∈ F

K−1
q } is an (n, t, w)-CPC code

of size M = qK−1, where n = qw and t = q − 1.
Proof: Clearly, by the definition of the construction we

have that n = qw and each codeword has weight w. Hence,
to complete the proof it is sufficient to show that the M
codesets are pairwise disjoint, and for any t-subset S of
coordinates from X and each σσσ ∈ FK−1

q , there exists a
codeword x in the codeset Dσσσ such that supp(x) ∩ S = ∅.

(i) Let G� be the K×(N−D) submatrix of G formed from
the last N −D columns of G. Consider the linear map
φ from F

K
q to F

N−D
q defined by φ(u) = uG�. Since the

rank of G is K − 1, it follows that the kernel of φ has
dimension one. Thus |Cσσσ| = q for each σσσ ∈ FK−1

q .

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:16:52 UTC from IEEE Xplore. Restrictions apply.

4810 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

(ii) The minimum distance of C is D and hence each two
codewords of C can agree in at most N−D coordinates,
i.e., they differ in any subset of N −D+ 1 coordinates.
Since w ≥ N − D + 1 and the codewords of C were
truncated by removing their last N − w coordinates, it
follows that all the truncated codewords of C are distinct.
Thus the sets C�

σσσ , where σσσ ∈ FK−1
q , are pairwise disjoint

and |C�
σσσ| = |Cσσσ| = q. Now, it can be easily verified by

the definition that the codesets Dσσσ , where σσσ ∈ FK−1
q ,

are pairwise disjoint and |Dσσσ| = q for each σσσ ∈ FK−1
q .

(iii) Each two codewords of Cσσσ agree on their last
N−D coordinates and since their distance is at least D,
it follows that they differ in the first D coordinates. Since
w ≤ D, this implies that any two codewords of C�

σσσ differ
in all their w coordinates. Hence, by the definition of Dσσσ

this implies that each two codewords of Dσσσ differ in their
nonzero coordinates. Therefore, the codewords in Dσσσ

are pairwise disjoint, i.e., Dσσσ is a partial parallel class.
We also have that |Dσσσ| = q for each σσσ ∈ F

K−1
q . Hence,

Dσσσ is a parallel class and as in the proof of Proposition 8
we have that for any t-subset S, Dσσσ has a codeword x
such that supp(x) ∩ S = ∅.

Thus, the required claims were proved and hence the collection
of codesets D = {Dσσσ : σσσ ∈ FK−1

q } is a (qw, q − 1, w)-CPC
code of size qK−1.

Example 3: Consider the linear [5, 3, 3]5 code with gener-
ator matrix

G =

⎛
⎝ 4 3 2 1 0

2 3 4 0 1
2 1 2 0 0

⎞
⎠ .

Since the last two columns form a submatrix of rank 2,
we partition the code into the following 25 codesets according
to the last two symbols.

C00 = {00000, 21200, 42400, 13100, 34300}
C01 = {23401, 44101, 10301, 31001, 02201}

...

C44 = {44444, 10144, 31344, 02044, 23244}
By removing the last two symbols from the codewords in each
Cσσσ and replacing each xj with (xj , j), we obtain the following
codesets Dσσσ .

D00 = {{(0, 1), (0, 2), (0, 3)}, {(2, 1), (1, 2), (2, 3)},
{(4, 1), (2, 2), (4, 3)}, {(1, 1), (3, 2)(1, 3)},
{(3, 1), (4, 2), (3, 3)}}

D01 = {{(2, 1), (3, 2), (4, 3)}, {(4, 1), (4, 2), (1, 3)},
{(1, 1), (0, 2), (3, 3)}, {(3, 1), (1, 2), (0, 3)},
{(0, 1), (2, 2), (2, 3)}}

...

D44 = {{(4, 1), (4, 2), (4, 3)}, {(1, 1), (0, 2), (1, 3)},
{(3, 1), (1, 2), (3, 3)}, {(0, 1), (2, 2), (0, 3)},
{(2, 1), (3, 2), (2, 3)}}

For a given [N,K,D]q code C and its generator matrix G in
Construction 1, we need to find a minimum weight codeword

in C in order to determine a K × (N − D)-submatrix of G
with rank K − 1, i.e., to find a permutation of the columns of
G such that the last N −D coordinates of G will have rank
K−1. Finding the minimum distance of a code is an NP-hard
problem and the decision problem is NP-complete [20]. There-
fore, we focus on certain families of codes where it is compu-
tationally easy to find minimum weight codewords. One such
family is the family of maximum distance separable (MDS)
codes. Recall that a linear [N,K,D]q code is an MDS code if
D = N −K + 1 [13, Ch.11]. If the code C in Construction 1
is an MDS code, then every K columns of G are linearly
independent and hence each K × (N − D) submatrix of G
has rank K − 1 since N − D = K − 1. Therefore, we may
use any N − D coordinate as the last N − D coordinates
of C. It is well known that MDS codes exist for the following
parameters.

Theorem 12 (see [13, Ch.11]): Let q be a prime power and
D ≥ 3. If N ≤ q + 1 and 2 ≤ K ≤ q − 1, there exists
an [N,K,D]q MDS code. Furthermore, when q is even and
K ∈ {3, q − 1}, a [q + 2,K,D]q MDS code exists.

Set N = q + 1, K = w and D = q − w + 2 and use
an [N,K,D]q MDS code as the code C in Construction 1.
Whenever q ≥ 2w − 2, the condition N − D + 1 ≤ w ≤ D
of Theorem 11 is satisfied and hence, we obtain the following
corollary.

Corollary 13: Let n, t and w be positive integers. If
q = n/w is a prime power and q ≥ 2w − 2, then there exists
an (n, q − 1, w)-CPC code of size (n/w)w−1.

In Corollary 13, when w is fixed, t = q − 1 has the same
order of magnitude as n. Hence, the codes constructed in this
case asymptotically attain the upper bound O(nw−1). We also
note that for some parameters, these CPC codes are much
larger than the LPC codes provided by Propositions 6 and 7.
This is discussed in the following examples.

Example 4: By choosing n = 96, t = 15 and w = 6,
Corollary 13 yields a (96, 15, 6)-CPC code of size
165 = 220.

In contrast, suppose we use Proposition 6 to construct a
(96, t, 6)-LPC code with t ≤ 15. The largest size 165 = 220

is obtained by choosing m = 6, t = 1, s = 16, w� = 1, and
q = 16. The resulting (96, 1, 6)-LPC code has the same size as
the CPC obtained by Corollary 13, but the cooling capability of
the former is clearly much weaker. Proposition 7, on the other
hand, yields a (96, 15, 6)-LPC code of size 216 by choosing
s = 81 and r = 65. This code has similar parameters, but its
size is much smaller.

The following example shows that a non-MDS code can
also be used to obtain a CPC code of large size.

Example 5: There exists a [17, 8, 9]9 code (see [11]). Set-
ting w = 9 and t = 8 in Construction 1 yields a (81, 8, 9)-CPC
code of size 97 ≈ 222.189.

In contrast, the largest (81, 8, 9)-LPC code obtained from
Proposition 6 has size 9 ≈ 23.17 by choosing m = s = q = 9,
w� = 1. Proposition 7, on the other hand, yields an (81, 8, 9)-
LPC of size 221 by choosing s = 54 and r = 52.

We also note that the corresponding (81, 8, 9)-CPC code
cannot be constructed using MDS codes, or equivalently,
cannot result from Corollary 13. For Corollary 13 to apply,

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:16:52 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: LOW-POWER COOLING CODES WITH EFFICIENT ENCODING AND DECODING 4811

we require q ≥ 2w − 2, which is not true when q = 8 and
w = 9.

