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Abstract— The de Bruijn graph, its sequences, and their various
generalizations, have found many applications in information
theory, including many new ones in the last decade. In this
paper, motivated by a coding problem for emerging memory
technologies, a set of sequences which generalize the window
property of de Bruijn sequences, on its shorter subsequences,
are defined. These sequences can be also defined and viewed
as constrained sequences. Hence, they will be called locally-
constrained de Bruijn sequences and a set of such sequences will
be called a locally-constrained de Bruijn code. Several properties
and alternative definitions for such codes are examined and they
are analyzed as generalized sequences in the de Bruijn graph
(and its generalization) and as constrained sequences. Various
enumeration techniques are used to compute the total number
of sequences for any given set of parameters. A construction
method of such codes from the theory of shift-register sequences
is proposed. Finally, we show how these locally-constrained de
Bruijn sequences and codes can be applied in constructions of
codes for correcting synchronization errors in the �-symbol read
channel and in the racetrack memory channel. For this purpose,
these codes are superior in their size to previously known codes.

Index Terms— Constrained codes, de Bruijn sequences,
�-symbol read channel, racetrack memories.

I. INTRODUCTION

THE de Bruijn graph of order m, Gm, was introduced
in 1946 by de Bruijn [7]. His target in introducing this
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graph was to find a recursive method to enumerate the number
of cyclic binary sequences of length 2k such that each binary
k-tuple appears as a window of length k exactly once in
each sequence. It should be mentioned that in parallel also
Good [33] defined the same graph and hence it is sometimes
called the de Bruijn-Good graph. Moreover, it did not take
long for de Bruijn himself to find out that his discovery was
not novel. In 1894 Flye-Sainte Marie [26] has proved the
enumeration result of de Bruijn without the definition of the
graph. Nevertheless, the graph continues to carry the name of
de Bruijn as well as the related sequences (cycles in the graph)
which he enumerated. Later in 1951 van Aardenne-Ehrenfest
and de Bruijn [1] generalized the enumeration result for any
arbitrary alphabet of finite size σ greater than one, using a
generalized graph for an alphabet Σ of size σ. Formally, the de
Bruijn graph Gσ,k has σk vertices, each one is represented by
a word of length k over an alphabet Σ with σ letters. The
in-degree and the out-degree of each vertex in the graph is σ.
There is a directed edge from the vertex (x0, x1, . . . , xk−1) to
the vertex (y1, y2, . . . , yk), where xi, yj ∈ Σ, if and only if
yi = xi, 1 ≤ i ≤ k−1. This edge is represented by the (k+1)-
tuple (x0, x1, . . . , xk−1, yk). The sequences enumerated by de
Bruijn are those whose length is σk and each k-tuple over Σ
appears exactly once in a window of k consecutive (cyclically)
symbols in the sequence. Such a sequence enumerated by de
Bruijn is represented by an Eulerian cycle in Gσ,k−1, where
each k consecutive symbols represent an edge in the graph.
This sequence is also a Hamiltonian cycle in Gσ,k, where
each k consecutive symbols represent a vertex in the graph.
Henceforth, we assume that the cycles are Hamiltonian, i.e.,
with no repeated vertices.

Throughout the years since de Bruijn introduced his graph
and the related sequences, there have been many general-
izations for the graph and for the sequences enumerated
by de Bruijn. Such generalizations include enumeration of
sequences of length �, where � < σk, in Gσ,k [53] or
coding for two-dimensional arrays in which all the n × m
sub-arrays appear as windows in exactly one position of the
large array [21]. The interest in the de Bruijn graph, its
sequences, and their generalizations, is due to their diverse
important applications. One of the first applications of this
graph was in the introduction of shift-register sequences in
general and linear feedback shift registers in particular [30].
These will have an important role also in our research.
Throughout the years de Bruijn sequences, the de Bruijn graph,
and their generalizations, e.g., for larger dimensions, have
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found a variety of applications. These applications include
cryptography [27], [44], and in particular linear complexity of
sequences, e.g., [10], [22], [24], [29], [41], interconnection net-
works, e.g., [4], [25], [60], [63], [65], VLSI testing, e.g., [3],
[45], two-dimensional generalizations, e.g., [6], [21], [49]
with applications to self-locating patterns, range-finding, data
scrambling, mask configurations, robust undetectable digital
watermarking of two-dimensional test images, and structured
light, e.g., [38], [54], [55], [59], [62]. Some interesting modern
applications are combined with biology, like the genome
assembly as part of DNA sequencing, e.g., [9], [18], [39], [48],
[57], [69] and coding for DNA storage, e.g., [11], [28], [42],
[58]. This is a small sample of examples for the wide range
of applications in which the de Bruijn graph, its sequences,
and their generalizations, were used.

The current work is not different. Motivated by applica-
tions to certain coding problems for storage, such as the
�-symbol read channel and the racetrack memory chan-
nel, we introduce a new type of generalization for de
Bruijn sequences, the locally-constrained de Bruijn sequences.
In these sequences, a k-tuple cannot repeat within a segment
starting in any of b consecutive positions. This generalization is
quite natural and as the name hints, it can be viewed as a type
of a constrained sequence. The goal of this paper is to study
this type of sequences in all natural directions: enumeration,
constructions, and applications.

Our generalization is motivated by the need to combat
synchronization errors (which are shift errors known also as
deletions and sticky insertions) in certain memories. These
types of synchronization errors occur in some new memory
technologies, mainly in racetrack memories [13], [15], and in
other technologies which can be viewed as an �-symbol read
channel [8], [16], [67]. By using locally-constrained de Bruijn
sequences to construct such codes we will be able to increase
the rate of codes which correct such synchronization errors.
But, we believe that locally-constrained de Bruijn sequences
and codes (sets of sequences) are of interest in their own
right from both practical and theoretical points of view. The
newly defined sequences can be viewed as constrained codes
and as such they pose some interesting problems. This is the
reason that the new sequences and the related codes will be
called locally-constrained de Bruijn sequences and locally-
constrained de Bruijn codes, respectively.

The rest of this paper is organized as follows. In Section II
we introduce some necessary concepts which are important
in our study, such as the length and the period of sequences
in general and of de Bruijn sequences in particular. We will
also introduce some elementary concepts related to shift-
register sequences. In Section III we define the new type of
sequences, the locally-constrained de Bruijn sequences and
their related codes. There will be a distinction between cyclic
and acyclic sequences. We consider the concept of periodicity
for acyclic and cyclic sequences and define the concept of
forbidden patterns. The main result in this section will be
a theorem which reveals that by the given definitions, three
types of codes, defined differently, form exactly the same set
of sequences for an appropriate set of parameters for each
definition. In Section IV the number of locally-constrained

de Bruijn sequences with a given set of parameters will be
considered. We start with a few very simple enumeration
results and continue to show that for some parameters, the rates
of the defined codes approach 1, and there are other parameters
with one symbol of redundancy. Most of the section will be
devoted to a consideration of the codes as constrained codes.
Enumeration based on the theory of constrained codes will
be applied. These considerations yield also efficient encod-
ing and decoding algorithms for the codes. In Section V,
a construction based on shift-register sequences will be given.
This construction will be our main construction for codes with
large segments in which no repeated k-tuples appear. The next
two sections are devoted to applications of locally-constrained
de Bruijn sequences in storage memories. In Section VI,
the application to the �-symbol read channel is discussed. This
application yields another application for another new type of
storage channel, the racetrack channel which is considered in
Section VII. Finally, we conclude in Section VIII.

II. PRELIMINARIES

In this section we will give some necessary defini-
tions and notations concerning cyclic and acyclic sequences,
paths and cycles in the de Bruijn graph, and shift-register
sequences, in particular those which are related to prim-
itive polynomials and are known as maximum length
shift-register sequences. In Section II-A we discuss the
length and period of sequences as well as cyclic and
acyclic sequences. Shift-register sequences are discussed in
Section II-B.

A. Paths and Cycles in the de Bruijn Graph

A sequence s = (s1, s2, . . . , sn) over an alphabet Σ is a
sequence of symbols from Σ, i.e., si ∈ Σ for 1 ≤ i ≤ n. The
length of such a sequence is the number of its symbols n and
the sequence is considered to be acyclic. A cyclic sequence
s = [s1, s2, . . . , sn] is a sequence of length n for which the
symbols can be read from any position in a sequential order,
where the element s1 follows the element sn. This means
that s can be written also as [si, si+1, . . . , sn, s1, . . . , si−1]
for each 2 ≤ i ≤ n.

Definition 1: A cyclic sequence s = [s1, . . . , sn], where
si ∈ Σ and σ = |Σ|, is called a weak de Bruijn sequence
(cycle) of order k, if all the n windows of consecutive k
symbols of s are distinct. A cyclic sequence s = [s1, . . . , sn]
is called a de Bruijn sequence of order k, if n = σk and s is
a weak de Bruijn sequence of order k.

The connection between a weak de Bruijn cycle of length n
(as a cycle in the de Bruijn graph) and a weak de Bruijn
sequence of length n in the graph is very simple. The sequence
is generated from the cycle by considering the first digit of
the consecutive vertices in the cycle. The cycle is generated
from the sequence by considering the consecutive windows
of length k in the sequence. This is the place to define some
common concepts and some notation for sequences. An acyclic
sequence s = (s1, . . . , sn) has n digits read from the first to
the last with no wrap around. If all the windows of length k,
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starting at position i, 1 ≤ i ≤ n− k + 1, are distinct, then the
sequence corresponds to a simple path in Gσ,k. The period of
a cyclic sequence s = [s0, s1, . . . , sn−1] is the least integer p,
such that si = si+p, where indices are taken modulo n, for
each i, 0 ≤ i ≤ n − 1. It is well known that the period p
divides the length of a cyclic sequence n. If n = rp then
the periodic sequence s is formed by a concatenation of r
copies of the first p entries of s. It is quite convenient to
have the length n and the period p equal if possible. There
is a similar definition for the period of an acyclic sequence
with slightly different properties, which is given in Section III.
In this paper we will assume (if possible) that for a given
cyclic sequence s = [s1, . . . , sn] the period of s is n. Hence,
usually we won’t distinguish between the length and period
for cyclic sequences. We will elaborate more on this point in
Section II-B. Finally, the substring (window) (si, si+1, . . . , sj)
will be denoted by s[i, j] and this substring will be always
considered as an acyclic sequence, no matter if s is cyclic or
acyclic. In addition, s[i] will be sometimes used instead of si

and the set {1, 2, . . . , n} is denoted by [n].

B. Feedback Shift Registers and Their Cycle Structure

The theory of the sequences in the de Bruijn graph cannot be
separated from the theory of shift-register sequences developed
mainly by Golomb [30]. This theory, developed fifty years ago,
was very influential in various applications related to digital
communication [31], [32]. A short summary on the theory of
shift-registers taken from [30] which is related to our work, is
given next.

A characteristic polynomial (for a linear feedback shift
register defined in the sequel) c(x) of degree k over Fq,
the finite field with q elements, is a polynomial given by

c(x) = 1 −
k∑

i=1

cix
i,

where ci ∈ Fq . For such a polynomial a function f on k
variables from Fq is defined by

f(x1, x2, . . . , xk) =
k∑

i=1

cixk+1−i.

