Linear Size Optimal q-ary Constant-Weight Codes and Constant-Composition Codes

Yeow Meng Chee, Senior Member, IEEE, Son Hoang Dau, Alan C. H. Ling, and San Ling

Abstract

An optimal constant-composition or constant-weight code of weight w has linear size if and only if its distance d is at least $2 w-1$. When $d \geq 2 w$, the determination of the exact size of such a constant-composition or constant-weight code is trivial, but the case of $d=2 w-1$ has been solved previously only for binary and ternary constant-composition and constant-weight codes, and for some sporadic instances. This paper provides a construction for quasicyclic optimal constant-composition and constant-weight codes of weight w and distance $2 w-1$ based on a new generalization of difference triangle sets. As a result, the sizes of optimal constant-composition codes and optimal constant-weight codes of weight w and distance $2 w-1$ are determined for all such codes of sufficiently large lengths. This solves an open problem of Etzion. The sizes of optimal constant-composition codes of weight w and distance $2 w-1$ are also determined for all $w \leq 6$, except in two cases.

Index Terms-Constant-composition codes, constant-weight codes, difference triangle sets, generalized Steiner systems, Golomb rulers, quasicyclic codes.

I. Introduction

THERE are two generalizations of binary constant-weight codes as we enlarge the alphabet beyond size two. These are the classes of constant-composition codes and q-ary con-stant-weight codes. While a vast amount of knowledge exists for binary constant-weight codes [1]-[4], relatively little is known about constant-composition codes and q-ary constant-weight codes. Recently, these classes of codes have attracted some attention [5]-[20] due to several important applications requiring nonbinary alphabets, such as in determining the zero error decision feedback capacity of discrete memoryless channels [21], multiple-access communications [22], spherical codes for modulation [23], DNA codes [24]-[26], powerline communications [10], [11], frequency hopping [27], and coding for bandwidth-limited channels [28].

As in the case of binary constant-weight codes, the determination of the maximum size of a constant-composition code or a q-ary constant-weight code of length n, given constraints

[^0]on its distance, weight and/or composition, constitutes a central problem in their investigation.

The ring $\mathbb{Z} / q \mathbb{Z}$ is denoted by \mathbb{Z}_{q}. For integers $m \leq n$, the set of integers $\{m, m+1, \ldots, n\}$ is denoted $[m, n]$. The set $[1, n]$ is further abbreviated to $[n]$. A partition is a tuple $\bar{\lambda}=$ $\llbracket \lambda_{1}, \ldots, \lambda_{N} \rrbracket$ of integers such that $\lambda_{1} \geq \cdots \geq \lambda_{N} \geq 1$. The λ_{i} 's are the parts of the partition. Disjoint set union is denoted by \sqcup.
If X and R are sets, where X is finite, then R^{X} denotes the set of vectors of length $|X|$, where each component of a vector $\mathrm{u} \in R^{X}$ has value in R and is indexed by an element of X, that is, $\mathrm{u}=\left(\mathrm{u}_{x}\right)_{x \in X}$. A q-ary code of length n is a set $\mathcal{C} \subseteq \mathbb{Z}_{q}^{X}$, for some X of size n. The elements of \mathcal{C} are called codewords. For any $u, v \in \mathbb{Z}_{q}^{X}$, their support is the set $\operatorname{supp}(\mathrm{u}, \mathrm{v})=\left\{x \in X: \mathrm{u}_{x} \neq \mathrm{v}_{x}\right\}$. We also abbreviate $\operatorname{supp}(\mathrm{u}, 0)$ to $\operatorname{supp}(\mathrm{u})$. The Hamming norm or weight of $\mathrm{u} \in$ \mathbb{Z}_{q}^{X} is defined as $\|\mathrm{u}\|=|\operatorname{supp}(\mathrm{u})|$. The distance induced by this norm is called the Hamming distance, denoted $d_{H}(\cdot, \cdot)$, so that $d_{H}(\mathrm{u}, \mathrm{v})=\|\mathrm{u}-\mathrm{v}\|$, for $\mathrm{u}, \mathrm{v} \in \mathbb{Z}_{q}^{X}$. A code \mathcal{C} is said to have distance d if $d_{H}(\mathrm{u}, \mathrm{v}) \geq d$ for all distinct $\mathrm{u}, \mathrm{v} \in \mathcal{C}$. The composition of a vector $\mathrm{u} \in \mathbb{Z}_{q}^{X}$ is the tuple $\bar{w}=\llbracket w_{1}, \ldots, w_{q-1} \rrbracket$, where $w_{i}=\left|\left\{x \in X: \mathrm{u}_{x}=i\right\}\right|, i \in \mathbb{Z}_{q} \backslash\{0\}$. A code \mathcal{C} is said to have constant weight w if every codeword in \mathcal{C} has weight w, and is said to have constant composition \bar{w} if every codeword in \mathcal{C} has composition \bar{w}. Hence, every constant-composition code is a constant-weight code. We refer to a q-ary code of length n, distance d, and constant weight w as an $(n, d, w)_{q}$-code. If in addition the code has constant composition \bar{w}, then it is referred to as an $(n, d, \bar{w})_{q}$-code. An $(n, d, w)_{2}$-code and an $(n, d, \llbracket w \rrbracket)_{2}$-code coincide in definition, and are binary con-stant-weight codes. The maximum size of an $(n, d, w)_{q}$-code is denoted $A_{q}(n, d, w)$ and that of an $(n, d, \bar{w})_{q}$-code is denoted $A_{q}(n, d, \bar{w})$. Any $(n, d, w)_{q}$-code or $(n, d, \bar{w})_{q}$-code attaining the maximum size is called optimal.