B. Encoding and Decoding Schemes

We continue in this subsection and discuss the encoding and
decoding schemes for the code D obtained in Construction 1.
Let G be a generator matrix of the [N,K,D]q code C, where
the last N −D columns of G form a K× (N −D) submatrix
G� whose rank is K−1. Furthermore, w.l.o.g. we assume that
G has the form

G =
(

A IK−1

βββK 0 · · · 0
)
,

where IK−1 is the identity matrix of order K − 1.
Each codeset in D will be identified by the unique vector

from F
K−1
q . This is possible since the number of codesets is

qK−1. For σσσ ∈ FK−1
q , let Cσσσ be the set of q codewords from

C whose suffix of length K − 1 is σσσ. Furthermore, let C�
σσσ and

Dσσσ be the derived codesets as defined in Construction 1.
Given a t-subset S of Fq × [w] and a word σσσ =

(σ1, σ2, . . . , σK−1) ∈ FK−1
q , our objective for encoding of

Construction 1 is to find a codeword x ∈ Dσσσ such that
supp (x) ∩ S = ∅. For 1 ≤ i ≤ K − 1, let βββi be the
i-th row of A. Let

r = σσσA|[w] =
K−1∑
i=1

σiβββi|[w],

and hence the codeset C�
σσσ is

C�
σσσ = {r + λβββK |[w] : λ ∈ Fq}.

The codeset Dσσσ is derived from C�
σσσ as indicated in Construc-

tion 1, and hence we can consider the intersection of each one
of the q blocks in Dσσσ with S to find the block B such that
B ∩ S = ∅.

Hence, for the encoding, O(n) multiplications and O(n)
additions over Fq are required to find Dσσσ . During this com-
putation we can also check whether each codeword of Dσσσ has
nontrivial intersection with B or not. Therefore, there is no
need for further computations to find B.

For the decoding, suppose that we have a codeword
{(x1, 1), (x2, 2), . . . , (xw , w)}. By our choice we have that
w ≥ N − D + 1, which implies that D − 1 ≥
N − w and hence we can correct any N − w erasures
in any codeword of C. Hence, the N − w erasures in
(x1, x2, . . . , xw, ?, ?, . . . , ?) can be recovered and the last
K − 1 symbols, xN−K+2, xN−K+3, . . . , xN are the informa-
tion symbols. In particular, if the code C is a Reed-Solomon
code, then by using Lagrange interpolation, O(w3) multipli-
cations are enough to perform the decoding, e.g., [14].

IV. ERROR-CORRECTING CPC CODES

In this section we consider CPC codes that can correct
transmission errors (‘0’ received as ‘1’, or ‘1’ received as ‘0’).
An (n, t, w)-CPC which can correct up to e errors will be
called an (n, t, w, e)-CPECC (constant power error-correcting
cooling) code. First, Construction 1 will be used to produce

CPECC codes by examining the minimum distance of the
constructed codes.

Theorem 14: If the code C used for Construction 1 is an
[N,K,D]q code, then the code D obtained by Construction 1
is an (n, t, w, e)-CPECC code of size M = qK−1, where
n = qw, t = q − 1, and e ≥ w +D −N − 1.

Proof: All the parameters of the code except for
e = w + D − N − 1 were proved in Theorem 11. Since the
minimum distance of C is D and the code C was punctured
in the last N −w coordinates to obtain the code C� (the union
of the codesets C�

i, 1 ≤ i ≤ M), it follows that the minimum
distance of C� is at least D − (N − w). By the definition of
D� (the union of the codesets D�

i, 1 ≤ i ≤M) we have that if
x, x� ∈ C� differ in � coordinates, then the related codewords
in D differ in 2� positions. Hence, the minimum distance of
D is at least 2(D+w−N) and thus the number of errors that
it can correct is e ≥ w +D −N − 1.

Next, an algorithm which demonstrates the error-correction
for an (n, t, w, e)-CPECC code will be given. For simplicity,
we will focus on a special example, where our starting point
is a Reed-Solomon code C (which is of course an MDS code),
where K = N −D + 1 = w − e.

Construction 2: Let w and e be positive integers and
q be a prime power such that q ≥ 2w − e − 1. Let
a1, a2, . . . , aw, b1, b2, . . . , bw−e−1 be 2w − e − 1 distinct
elements of Fq .

• For each polynomial f(X) ∈ Fq[X] with deg(f) ≤ w−
e−1, define the following block on the point set Fq×[w],

Cf = {(f(aj), j) : j ∈ [w]}.
• For each σσσ = (σ1, σ2, . . . , σw−e−1) ∈ Fw−e−1

q , let

Eσσσ = {Cf :f ∈ Fq[X], deg(f) ≤ w − e− 1,
f(bi) = σi for each i ∈ [w − e− 1]}.

Theorem 15: The code E = {Eσσσ : σσσ ∈ Fw−e−1
q } is an

(n, t, w, e)-CPECC code of size qw−e−1, where n = qw and
t = q − 1.

Proof: It is an immediate observation from the definition
of the point set Fq × [w] and the codeword Cf that each
codeword has length qw and weight w. The rest of the proof
has four steps. In the first one we will prove that for each
σσσ,σσσ� ∈ Fw−e−1

q , Eσσσ and Eσσσ′ are disjoint whenever σσσ �= σσσ�.
In the second step we will prove that for each σσσ ∈ Fw−e−1

q

the blocks in Eσσσ are pairwise disjoint. As a result, by a simple
counting argument in the third step it will be proved that E

has qw−e−1 codesets, each one has a parallel class of size q,
and as a consequence E is a (qw, q − 1, w)-CPC code. In the
last step we will find the minimum Hamming distance of E

and as a result the number of errors e that it can correct.
1) Assume that there exist two codewords Cf ∈ Eσσσ and

Cg ∈ Eσσσ′ such that σσσ �= σσσ� and Cf = Cg . Then f and g
agree on at least w points and since the degrees of the
polynomials are less than w, it follows that f = g. This
implies that σi = f(bi) = g(bi) = σ�

i for all i ∈ [w−e−1]
and hence σσσ = σσσ�, a contradiction. Thus, Eσσσ and Eσσσ′ are
disjoint whenever σσσ �= σσσ�.

2) Assume that the blocks Cf and Cg in Eσσσ , where f �= g,
intersect at the point (x, i0) for some x ∈ Fq and i0 ∈ [w].

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:16:52 UTC from IEEE Xplore. Restrictions apply.

4812 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

This implies that f(ai0) = g(ai0) and since Cf , Cg ∈ Eσσσ ,
it follows that f(bi) = g(bi) for each i ∈ [w − e − 1].
Therefore, f and g agree on at least w − e points. Since
the degrees of f and g are at most w − e− 1, it follows
that f = g, a contradiction. Therefore, the blocks in Eσσσ

are pairwise disjoint. Recall that each block has size w
and the size of the point set of these blocks Fq × [w]
is qw. Hence, each codeset Eσσσ contains at most q blocks.

3) The number of distinct polynomials in Fq[X] whose
degrees are at most w− e− 1 is qw−e. Each polynomial
induces exactly one codeword in E. Hence, E contains
exactly qw−e distinct codewords. Since there are qw−e−1

codesets and each one contains at most q codewords, it
follows that each one contains exactly q codewords. The
length of a codeword is qw and the weight of a codeword
is w, which implies that each codeset is a parallel class.
Thus, by Proposition 8, E is a (qw, q− 1, w)-CPC code.

4) Finally, for any two distinct codewords Cf and Cg , where
f and g have degree at most w − e − 1, we have that
|Cf ∩Cg| ≤ w− e− 1 since a larger intersection implies
that f = g. Therefore, the Hamming distance between Cf

and Cg is at least 2e+2. Thus, the code E has minimum
Hamming distance at least 2e + 2 and it can correct e
errors.