For the feedback function f(x1, x2, . . . , xk) we define a
state diagram with the set of vertices

Qk � {(x1, x2, . . . , xk) : xi ∈ Fq}.

If xk+1 = f(x1, x2, . . . , xk) then an edge from
(x1, x2, . . . , xk) to (x2, . . . , xk, xk+1) is defined for the
related state diagram. This implies that the feedback function
defines a mapping from Qk into Qk. A feedback shift register
of length k has qk states corresponding to the set Qk of all
qk k-tuples over Fq . The feedback function can be a linear
function or a nonlinear function on k variables. The shift
register is called nonsingular if its state diagram consists of
disjoint cycles. Any such state diagram is called a factor in
Gq,k, where a factor in a graph is a set of vertex-disjoint cycles
which contains all the vertices of the graph. There is a one-to-
one correspondence between the set of factors in the de Bruijn

graph Gq,k and the set of state diagrams for the nonsingular
shift registers of order k over Fq . It is well known [30] that a
binary feedback shift-register is nonsingular if and only if its
feedback function has the form

f(x1, x2, . . . , xk) = x1 + g(x2, . . . , xk),

where g(x2, . . . , xk) is any binary function on k−1 variables.
A similar representation also exists for nonsingular feedback
shift-registers over Fq .

A Hamiltonian cycle in Gq,k is a de Bruijn cycle which
forms a de Bruijn sequence. There are (q!)qk−1

/qk distinct
such cycles in Gq,k and there are many methods to generate
such cycles [23], [27]. One important class of sequences
in the graph, related to de Bruijn sequences, are the so
called m-sequences, or maximal length linear shift-register
sequences. A shift-register is called linear if its feedback
function f(x1, x2, . . . , xk) is linear. An m-sequence is a
sequence of length qk − 1 generated by a linear shift-register
associated with a primitive polynomial of degree k over Fq.
Each primitive polynomial is associated with such a sequence.
In such a sequence all windows of length k are distinct and
the only one which does not appear is the all-zero window.
The following theorem is well known [30].

Theorem 1: The number of distinct m-sequences of order
k over Fq (the same as the number of primitive polynomials
of order k over Fq) is

φ(qk − 1)
k

,

where φ is the Euler function.
The exponent of a polynomial f(x) is the smallest integer e

such that f(x) divides xe−1. The length of the longest cycle of
the state diagram formed by the shift-register associated with
the characteristic polynomial f(x) is the exponent of f(x).
The length of the cycles associated with a multiplication
of several irreducible polynomials can be derived using the
exponents of these polynomials and some related algebraic and
combinatorial methods. This theory well-documented in [30]
leads immediately to the following important result.

Theorem 2: The state diagram associated with a multiplica-
tion of two distinct primitive characteristic polynomials f(x)
and g(x) of order k over Fq contains qk + 1 cycles of
length qk − 1 and the all-zero cycle. Each possible (2k)-tuple
over Fq appears exactly once as a window in one of these
cycles. The m-sequences related to f(x) and g(x) are two of
these cycles.

III. LOCALLY-CONSTRAINED DE BRUIJN CODES,
PERIODS, AND FORBIDDEN PATTERNS

In this section we give the formal definitions for
locally-constrained de Bruijn sequences and codes. We present
a definition for a family of sequences with a certain period
and a definition for a family of sequences avoiding certain
substrings. Three different definitions will be given and it will
be proved that with the appropriate parameters the related
three families of sequences contain the same sequences. Each
definition will have later some role in the enumeration of
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locally-constrained de Bruijn sequences which will be given
in Section IV.

A. Locally-Constrained de Bruijn Codes

Definition 2:
• A sequence s = (s1, . . . , sn), over some alphabet Σ, is

called a (b, k)-locally-constrained de Bruijn sequence if
s[i, i+k−1] �= s[j, j+k−1] for all i, j ∈ [n−k+1] such
that 0 < |i− j| ≤ b−1. In other words, in each substring
of s whose length is b+k−1 there is no repeated k-tuple,
i.e., each subset of b consecutive windows of length k in
s contains b distinct k-tuples.

• A set of distinct (b, k)-locally-constrained de Bruijn
sequences of length n is called a (b, k)-locally-
constrained de Bruijn code. The set of all (b, k)-locally-
constrained de Bruijn sequences of length n will be
denoted by CDB(n, b, k). The alphabet Σ and its size
σ should be understood from the context throught our
discussion.

• A cyclic sequence s = [s1, . . . , sn], over Σ, is called
a cyclic (b, k)-locally-constrained de Bruijn sequence
if (s1, . . . , sn) is a (b, k)-locally-constrained de Bruijn
sequence and for each cyclic shift of s, [s�1, . . . , s

�
n],

(s�1, . . . , s
�
n) is a (b, k)-locally-constrained de Bruijn

sequence. In other words, in each substring of s whose
length is b + k − 1 there is no repeated k-tuple, where
a substring which starts in one of the last b + k − 2 bits
of s continues with bits from the beginning of s. Note,
that two sequences which differ only in a cyclic shift are
considered to be the same sequence.

• A set of distinct cyclic (b, k)-locally-constrained de
Bruijn sequences of length n is called a cyclic (b, k)-
locally-constrained de Bruijn code. The set of all cyclic
(b, k)-locally-constrained de Bruijn sequences of length n
will be denoted by C∗

DB(n, b, k). We note that by the def-
inition of a cyclic locally-constrained de Bruijn sequence
two codewords in a cyclic (b, k)-locally-constrained de
Bruijn code cannot differ only in a cyclic shift, but in
some applications one might consider these cyclic shifts
of codewords as distinct codewords.

Example 1:
• The sequence s1 = (0, 0, 1, 1, 0, 1, 0) ∈ {0, 1}7 is a

(3, 3)-locally-constrained de Bruijn sequence since in
each substring of s1 of length 5, all three 3-tuples are
distinct. For example, in the substring, (0, 0, 1, 1, 0),
all three 3-tuples, (0, 0, 1), (0, 1, 1), (1, 1, 0), are
distinct.

• The sequence s2 = (0, 0, 0, 0, 1, 1, 1) ∈ {0, 1}7 is not
a (3, 3)-locally-constrained de Bruijn sequence since the
first two 3-tuples are the same, (0, 0, 0).

• The cyclic sequence s1 = [0, 0, 1, 1, 0, 1, 0] is a
cyclic (3, 3)-locally-constrained de Bruijn sequence
since we can check to see that each cyclic shift
of s1 is also a (3, 3)-locally-constrained de Bruijn
sequence.

de Bruijn sequences form a special case of
locally-constrained de Bruijn sequences as asserted in
the following theorem which is readily verified by definition.

Theorem 3:

• The cyclic sequence s of length qk over Fq is a de
Bruijn sequence if and only if s is a cyclic (qk, k)-locally-
constrained de Bruijn sequence.

• The acyclic sequence s of length qk + k− 1 over Fq is a
de Bruijn sequence if and only if s is a (qk, k)-locally-
constrained de Bruijn sequence.

Theorem 3 introduce the connection between de Bruijn
sequences and locally-constrained de Bruijn sequences. But,
there are a few main differences between de Bruijn sequences
of order k and (b, k)-locally-constrained de Bruijn sequences.

• A de Bruijn sequence is usually considered and is used as
a cyclic sequence while a locally-constrained de Bruijn
sequence will be generally used as an acyclic sequence.

• A de Bruijn sequence contains each possible k-tuple
exactly once as a window of length k, while in a (b, k)-
locally-constrained de Bruijn sequence, each possible
k-tuple can be repeated several times or might not appear
at all.

• A de Bruijn sequence contains each possible k-tuple
exactly once in one period of the sequence, while in a
(b, k)-locally-constrained de Bruijn sequence, each pos-
sible k-tuple can appear at most once among any b
consecutive k-tuples in the sequence.

• The length (or equivalently period in this case) of a
de Bruijn sequence is strictly qk, while there is no
constraint on the length and the period of a (b, k)-locally-
constrained de Bruijn sequence.

These differences between de Bruijn sequences and
locally-constrained de Bruijn sequences are important in the
characterization, enumeration, constructions, and applications
of the two types of sequences.

B. Periods and Forbidden Subsequences

There are two concepts which are closely related to
locally-constrained de Bruijn sequences, the period of an
acyclic sequence and avoided patterns. Let u and s be
two sequences over Σ. The sequence s avoids u (or s is
u-avoiding) if u is not a substring of s. Let F be a finite set
of sequences over Σ and s a sequence over Σ. The sequence
s avoids F (or s is F -avoiding) if no sequence in F is
a substring of s. Let A(n;F) denote the set of all σ-ary
sequences of length n which avoid F . A subset of A(n;F),
i.e., a set of F -avoiding sequences of length n, is called an
F -avoiding code of length n.

The second concept is the period of a sequence. For cyclic
sequences the length and the period of the sequence either
coincide or have a very strict relation, where the period of the
sequence divides its length. This is not the case for acyclic
sequences.

Definition 3:

• A sequence s = (s1, s2, . . . , sn) ∈ Σn is a period-
p sequence if it satisfies si = si+p for all 1 ≤ i ≤
n− p. Note, that the definition for the period of a cyclic
sequence coincides with this definition.

• A sequence s ∈ Σn is called an m-limited period-p
substrings if any period-p substring of s has length at
most m.
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• A set of m-limited period-p substrings sequences
from Σn is called a m-limited period-p substrings
code. The set of all such m-limited period-p substrings
sequences is denoted by CLP (n, m, p).

Example 2:

• The sequence s3 = (0, 1, 0, 1, 0, 1, 0, 1) ∈ {0, 1}8 is a
period-2 sequence of length 8.

• The sequence s4 = (0, 0, 1, 0, 1, 0, 0, 1) ∈ {0, 1}8 is a
5-limited period-2 substrings sequence since the longest
substring with period-2 of s2, (0, 1, 0, 1, 0), is of length 5.

• The sequence s5 = (0, 0, 1, 0, 1, 0, 1, 1) ∈ {0, 1}8 is
not a 5-limited period-2 substrings sequence since the
longest substring with period-2 of s5, (0, 1, 0, 1, 0, 1),
is of length 6 > 5.

The first lemma is a straightforward observation.
Lemma 1: If F is the set of all sequences of length m + 1

and period-p, then for each i, 1 ≤ i ≤ m, the set CLP (n, i, p)
is an F -avoiding code.

Proof: Recall, that for each i, the set of sequences in
CLP (n, i, p), have length n. If s is a sequence in CLP (n, i, p),
1 ≤ i ≤ m, then each substring of s with period-p has length
at most i, where i is a positive integer strictly smaller than m+
1. The set F contains the sequences of length m+1 and period-
p and hence a sequence of F cannot be a substring of s. Thus,
CLP (n, i, p) is an F -avoiding code.

C. Equivalence Between the Three Types of Codes

Let Fp,p+k be the set of all period-p sequences of
length p + k for any given 1 ≤ p ≤ b − 1 and let
Fb,k = ∪b−1

p=1Fp,p+k.
Example 3: When b = k = 3, we have

F3,3 = F1,4 ∪ F2,5 = {(0, 0, 0, 0), (1, 1, 1, 1),
(0, 0, 0, 0, 0), (0, 1, 0, 1, 0), (1, 0, 1, 0, 1), (1, 1, 1, 1, 1)}.