The following operations do not affect distance and composition properties of an $(n, d, \bar{w})_{q}$-code:

1) reordering the components of \bar{w};
$2)$ deleting zero components of \bar{w}.
Consequently, throughout this paper, attention is restricted to those compositions $\bar{w}=\llbracket w_{1}, \ldots, w_{q-1} \rrbracket$, where $w_{1} \geq \cdots \geq$ $w_{q-1} \geq 1$, that is, \bar{w} is a partition. For succinctness, the sum $\sum_{i=1}^{q-1} w_{i}$ of all the parts of a partition $\bar{w}=\llbracket w_{1}, \ldots, w_{q-1} \rrbracket$ is denoted by $\sum \bar{w}$.

The focus of this paper is on determining $A_{q}(n, d, w)$ and $A_{q}(n, d, \bar{w})$ for those d, w, and \bar{w} for which $A_{q}(n, d, w)=$ $O(n)$ and $A_{q}(n, d, \bar{w})=O(n)$.
The Johnson-type bound of Svanström for ternary constantcomposition codes [5, Th. 1] extends easily to the following (see also [27, Prop. 1.3]:

Proposition 1.1 (Johnson Bound):

$$
\begin{aligned}
& A_{q}\left(n, d, \llbracket w_{1}, w_{2}, \ldots, w_{q-1} \rrbracket\right) \\
& \quad \leq\left\lfloor\frac{n}{w_{1}} A_{q}\left(n-1, d, \llbracket w_{1}-1, w_{2}, \ldots, w_{q-1} \rrbracket\right)\right\rfloor .
\end{aligned}
$$

The following Johnson-type bound for q-ary constant-weight codes was established in [6, Th. 10].

Proposition 1.2 (Johnson Bound):

$$
A_{q}(n, d, w) \leq\left\lfloor\frac{n(q-1)}{w} A_{q}(n-1, d, w-1)\right\rfloor
$$

Definition 1.1 (Refinement): A partition $\bar{w}=\llbracket w_{1}, \ldots, w_{q} \rrbracket$ is a refinement of $\bar{v}=\llbracket v_{1}, \ldots, v_{q^{\prime}} \rrbracket$ (written $\bar{w} \succcurlyeq \bar{v}$) if there exist pairwise disjoint sets $I_{1}, \ldots, I_{q^{\prime}} \subseteq[q]$ satisfying $\cup_{j \in\left[q^{\prime}\right]} I_{j}=$ $[q]$ such that $\sum_{i \in I_{j}} w_{i}=v_{j}$ for each $j \in\left[q^{\prime}\right]$.