Thus, E is an (n, t, w, e)-CPECC code of size qw−e−1,
where n = qw and t = q − 1.

The encoding scheme in Section III-B can be easily adapted
for the encoding of the CPECC code E. Algorithm 1 illus-
trates the decoding scheme for the (n, t, w, e)-CPECC code E

obtained in Construction 2.

Algorithm 1 Error-Correction for the CPECC Codes in
Construction 2
Input: a binary word u ⊂ Fq × [w] {the word received

after the transmission of a codeword}
Output: a message σσσ ∈ F

w−e−1
q {the information word

that was sent}
1: for each i ∈ [w] do
2: Yi ← {(y, i) : (y, i) ∈ u}
3: if |Yi| = 1 then
4: yi ← y, where (y, i) is the unique pair in Yi

5: else
6: yi ← ‘?’
7: ŷ← (y1, y2, . . . , yw)
8: apply some error-erasure decoding algorithm for

Reed-Solomon codes for ŷ
9: The output of the algorithm is a polynomial L(x) of degree
w − e− 1

10: σσσ ← (L(b1), L(b2), . . . , L(bw−e−1))
11: return σσσ

Theorem 16: Suppose that the codeword c ∈ E obtained in
Construction 2 was transmitted and the word u was received
from c with at most e errors. Then, Algorithm 1 returns the
word σσσ ∈ F

w−e−1
q such that c ∈ Eσσσ .

Proof: Using the notation of Algorithm 1, let i ∈ [w],
Yi � {(y, i) : (y, i) ∈ u}, and e� = |{i : |Yi| �= 1}|.
If |Yi| = 0 then an error occurred and this is reflected as an
erasure in yi. If |Yi| > 1 then we also know that an error
has occurred for at least one coordinate (y, i). This will be
also reflected as an erasure in yi. Hence, at least e� erasure
errors are reflected in ŷ as a result of at least e� errors in
these Yi’s. For the remaining w − e� Yi’s, while there may
be errors, we know that each of these Yi’s contains either no
errors or two errors. Thus, the number of other erroneous Yi’s
is at most �(e− e�)/2�.

The vector ŷ is obtained by mapping the subsets
Y1, Y2, . . . , Yw to the elements of Fq ∪ {?}. The word ŷ was
obtained from a codeword xf of a Reed-Solomon code of
lengthN = w, dimensionK = w−e, and minimum Hamming
distance D = N−K+1 = e+1. An error-correction algorithm
for such a code is capable of correcting e� erasures and at most
�(e− e�)/2� errors as required by Algorithm 1.

Using the Berlekamp-Welch algorithm [22] we can correct
the errors with O(q3) operations [22], and hence, Algorithm 1
has complexity O(n3).

V. RECURSIVE CONSTRUCTION

Since both Proposition 5 and Construction 1 use dis-
joint (partial) parallel classes to construct (n, t, w)-CPC
codes and each (partial) parallel class contains at most n/w
blocks, all the codes obtained from these two methods have
t ≤ n/w − 1. In this section, we present a recursive con-
struction that yields (n, t, w)-CPC codes which are useful
especially for larger values of t, i.e., t ≥ n/w.

The basic idea of our recursive construction is to break the
blocks in the (partial) parallel classes using a CPC code of
small length. We use the following example to illustrate our
idea.

Example 6: Let X = [12] and P = {{1, 2, 3, 4, 5, 6},
{7, 8, 9, 10, 11, 12}}. Since P is a parallel class of X , for
any subset of X consisting of a single point, we can always
find a block in P to avoid this subset. However, for subsets
of X with size larger than 1, it may intersect both of these
blocks in P.

Now, consider a (6, 2, 3)-CPC code consisting of the fol-
lowing two codesets:

C1 = {{a, b, c}, {a, b, d}, {c, d, e}, {c, d, f}, {e, f, a}, {e, f, b}},
C2 = {{a, b, e}, {a, b, f}, {c, d, a}, {c, d, b}, {e, f, c}, {e, f, d}}.

Using these codesets, we break the blocks in P of size six
into blocks of size three. Specifically, using the codeset C1,
the block {1, 2, 3, 4, 5, 6} is broken into the blocks {1, 2, 3},
{1, 2, 4}, {3, 4, 5}, {3, 4, 6}, {5, 6, 1}, {5, 6, 2}, while the
block {7, 8, 9, 10, 11, 12} is broken into {7, 8, 9}, {7, 8, 10},
{9, 10, 11}, {9, 10, 12}, {11, 12, 7}, {11, 12, 8}. This set of
blocks of size three then forms our new codeset D1. We do
so similarly for the codeset D2:

D1 =
{
{1, 2, 3}, {1, 2, 4}, {3, 4, 5}, {3, 4, 6},
{5, 6, 1}, {5, 6, 2}, {7, 8, 9}, {7, 8, 10},
{9, 10, 11}, {9, 10, 12}, {11, 12, 7}, {11, 12, 8}

}
,

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:16:52 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: LOW-POWER COOLING CODES WITH EFFICIENT ENCODING AND DECODING 4813

D2 =
{
{1, 2, 5}, {1, 2, 6}, {3, 4, 1}, {3, 4, 2},
{5, 6, 3}, {5, 6, 4}, {7, 8, 11}, {7, 8, 12},
{9, 10, 7}, {9, 10, 8}, {11, 12, 9}, {11, 12, 10}

}
.

We show the codesets D1 and D2 form a (12, 5, 3)-CPC.
For any 5-subset S of X , by the pigeonhole principle, it inter-
sects at least one of {1, 2, 3, 4, 5, 6} and {7, 8, 9, 10, 11, 12}
in at most 2 points. Since we use a (6, 2, 3)-CPC code to
break the blocks of length 6. We can find a block of size 3
from each of D1 and D2 to avoid S. For example, the subset
{1, 2, 7, 8, 9} intersects the block {1, 2, 3, 4, 5, 6} in two points
and we can find {3, 4, 5} ∈ D1 and {5, 6, 3} ∈ D2 to avoid it.

In general, suppose that we have a set system (X,B) where
B ⊆ (

X
w

)
and B can be partitioned into M partial parallel

classes P1,P2, . . . ,PM with each Pi containing exactly q
blocks. Let S be a t-subset of X with t ≥ q. For each Pi,
by the pigeonhole principle, we can find such a block which
intersects S in at most �t/q� points. If there is a (w, �t/q�, w�)-
LPC code C, it is possible to substitute each block of B with
C by breaking up the block of size w into blocks of size w�.
This enables us to find a block of size w� which avoids S. The
following construction is based on this idea, where the code
E is constructed similarly to the code in Construction 2.

Construction 3: Let q ≥ n+w−1 be a prime power and let
a1, a2, . . . , an, b1, b2, . . . , bw−1 be n+w−1 distinct elements
of Fq .

• Consider the point set Fq × [n] and let

B = {Cf � {(f(aj), j) : j ∈ [n]} :f ∈ Fq[x],
deg(f) ≤ w − 1}.

Note that the size of each block Cf is n.
• For each σσσ = (σ1, σ2, . . . , σw−1) ∈ Fw−1

q , let

Eσσσ = {Cf :f ∈ Fq[X], deg(f) ≤ w − 1,
f(bi) = σi for each i ∈ [w − 1]}.

Similarly to the proof of Theorem 15, one can show that
B is partitioned by Eσσσ , σσσ ∈ F

w−1
q into qw−1 parallel

classes, each one of size q. Label the parallel classes and
their blocks by Pi = {Bij : j ∈ [q]} for i ∈ [qw−1].