We observe that the (3, 3)-locally-constrained de Bruijn
sequence is also F3,3-avoiding.

The following result implies a strong relation between
locally-constrained de Bruijn codes, codes of limited period p
substrings, and F -avoiding codes. By the related definitions
of these concepts we have the following theorem.

Theorem 4: For all given admissible n, b, k, and any code
C ⊂ Σn,

A(n;Fb,k) = CdB(n, b, k) =
b−1⋂
i=1

CLP (n, i + k − 1, i).

Proof: We will prove that A(n;Fb,k) ⊆ CDB(n, b, k),
CdB(n, b, k) ⊆

⋂b−1
i=1 CLP (n, i + k − 1, i), and⋂b−1

i=1 CLP (n, i + k − 1, i) ⊆ A(n;Fb,k). These three
containment proofs will imply the claim of the theorem.

First, we prove that if c is a sequence in A(n;Fb,k) then
c is a sequence in CDB(n, b, k). Let c = (c1, c2, . . . , cn) be
any sequence in A(n,Fb,k), and assume to the contrary that
c �∈ CDB(n, b, k). This implies that there exist integers i, j ∈
[n−k+1] such that 1 ≤ p = j−i ≤ b−1 and c[i, i+k−1] =
c[j, j + k− 1]. Hence, c[i, j + k− 1] = (ci, ci+1, . . . , cj+k−1)
is a substring with period-p and length p + k. Therefore

c[i, j + k − 1] ∈ Fb,k, a contradiction since c ∈ A(n;Fb,k).
Thus, c ∈ CDB(n, b, k) which implies that A(n;Fb,k) ⊆
CDB(n, b, k).

Next, we prove that if c is a sequence in CDB(n, b, k)
then c is a sequence of

⋂b−1
i=1 CLP (n, i + k − 1, i). Let

c = (c1, c2, . . . , cn) be any sequence in CDB(n, b, k), and
assume to the contrary that c �∈

⋂b−1
i=1 CLP (n, i + k − 1, i).

Hence, there exists p ∈ [b − 1] such that c �∈ CLP (n, p +
k− 1, p). Therefore, c contains a period-p substring of length
p + k. Let c[i, i + p + k − 1] be such a period-p substring.
Hence, c[i, i + k− 1] = c[i + p, i + p + k− 1], a contradiction
since c ∈ CDB(n, b, k). Thus, C ⊆

⋂b−1
i=1 CLP (n, i+ k− 1, i)

which implies that CDB(n, b, k) ⊆
⋂b−1

i=1 CLP (n, i+k−1, i).
Finally, if c is a sequence in

⋂b−1
i=1 CLP (n, i + k − 1, i),

then by Lemma 1 we have that c is a sequence in A(n;Fb,k).
Thus,

⋂b−1
i=1 CLP (n, i + k − 1, i) ⊆ A(n;Fb,k).

Corollary 1: For all given admissible n, b, k, and any code
C ⊂ Σn, the following three statements are equivalent

1) C is a subset of A(n;Fb,k).
2) C is a subset of CDB(n, b, k).
3) C is a subset of

⋂b−1
i=1 CLP (n, i + k − 1, i).

The set F which contains all the forbidden patterns of an
F -avoiding code C is never a minimum size set of forbidden
patterns, i.e., there exists another set F � such that |F �| < |F|
and C is also an F �-avoiding code. This set F � contains shorter
patterns than the ones which are contained in F . For example,
if F = {00, 01} then F � = {0} is a smaller size set which
for which C is an F -avoiding code if and only if C is an F �-
avoiding code. This implies that there always exist two distinct
sets, F1 and F2, where |F1| < |F2|, such that A(n;F1) =
A(n;F2). But, there always exists one such set F of minimum
size. To see that, let F be a set of forbidden sequences over Σ.
As long as F contains σ sequences of length � + 1 which
form the set S = {uα : α ∈ Σ}, where u is a string of
length �, these σ sequences of F which are contained in S
can be replaced by the sequence u. When this process comes
to its end, instead of the original set F of forbidden patterns
we have a set F � of forbidden patterns for the same code. The
set of sequences F � will be called the forbidden reduced set
of F .

Lemma 2: If F is a set of forbidden sequences and F � is
its forbidden reduced set, then A(n;F) = A(n;F �).

Proof: The proof is an immediate observation from the
fact that all the sequences of length n which do not contain
the patterns in S = {uα : α ∈ Σ}, where n is greater than
the length of u, as substrings do not contain the pattern u as
a substring. Hence, A(n;F) ⊆ A(n;F �).

Clearly, all the sequences of length n which do not contain
u as a substring do not contain any pattern from S as a
substring. Hence, A(n;F �) ⊆ A(n;F).

Thus, A(n;F) = A(n;F �).

IV. ENUMERATION OF LOCALLY-CONSTRAINED DE

BRUIJN SEQUENCES

In this section we consider enumeration of the number
of sequences in CDB(n, b, k). Note, that we are considering
only acyclic sequences. A σ-ary code C of length n is a
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set of σ-ary sequences of length n, that is C ⊆ Σn. For
each code C of length n, we define the rate of the code C

to be R(C) = logσ(|C|)/n, and the redundancy of the
code C to be r(C) = n − logσ(|C|), where |C| is the size
of the code C. We define the maximum asymptotic rate of
(b, k)-locally-constrained de Bruijn codes to be RDB(b, k) =
lim supn→∞

logσ |CDB(n,b,k)|
n .1

A. Trivial Bounds

In this section trivial bounds on the number of
locally-constrained de Bruijn sequences are considered. The
number of (cyclic) de Bruijn sequences of length σn over
an alphabet of size σ is (σ!)σn−1

/σn [1] which implies the
following simple result (for acyclic sequences).

Theorem 5: For any given positive integer σ ≥ 2, positive
integer k, and n ≥ σk + k − 1,

|CDB(n, σk, k)| = (σ!)σk−1
.

Corollary 2: For any given positive integer σ ≥ 2 and a
positive integer k,

RDB(σk, k) = 0.

Corollary 2 can be generalized for RDB(b, k), where
σk ≥ b ≥ b0, where b0 is an integer whose value depends on
σ and k. The reason that the rates are zero for so many values
is that once we have a long simple path of length b0 (where
the smallest value of b0 has to be determined) in Gσ,k (and the
number of such paths is very large [53]), to continue the path
for a long sequence which is a (b, k)-locally-constrained de
Bruijn sequence, the sequence will be almost periodic (with
a possibility of some small local changes). In the case of
Theorem 5, where the path is a de Bruijn sequence, there
is only one way to continue the path without violating the
constraint. There are some intriguing questions in this context.
The first question is to be specific in the value of b0. Another
question is to find a good bound on RDB(b, k), where b is
large compared to k and RDB(b, k) > 0. Such a bound will
be given in Section V, but we have no indication how good
it is. The other extreme case is when b = 1 and hence the
sequence is not constrained and we have the following trivial
result.

Theorem 6: For any given positive integer σ ≥ 2, a pos-
itive integer k, and n ≥ k, |CDB(n, 1, k)| = σn and
RDB(1, k) = 1.

Except for these cases, to find the rates of
locally-constrained de Bruijn sequences, where b > 1,
is not an easy task. When the rate is approaching one, we are
interested in the redundancy of CDB(n, b, k). Unfortunately,
finding the redundancy of CDB(n, b, k) is even more difficult
than to find the rate. Fortunately, for small values of b we can
use the theory of constrained coding, and for k large enough
we can even show that the redundancy is one symbol.

The last trivial case is the (b, 1)-locally-constrained de
Bruijn codes. The sequences of such a code will be used
for error correction of synchronization errors in racetrack

1The lim sup can indeed be replaced by a proper lim [52].

memories in Section VII-A. Since this constraint implies that
any b consecutive elements in the sequence will be distinct,
we must have that σ ≥ b to obtain any valid sequence.
If σ ≥ b, then we have to choose b elements from the σ
alphabet letters to start the sequence and in any other position
we can choose any of the alphabet letters, except for the
previous b − 1 positions in the sequence. Hence, we have

Theorem 7: For any b ≥ 1 and any alphabet of size σ we
have

|CDB(n, b, 1)| =

{
0 if b > σ(
σ
b

)
b!(σ − b + 1)n−b if σ ≥ b.

Corollary 3: For any b ≥ 1 and any alphabet σ we have
that RDB(b, 1) = 0 if σ ≤ b and RDB(b, 1) = logσ(σ−b+1)
if σ > b.

B. (b, k)-Locally-Constrained de Bruijn Codes With
Redundancy 1

When b is fixed and k tends to infinity the number of forbid-
den patterns can be neglected compared with the total number
of patterns. This will lead to asymptotic rate RDB(b, k) getting
close to 1. This can be formally seen for example from
Theorem 8 which provides a stronger statement on a range
for which the redundancy is only one bit. Therefore, in this
case of fixed b and k tending to infinity we are interested in
the redundancy of the code.

For a subset A of a set U , the complement of A, Ac, is the
subset which consists of all the elements of U which are not
contained in A. For a code C of length n over Σ, Cc = Σn\C.
The following simple lemma will be used in the next theorem.

Lemma 3: If Ai, 1 ≤ i ≤ m, are m sets over the same
domain then

|(∩m
i=1Ai)

c| ≤
m∑

i=1

|Ac
i |.

Proof: It is well known from set theory that

(∩m
i=1Ai)

c = ∪m
i=1A

c
i .

Combining this with the trivial assertion that for any two
sets A and B, |A ∪ B| ≤ |A| + |B| we have that

| (∩m
i=1Ai)

c | = | ∪m
i=1 Ac

i | ≤
m∑

i=1

|Ac
i |.

Theorem 8: For all σ, n and b < k,

|CDB(n, b, k)| ≥ σn

(
1 − (b − 1)n ·

(
1
σ

)k
)

.

In particular, for k ≥ 
logσ n + logσ(b − 1)�+1, the redun-
dancy of CDB(n, b, k) is at most a single symbol.

Proof: By Theorem 4, CDB(n, b, k) =
⋂b−1

i=1 CLP (n, i +
k − 1, i). Combining this fact with Lemma 3 we have that

|CDB(n, b, k)| = σn − |CDB(n, b, k)c|
= σn − |

(
∩b−1

i=1 CLP (n, i + k − 1, i)
)c |

≥ σn −
b−1∑
i=1

|CLP (n, i + k − 1, i)c|.
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For each i, 1 ≤ i ≤ b − 1, a word c is contained in
CLP (n, i + k − 1, i)c if and only if it has length n and a
substring of period-i whose length is at least i + k. There
are at most n − (i + k − 1) possible starting positions for
such a substring. Once the first i symbols in this substring,
of length i + k, are known, its other k symbols are uniquely
determined. The remaining n − (i + k) symbols in the word
of length n can be chosen arbitrarily (note that some choices
cause other substrings of the same period and larger length in
this word. They might cause other substrings with larger period
than i, so the computation which follows has many repetitions
and some sequences which do not have to be computed.).
Hence, the number of words in CLP (n, i + k− 1, i)c is upper
bounded by

| (CLP (n, i + k − 1, i))c | ≤ (n − i − k + 1) · σi · σn−(i+k)

< σn · n ·
(

1
σ

)k

.