Chu et al. [27] made the following observation.
Lemma 1.1: If $\bar{w} \succcurlyeq \bar{v}$, then $A_{q}(n, d, \bar{w}) \geq A_{q^{\prime}}(n, d, \bar{v})$.
Given q and w, the condition for $A_{q}(n, d, \bar{w})=O(n)$ to hold can be characterized as follows.

Proposition 1.3: $A_{q}(n, d, \bar{w})=O(n)$ if and only if $d \geq$ $2 \sum \bar{w}-1$.

Proof: $A_{q}(n, d, \bar{w})=O(n)$ when $d \geq 2 \sum \bar{w}-1$ follows easily from the Johnson bound.

Rödl's proof [29] of the Erdös-Hanani conjecture [30] implies that $A_{2}(n, d, w)=(1-o(1))\binom{n}{w-d / 2+1} /\binom{w}{w-d / 2+1}$, so that $A_{2}(n, d, w)=\Omega\left(n^{2}\right)$ for all $d \leq 2 w-2$. Therefore, by Lemma 1.1, $A_{q}(n, d, \bar{w}) \geq A_{2}\left(n, d, \sum \bar{w}\right)=\Omega\left(n^{2}\right)$ for all $d \leq 2 \sum \bar{w}-2$.

A similar proof yields the following.
Proposition 1.4: $A_{q}(n, d, w)=O(n)$ if and only if $d \geq$ $2 w-1$.

A. Problem Status and Contribution

For constant-composition codes, it is trivial to see that

$$
A_{q}(n, d, \bar{w})= \begin{cases}1, & \text { if } d \geq 2 \sum \bar{w}+1 \\ \left\lfloor n / \sum \bar{w}\right\rfloor, & \text { if } d=2 \sum \bar{w}\end{cases}
$$

When $d=2 \sum \bar{w}-1$, our knowledge of $A_{q}(n, d, \bar{w})$ is limited. We know that $A_{2}(n, 2 w-1, w)=A_{2}(n, 2 w, w)=\lfloor n / w\rfloor$, trivially. $A_{3}\left(n, 2 \sum \bar{w}-1, \bar{w}\right)$ has also been completely determined by Svanström et al. [7]. In particular, $A_{3}\left(n, 2 \sum \bar{w}-\right.$ $1, \bar{w})=\left\lfloor n / w_{1}\right\rfloor$ holds for all n sufficiently large. Beyond this (for $q \geq 4$), $A_{q}\left(n, 2 \sum \bar{w}-1, \bar{w}\right)$ has not been determined, except in one instance: $A_{4}(n, 5, \llbracket 1,1,1 \rrbracket)=n$ for $n \geq 7$, established by Chee et al. [18]. For constant-weight codes, we have

$$
A_{q}(n, d, w)= \begin{cases}1, & \text { if } d \geq 2 w+1 \\ \lfloor n / w\rfloor, & \text { if } d=2 w\end{cases}
$$

An explicit formula for $A_{3}(n, 2 w-1, w)$ has been obtained by Östergård and Svanström [6]. When $q \geq 4$, the value of $A_{q}(n, 2 w-1, w)$ is not known.

The main contribution of this paper are the following two results.

Main Theorem 1: Let $\bar{w}=\llbracket w_{1}, \ldots, w_{q-1} \rrbracket$. Then $A_{q}\left(n, 2 \sum \bar{w}-1, \bar{w}\right)=\left\lfloor n / w_{1}\right\rfloor$ for all sufficiently large n.

Main Theorem 2: $A_{q}(n, 2 w-1, w)=(q-1) n / w$ for all sufficiently large n satisfying $w \mid(q-1) n$.

In particular, Main Theorem 2 solves an open problem of Etzion concerning generalized Steiner systems [31, Problem 7].

The optimal constant-weight and constant-composition codes constructed in the proofs of Main Theorem 1 and Main Theorem 2 are quasicyclic, and are obtained from difference triangle sets and their generalization.