• Let D be an (n, t, w)-CPC code of size m with point set
[n], where t ≥ n/w.

• For each block B = {(x1, 1), (x2, 2), . . . , (xn, n)} ∈
B and each codeword/block {ii, i2, . . . , iw} ∈ D,
we construct a w-subset of B, i.e., {(xi1 , i1), (xi2 , i2),
. . . , (xiw , iw)}, which is the codeword of the output CPC
code.
Since D has m codesets, from each block Bij ∈ B we
can get correspondingly m new codesets, denoted as Eij�

for � ∈ [m].
• For (i, �) ∈ [qw−1] × [m], the codeset Ei� is defined by

Ei� �
⋃q

j=1 Eij�.

Along the same lines of the proof in Theorem 15 one can
prove that

Theorem 17: The code {Pi : 1 ≤ i ≤ qw−1} from
Construction 3 is an (nq, q − 1, n)-CPC code.

Theorem 18: The code E = {Ei� : i ∈ [qw−1], � ∈
[m]} from Construction 3 is an (nq, tq, w)-CPC code of
size mqw−1.

Proof: The size of E, the length of its codewords and
their weight follow immediately from the definition of the
codewords in E.

Given a (tq)-subset S ⊂ Fq× [n] and a codeset Ei�, (i, �) ∈
[qw−l] × [m], we should find a codeword x ∈ Ei� such that
supp(x)∩S = ∅. Since Ei� was constructed from the q blocks
of Pi in which the codewords of the �-th codeset of D were
substituted, we have to find first a block Bij ∈ Pi which
contains a subset S� of S whose size is at most t. Such a block
exists since the number of blocks in Pi is q and S has size tq.
Since Eij� is a codeset in an (n, t, w)-CPC code, we can find a
block x in Eij� which avoids S�. As a consequence supp(x)∩
S = ∅ as required.

To complete the proof we have to show that all the codesets
of E are pairwise disjoint, i.e., Ei� and Ei′�′ are disjoint
whenever (i, �) �= (i�, ��). To this end, it suffices to show Eij�

and Ei′j′�′ are disjoint for any j, j� ∈ [q]. If (i, j) �= (i�, j�),
it can be verified that |Bij ∩Bi′j′ | ≤ w− 1 since intersection
of size w will imply that the related polynomials are equal.
Hence, since each Eij� is a collection of w-subsets of Bij ,
we have that Eij� and Ei′j′�′ are disjoint. If (i, j) = (i�, j�)
then Eij� and Eij�′ are from the same (n, t, w)-CPC code and
therefore they are disjoint.

Construction 3 only takes an (n, t, w)-CPC code with t ≥
n/w as input and can yield an (nq, tq, w)-CPC code for any
prime power q ≥ n+w+1. Since tq ≥ nq/w, we can use this
(nq, tq, w)-CPC code as input and apply Construction 3 again.
Hence, from an (n, t, w)-CPC code with t ≥ n/w, we can
apply Construction 3 recursively to obtain an infinite class of
CPC codes.

We use the following example to illustrate the encoding and
decoding for the codes in Construction 3.

Example 7: Set q = 11, n = 6, t = 2, w = 3 and m = 2.
Let ai = i for 1 ≤ i ≤ 6, b1 = 8 and b2 = 9. Given a pair
(σσσ, i) ∈ Fw−1

q ×[m], where σσσ = (0, 0) and i = 2. There are 11
polynomials f(x) such that deg(f) ≤ 2 and f(8) = f(9) = 0,
i.e., f(x) = c(6 + 5x+ x2) where c ∈ F11. Thus,

Eσσσ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6)}
{(1, 1), (9, 2), (8, 3), (9, 4), (1, 5), (6, 6)}

...
{(10, 1), (2, 2), (3, 3), (2, 4), (10, 5), (5, 6)}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Using the second codeset of the (6, 2, 3)-CPC code in Exam-
ple 6, we can obtain the following codeset.

Eσσσ,2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(0, 1), (0, 2), (0, 5)}, {(0, 1), (0, 2), (0, 6)},
{(0, 3), (0, 4), (0, 1)}, {(0, 3), (0, 4), (0, 2)},
{(0, 5), (0, 6), (0, 3)}, {(0, 5), (0, 6), (0, 4)},
{(1, 1), (9, 2), (1, 5)}, {(1, 1), (9, 2), (6, 6)},
{(8, 3), (9, 4), (1, 1)}, {(8, 3), (9, 4), (9, 2)},
{(1, 5), (6, 6), (8, 3)}, {(1, 5), (6, 6), (9, 4)},

...
{(10, 1), (2, 2), (10, 5)}, {(10, 1), (2, 2), (5, 6)},
{(3, 3), (2, 4), (10, 1)}, {(3, 3), (2, 4), (2, 2)},
{(10, 5), (5, 6), (3, 3)}, {(10, 5), (5, 6), (2, 4)}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:16:52 UTC from IEEE Xplore. Restrictions apply.

4814 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

Now, we consider the decoding. Assume we receive a block
{(8, 3), (9, 4), (9, 2)}. By interpolating the three points in this
block with a polynomial of degree at most 2, we can obtain
f(x) = 6+5x+x2 and thus decode σσσ as σσσ = (f(8), f(9)) =
(0, 0). Since the set {3, 4, 2} comes from the second codeset of
the (6, 2, 3)-CPC code, we have that {(8, 3), (9, 4), (9, 2)} ∈
E(0,0),2.

Generally, for the encoding of the codes in Construction 3,
given a message (σσσ, i) ∈ Fw−1

q ×[m] we first encodeσσσ into Eσσσ .
This can be done in O(q), as shown in Section III-B. Then
we run the encoding of D on i and each block in Eσσσ to obtain
the codeset Eσσσ,i. For the decoding, given a block of size w,
we first find a polynomial f of degree at most w − 1 which
can interpolate the points in the block. Then we evaluate f
on b1, b2, . . . , bw−1 to decode σσσ. Finally, we run the decoder
of D on the set of second coordinates of the given block to
decode i.

Construction 3 can be applied also on (n, t, w)-LPC code
(instead of (n, t, w)-CPC code). The only condition is that
there is no codeset in which there are codewords of different
weight. Also, when there are codewords of weight w� < w
in the codeset, the whole construction should work with w�

instead of w, e.g., the degree of the polynomial must be at
most w� − 1.

Corollary 19: Let q be a prime power. If t + w ≤ n and
q ≥ n+ w − 1, then

(i) there exists an (nq, tq, w)-CPC code of size qw−1;
(ii) there exists an (nq, tq, w)-LPC code of size

∑w−1
i=0 qi.

Proof:
(i) Since t + w ≤ n, all the w-subset of the set [n] form

an (n, t, w)-CPC code of size 1. We use this CPC code
as the code D in Construction 3 and apply Theorem 18
with m = 1 to obtain an (nq, tq, w)-CPC code of size
qw−1.

(ii) Apply Construction 3 and Corollary 19(i) on any
w� ≤ w to obtain a family of disjoint (nq, tq, w�)-
CPC code of size qw′−1. Then combine these CPC
codes together to obtain an (nq, tq, w)-LPC code of size∑w−1

i=0 qi. �
Note that the conditions t+w ≤ n and q ≥ n+w−1 do not

exclude the region t ≥ n/w. Thus in Corollary 19, we may
choose proper parameters such that the cooling capability
satisfies tq ≥ nq/w.

The following example shows that although Proposition 7
also works for t ≥ n/w, Construction 3 can get better code
rates in some cases.

Example 8: We compare certain CPC codes obtained from
Construction 3 and Corollary 19 with the LPC codes obtained
from Proposition 7.