Therefore,

b−1∑
i=1

| (CLP (n, i + k − 1, i))c | ≤ (b − 1) · σn · n ·
(

1
σ

)k

,

and hence,

|CDB(n, b, k)| ≥ σn − (b − 1) · σn · n ·
(

1
σ

)k

= σn

(
1 − (b − 1) · n ·

(
1
σ

)k
)

.

In particular, for k ≥ 
logσ(n) + logσ(b − 1)� + 1,
we obtain

|CDB(n, b, k)| ≥ σn

�
1 − (b − 1) · n ·

�
1

σ

�logσ n+logσ(b−1)+1
�

≥ σn · σ − 1

σ
≥ (σ − 1) · σn−1.

Thus, the redundancy of CDB(n, b, k) is at most a single
symbol.

A weaker bound than the one in Theorem 8 for σ = 2
was given in [15] (Theorem 13). Finally, to encode the (b, k)-
locally-constrained de Bruijn code efficiently with only a sin-
gle symbol of redundancy, we may use sequence replacement
techniques [66].

C. Representation as a Graph Problem

The key for enumeration of the number of (b, k)-locally-
constrained de Bruijn sequences of length n is a representation
of the enumeration as a graph problem. The de Bruijn graph
Gσ,k was the key for the enumeration of the cyclic and acyclic
de Bruijn sequences length σk. This in turn gives the exact
number of (σk, k)-locally-constrained de Bruijn sequences of
length n ≥ σk+k−1. This number is also equal to the number
of Hamiltonian cycles in the graph and also the number of
Eulerian cycles in Gσ,k−1. There are a few ways to compute
this number, one way for example was to show that this num-
ber is equal to the number of spanning trees in the graph [27].

The paths in Gσ,k, which are not necessarily simple, where
vertices are considered as the k-tuples, represent the (1, k)-
locally-constrained de Bruijn sequences. These sequences have
no constraints. Can the de Bruijn graph or a slight modification
of it represent other (b, k)-locally-constraints? The answer is
yes. For this we have to apply a state-splitting algorithm [52]
on the de Bruijn graph. The main idea of the method is to
eliminate cycles of length b−1 or less by splitting vertices and
edges to a few vertices and edges. This method, which is done
in constrained coding, will be related to the code CDB(n, b, k).

A much simpler representation is related to the code
A(n;F), where F is the forbidden reduced set of all the
substrings which are forbidden in a (b, k)-locally-constrained
sequence. This representation is also using the theory of
constrained coding [52]. One has to construct the state diagram
of the constrained system. From the state diagram one has
to generate the related adjacency matrix to compute the rate
of the locally-constrained de Bruijn code by computing the
largest eigenvalue of the adjacency matrix. If λ is the largest
eigenvalue of the adjacency matrix then asymptotically there
are λn sequences and the rate of the code is logσ λ. An exam-
ple will be given in the next subsection. By Theorem 4 the two
codes are equal, so the simpler representation with the state
diagram of the constrained system is preferred. Using a state
diagram, each vertex in the state diagram of the constrained
system is labelled by a substring, which is not in F . Moreover,
each vertex is labelled by a substring whose length is at most
b + k − 2 which can be completed to a forbidden substring
of length b + k − 1. Each vertex, labelled by a substring
s, has an out-degree at most σ. If α is a symbol in Σ and
sα is not a forbidden substring in F , then there is an edge,
labelled by α, from v to a vertex u. The vertex u is labelled
by the longest suffix of sα which can be completed to a
forbidden substring of length b + k − 1. There is also an
initial vertex x which represents the empty substring. Each
one of the σ out-edges exists in a vertex v if it does not lead
to a vertex labelled by a forbidden substring in F . To find
the rate of the code more efficiently, one can use a reduction
of the state diagram [52]. An example of the state diagram
for the (3, 3)-locally-constrained de Bruijn sequences via the
forbidden patterns in the set {0000, 1111, 01010, 10101} is
depicted in Figure 1. Note, this set of forbidden pattern is
equivalent to the set F3,3 introduced in Example 3.

D. State Diagrams and Rates Based on the Forbidden
Subsequences

As a sequence of a constrained code, the (b, k)-locally-
constrained de Bruijn sequence has several forbidden patterns,
s1, s2, . . . , s�. W.l.o.g. we assume that si is not a prefix of sj

for i �= j. The state diagram has an initial vertex x, from
which there are � paths. The ith path has length smaller by
one than the length of the ith forbidden pattern si. Paths share
a prefix if their related sequences share a corresponding prefix.
Each vertex in the state diagram, except for the ones at the end
of the � paths, has out-degree σ, one edge for each possible
symbol of Σ that can be seen in the corresponding read point
of the constrained sequence. The edges are labelled by the
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Fig. 1. State diagram for the (3, 3)-locally-constrained de Bruijn sequences, via the forbidden patterns {0000, 1111, 01010, 10101}.

related symbols. The last symbol of si does not appear on an
edge from the last vertex of the related path. A vertex in the
state diagram is labelled by the prefix of the path which it
represents. The initial vertex x is labelled with the sequence
of length zero. Thus, to construct the state diagram we have
to determine all the forbidden substrings in the (b, k)-locally-
constrained de Bruijn sequence. This representation coincides
with the representation of the constrained system and the
related example for the (3, 3)-locally-constrained de Bruijn
sequences is depicted in Figure 1.

To determine exactly the maximum asymptotic rates of
(b, k)-locally-constrained de Bruijn codes, we use the well-
known Perron-Frobenius theory [52]. When b and k are given,
by using the related state diagram, we can build a finite
directed graph with labelled edges such that paths in the
graph generate exactly all (b, k)-locally-constrained de Bruijn
sequences. For example, when (b, k) = (3, 3) the 10 × 10
adjacency matrix AG is

s |r 000 01 00 010 1010 0101 101 11 10 111
000 0 1 0 0 0 0 0 0 0 0
01 0 0 0 1 0 0 0 1 0 0
00 1 1 0 0 0 0 0 0 0 0
010 0 0 1 0 0 1 0 0 0 0
1010 0 0 1 0 0 0 0 0 0 0
0101 0 0 0 0 0 0 0 1 0 0
101 0 0 0 0 1 0 0 1 0 0
11 0 0 0 0 0 0 0 0 1 1
10 0 0 1 0 0 0 1 0 0 0
111 0 0 0 0 0 0 0 0 1 0

,

where the entry in row s, column r of AG is one if there is
an edge from state s to state r in the state diagram. Note,
that states x, 0, and 1 are omitted since no path lead to
these vertices after they were accessed one time. The largest
eigenvalue of AG is λ ≈ 1.73459. Hence, the capacity of this
constrained system, which is the maximum asymptotic rate of
(3, 3)-locally-constrained de Bruijn code, is log λ = 0.7946.
Similarly, we can compute the maximum asymptotic rates of
(b, k)-locally-constrained de Bruijn codes for other values of
b, k. Table I presents some values for the asymptotic rates of

the constrained systems for small parameters. The asymptotic
rate can be evaluated for infinite pairs of (b, k) as proved in
the next theorem.

Theorem 9: For any positive integer k > 1, the maximum
asymptotic rate of a binary (3, k)-locally-constrained de Bruijn
code is log2 λ, where λ is the largest root of the polynomial
equation

x2k−1 = x2k−3 + 2x2k−4 + · · · + (k − 2)xk + (k − 1)xk−1

+ (k − 1)xk−2 + (k − 2)xk−3 + · · · + 3 x2 + 2x + 1.

Proof: Recall that Fp,p+k is the set of all period-p
sequences of length p+k. Let F1 = F1,k+1∪F2,k+2, i.e., F1

contains the all-zero word of length k+1, the all-one word of
length k + 1, and the two words of length k +2 in which any
two consecutive positions have distinct symbols. By Corol-
lary 1, CDB(n, 3, k) = A(n;F1), i.e., binary (3, k)-locally-
constrained de Bruijn code of length n is an F1-avoiding code
of length n.

Let F2 be the set which contains the all-zero word of
length k and the all-one word of length k + 1. Consider
the D-morphism defined first in [43], D : Bn 
→ Bn−1,
B = {0, 1}, where D(x) = D(x1, x2, . . . , xn) = y =
(y2, . . . , yn), with yi = xi + xi−1, 2 ≤ i ≤ n. It was proved
in [43] that the mapping D is a 2-to-1 mapping. Furthermore,
x ∈ A(n;F1) if and only if y ∈ A(n − 1;F2). Hence,
|A(n;F1)| = 2|A(n − 1;F2)|. This implies that

lim
n→∞

log2 |A(n;F2)|
n

= lim
n→∞

log2 |A(n;F1)|
n

.

Hence, A(n;F1) and A(n;F2) have the same maximum
asymptotic rate, and hence A(n;F2) can be computed instead
of A(n;F1).

Let A0(n;F2) be the set of all F2-avoiding words of
length n which start with a zero and let A1(n;F2) be the
set of all F2-avoiding words of length n which start with
a one. Clearly, the asymptotic rates of A(n;F2), A0(n;F2),
A1(n;F2) are equal.
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TABLE I

THE MAXIMAL ASYMPTOTIC RATES OF (b, k)-LOCALLY-CONSTRAINED DE BRUIJN CODES

Let

Τ1 : A0(n;F2) 
→ ∪k−1
i=1 A1(n − i;F2)

be the mapping for which Τ1(x = (0, x2, . . . , xn)) =
(xi+1, . . . , xn) ∈ A1(n− i;F2), where i is the smallest index
that xi+1 = 1. Since A0(n;F2) avoids the all-zero sequence
of length k, it follows that the mapping Τ1 is a well-defined
bijection. Therefore,

|A0(n;F2)| =
k−1∑
i=1

|A1(n − i;F2)|. (1)

Similarly, we can define the bijection

Τ2 : A1(n;F2) 
→ ∪k
i=1A0(n − i;F2)

and obtain the equality

|A1(n;F2)| =
k∑

i=1

|A0(n − i;F2)|. (2)

Equations (1) and (2) imply that

|A0(n;F2)| =
k−1∑
i=1

|A1(n − i;F2)|

=
k−1∑
i=1

k∑
j=1

|A0(n − i − j;F2)|

=
k∑

�=2

(� − 1)|A0(n − �;F2)| +
k−1∑
�=1

�|A0(n − 2h + �;F2)|

= |A0(n − 2;F2)| + · · · + (k − 1)|A0(n − k;F2)|
+ (k − 1)|A0(n − k − 1;F2)| + · · · + |A0(n − 2k + 1;F2)|.

It is again easy to verify that the maximum asymptotic rates
of A0(n − �;F2) for all 2 ≤ � ≤ 2k − 1 are equal. Let λn

be this maximum asymptotic rate. The recursive formula can
be solved now for λ and the maximum asymptotic rate of
A0(n;F2) will be log2 λ, where λ is computed as the largest
root of the polynomial equation

x2k−1 =x2k−3 + 2x2k−4 + · · · + (k − 2)xk + (k − 1)xk−1

+ (k − 1)xk−2 + (k − 2)xk−3 + · · · + 2x + 1.