II. Quasicyclic Codes

A code is quasicyclic if there exists an ℓ such that a cyclic shift of a codeword by ℓ places is another codeword. More formally, let $X=\mathbb{Z}_{n}$ and define on \mathbb{Z}_{q}^{X} the cyclic shift operator T : $\left(\mathrm{u}_{x}\right)_{x \in X} \mapsto\left(\mathrm{u}_{x-1}\right)_{x \in X}$. A q-ary code $\mathcal{C} \subseteq \mathbb{Z}_{q}^{X}$ of length n is quasicyclic (or more precisely, ℓ-quasicyclic) if it is invariant under T^{ℓ} for some integer $\ell \in[n]$. If $\ell=1$, such a code is just a cyclic code.

The following two conditions are necessary and sufficient for a code \mathcal{C} of constant weight w to have distance $2 w-1$.

C1) For any distinct $u, v \in \mathcal{C},|\operatorname{supp}(u) \cap \operatorname{supp}(v)| \leq 1$.
C2) For any distinct $u, v \in \mathcal{C}$, if $x \in \operatorname{supp}(u) \cap \operatorname{supp}(v)$, then $\mathrm{u}_{x} \neq \mathrm{v}_{x}$.

A. Quasicyclic Constant-Composition Codes

The strategy for proving Main Theorem 1 is to construct optimal $\left(n, 2 \sum \bar{w}-1, \bar{w}\right)_{q}$-codes (meeting the Johnson bound) that are w_{1}-quasicyclic when $n \equiv 0\left(\bmod w_{1}\right)$. Optimal $\left(n, 2 \sum \bar{w}-1, \bar{w}\right)_{q}$-codes for $n \not \equiv 0\left(\bmod w_{1}\right)$ can be obtained easily from those with $n \equiv 0\left(\bmod w_{1}\right)$ by lengthening, as in the lemma below.

Lemma 2.1 (Lengthening): If $A_{q}\left(n, 2 \sum \bar{w}-1, \bar{w}\right)=$ $\left\lfloor n / w_{1}\right\rfloor$ and $n \equiv 0\left(\bmod w_{1}\right)$, then $A_{q}\left(n+i, 2 \sum \bar{w}-1, \bar{w}\right)=$ $\left\lfloor n / w_{1}\right\rfloor$ for all $i, 0 \leq i<w_{1}$.

Proof: Let $\mathcal{C} \subseteq \mathbb{Z}_{q}^{X}$ be an $\left(n, 2 \sum \bar{w}-1, \bar{w}\right)_{q}$-code of size $\left\lfloor n / w_{1}\right\rfloor$. Let $X^{\prime}=X \cup\left\{\infty_{1}, \ldots, \infty_{i}\right\}$, where $\infty_{1}, \ldots, \infty_{i} \notin$ X, and define $\mathcal{C}^{\prime} \subseteq \mathbb{Z}_{q}^{X^{\prime}}$ such that $\mathcal{C}^{\prime}=\left\{\left(c(\mathrm{u})_{x}\right)_{x \in X^{\prime}}: \mathrm{u} \in \mathcal{C}\right\}$, where

$$
c(\mathrm{u})_{x}= \begin{cases}\mathrm{u}_{x}, & \text { if } x \in X \\ 0, & \text { if } x \in\left\{\infty_{1}, \ldots, \infty_{i}\right\}\end{cases}
$$

Then \mathcal{C}^{\prime} is an $\left(n+i, 2 \sum \bar{w}-1, \bar{w}\right)_{q}$-code of size $\left\lfloor n / w_{1}\right\rfloor$. Since $\left\lfloor(n+i) / w_{1}\right\rfloor=\left\lfloor n / w_{1}\right\rfloor, \mathcal{C}^{\prime}$ is optimal by the Johnson bound.

As opposed to lengthening a code, we can also shorten a code by selecting a position i, removing those codewords with a nonzero coordinate i, and deleting the i th coordinate from every remaining codeword.

Let $n \equiv 0\left(\bmod w_{1}\right)$. A w_{1}-quasicyclic $\left(n, 2 \sum \bar{w}-\right.$ $1, \bar{w})_{q}$-code \mathcal{C} of size n / w_{1} can be obtained by developing a particular vector $\mathrm{g} \in \mathbb{Z}_{q}^{X}$

$$
\mathcal{C}=\left\{T^{w_{1} i}(\mathrm{~g}): i \in\left[0, n / w_{1}-1\right]\right\}
$$

Such a vector g is called a base codeword of the quasicyclic code \mathcal{C}. The remainder of this section develops criteria for a vector $\mathrm{g} \in \mathbb{Z}_{q}^{X}$ of composition \bar{w} to be a base codeword of a w_{1}-quasicyclic $\left(n, 2 \sum \bar{w}-1, \bar{w}\right)_{q}$-code $\mathcal{C}, n \equiv 0\left(\bmod w_{1}\right)$.