(i) Consider the set of five disjoint 3-(10, 4, 1) designs
constructed by Etzion and Hartman [8]. By taking
the complements of the blocks we obtain a (10, 3, 6)-
CPC code of size five. Applying Construction 3 with
q = 16, we obtain a (160, 48, 6)-CPC code of size
5 · 165 ≈ 222.322.
In contrast, Proposition 7 yields a (160, 48, 6)-LPC code
of size 217 by setting s = 137 and r = 95.

(ii) Setting n = 9, t = 2, w = 7, and q = 16 in
Corollary 19 yields a (144, 32, 7)-LPC code of size∑6

i=0 16i ≈ 224.093.
In contrast, Proposition 7 yields a (144, 32, 7)-LPC code
of size 218 by setting s = 121 and r = 94.

In the regime where w is fixed and t has order of
magnitude as n, we can show as follows that the codes
obtained in this section are asymptotically larger than
those obtained from Proposition 7. Namely, the CPC codes
obtained from Construction 3 and Corollary 19 attain the
asymptotic upper bound O((nq)w−1) when w is fixed.
In contrast, if we apply Proposition 7 with s = nq −
�log2(

∑w−1
i=0

(
nq−1

i

)�) (the Gilbert-Varshamov lower bound)

and r = nq−tq−�log2(
∑w

2
i=0

(
nq−tq

i

)
)� (the Hamming upper

bound), we obtain an (nq, tq, w)-LPC code of smaller size
O((nq)w/2), or o((nq)w−1).

VI. LPC CODES FROM COOLING CODES

A. A Method Based on Domination Mappings

In this section we use a novel method to transform cooling
codes into low-power cooling codes, while preserving the
efficiency of the cooling codes. The construction is based on
an injective mapping called domination mapping which was
defined as follows in [5].

The Hamming ball of radius w in {0, 1}n is the set
B(n,w) of all words of weight at most w. Explicitly,
B(n,w) �

{
y ∈ {0, 1}n : wt(y) ≤ w}

. Given m ≤ n, we
are interested in injective mappings ϕ from {0, 1}m into
B(n,w) that establish a certain domination relationship
between components of x∈{0, 1}m and components of its
image y = ϕ(x). Specifically, one should be able to “switch
off” every position j ∈ [n] in y (that is, ensure that yj = 0)
by switching off a corresponding position i∈ [m] in x (that is,
setting xi = 0). More precisely, let G =

(
[m] ∪ [n], E

)
be a

bipartite graph with m left vertices and n right vertices. If G
has no isolated right vertices, i.e., none of the right vertices
has degree zero, we refer to G as a domination graph.

Definition 3: Given an injective map ϕ : {0, 1}m →
B(n,w) and a graph G =

(
[m] ∪ [n], E

)
, we say that ϕ

is a G-domination mapping, or G-dominating in brief, if for
all (x1, x2, . . . , xm) ∈ {0, 1}m and ϕ(x1, x2, . . . , xm) =
(y1, y2, . . . , yn), xi = 0 implies yj = 0 for all (i, j) ∈ E.

We say that ϕ is an (m,n,w)-domination mapping if there
exists a domination graph G =

(
[m] ∪ [n], E

)
, such that ϕ is

G-dominating.
Properties of domination mappings, bounds on their parame-

ters, constructions, and existence theorems were given in [5].
In this paper, we develop a method of constructing LPC codes
that uses domination mappings. In particular, we demonstrate
Theorem 22, which allows one to construct LPC codes from
cooling codes and domination mappings. For our purpose,
we need some results from [5] and the first lemma, taken
from [5], restricts the structure of the domination graph.
Given this restricted structure, we provide a technical lemma
(Lemma 21) and prove Theorem 22.

Lemma 20: The domination graph G =
(
[m] ∪ [n], E

)
of

an (m,n,w)-domination mapping has a subgraph in which

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:16:52 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: LOW-POWER COOLING CODES WITH EFFICIENT ENCODING AND DECODING 4815

every vertex has degree at least one and the degree of the
right vertices is exactly one.

In view of Lemma 20 we henceforth assume that our domi-
nation graphs have no isolated vertices and all the right vertices
have degree exactly one. We will define the neighborhood of a
vertex v in G as the set of vertices adjacent to v and denote it
by N(v). The following lemma is an immediate consequence
of these observations and definition.

Lemma 21: Let G =
(
[m]∪[n], E

)
be the domination graph

of an (m,n,w)-domination mapping. If U ⊂ [n] is a set of
right vertices of G then N(U) � {N(u) : u ∈ U} is a set
of vertices in [m] and |N(U)| ≤ |U |.

Next, the obvious connection between domination map-
pings, cooling codes, and low-power cooling codes is given
in the following theorem.

Theorem 22: If there exists an (m, t)-cooling code C =
{C1,C2, . . . ,CM} and an injective (m,n,w)-domination map-
ping ϕ, then the code C� = {C�

1,C
�
2, . . . ,C

�
M}, where

C�
i � {ϕ(x) : x ∈ Ci}, for each 1 ≤ i ≤M,

is an (n, t, w)-LPC code.
Proof: The length n and the weight which is smaller

from or equal to w for the codewords of C are immediate
consequences from the definition of the (m,n,w)-domination
mapping. Now, suppose we are given a t-subset S� ⊂ [n] and
a codeset C�

i for some 1 ≤ i ≤M . To complete the proof we
have to show that there exists a codeword u� ∈ C�

i such that
supp(u�) ∩ S� = ∅. The t-subset S� can be viewed as a set
of right vertices in the domination graph G =

(
[m]∪ [n], E

)
.

By Lemma 21, for the set of neighbors of S� ⊂ [n], S �
N(S�) ⊂ [m], we have that |S| ≤ |S�| and hence |S| ≤ t.
Since C is an (m, t)-cooling code, it follows that there exists
a codeword u in Ci such that supp(u)∩S = ∅, which implies
by the domination property that supp(ϕ(u)) ∩ S� = ∅.

A product construction for domination mappings was pre-
sented in [5].

Let ϕ1 : {0, 1}m1 → B(n1, w1) and ϕ2 : {0, 1}m2 →
B(n2, w2) be arbitrary domination mappings. Then their prod-
uct ϕ = ϕ1 × ϕ2 is a mapping from {0, 1}m1+m2 into
B(n1 + n2, w1 + w2) defined as follows:

ϕ(x1, x2) =
(
ϕ1(x1), ϕ2(x2)

)
where x1 ∈{0, 1}m1 , x2 ∈{0, 1}m2 , and (·, ·) stands for string
concatenation. That is, in order to find the image of a word
x ∈ {0, 1}m1+m2 under ϕ, we first parse x as (x1, x2), then
apply ϕ1 and ϕ2 to the two parts.

Theorem 23: If ϕ1 is an (m1, n1, w1)-domination mapping
and ϕ2 is an (m2, n2, w2)-domination mapping, then their
product ϕ = ϕ1 × ϕ2 is an (m1 + m2, n1 + n2, w1 + w2)-
domination mapping.

The idea in Theorem 23 can be generalized as follows to a
large number of domination mappings.

Theorem 24: For each 1 ≤ i ≤ �, let ϕi be an (mi, ni, wi)-
domination mapping. Let (x1, x2, . . . , x�) be a binary word,
where the length of xi is mi for 1 ≤ i ≤ �. The mapping ϕ,
defined by

ϕ(x1, x2, . . . , x�) = (ϕ1(x1), ϕ2(x2), . . . , ϕ�(x�)),

is also an (m,n,w)-domination mapping for m =
∑�

i=1mi,
n =

∑�
i=1 ni, and w =

∑�
i=1 wi.