Using recursive formulas in Equations (1) and (2), we can
compute the exact size of A(n;F2) efficiently. Hence, we can
rank/unrank all words in A(n;F2) efficiently using enumera-
tive techniques [19].

Computing the largest eigenvalue of the adjacency matrix
is the key to computing the asymptotic rate. The size of the
matrix and the number of its nonzero entries is important
for reducing the complexity of the computation. Fortunately
we can evaluate some of these parameters to get some idea
for which parameters it is feasible to compute the largest
eigenvalue. Since this is mainly a combinatorial problem we
omit this messy computation. For some practical values of the
parameters b and k, we computed the asymptotic rates and
tabulated them in Table I. For large values of the parameters
b and k, there are some difficulties to compute the largest
eigenvalue in term of computation complexity. Fortunately,
we can use some known techniques to find the bounds of these
values [37], [46]. Also some probabilistic methods might be
helpful to estimate the asymptotic rates. Finally, we note that
we can use the idea in the proof of Theorem 9 to reduce the
number of forbidden patterns by half, while keeping the same
asymptotic rate. This is done in the following example.

Example 4: Consider the (3, 3)-locally-constrained de
Bruijn sequences. The set of patterns which should be
avoided is {0000, 1111, 01010, 10101}. As was illustrated
in Figure 1, 10 nodes are required to represent a graph
of constrained sequences avoiding these four patterns (the
nodes labelled by x, 0, and 1, cannot be reached from
the other nodes). Using Theorem 9, it can be observed that
the asymptotic size of this code is the same as the code
avoiding all patterns in set {000, 1111}. Hence, only 5 nodes
are required to represent the state diagram of the constrained
sequences avoiding these two patterns as depicted in Figure 2.

V. CODES WITH A LARGE CONSTRAINED SEGMENT

After considering in Section IV enumerations for (b, k)-
locally-constrained de Bruijn sequences, based on constrained
coding, which are mainly efficient for small b compared to k,
we will use the theory of shift registers for a construction
which is applied for considerably larger b compared to k. Such
constructions for (σk, k)-locally-constrained de Bruijn codes
are relatively simple as each sequence in the code is formed
by concatenations of the same de Bruijn sequence. We can
use for this construction any known efficient construction for
de Bruijn sequences, e.g., [23]. The disadvantage is that the
rate of the related code is zero. In this section we present two
constructions of codes in which b is relatively large compared
to k and the rates of the codes are greater than zero.

Let Pk be the set of all primitive polynomials of degree k

over Fq. By Theorem 1, there are φ(qk−1)
k polynomials in Pk.

Each polynomial is associated with a linear feedback shift
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Fig. 2. Reduced state diagram to count the number of (3, 3)-locally-
constrained de Bruijn sequences.

register and a related m-sequence of length qk−1. Let SPk
be

this set of m-sequences. In each such sequence, each nonzero
k-tuple over Fq appears exactly once as a window in one
period of the sequence. In each such sequence, there is a
unique run of length k for each nonzero symbol. This run
of the same symbol is the longest such run in each sequence.
But, there is another window property for all the sequences
in SPk

.
Lemma 4: Each (2k)-tuple over Fq appears at most once

as a window in one of the sequences of SPk
.

Proof: Let f1(x) and f2(x) be two distinct primitive
polynomials in Pk, whose state diagrams contain the cycles
of length qk − 1, C1 and C2, respectively. By Theorem 2, the
polynomial f1(x)f2(x) has degree 2k and its state diagram
contains the two cycles C1 and C2. Each (2k)-tuple appears
exactly once in a window of length 2k in one of the cycles
of the state diagram related to f1(x)f2(x). Hence, each such
(2k)-tuple appears at most once in either C1 or C2.

The windows of length k are distinct within each sequence
and the windows of length 2k are distinct between any two
sequences which implies the claim of the lemma.

We are now in a position to describe our construction of
locally-constrained de Bruijn codes with a large constrained
segment.

Construction 1: Let SPk
be the set of all m-sequences of

order k over Fq. Each sequence will be considered as an
acyclic sequence of length qk − 1, where the unique run of k
ones is at the end of the sequence. We construct the following
code

C � {(1�0=0s11�1 , s21�2 , . . . , s�−11��−1 , s�1��) :
si ∈ SPk

, 0 ≤ �i ≤ k, 1 ≤ i ≤ �} .

Theorem 10: The code C contains (qk − 1, 2k)-locally-
constrained de Bruijn sequences, each one of length at least
�(qk − 1) and at most �(qk + k − 1). The size of C is M �,
where M = φ(qk−1)(k+2)

k and k ≥ 3.

Proof: We first prove that each codeword of C is a
(qk − 1, 2k)-locally-constrained de Bruijn sequence. Let s =
1�i−1si1�i , 1 ≤ i ≤ �, be a substring of a codeword in
C. We first note that except for the windows of length 2k
having more than k ones at the start or at the end of s, all
the other windows of length 2k contained in s appear in the
cyclic sequence si. These new windows (having more than k
ones) as well as the windows which contain the run of ones
1�i+k appear only between two sequences sj and sj+1 and
as such they are separated by at least qk − k − 1 symbols.
Moreover, each window of length 2k containing ones from
one such run is clearly unique. This implies that each sequence
of C is a (qk − 1, 2k)-locally-constrained de Bruijn sequence
(as repeated windows of length 2k can occur only between
different si’s). Since each si has length qk−1 and 0 ≤ �i ≤ k,
it follows that the length of a codeword is at least �(qk − 1)
and at most �(qk + k − 1). The number of sequences that can
be used for the substring si1�i is φ(qk−1)(k+2)

k since si can

be chosen in φ(qk−1)
k ways (see Theorem 1) and 1�i can be

chosen in k + 2 distinct ways. It implies that |C| = M �.
The codewords in the code C obtained via Construction 1

can be of different lengths. We will now construct a similar
code in which all codewords have the same length. Let C� be
a code which contains all the prefixes of codewords from C.
Let

C1
def= {(s1s2) : s1 ∈ C, s2 ∈ C

�, length(s1s2) = �(qk + k)}.

In other words we take the sequences of the code C to be
of a length large enough and after that we truncate them to
have a given fixed length.

Theorem 11: The code C1 contains (qk − 1, 2k)-locally-
constrained de Bruijn sequences, of length n = �(qk + k) and
its size is at least M �, where M = φ(qk−1)(k+2)

k .
Proof: The codewords in C1 are formed from the code-

words in C by lengthening them to the required length with
prefixes of codewords in C. The lengthening does not change
the structure of the codewords, as it only changes their length.
Hence, the proof that the codewords are (qk − 1, 2k)-locally-
constrained de Bruijn sequence is the same as in the proof of
Theorem 10. The number of codewords is the same as in C

if there is exactly one way to lengthen each codeword of C.
Since there is usually more than one such way, it follows that
the code will be of a larger size.

Corollary 4: The rate of the code C1 is at least k
qk+k .

Construction 1 yields acyclic sequences. Can we find a
related construction for cyclic locally-constrained de Bruijn
sequences with similar parameters? The answer is yes. Con-
struction 1 can be viewed as a construction for cyclic
sequences of different length. To have a code with cyclic
(qk − 1, 2k)-locally-constrained de Bruijn sequences of the
same length (as the acyclic sequences in C1), we can restrict
the values in the �i’s. For example, we can require that∑�

i=1 �i = � �(k+1)
2 �. This will imply similar results for the

cyclic code as for the acyclic code.
The code C1 can be slightly improved in size, but as it

does not make a significant increase in the rate we ignore the
possible improvements. The same construction can be applied
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with a larger number of cycles whose length is σk − 1 (σ not
necessarily a prime power) and with a similar window length
as explained in the next paragraph. We do not have a general
construction for such cycles, but we outline a simple method
to search for them.

Let D(σ, k) be the set of de Bruijn sequences in Gσ,k.
Let δ be a positive integer. Construct a graph whose vertices
are all the de Bruijn sequences in D(σ, k). Two vertices (de
Bruijn sequences) are connected by an edge if they have the
same window of length greater than k + δ. Now let T be an
independent set in the graph. Two sequences related to this
independent set do not share a window of length k + δ or
less, so we can apply Construction 1 and its variants, where
0 ≤ �i ≤ δ. Note that in Construction 1, the set of sequences
in SPk

form an independent set with δ = k.
A computer search for the 2048 binary de Bruijn sequences

of length 32 was performed. An independent set of size 8 was
found for δ = 5 compared to the 6 m-sequences of length 31.
Furthermore, for δ = 4, an independent set of size 4 was
found, and for δ = 2 the size of the independent set that was
found was only 2. This implies that this direction of research
can be quite promising.

Next, we present another construction of (b, k)-locally-
constrained de Bruijn sequences for a large constrained seg-
ment. This construction yields (qk, 2k+1)-locally-constrained
de Bruijn sequences, and uses slightly larger window length
and segment length compared to Construction 1. However,
it constructs codes with asymptotic rate that approaches 1 as
k → ∞.

For a sequence s = (s1, . . . , sn) and integer �, let Suff�(s)
denote its �-suffix, i.e., s[n − � + 1, n] if � ≤ n, and s[1, n]
otherwise. Let CP�(s) denote a string of length � which is
created by repeatedly concatenating s to itself and taking the
�-prefix, i.e., CP�(s) = s�[1, �]. When n ≥ � the set of denied
�-substrings of s, DS�(s), consists of the following sequences
of length �,

DS�(s) � {s[i, i + � − 1] : i ∈ [n − � + 1]}
∪ {CP�(s[i, n]) : i ∈ [n − � + 2, n]}.

The allowed �-substrings of s, denoted as AS�(s) are the
complementary set AS�(s) � DS�(s)c.

Lemma 5: For every sequence u ∈ AS�(s), u appears
exactly once as a substring of su, at its end.

Proof: By the definition of AS�(s), the sequence u can
appear in su an additional time as a substring only at position
i ∈ [n − � + 2, n]. Assume to the contrary that such index i
exists and (su)[i, i + � − 1] = u. However, this implies that
u = CP�(s[i, n]) which is a contradiction to the definition
of AS�(s).

The next step is to present a code C2, which is a
(qk, 2k + 1)-locally-constrained de Bruijn code. Each code-
word of C2 is constructed by an iterative concatenation of
m sequences u1, . . . , um ∈ Fk+1

q . Each tuple is picked
from the set of allowed �-substrings of its preceding segment
of length qk. Therefore, it is ensured that throughout the
concatenation process the constructed sequence is always a

(qk, 2k + 1)-locally-constrained de Bruijn sequence, as new
repeats cannot be created within any segment of length qk.

Construction 2: Let m be an integer. We construct the
following code,

C2 � {u1 · · ·um : u1 ∈ F
k+1
q , ∀i∈[2,m],

ui ∈ ASk+1(Suffqk(u1 · · ·ui−1))}.

Lemma 6: The code C2 contains (qk, 2k + 1)-locally-
constrained de Bruijn sequences of length n = m(k + 1).
The size of C2 is at least (qk(q − 1))m.