Conditions C1) and C2) may be stated in terms of the base codeword g as follows.

C3) For $w, x, y, z \in \operatorname{supp}(\mathrm{~g})$ such that $w \neq x, y \neq z$, and $\{w, x\} \neq\{y, z\}$, we have the following:

- if $x-w \equiv 0\left(\bmod w_{1}\right)$, then $2(x-w) \not \equiv 0$ $(\bmod n)$;
- if $y-w \equiv 0\left(\bmod w_{1}\right)$, then $x-w \not \equiv z-y$ $(\bmod n)$.
C4) If $\mathrm{g}_{x}=\mathrm{g}_{y} \neq 0$, then $x-y \not \equiv 0\left(\bmod w_{1}\right)$.

B. Quasicyclic Constant-Weight Codes

Lemma 2.2: Let $n \geq w>0$ and $q \geq 2$. Then $w \mid(q-1) n$ if and only if there exist positive integers α, β, ℓ, and m such that $n=\alpha \ell, w=\beta \ell$, and $q-1=m \beta$.

Proof: Assume that $w \mid(q-1) n$. Let $\ell=\operatorname{gcd}(w, n)$, and let $\alpha=n / \ell, \beta=w / \ell$. Then $\operatorname{gcd}(\alpha, \beta)=1$. Since $w \mid(q-1) n$, we have $\beta \ell \mid(q-1) \alpha \ell$. Hence, $\beta \mid(q-1)$. Now let $m=(q-1) / \beta$.

The converse is obvious.
Suppose that $w \mid(q-1) n$. By Lemma 2.2, there exist positive integers α, β, ℓ, and m such that $n=\alpha \ell, w=\beta \ell$, and $q-1=m \beta$. Our strategy is to construct ℓ-quasicyclic optimal $(n, 2 w-1, w)_{q}$-codes of size $(q-1) n / w=m n / \ell$ (meeting the Johnson bound). In other words, we want to find m vectors, $\mathrm{g}^{(1)}, \ldots, \mathrm{g}^{(m)} \in \mathbb{Z}_{q}^{X}$, each of weight w, such that

$$
\mathcal{C}=\left\{T^{\ell i}\left(\mathrm{~g}^{(j)}\right): i \in[0, n / \ell-1] \text { and } j \in[m]\right\}
$$

is an $(n, 2 w-1, w)_{q}$-code of size $m n / \ell$. The vectors $\mathrm{g}^{(1)}, \ldots, \mathrm{g}^{(m)}$ are referred to as base codewords of \mathcal{C}.

Conditions C1) and C2) can be stated in terms of the base codewords $\mathrm{g}^{(1)}, \ldots, \mathrm{g}^{(m)}$ as follows.

C5) Let $w, x \in \operatorname{supp}\left(\mathrm{~g}^{(i)}\right)$ and $y, z \in \operatorname{supp}\left(\mathrm{~g}^{(j)}\right)$ such that $w \neq x, y \neq z$, and $\{w, x\} \neq\{y, z\}$ if $j=i$. Then, we have the following:

- if $x-w \equiv 0(\bmod \ell)$, then $2(x-w) \not \equiv 0$ $(\bmod n)$;
- if $y-w \equiv 0(\bmod \ell)$, then $x-w \not \equiv z-y$ $(\bmod n)$.
C6) If $\mathrm{g}_{z}^{(j)}=\mathrm{g}_{y}^{(j)} \neq 0$ and $z \neq y$, then $z-y \not \equiv 0 \quad(\bmod \ell)$, for all $j \in[m]$.
C7) If $\mathrm{g}_{z}^{(i)}=\mathrm{g}_{y}^{(j)} \neq 0$ (z and y are not necessarily distinct), then $z-y \not \equiv 0 \quad(\bmod \ell)$, for all $i, j \in[m], i \neq j$.