In [5], the problem of constructing an (m,n,w)-domination
mapping was reduced to finding a perfect mapping in an asso-
ciated bipartite graph of size Θ(2m). Even though the size of
the graph was exponential in m, we used symmetry to reduce
the problem size and demonstrated that the existence problem
can be determined in time polynomial in m and w. For small
cases, a (2, 3, 1)-domination mapping, (9, 15, 3)-domination
mapping, and (12, 20, 4)-domination mapping were explicitly
constructed in the same paper. Efficient encoding and decoding
procedures for these mappings were also presented.

Using domination mapping with small parameters, we then
apply Theorem 24 with Theorem 22 to obtain an infinite family
of LPC codes. Specifically, we have the following corollary.

Corollary 25: Let λ, μ, w1, and w2 be integers such that
(λwi, μwi, wi)-domination mappings exist for i ∈ [2]. Sup-
pose that w can be written as αw1 + βw2, where α and β
are nonnegative integers. If m = λw, n = μw, and there
exists an (m, t)-cooling code of size M , then there exists an
(n, t, w)-LPC code of size M .

Given a (2, 3, 1)-domination mapping, we set λ = 2, μ = 3,
w1 = w2 = 1 in above corollary to obtain the following.

Corollary 26: For w ≥ 1, if there exists a (2w, t)-cooling
code of size M , then there exists a (3w, t, w)-LPC code of
size M .

Given a (9, 15, 3)-domination mapping and a (12, 20, 4)-
domination mapping, we set λ = 3, μ = 5, w1 = 3, w2 = 4
in Corollary 25 to obtain the following.

Corollary 27: For w ≥ 6, if there exists a (3w, t)-cooling
code of size M , then there exists a (5w, t, w)-LPC code of
size M .

B. Encoding and Decoding Schemes

Therefore, one can use an (m,n,w)-domination mapping
ϕ to construct an (n, t, w)-LPC code C from an (m, t)-
cooling code D. The only question is whether there are
efficient encoding and decoding schemes for the constructed
LPC code C. Such encoding and decoding schemes should be
based on efficient encoding and decoding schemes for both
the cooling code D and the domination mapping ϕ. While
efficient algorithms are known for the cooling code D, less
is known for the domination mapping ϕ. Hence, we focus
our discussion on domination mappings that are obtained from
applying the product construction (Theorem 24) on domination
mappings with small parameters. Specifically, we describe the
encoding procedure for the family of LPC codes obtained from
Corollary 25.

Recall that for integers λ, μ, w1, w2, we write w =
αw1 + βw2, where α and β are nonnegative integers, and set
m = λw and n = μw. Here, λ, μ, w1, w2 are constants and so,
α + β = O(m). In addition, we assume the following
ingredients:

(i) For i ∈ [2], there exist (λwi, μwi, wi)-domination map-
pings ϕi that compute ϕi in constant time.

(ii) There exists an (m, t)-cooling code D = {D1, D2, . . . ,
DM} of size M with a corresponding encoding

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:16:52 UTC from IEEE Xplore. Restrictions apply.

4816 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

procedure ψ that can be computed in TD(m) time. Here,
given a message σ ∈ [M] and a t-subset S of [m],
then x � ψ(σ) belongs to Dσ and has the property
supp(x) ∩ S = ∅.

Corollary 25 then yields an (n, t, w)-LPC code C =
{C1, C2, . . . , CM} of size M . In what follows, we provide
an encoding scheme that maps messages in [M] to C using
the mappings ϕ1, ϕ2 and encoding ψ.

Given a message u ∈ [M] and a t-subset S� of [n], our
objective is to find y ∈ Du such that supp(y) ∩ S� = ∅.

• To do so, we partition the set of m coordinates into α+β
blocks: α blocks of size λw1 and β blocks of size λw2.
Similarly, we partition the set of n coordinates into α
blocks of size μw1 and β blocks of size μw2.

• Let ϕ be the (m,n,w)-domination mapping obtained by
the product construction of Theorem 24 on α copies of
ϕ1 and β copies of ϕ2.

• Let S� be a t-subset of [n] and we compute S = N(S�)
be a t�-subset of [m], where t� ≤ t by Lemma 21. Here,
S can be computed in O(α + β) = O(m) time.

• Applying the encoder ψ to u and S, we obtain the word
v such that v ∈ Cu and supp(v) ∩ S = ∅; v can be
computed in TD(m) time.

• Parse v into v1v2 . . . vαv�1v�2 . . . v�β , where vi and v�j are
of lengths λw1 and λw2, respectively, for i ∈ [α] and
j ∈ [β].

• By using the mappings ϕ1 and ϕ2, we compute y = ϕ(v)
by setting yi = ϕ1(vi) for i ∈ [α], y�j = ϕ1(v�j) for
i ∈ [β], and y = y1y2 . . . yαy�1y�2 . . . y

�
β . Since the

mappings ϕ1 and ϕ2 can be computed in constant time,
this step can be completed in O(α + β) = O(m)
time.

Therefore, the LPC code constructed in Corollary 25 admits
an encoding scheme that computes a codeword in TD(m) +
O(m) time. In [3], whenever t + 1 ≤ m/2, an (m, t)-
cooling code with encoding and decoding complexity O(m3)
is constructed (see also Theorem 28). Hence, the two families
of LPC codes obtained from Corollaries 26 and 27 have
encoding and decoding complexity O(m3) = O(n3).

C. Comparison With Proposition 6

How good are the LPC codes constructed by using the
domination mappings? They are incomparable with the code
constructions in Sections III and V as the latter admit a
different set of parameters. However, the former can be easily
compared with the codes obtained in Proposition 6.

In fact, the construction given by Corollary 25 can be
viewed as a modification of the concatenation construction
(see Proposition 6). In the following examples, we compare
the sizes of the LPC codes obtained from Corollaries 26
and 27 with LPC codes from Proposition 6 with similar
parameters. We remark that the LPC codes obtained from
Corollaries 26 and 27 use three of the most simple (and
less powerful) domination mappings: a (2, 3, 1)-domination
mapping, a (9, 15, 3)-domination mapping and a (12, 20, 4)-
domination mapping.

To this end, we describe the simple and effective con-
struction of cooling codes given in [3]. This construction
is based on spreads (or partial spreads). Loosely speaking,
a partial τ -spread of the vector space F

n
q is a collection of

disjoint τ -dimensional subspaces of Fn
q . Formally, a collection

V1, V2, . . . , VM of τ -dimensional subspaces of Fn
q is said to

be a partial τ -spread of Fn
q if

Vi ∩ Vj = {0} for all i �= j.

If the τ -dimensional subspaces form a partition of Fn
q then

the partial τ -spread is called a τ -spread. It is well known that
such τ -spreads exist if and only if τ divides n, in which case
M = (qn−1)/(qτ−1) > qn−τ . For the case where τ does
not divide n, partial τ -spreads with M ≥ qn−τ have been
constructed in [9, Theorem 11].

Theorem 28 ([3]): Let V1,V2, . . . , VM be a partial
(t+1)-spread of Fn

2 , and define the code C =
{V ∗

1 , V
∗
2 , . . . , V

∗
M}, where V ∗

i = Vi \{0} for all i. Then C is an
(n, t)-cooling code of size M ≥ 2n−t−1 and has an encoding
and decoding scheme that runs in O(n3) time.

First, we consider the family of LPC codes obtained from
Corollary 26.

Example 9: For w ≥ 1 and t + 1 ≤ w, Theorem 28
provides a (2w, t)-cooling code D of size 22w−t−1. Applying
Corollary 26 to D, we obtain a (3w, t, w)-LPC code C of size
22w−t−1.