Proof: Let s ∈ C. Assume to the contrary that there
exist indices i, j ∈ [n − 2k] with 0 < j − i < qk such that
s[i, i + 2k] = s[j, j + 2k]. By the definition of Construction 2,
the substring s[j, j + 2k] contains a tuple u ∈ {u1, . . . , um}
in its entirety, at some position r ≤ k. However, it follows
that s[i+ r, i+ r + k] = u as well which is a contradiction to
Lemma 5 as u appears only once in s[j + r − qk, j + r + k],
at its end.

For the size of C2, let si denote the sequence si =
Suffqk(u1 · · ·ui−1) for every i ∈ [2, m]. Note that the size
of ASk+1(si) satisfies

|ASk+1(si)| ≥ qk+1 − qk = qk(q − 1).

Hence, for every i ∈ [m], there are at least qk(q−1) possible
values for ui, and the lemma statement follows immediately.

Corollary 5: The rate of the code C2 is at least
k+logq(q−1)

k+1 .

VI. APPLICATION TO THE �-SYMBOL READ CHANNEL

In this section, we show that cyclic (b, k)-locally-
constrained de Bruijn codes can be used to correct synchro-
nization errors in the �-symbol read channel [8], [16], [67].
Previously, only substitution errors were considered in such
a channel. Each cyclic (b, k)-locally-constrained de Bruijn
sequence which forms a codeword in the channel can be used
to correct a number of limited synchronization errors which
might occur. The correction does not depend on the other
codewords of the code. The mechanism used in this section
will be of help in correcting such errors in racetrack memory
as discussed in the next section. We will consider now Fq as
our alphabet although the method can be applied to alphabets
of any size. The reason is that other error-correcting codes,
for this purpose, are defined over Fq .

Definition 4: Let x = (x1, x2, . . . , xn) ∈ Fn
q be a q-ary

sequence of length n. In the �-symbol read channel, if x is a
codeword then the corresponding �-symbol read vector of x
is

π�(x)=((x1, . . . , x�), (x2, . . . , x�+1), . . . , (xn, x1 . . . , x�−1)).

Note, that x might not be a cyclic sequence, but the channel
read the symbols cyclically, i.e., after the last symbol, the first
symbol, the second symbol and so on are read to complete
an �-symbol read in each position of π�(x). In this channel,
if the �-symbol read sequence π�(x) is received with no error,
it is simple to recover the codeword x. However, several
types of errors, such as substitution errors and synchronization
errors, can occur. Substitution errors were considered in [8],
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[16], [67], but a synchronization error might be a more
common one. We focus now on the �-symbol read channel
with only synchronization errors which are deletions and
sticky-insertions. A sticky-insertion is the error event when
an �-tuple (xi, . . . , xi+�−1) is repeated, i.e., read more than
once. A deletion is the error event when an �-tuple is deleted.
A burst of deletions of length at most b is an error in which
at most b consecutive �-tuples are deleted. In this work, when
we consider multiple bursts of deletions of length at most b,
any two bursts are not adjacent. Otherwise, two adjacent bursts
will be merged to be one larger burst.

Example 5: Let x = (0, 1, 0, 0, 1, 0, 0, 0) be a codeword.
When � = 2, the 2-symbol read sequence of x is π2(x) =
((0, 1), (1, 0), (0, 0), (0, 1), (1, 0), (0, 0), (0, 0), (0, 0)). If there
is a sticky-insertion at the second location and a burst
of deletions of length two at the 6-th and 7-th posi-
tions, we obtain the 2-symbol read sequence π2(y) =
((0, 1), (1, 0), (1, 0), (0, 0), (0, 1), (1, 0), (0, 0)).
The goal of this section is to show that a cyclic
locally-constrained de Bruijn code is a code correcting
sticky-insertions and bursts of deletions in the �-symbol read
channel.

Theorem 12: Let b and k be two positive integers such that
qk ≥ b ≥ 2 and � = k + b − 2. The code CDB(n, b, k) can
correct any number of sticky-insertions and any number of
bursts of deletions (depending only on n and b) whose length
is at most b − 2 (including one possible cyclic burst of this
size) in the �-symbol read channel.

Proof: Let c = (c0, c1, . . . , cn−1) be a codeword and

π�(c)=((c0, . . . , c�−1), (c1, . . . , c�), . . . , (cn−1, . . . , cn+�−2)),

where indices are taken modulo n, be a corresponding
�-symbol read sequence of c. Let

π�(y) = ((y1,1, . . . , y1,�), (y2,1, . . . , y2,�), . . . , (yt,1, . . . , yt,�))

be a received �-symbol read sequence.
Clearly, since no more than b − 2 consecutive deletions

occurred, it follows that there exists an i, 1 ≤ i ≤ b − 1,
such that (ci, ci+1, . . . , ci+�−1) = (y1,1, . . . , y1,�). Simi-
larly, there also exists a j, 0 ≤ j ≤ b − 1, such that
(ci+j , ci+j+1, . . . , ci+j+�−1) = (y2,1, . . . , y2,�).

Since � = k + b − 2 and at most b − 2 dele-
tions occurred between the first two consecutive �-reads,
it follows that either the substring (y2,1, . . . , y2,k) is a
substring of (y1,1, . . . , y1,�) or (y1,b, y1,b+1, . . . , y1,�) =
(y2,1, . . . , y2,k−1). If (y2,1, . . . , y2,k) is a substring of
(y1,1, . . . , y1,�), then since any b consecutive k-tuples of
c are distinct, it follows that there exists a unique j,
0 ≤ j ≤ b − 2, such that (ci+j , ci+j+1, . . . , ci+j+k−1) =
(y2,1, . . . , y2,k). If j = 0, then a sticky-insertion has occurred
and if j = 1 no error occurred in the second read, and
if 2 ≤ j ≤ b − 2, then a burst of j − 1 deletions has
occurred. If a burst of b − 2 deletions has occurred, then
(y1,b, y1,b+1, . . . , y1,�) = (y2,1, . . . , y2,k−1). The same process
continues between the second read and the third read and so
on until the last read and the first read which behave in the
same way since also cyclically the longest run of deletions

has at most length b − 2. Thus, using the overlaps between
consecutive reads we can recover the codeword c.

Note, that it is possible to assume that there are only
sticky-insertion errors or only deletion errors in the �-symbol
read channel. In these cases, we can always choose an
appropriate locally-constrained de Bruijn code to correct these
errors. This implies the following consequences.

Corollary 6: The code CDB(n, b, k) can correct any num-
ber of bursts of deletions whose length is at most b− 1 in the
�-symbol read channel, where � = k + b − 1.

Corollary 7: The code CDB(n, 2, k) can correct any num-
ber of sticky-insertions in the �-symbol read channel, where
k = �.

We can consider an error event of an �-tuple (y1, . . . , y�)
which is added into the �-symbol read sequence c, where
(y1, . . . , y�) may not a substring of c. This is a general
insertion. It is not difficult to use a locally-constrained de
Bruijn code to correct a single insertion in the �-symbol read
channel. The proof follows with the same arguments as in the
proof of Theorem 12.

Proposition 1: The code CDB(n, 2, k) can correct a single
insertion in the �-symbol read channel where k = � − 1.

However, if there are many such insertions, a locally-
constrained de Bruijn code is not enough to correct these
errors. For example, if k = � = 3 and

π�(c) = ((c0, c1, c2), (c1, c2, c3), . . . , (cn−1, c0, c1)).

Assume that there are three insertions and that the �-symbol
read sequence is

((c0, c1, c2), (c1, c2, c
�
3), (c1, c2, c3), (c2, c

�
3, c4), (c2, c3, c4),

(c�3, c4, c5), (c3, c4, c5), . . . , (cn−1, c0, c1)).

In this case, we cannot distinguish between c3 and c�3 using
a locally-constrained de Bruijn code.

VII. APPLICATIONS TO RACETRACK MEMORIES

Racetrack memory is an emerging non-volatile memory
technology which has attracted significant attention in recent
years due to its promising ultra-high storage density and low
power consumption [56], [64]. The basic information storage
element of a racetrack memory is called a domain, also
known as a cell. The magnetization direction of each cell is
programmed to store information. The reading mechanism is
operated by one or more read ports, called heads. In order to
read the information, each cell is shifted to its closest head
by a shift operation. Once a cell is shifted, all other cells
are also shifted in the same direction and in the same speed.
Normally, along the racetrack strip, all heads are fixed and
equally spaced [68]. Each head thus reads only a block of
consecutive cells which is called a data segment.

A shift operation might not work perfectly. When the cells
are not shifted (or under-shifted), the same cell is read again
in the same head. This event causes a repetition (or sticky-
insertion) error. When the cells are shifted by more than a
single cell location (or over-shifted), one cell or a block of
cells is not read in each head. This event causes a single
deletion or a burst of consecutive deletions. We note that
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the maximum number of consecutive deletions is limited
or in other words, the burst of consecutive deletions has
limited length. An experimental result shows that the cells
are over-shifted by at most two locations with extremely high
probability [68]. In this paper, we study both kinds of errors
and refer to these errors as limited-shift errors.

Since limited-shift errors can be modeled as
sticky-insertions and bursts of consecutive deletions
with limited length, sticky-insertion/deletion-correcting
codes can be applied to combat these limited-shift errors.
Although there are several known sticky-insertion-correcting
codes [20], [40], [50], deletion-correcting codes [5], [36],
[47], single-burst-deletion-correcting codes [17], [61], and
multiple-burst-deletion-correcting codes [35], there is a lack
of knowledge on codes correcting a combination of multiple
bursts of deletions and sticky-insertions. Correcting these
type of errors are especially important in the racetrack
memories. In this section, motivated by the special structure
of having multiple heads in racetrack memories, we study
codes correcting multiple bursts of deletions and sticky-
insertions. To correct shift errors in racetrack memories with
only a single head, Vahid et al. [51] recently studied codes
correcting two shift errors of deletions and/or insertions.

Another approach to combat limited-shift errors is to lever-
age the special feature of racetrack memories where it is
possible to add some extra heads to read cells. If there is no
error, the information read in these extra heads is redundant.
However, if there are limited-shift errors, this information
is useful to correct these errors. Recently, several schemes
have been proposed to leverage this feature [13], [15], [68]
in order to tackle this problem. However, in [13], [15], each
head needs to read all the cells while in this model, each head
only needs to read a single data segment. Our goal in this
section is to present several schemes to correct synchronization
errors in racetrack memories, all of which are based on locally-
constrained de Bruijn sequences and codes. In some of these
schemes we add extra heads and some are without adding
extra heads. Let N, n, m be three positive integers such that
N = n · m. The racetrack memory comprises N cells and m
heads which are equally spaced. Each head will read a segment
of n cells. For example, in Fig. 3, the racetrack memory
contains 15 data cells and three heads are placed initially at
the positions of cells c1,1, c2,1, and c3,1, respectively. Each
head reads a data segment of length 5.

In general, if c = (c1, c2, . . . , cN) is the stored data then
the output of the i-th head is ci = (ci,1, . . . , ci,�) where ci,j =
c(i−1)·n+j for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Hence, an output
matrix describing the output from all m heads (without error)
is: ⎛⎜⎜⎜⎝

c1

c2

...
cm

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
c1,1 c1,2 . . . c1,n

c2,1 c2,2 . . . c2,n

...
...