III. A New Combinatorial Array

Conditions C3) and C4) [respectively, C5)-C7)] suggest organizing the elements of $\operatorname{supp}(\mathrm{g})$ [respectively, $\left.\operatorname{supp}\left(\mathrm{g}^{(1)}\right), \ldots, \operatorname{supp}\left(\mathrm{g}^{(m)}\right)\right]$ of those quasicyclic con-stant-composition codes (respectively, constant-weight codes) into a two-dimensional array, with respect to their congruence class modulo w_{1} (respectively, ℓ) and the value of their corresponding components in g [respectively, $\left.g^{(1)}, \ldots, g^{(m)}\right]$.

Definition 3.1: Let $\bar{\lambda}=\llbracket \lambda_{1}, \ldots, \lambda_{N} \rrbracket$ be a partition. A $\bar{\lambda}$ array is a $\lambda_{1} \times N$ array B with rows indexed by $i \in\left[\lambda_{1}\right]$ and columns indexed by $j \in[N]$, such that:

P1) each cell is either empty or contains a nonnegative integer congruent to its row index modulo λ_{1};
$\mathrm{P} 2)$ the number of nonempty cells in column j is λ_{j};
P3) if $B_{i}=\left\{b_{i, 1}, \ldots, b_{i, N_{i}}\right\}$ is the set of entries in row i of B , then the differences $b_{i, j}-b_{i, j^{\prime}}, i \in[N], 1 \leq j^{\prime} \neq$ $j \leq N_{i}$, are all nonzero and distinct.

The scope of B is
$\sigma(\mathrm{B})=\max _{1 \leq i \leq \lambda_{1}}\left(\left\{b_{i, j}-b_{i, j^{\prime}}: 1 \leq j^{\prime} \neq j \leq N_{i}\right\}\right.$

$$
\left.\cup\left\{\left\lceil b_{i, j} / 2\right\rceil: j \in\left[N_{i}\right]\right\}\right)
$$

In particular, if $\lambda_{1}=\cdots=\lambda_{N}=\lambda$, then a $\bar{\lambda}$-array B has all cells nonempty, and is referred to as a (λ, N)-array. From the definition, it is easy to see that the entries of a $\bar{\lambda}$-array are all distinct.

Example 3.1: A $\llbracket 3,2,2 \rrbracket$-array of scope 15

1	7	16
2		14
0	3	

Example 3.2: A (2, 4)-array of scope 42

19	23	35	61
0	6	20	30

Proposition 3.1: Let $\bar{w}=\llbracket w_{1}, \ldots, w_{q-1} \rrbracket$. If there exists a \bar{w}-array B , then there exists a w_{1}-quasicyclic optimal $\left(n, 2 \sum \bar{w}-1, \bar{w}\right)_{q}$-code for all $n \equiv 0\left(\bmod w_{1}\right), n \geq$ $2 \sigma(\mathrm{~B})+1$.

Proof: Let B be a \bar{w}-array and let C_{j} denote the set of entries in column j of $\mathrm{B}, j \in[q-1]$. Define a vector $g \in$ $\mathbb{Z}_{q}^{\mathbb{Z}_{n}}, n \geq 2 \sigma(\mathrm{~B})+1$, as follows:

$$
\mathrm{g}_{x}= \begin{cases}j, & \text { if } x \in C_{j} \\ 0, & \text { otherwise }\end{cases}
$$

Then, g has composition \bar{w} and satisfies conditions C 3) and C 4). Therefore, g is a base codeword of a w_{1}-quasicyclic optimal $\left(n, 2 \sum \bar{w}-1, \bar{w}\right)_{q}$-code.

Example 3.3: The $\llbracket 3,2,2 \rrbracket$-array in Example 3.1 gives the base codeword

$$
\mathrm{g}=111200020000003030^{n-17}
$$

for a 3-quasicyclic optimal $(n, 13, \llbracket 3,2,2 \rrbracket)_{4}$-code when $n \equiv 0$ $(\bmod 3), n \geq 33$.