Next, we form a comparable code using Proposition 6 and
we have the following choice of parameters.

(i) Choose w� = 1, s = 3, and m = w in Proposition 6.
As a consequence, we take q = 4, and hence obtain
a (3w, t, w)-LPC code C1 of size 22w−2t−1 for t ≤
min{3, (w/2) − 1}. Clearly, the size of C1 is much
smaller than that of C. Furthermore, the range of t is
much more restricted as compared to t ≤ w − 1 for the
LPC code C obtained from the domination mapping.

(ii) A different choice for Proposition 6 is w� = 3, s = 9,
and m = w/3. As a consequence, we take q = 128,
and hence obtain a (3w, t, w)-LPC code C2 of size
27w/3−7t−7 for any t ≤ min{8, (w/6)− 1}. As before,
the range of t is much more restricted as compared to C.
Also, the size of C is larger than C2 for t ≥ (w/18)−1.

We continue our discussion with the family of LPC codes
obtained from Corollary 27.

Example 10: For w ≥ 6 and t + 1 ≤ 3w/2, Theorem 28
provides a (3w, t)-cooling code D of size 23w−t−1. Applying
Corollary 27 to D, we obtain a (5w, t, w)-LPC code C of size
23w−t−1.

Next, we form a comparable code using Proposition 6 and
we have the following choice of parameters.

(i) Choose w� = 3, s = 15, and m = w/3 in Proposition 6.
As a consequence, we take q = 29, and hence obtain
a (5w, t, w)-LPC code C1 of size 23w−9t−9 for t ≤
min{14, (w/6) − 1}. Clearly, the size of C1 is much
smaller than that of C. As before, the range of t is much
more restricted.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:16:52 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: LOW-POWER COOLING CODES WITH EFFICIENT ENCODING AND DECODING 4817

(ii) Choose w� = 4, s = 20, and m = w/4 in Proposition 6.
As a consequence, we take q = 212, and hence obtain
a (5w, t, w)-LPC code C2 of size 23w−12t−12 for any
t ≤ min{19, (w/8)−1}. Clearly, the size of C2 is much
smaller than that of C. As before, the range of t is much
more restricted.

It should be noted that q can be sometimes slightly larger
than the one given in the examples. This will not make much
difference in the comparison, but the computation in a large
field size of odd characteristic is more cumbersome.

We conclude that the codes obtained via domination
mapping in most cases have larger size and better capa-
bilities than the best codes obtained by previous known
constructions.

VII. CONCLUSION

In this work, we studied constructions and efficient encoding
and decoding of LPC cods. Such codes can be used to control
simultaneously both the peak temperature and the average
power consumption of on-chip buses. We first proposed a
construction for LPC codes which takes a linear erasure code
as input. Using this construction, we obtained a class of
LPC codes whose sizes can asymptotically attain the upper
bound O(nw−1) when w is fixed, as well as a class of LPC
codes which is able to correct transmission errors. Efficient
encoding and decoding schemes for these two classes of
LPC codes are also presented. Then we provided a recursive
construction for a special type of LPC codes, i.e., CPC
codes. This recursive construction can produce CPC codes
of high cooling capability, t ≥ n/w. Finally, we proposed
a method which uses a domination mapping to transform
cooling codes into LPC codes, while preserving the efficiency
of cooling codes. Compared with the best codes obtained
by previous known constructions, the codes obtained by this
new method have larger size and better capabilities in most
cases.

REFERENCES

[1] T. Beth, “Algebraische Auflösungsalgorithmen für einige unendliche
familien von 3–designs,” Le Matematiche, vol. 29, pp. 105–135,
Jan. 1974.

[2] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, “A new
table of constant weight codes,” IEEE Trans. Inf. Theory, vol. 36, no. 6,
pp. 1334–1380, Sep. 1990.

[3] Y. M. Chee, T. Etzion, H. M. Kiah, and A. Vardy, “Cooling codes:
Thermal-management coding for high-performance interconnects,” IEEE
Trans. Inf. Theory, vol. 64, no. 4, pp. 3062–3085, Apr. 2018.

[4] Y. M. Chee, H. M. Kiah, A. Vard, and E. Yaakobi, “Explicit construc-
tions of finite-length WOM codes,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2017, pp. 2860–2864.

[5] Y. Meng Chee, T. Etzion, H. Mao Kiah, and A. Vardy, “Dom-
ination mappings into the Hamming ball: Existence, construc-
tions, and algorithms,” 2018, arXiv:1807.10954. [Online]. Available:
http://arxiv.org/abs/1807.10954

[6] D. de Caen, “Extension of a theorem of Moon and Moser on complete
subgraphs,” ARS Combinatoria, vol. 16, pp. 5–10, Feb. 1983.

[7] N. Deo and P. Micikevicius, “On one-factorization of complete 3-
uniform hypergraphs,” Congressus Numerantium, vol. 158, pp. 153–161,
May 2002.

[8] T. Etzion and A. Hartman, “Towards a large set of steiner quadruple
systems,” SIAM J. Discrete Math., vol. 4, no. 2, pp. 182–195, May 1991.

[9] T. Etzion and A. Vardy, “Error-correcting codes in projective space,”
IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 1165–1173, Feb. 2011.

[10] T. Etzion, V. Wei, and Z. Zhang, “Bounds on the sizes of con-
stant weight covering codes,” Des., Codes Cryptogr., vol. 5, no. 3,
pp. 217–239, May 1995.

[11] M. Grassl. Bounds on the Minimum Distance of Linear Codes
and Quantum Codes. Accessed: Mar. 8, 2020. [Online]. Available:
http://www.codetables.de

[12] P. Keevash, “Hypergraph Turán problems,” in Surveys in Combinatorics
2011 (London Mathematical Society Lecture Note Series), vol. 392,
R. Chapman, Ed. Cambridge, U.K.: Cambridge Univ. Press, 2011,
pp. 83–139.

[13] J. MacWilliams, and N. J. A. Sloane, The Theory of Error Correcting
Codes. Amsterdam, The Netherlands: North Holland, 1978.

[14] R. M. Roth and G. Ruckenstein, “Efficient decoding of reed-solomon
codes beyond half the minimum distance,” IEEE Trans. Inf. Theory,
vol. 46, no. 1, pp. 246–257, Jan. 2000.

[15] A. Sidorenko, “What we know and what we do not know about Turán
numbers,” Graphs Combinatorics, vol. 11, pp. 179–199, Jun. 1995.

[16] P. P. Sotiriadis and A. P. Chandrakasan, “A bus energy model for deep
submicron technology,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 10, no. 3, pp. 341–350, Jun. 2002.

[17] P. P. Sotiriadis and A. P. Chandrakasan, “Bus energy reduction by
transition pattern coding using a detailed deep submicrometer bus
model,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50,
no. 10, pp. 1280–1294, Oct. 2003.

[18] C. L. M. van Pul and T. Etzion, “New lower bounds for constant
weight codes,” IEEE Trans. Inf. Theory, vol. 35, no. 6, pp. 1324–1329,
Nov. 1989.

[19] J. H. van Lint and N. R. M. Wilson, A Course in Combinatorics.
Cambridge, U.K.: Cambridge Univ. Press, 1992.

[20] A. Vardy, “The intractability of computing the minimum distance of
a code,” IEEE Trans. Inf. Theory, vol. 43, no. 6, pp. 1757–1766,
Nov. 1997.

[21] F. Wang, Y. Xie, N. Vijaykrishnan, and M. J. Irwin, “On-chip bus
thermal analysis and optimization,” in Proc. Des. Autom. Test Eur. Conf.,
May 2006, pp. 1–6.