. . .
...

cm,1 cm,2 . . . cm,n

⎞⎟⎟⎟⎠ .

When an under-shift error (a sticky-insertion error) occurs,
one column is added to the above matrix by repeating a related
column of the matrix. When over-shift errors (a deletion error
or a burst of b consecutive deletions) occur, one or a few

consecutive columns in the matrix are deleted. Our goal is to
combat these shift errors in racetrack memories. We note that
each column in the above matrix can be viewed as a symbol in
an alphabet of size q = 2m. In particular, let Τm : Fm

2 
→ Fq

be any bijection. For each column ĉj = (c2,j , . . . , cm,j)T ,
Τm(ĉj) = vj ∈ Fq. Hence, to correct under-shift and
over-shift errors in racetrack memories, we construct a q-ary
code correcting sticky-insertion errors and bursts of deletion
errors.

A. Correcting Errors in Racetrack Memories Without Extra
Heads

Our main goal in this subsection is to study q-ary codes
correcting a combination of sticky-insertions and bursts of
deletions to combat synchronization errors in racetrack mem-
ories. The first goal is to construct q-ary b-limited t1-burst-
deletions-correcting codes. Such a code can correct t1 bursts
of deletions if the length of each such burst is at most b, i.e., at
most b deletions occurred in each such burst and each pair of
these bursts are separated by symbols which are not in any
error.

Lemma 7: Let s be a (b, 1)-locally-constrained de Bruijn
sequence over an alphabet of size q. Let s(Δ−) be the
sequence obtained from s after deleting all symbols specified
by the locations in the set Δ− such that the number of
consecutive deletions is at most b − 1. Then the set Δ− is
uniquely determined from s and s(Δ−).

Proof: Assume that Δ− = {i1, i2, . . . , it} where
i1 < i2 < · · · < it is the set of t locations of all t deleted
symbols. Since i1 is the leftmost index in which a deletion
has occurred, it follows that s[1, i1 − 1] = s(Δ−)[1, i1 − 1].
Furthermore, since s is a (b, 1)-locally-constrained de Bruijn
sequence, it follows that the symbols s[i] for i1 ≤ i ≤ i1+b−1
are distinct. Since s[i1] was deleted and the maximum number
of consecutive deletions is at most b − 1, it follows that
s(Δ−)[i1] �= s[i1]. So, i1 is the leftmost index in which s and
s(Δ−) differ. Therefore, we can determine i1 from the two
vectors s and s(Δ−). Let Δ−

1 � Δ− \ {i1} = {i2, . . . , it}.
To correct the first error, we insert the symbol s[i1] into the i1-
th position of s(Δ−) and obtain the vector s(Δ−

1 ). Similarly,
we can continue now to determine, one by one, the other
positions where deletions have occurred using words s and
s(Δ−

1 ).
Thus, the set Δ− can be determined from s and s(Δ−) and

the lemma is proved.
We are now ready to present a construction of q-ary

b-limited t1-burst-deletion-correcting codes. We will show that
the maximum rate of these codes is close to the maximum
rate of codes correcting multiple erasures, especially when q
is large. A q-ary t-erasure-correcting code of length � is a
set of q-ary words of length � in which one can correct any
set of t-erasures, i.e., t known positions whose values are not
known.

Construction 3: Let s = (s1, s2, . . . , s�) be a (b, 1)-locally-
constrained de Bruijn sequence over an alphabet of size q1. Let
Cq2(�, t) be a q2-ary t-erasure-correcting code of length � and
let q = q1 · q2. For each word c = (c1, c2, . . . , c�) ∈ Cq2(�, t),
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Fig. 3. Racetrack memory with three heads and 15 domains.

we define f (c, s) = (f1, f2, . . . , f�), where fi = (ci, si) for
all 1 ≤ i ≤ �. Construct the q-ary code of length � which is
denoted by Cq(b, �, t)

Cq(b, �, t) � {f(c, s) : c ∈ Cq2(�, t)}.

Theorem 13: The code Cq(b, �, t) obtained in Construc-
tion 3 is a q-ary (b − 1)-limited t1-burst-deletions-correcting
code where t = t1 · (b − 1).

Proof: Let f = (f1, . . . , f�) ∈ Cq(b, �, t) be a codeword
of length �. Let Δ− = {i1, . . . , it} be the set of all deleted
positions such that i1 < · · · < it and let f(Δ−) denote
the received word. Since there are at most t1 bursts of
deletions whose length is at most b − 1, it follows that
|Δ−| = t ≤ t1 · (b−1) and there are at most b−1 consecutive
integers in Δ−. From the received word f(Δ−), we can
extract the unique pair of words (c(Δ−), s(Δ−)), where
c(Δ−) and s(Δ−) are two words obtained from c and s,
respectively, after deleting all the symbols specified by the
locations in the set Δ−. By Lemma 7, the set Δ− can
be determined from the words s(Δ−) and s since s is a
(b, 1)-locally-constrained de Bruijn sequence. This implies
that now we have a word of length � in which t positions
have unknown values, i.e., t erasures. Moreover, Cq2(�, t) can
correct up to t erasures. Hence, using the decoder of Cq2(�, t),
the codeword c can be recovered from c(Δ−) and Δ−.

Thus, the codeword f = (f1, . . . , f�) such that fi = (ci, si)
for 1 ≤ i ≤ �, can be recovered from c and s, and the theorem
is proved.

The proof of Theorem 13 implies a simple decoding algo-
rithm to recover f . Let

R(Cq2(�, t)) =
logq2

|Cq2(�, t)|
�

denote the rate of the code Cq2(�, t). By Theorem 7 there
exists a (b, 1)-locally-constrained de Bruijn sequences π over
an alphabet of size q1 if q1 ≥ b. By Construction 3, if s is a
(b, 1)-locally-constrained de Bruijn sequence of length � and
there exists a q2-ary t-erasure-correcting code of length �, then
|Cq(b, �, t)| = |Cq2(�, t)|. If q1 = q/q2 = b, then the rate of
the q-ary code Cq(b, �, t) is

R =
logq |Cq(b, �, t)|

�
=

logq q2 · logq2
|Cq2(�, t)|

�
= logq(q/q1) · R(Cq2(�, t)) = (1 − logq b) · R(Cq2(�, t)).

It is well-known that a code with minimum Hamming
distance t + 1 can correct t erasure errors. Moreover, for
any 0 < �, δ < 1, there exists a “near MDS” code [2] of
length � with minimum Hamming distance t = δ · � and rate
R(Cq2(�, t)) ≥ 1 − δ − � [34]. Hence, there exists a code
of length � correcting t = δ · � erasures whose rate is

R(Cq2(�, t)) ≥ 1 − δ − �. Therefore, we have the following
theorem.

Theorem 14: Given 0 < δ, � < 1, there exists a q-ary
b-limited t1-burst-deletion-correcting code of length � such
that its rate R satisfies

R ≥ (1 − logq(b + 1)) · (1 − δ − �),

where t1 · b = δ · �.
The next goal is to study error-correcting codes to combat

both under-shift and limited-over-shift errors. For this purpose
we start by generalizing Lemma 7.

Lemma 8: Let s be a (b, 1)-locally-constrained de Bruijn
sequence over an alphabet of size q. Let s(Δ−, Δ+) be the
sequence obtained from s after deleting symbols in locations
specified by Δ− = {i1, . . . , it} and insertion of symbols in
locations specified by Δ+. Assume further that i1 < · · · < it
and there are at most b− 2 consecutive numbers in Δ−. Then
the sets Δ− and Δ+ are uniquely determined from s and
s(Δ−, Δ+).

Proof: Since s is a (b, 1)-locally-constrained de Bruijn
sequence, it follows that between any two equal symbols
there are at least b − 1 different symbols. Hence, all the
sticky-insertions can be located and corrected. Now, Lemma 7
can be applied to find the positions of the deletions, i.e.,
to determine Δ−. Since the locations of the sticky-insertions
are already known, it follows that Δ− can be now determined.

It is now straightforward to generalize Theorem 13. A q-ary
b-limited t1-burst-deletions sticky-insertions correcting code is
a code over Fq which corrects any number of sticky-insertions
and t1 bursts of deletions, where each burst has length at
most b.

Theorem 15: The code Cq(b, �, t) obtained in Construc-
tion 3 is a q-ary (b − 2)-limited t1-burst-deletions t2-sticky-
insertions correcting code where t = t1 · (b − 2) and t2 is
arbitrary.

Corollary 8: Given 0 < δ, � < 1, there exists a
q-ary b-limited t1-burst-deletions t2-sticky-insertions correct-
ing code of length �, where t1 · b = δ · � and t2 is arbitrary,
whose rate R satisfies

R ≥ (1 − logq(b + 2)) · (1 − δ − �).

It is clear that an upper bound on the maximum rate of
our codes is at most 1 − δ, Since � is arbitrarily small, when
b is small and q = 2m is large, it follows that the rates of
our codes are close to the upper bounds and hence they are
asymptotically optimal. A straightforward consequence from
Corollary 8 is the following result.

Corollary 9: Given 0 < δ, � < 1, there exists a code
correcting any number of under-shift errors and t1 over-shift
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errors, each of length at most b, with rate R ≥ m−log2(b+2)
m (1−

δ − �).
We finish this subsection with some remarks on the code

Cq(b, �, t).
Remark 1:
• The code can correct not only a large (portion of the

length n) number of deletions, but it can correct also an
arbitrary (not depending on other parameters) number of
sticky-insertions. It was proved by [47] that a code which
can correct t deletions, can also correct any combination
of up to t deletions and insertions. The rate of these codes
correcting deletion/insertion errors is restricted by the
number of errors. In the model we are considering, which
includes sticky-insertion errors and bursts of deletions we
construct an asymptotically optimal code whose rate does
not depend on the number of sticky-insertions.

• Although, there is some prior research on codes correct-
ing multiple deletions and codes correcting an arbitrary
number of sticky-insertions, the current work is the first
that studies codes correcting a combination of multiple
deletions and an arbitrary number of sticky-insertions.

B. An Acyclic �-Symbol Read Channel

In this subsection, we consider a slight modification of
the �-symbol read channel, where the symbols are not read
cyclically. This acyclic �-symbol read channel will be used in
Section VII-C to correct synchronization errors in the racetrack
memories with extra heads.

Definition 5: Let x = (x1, x2, . . . , xn) ∈ Fn
q be a q-ary

sequence of length n. In the acyclic �-symbol read channel,
if x is the codeword then the corresponding �-symbol read
sequence of x is

π�(x)=((x1, . . . , x�), (x2, . . . , x�+1), . . . , (xn, . . . , xn+�−1)),

where xi is chosen arbitrarily for i > n.
We note that for each codeword x, there are q�−1 acyclic

�-symbol read sequences of x since for n < i < n+ �, xi can
be any value in Fq. The value of xi for i > n is not important
since from any acyclic �-symbol read sequence π�(x), we can
recover the unique codeword x. Hence, in this model, we may
denote xi = ∗ for i > n where ∗ can be any value. In this
channel, as in the cyclic �-symbol read channel, two types of
synchronization errors can occur: bursts of deletions where the
length of each one is restricted to at most b− 2 deletions and
sticky-insertions.