Proposition 3.2: Suppose that $w=\beta \ell$ and $q-1=m \beta$. If there exists an $(\ell, q-1)$-array B , then there exists an ℓ-quasicyclic optimal $(n, 2 w-1, w)_{q}$-code of size $(q-1) n / w=$ $m n / \ell$, provided that $\ell \mid n$ and $n \geq 2 \sigma(\mathrm{~B})+1$.

Proof: Let B be an $(\ell, q-1)$-array and let C_{i} denote the set of entries in column i of $\mathrm{B}, i \in[q-1]$. We define the m vectors $\mathrm{g}^{(1)}, \ldots, \mathrm{g}^{(m)}$ as follows: for $j \in[m]$ and $0 \leq z \leq n-1$

$$
\mathrm{g}_{z}^{(j)}= \begin{cases}r, & \text { if } z \in C_{r} \text { for some } r \in[(j-1) \beta+1, j \beta] \tag{1}\\ 0, & \text { otherwise. }\end{cases}
$$

Since the entries of B are distinct, $\mathrm{g}^{(j)}$ is well defined. Moreover, the set of nonzero entries of $\mathrm{g}^{(j)}$ is precisely $[(j-1) \beta+1, j \beta]$, and by property P 2), each symbol in $[(j-1) \beta+1, j \beta]$ occurs exactly ℓ times in $\mathrm{g}^{(j)}$. Therefore, $\mathrm{g}^{(j)} \in \mathbb{Z}_{q}^{\mathbb{Z}_{n}}$ and has weight $w=\beta \ell$.

We claim that the m vectors $g^{(1)}, \ldots, \mathrm{g}^{(m)}$ satisfy conditions C5)-C7), and hence form the base codewords for an ℓ-quasicyclic optimal $(n, 2 w-1, w)_{q}$-code. The following establishes this claim.
First, suppose that $i \neq j$. If $\mathrm{g}_{z}^{(i)}$ and $\mathrm{g}_{y}^{(j)}$ are nonzero, then $\mathrm{g}_{z}^{(i)} \in[(i-1) \beta+1, i \beta]$ and $\mathrm{g}_{y}^{(j)} \in[(j-1) \beta+1, j \beta]$. Since $i \neq j$, we have $\mathrm{g}_{z}^{(i)} \neq \mathrm{g}_{y}^{(j)}$. Therefore, C7) is satisfied.

Next, suppose that $z \neq y$ and $\mathrm{g}_{z}^{(j)}=\mathrm{g}_{y}^{(j)}=r \neq 0$. By (1), $z, y \in C_{r}$. Since $z \neq y, z$, and y must belong to different rows of B. Therefore, $z \not \equiv y \quad(\bmod \ell)$ by P1). Thus, $\mathrm{g}^{(1)}, \ldots, \mathrm{g}^{(m)}$ satisfy C6).

Now suppose that $w, x \in \operatorname{supp}\left(\mathrm{~g}^{(i)}\right), w \neq x$. By (1), there exist r_{w} and r_{x} such that $w \in C_{r_{w}}$ and $x \in C_{r_{x}}$. If $x-w \equiv$ $0(\bmod \ell)$, then by P1), x and w are in the same row of B . Therefore

$$
0<|x-w| \leq \sigma(\mathrm{B})
$$

and, hence

$$
0<2|x-w| \leq 2 \sigma(\mathrm{~B})<1+2 \sigma(\mathrm{~B}) \leq n
$$

It follows that $2(x-w) \not \equiv 0 \quad(\bmod n)$.
Let $w, x \in \operatorname{supp}\left(\mathrm{~g}^{(i)}\right)$ and $y, z \in \operatorname{supp}\left(\mathrm{~g}^{(j)}\right)$, where $w \neq$ $x, y \neq z$ such that $y-w \equiv 0(\bmod \ell)$, and if $i=j$, then $\{w, x\} \neq\{y, z\}$. We want to show that

$$
x-w \not \equiv z-y \quad(\bmod n)
$$

or, equivalently

$$
\begin{equation*}
y-w \not \equiv z-x \quad(\bmod n) \tag{2}
\end{equation*}
$$

Again, by (1), w, x, y, and z are entries of B. Moreover, w and y are in the same row. We consider two cases.