[22] L. R. Welch and E. R. Berlekamp, “Error correction for algebraic block
codes,” U.S. Patent 4 633 470, Dec. 30, 1986

Yeow Meng Chee received the B.Math., M.Math., and Ph.D. degrees in
computer science from the University of Waterloo in 1988, 1989, and 1996,
respectively. He has held senior positions in public service, including the
Head of Security (information infrastructure) and the Assistant Director of
Internationalization at the National Computer Board, the Deputy Director of
Strategic Programs with the Infocomm Development Authority (IDA), and
the Program Director of Interactive Digital Media Research and Development
with the Media Development Authority. He deployed South East Asia’s First
Certification Authority Netrust in 1997, and also founded the Singapore
Computer Emergency Response Team (SingCERT). He was the Head of the
Division of Mathematical Sciences, Nanyang Technological University, from
2008 to 2010, the Chair of the School of Physical and Mathematical Sciences,
Nanyang Technological University, from 2011 to 2017, and the Interim
Dean of the College of Science from 2018 to 2019, Nanyang Technological
University. He is currently a Professor of industrial systems engineering and
management and an Associate Vice President of innovation and enterprise
with the National University of Singapore (NUS). His research interest lies in
the interplay between combinatorics and computer science, especially coding
theory, extremal set systems, and their applications.

Dr. Chee is a Fellow and a Council Member of the Institute of Com-
binatorics and its Applications. He has represented Singapore in various
international forums, including member of the APEC Electronic Commerce
Task Force in 1998, a member of the ASEAN Coordinating Committee on
Electronic Commerce in 1998, a member of the Working Group on ASEAN
Information Infrastructure in 1999, a Secretariat of the Canada–Singapore IT
Joint Council in 1998, a Co-Chair of the APEC TEL Public Key Interoper-
ability Expert Group in 1999, a Secretariat of the Australia—Singapore ICT
Joint Council in 1999, and a member of APEC Project DARE (Data Analytics
Raising Employment) Advisory Board in 2017.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:16:52 UTC from IEEE Xplore. Restrictions apply.

4818 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

Tuvi Etzion (Fellow, IEEE) was born in Tel Aviv, Israel, in 1956. He received
the B.A., M.Sc., and D.Sc. degrees from the Technion—Israel Institute
of Technology, Haifa, Israel, in 1980, 1982, and 1984, respectively. Since
1984, he has been holding a position in the Department of Computer
Science, Technion—Israel Institute of Technology, where he currently holds
the Bernard Elkin Chair in computer science. From 1985 to 1987, he was a
Visiting Research Professor with the Department of Electrical Engineering—
Systems, University of Southern California, Los Angeles. From summers
1990 to 1991, he was visiting Bellcore in Morristown, NJ, USA. From
1994 to 1996, he was a Visiting Research Fellow with the Computer Science
Department, Royal Holloway University of London, Egham, U.K. He also had
several visits to the Coordinated Science Laboratory, University of Illinois
in Urbana–Champaign, from 1995 to 1998, two visits to HP Bristol in
summers of 1996 and 2000, a few visits to the Department of Electrical
Engineering, University of California at San Diego, from 2000 to 2017,
several visits to the Mathematics Department, Royal Holloway University,
London, from 2007 to 2017, a few visits to the School of Physical and
Mathematical Science (SPMS), Nanyang Technological University, and also to
the Department of Industrial Systems Engineering and Management, National
University of Singapore, Singapore, from 2016 to 2019, and a few visits to
Jiaotong University, Beijing, from 2017 to 2019. His research interests include
applications of discrete mathematics to problems in computer science and
information theory, coding theory, network coding, and combinatorial designs.

Dr. Etzion was an Associate Editor for Coding Theory for the IEEE
TRANSACTIONS ON INFORMATION THEORY from 2006 to 2009. From
2004 to 2009, he was an Editor of the Journal of Combinatorial Designs.
Since 2011, he has been an Editor of Designs, Codes, and Cryptography,
and since 2013, he has also been an Editor of Advances of Mathematics in
Communications.

Han Mao Kiah (Member, IEEE) received the Ph.D. degree in mathematics
from Nanyang Technological University (NTU), Singapore, in 2014. From
2014 to 2015, he was a Post-Doctoral Research Associate with the Coordi-
nated Science Laboratory, University of Illinois at Urbana–Champaign. From
2015 to 2018, he was a Lecturer with the School of Physical and Mathematical
Sciences (SPMS), NTU, Singapore. He is currently an Assistant Professor
with SPMS, NTU, Singapore. His research interests include DNA-based data
storage, coding theory, enumerative combinatorics, and combinatorial design
theory.

Alexander Vardy (Fellow, IEEE) was born in Moscow, Russia, in 1963.
He received the B.Sc. degree (summa cum laude) from the Technion—Israel
Institute of Technology, Israel, in 1985, and the Ph.D. degree from Tel-Aviv
University, Israel, in 1991. From 1985 to 1990, he was with the Israeli Air
Force, where he worked on electronic counter measures systems and algo-
rithms. From 1992 to 1993, he was a Visiting Scientist with the IBM Almaden
Research Center, San Jose, CA, USA. From 1993 to 1998, he was with the
University of Illinois at Urbana–Champaign, first as an Assistant Professor
then as an Associate Professor. Since 1998, he has been with the University
of California at San Diego (UCSD), where he is currently the Jack Keil Wolf
Endowed Chair Professor with the Department of Electrical and Computer
Engineering and the Department of Computer Science. While on sabbatical
from UCSD, he has held long-term visiting appointments with CNRS, France,
the EPFL, Switzerland, the Technion—Israel Institute of Technology, and
Nanyang Technological University, Singapore. His research interests include
error-correcting codes, algebraic and iterative decoding algorithms, lattices and
sphere packings, coding for storage systems, cryptography and computational
complexity theory, and fun math problems.

He has been a member of the Board of Governors of the IEEE Information
Theory Society from 1998 to 2006 and from 2011 to 2017. He received an
IBM Invention Achievement Award in 1993 and NSF Research Initiation and
CAREER Awards in 1994 and 1995. In 1996, he was appointed as a Fellow
in the Center for Advanced Study, University of Illinois, and received the
Xerox Award for Faculty Research. In 1996, he became a Fellow of the David
and Lucile Packard Foundation. He received the IEEE Information Theory
Society Paper Award (jointly with Ralf Koetter) in 2004. In 2005, he received
the Fulbright Senior Scholar Fellowship, and the Best Paper Award at the
IEEE Symposium on Foundations of Computer Science (FOCS). In 2017,
his work on polar codes was recognized by the IEEE Communications and
Information Theory Societies Joint Paper Award. From 1995 to 1998, he was
an Associate Editor for Coding Theory and from 1998 to 2001, he was the
Editor-in-Chief of the IEEE TRANSACTIONS ON INFORMATION THEORY.
From 2003 to 2009, he was an Editor for the SIAM Journal on Discrete
Mathematics. He is currently serving on the Executive Editorial Board for the
IEEE TRANSACTIONS ON INFORMATION THEORY.

Hengjia Wei received the Ph.D. degree in applied mathematics from Zhejiang
University, Hangzhou, Zhejiang, China, in 2014. He was a Post-Doctoral
Fellow with Capital Normal University, Beijing, China, from 2014 to 2016,
and a Research Fellow with the School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore, from 2016 to 2019.
He is currently a Post-Doctoral Fellow with the Department of Electrical
and Computer Engineering, Ben-Gurion University of the Negev, Israel. His
research interests include combinatorial design theory, and coding theory and
their intersections.

Dr. Wei received the 2017 Kirkman Medal from the Institute of Combina-
torics and its Applications.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:16:52 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