Example 6: Let x = (0, 1, 0, 0, 1, 0, 0, 0) be a stored infor-
mation word. When � = 2, the 2-symbol read sequence of x
is

π2(x)=((0, 1), (1, 0), (0, 0), (0, 1), (1, 0), (0, 0), (0, 0), (0, ∗)),
where ∗ can be any value. If there is a sticky-insertion at
the second location and a burst of deletions of length two
at the 6-th and 7th locations, we obtain the 2-symbol read
sequence

π2(y) = ((0, 1), (1, 0), (1, 0), (0, 0), (0, 1), (1, 0), (0, ∗)).

Theorem 16: Let b and k be two positive integers such that
qk ≥ b ≥ 2, where � = k+b−2. If the first �-symbol read is not

deleted, then the code CDB(n, b, k) can correct any number
of sticky-insertions and any number of bursts of deletions of
length at most b − 2 in the acyclic �-symbol read channel.

Proof: The proof is similar to the one of Theorem 12. Let
c = (c0, c1, . . . , cn−1) be a codeword and

π�(c)=((c0, . . . , c�−1), (c1, . . . , c�), . . . , (cn−1, . . . , cn+�−2)),

be a corresponding �-symbol read sequence of c, where ci can
be arbitrary for i ≥ n. Let

π�(y) = ((y1,1, . . . , y1,�), (y2,1, . . . , y2,�), . . . , (yt,1, . . . , yt,�))

be a received �-symbol read sequence. We note that the first
�-tuple is correct, that is (y1,1, . . . , y1,�) = (c0, . . . , c�−1).
For the second �-tuple in the output (y2,1, . . . , y2,�), we
can determine the unique index 0 ≤ i ≤ b − 1 such
that (ci, ci+1, . . . , ci+�−1) = (y2,1, . . . , y2,�). Hence, we can
recover the substring (c0, c1, . . . , ci+�−1). The same process
can continue for the third �-tuple and so on. For 0 ≤ i ≤ b−2,
there exists at least one �-tuple (cn−�+i, . . . , cn−1+i) which
is not deleted. That is, there exists an index j such that
(cn−�+i, . . . , cn+i−1) = (yj,1, . . . , yj,�). The above process
can continue until (yj,1, . . . , yj,�). Thus, we can obtain the
sequence (c0, c1, . . . , cn+i−1). Since i ≥ 0, we recover the
original vector c = (c0, . . . , cn−1). Hence, the theorem is
proved.

Note, that from the proof of Theorem 16, we can find a
simple decoding algorithm to recover the original sequence.

C. Correcting Errors in Racetrack Memories With Extra
Heads

In this subsection, we present our last application for (b, k)-
locally-constrained de Bruijn codes in the construction of
codes correcting shift-errors in racetrack memories.

We present another way to combat under-shift and over-
shift errors in racetrack memories by adding some consecutive
extra heads next to the first head. For example, in Fig. 4, there
are two extra heads next to the first head. We assume in this
section that there are � − 1 extra heads. Since there are two
types of heads, we call the �−1 extra heads secondary heads,
while the first m equally spaced heads are the primary heads.
Hence, there are � heads which read the first data segment
together, the first primary head and all the � − 1 secondary
heads. For 2 ≤ i ≤ m, each other primary head will read one
data segment individually. The output from the last (m − 1)
primary heads is c[n + 1, N ] = (c2, . . . , cm), where⎛⎜⎝ c2

...
cm

⎞⎟⎠ =

⎛⎜⎝ c2,1 c2,2 . . . c2,n−1 c2,n

...
...

. . .
...

...
cm,1 cm,2 . . . cm,n−1 cm,n

⎞⎟⎠ .

This matrix can be viewed as a q2-ary word of length n
where each column is a symbol in the alphabet of size q2 =
2m−1. In particular, let Τm−1 : F

m−1
2 
→ Fq2 be any bijection.

For each column ĉj = (c2,j , . . . , cm,j)T , Τm−1(ĉj) = vj ∈
Fq2 , and define

Τ(c[n + 1, N ]) � (Τm−1(ĉ1), Τm−1(ĉ2), . . . , Τm−1(ĉn))
= (v1, . . . , vn) = v ∈ F

n
q2

.
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Fig. 4. Racetrack memory with two extra heads.

The output from all the � heads in the first segment is⎛⎜⎜⎜⎝
c1,1

c1,2

...
c1,�

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
c1,1 c1,2 . . . c1,n−1 c1,n

c1,2 c1,3 . . . c1,n ∗
...

...
. . .

...
...

c1,� c1,�+1 . . . ∗ ∗

⎞⎟⎟⎟⎠ .

It is readily verified that this is the acyclic �-symbol read
sequence π�(c[1, n]) for the first data segment c[1, n] =
(c1,1, . . . , c1,n). If a single over-shift error has occurred, then
a single column or an �-tuple (c1,i, . . . , c1,�+i−1) was deleted.
Similarly, if a single under-shift error has occurred, then a
single column or an �-tuple is repeated. Hence, using the
results in Section VI, if c1 = c[1, n] = (c1, . . . , cn) ∈
CDB(n, b, k) is a locally-constrained de Bruijn sequence, it is
possible to locate and correct all sticky-insertions and multiple
bursts of deletions of a limited length. Once we have located
all errors, if v, defined above, is a codeword that can correct
multiple erasures, then we can correct multiple deletions and
sticky-insertions. Following the idea in Construction 3, we can
construct a code whose codewords have two components: a
sequence to locate all errors and a sequence to correct multiple
erasures. We are now ready to present such a construction as
follows.

Construction 4: Let m, n, b, k, � be positive integers such
that � = k + b − 2. Let CDB(n, b, k) be a (n, b, k)-locally-
constrained de Bruijn code. Let Cq2(n, t) be a q2-ary t-erasure-
correcting code of length n, where t = (b − 2) · t1, for some
integer t1 and q2 = 2m−1. Define,

C3(N, t1, b − 2) � {(c1, . . . , cN ) : c[1, n] ∈ CDB(n, b, k);
Τ(c[n + 1, N ]) ∈ Cq2(n, t)}.

Theorem 17: The code C3(N, t1, b − 2) has size
|CDB(n, b, k)| · |Cq2(n, t)| and using � − 1 = k + b − 3 extra
heads, it can correct any number of sticky-insertions and t1
bursts of deletions whose length is at most b − 2.

Proof: The size of the code is an immediate observation
from the definition of the code C3(N, t1, b − 2). The first
data segment of length n consists of any sequence s from
CDB(n, b, k). By Theorem 16, we can recover the sequence
in the first data segment when there are any number of sticky-
insertions and bursts of deletions of length at most b − 2.
Moreover, we can also determine the locations of these errors.
In the output from the last m − 1 heads, all sticky-insertions
can be corrected easily and all deletions become erasures
since we know the locations of these errors. There are at
most t = t1 · (b − 2) erasures and the decoding procedure of
the code Cq2(n, t) can be applied to correct these erasures.
Thus, the sequence s can be recovered. Hence, the code

C3(N, t1, b − 2) can correct all sticky-insertions and at most
t1 bursts of deletions whose length is at most b − 2.

Corollary 10: Consider a racetrack memory comprising
N = m · n cells and m primary heads which are equally
spaced. Using � − 1 = k + b − 3 extra secondary heads, it is
possible to construct a code correcting a combination of any
number of sticky-insertions and t1 bursts of deletions whose
length is at most b − 2 such that its asymptotic rate satisfies

lim
N→∞

log2 |C3(N, t1, b−2)|
N

≥ m − 1
m

·(1−δ−�)+
RDB(b, k)

m

where � − b + 2 = k, t1 · (b − 2) = δ · n, 0 < δ, � < 1, and
RDB(b, k) is the maximal rate of (b, k)-locally-constrained de
Bruijn code.

Proof: We note that there exists a code Cq2(n, t) of length
n correcting t = t1 · (b− 2) erasures with the asymptotic rate
at least

lim
n→∞

logq2
|Cq2(n, t)|

n
≥ 1 − δ − �.

Since q2 = 2m−1 and N = mn, we have

lim
n→∞

log2 |Cq2(n, t)|
N

≥ m − 1
m

(1 − δ − �). (3)

Moreover, the asymptotic rate of the locally-constrained de
Bruijn code is

RDB(b, k) = lim
n→∞

log2 |CDB(n, b, k)|
n

. (4)

Therefore, by (3), (4), and Theorem 17, the rate of the code
C3(N, t1, b−2) in Construction 4 can be computed as follows:

lim
N→∞

log2 |C3(N, t1, b − 2)|
N

= lim
N→∞

log2(|Cq2(n, t)||CDB(n, b, k)|)
N

≥ m − 1
m

(1 − δ − �) +
RDB(b, k)

m
.

The results of Corollary 10 can be compared to the results
of Corollary 9. When b = k = 3, by Table I, we have that
RDB(3, 3) ≈ 0.7946. Hence, using two more extra secondary
heads, the asymptotic rate of the above code is m−1

m (1−δ−�)+
0.7946

m = 1−δ−�+ 0.7946−1+δ+�
m . We note that, by Corollary 9,

without using extra heads, the asymptotic rate of the codes
constructed in Construction 3, m−log2 b

m (1− δ− �), is smaller
than the asymptotic rate of the above codes. Hence, using some
extra heads, we significantly improve the asymptotic rate of
these codes. Furthermore, the theoretical maximal asymptotic
rate is 1 − δ. When 1 − δ < 0.7946, using two extra heads,
the asymptotic rate of our constructed code is higher than the
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theoretical maximal asymptotic rate without extra heads. Since
RDB(n, k) tends to 1 when k is close to log n, for any δ,
using multiple extra heads, it is possible to construct codes
whose asymptotic rate is higher than the theoretical maximal
asymptotic rate without extra heads.

VIII. CONCLUSION AND OPEN PROBLEMS

We have defined a new family of sequences and
codes named locally-constrained de Bruijn sequences and
locally-constrained de Bruijn codes. This family of sequences
generalizes the family of de Bruijn sequences. These newly
defined sequences have some constraints on the possible
appearances of the same k-tuples in substrings of a bounded
length. As such these sequences can be viewed also as con-
strained sequences and the related codes as constrained codes.
Properties, constructions, and enumeration of the sequences
were discussed, along with encoding and decoding algorithms
for the related codes. We have demonstrated the use of
locally-constrained de Bruijn sequences in combating syn-
chronization errors in storage-related applications such as the
�-symbol read channel and racetrack memories.

The newly defined sequences raise many questions and
directions for future research some of which are outlined.

1) Find more constructions for locally-constrained de
Bruijn codes with new parameters and with larger rates.
Especially, we are interested in more (b, k)-constrained
de Bruijn codes for which b is about qt and k = c · t,
where c is a small constant, and the rate of the code
tends to 1 when k go to infinity.

2) Find better bounds (lower and upper) on the rates of
locally-constrained de Bruijn codes with various para-
meters. Especially we want to find the exact rates for
infinite families of parameters, where each family itself
has an infinite set of parameters.

3) Find more applications for locally-constrained de Bruijn
sequences and locally-constrained de Bruijn codes.
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