- Case $w \neq y$: Since $0<|y-w| \leq \sigma(\mathrm{B})<n$, we have $y-w \not \equiv 0 \quad(\bmod n)$. Therefore, if $x=z$, then (2) holds. If $x \neq z$ and both x and z are in the same row, then (2) holds by property P 3) of B and the assumption that $y \neq z$ and $n \geq 2 \sigma(\mathrm{~B})+1$. If x and z are in different rows, then by P1), $z-x \not \equiv 0 \quad(\bmod \ell)$. Since $y-w \equiv 0 \quad(\bmod \ell)$ and $\ell \mid n$, (2) follows.
- Case $w=y$: We claim that $i=j$. Indeed, assume that $y \in C_{r_{y}}$ and $w \in C_{r_{w}}$. Then, $r_{y} \in[(j-1) \beta+1, j \beta]$ and $r_{w} \in[(i-1) \beta+1, i \beta]$. Hence, if $i \neq j$, then $r_{y} \neq r_{w}$. Therefore, there are two entries in different columns of B that have the same value y, which is a contradiction.

Hence, $i=j$. Since $\{w, x\} \neq\{y, z\}$, we have $x \neq z$. Therefore, (2) holds.
Consequently, $\mathrm{g}^{(1)}, \ldots, \mathrm{g}^{(m)}$ satisfy C5).
Example 3.4: The $(2,4)$-array of scope 42 in Example 3.2 gives $\mathrm{g}^{(1)}$ and $\mathrm{g}^{(2)}$, where

$$
\begin{aligned}
& \mathrm{g}_{z}^{(1)}= \begin{cases}1, & \text { if } z \in\{0,19\} \\
2, & \text { if } z \in\{6,23\} \\
0, & \text { otherwise }\end{cases} \\
& \mathrm{g}_{z}^{(2)}= \begin{cases}3, & \text { if } z \in\{20,35\} \\
4, & \text { if } z \in\{30,61\} \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

In this case, $q=5, w=4, \beta=2, \ell=2$, and $m=2$. The vectors $\mathrm{g}^{(1)}$ and $\mathrm{g}^{(2)}$ form the base codewords of a 2-quasicyclic optimal $(n, 7,4)_{5}$-code when n is even and $n \geq 85=2 \times 42+1$.

In view of Proposition 3.1 and Proposition 3.2, to prove Main Theorem 1 and Main Theorem 2, it suffices to construct a $\bar{\lambda}$-array for every partition $\bar{\lambda}$.

IV. Generalized Difference Triangle Sets

In this section, the concept of difference triangle sets is generalized and used to produce $\bar{\lambda}$-arrays. We begin with the definition of a difference triangle set.

Definition 4.1: $\mathrm{An}(I, J)$-difference triangle set $(\mathrm{D} \Delta \mathrm{S})$ is a set $\mathcal{A}=\left\{A_{1}, \ldots, A_{I}\right\}$, where $A_{i}=\left\{a_{i, 1}, \ldots, a_{i, J}\right\}, 0=$ $a_{i, 1}<\cdots<a_{i, J}$, are lists of integers such that the differences $a_{i, j}-a_{i, j^{\prime}}, i \in[I], 1 \leq j^{\prime} \neq j \leq J$, are all distinct.

Example 4.1: $\mathrm{A}(3,4)-\mathrm{D} \Delta \mathrm{S}$ is

$$
\{\{0,1,10,18\},\{0,2,7,13\},\{0,3,15,19\}\} .
$$

The corresponding differences are displayed in triangular arrays

1	10	18	2	7	13	3	15	19
	9	17		5	11		12	16
		8			6			4.

The scope of an $(I, J)-\mathrm{D} \Delta \mathrm{S} \mathcal{A}=\left\{A_{1}, \ldots, A_{I}\right\}$ is

$$
m(\mathcal{A})=\max _{A \in \mathcal{A}}\{a \in A\}
$$

Difference triangle sets with scope as small as possible are often required for applications. Define

$$
M(I, J)=\min \{m(\mathcal{A}): \mathcal{A} \text { is an }(I, J)-\mathrm{D} \Delta \mathrm{~S}\}
$$

Difference triangle sets were introduced by Kløve [32], [33] and have numerous applications [34]-[40]. A $(1, J)-\mathrm{D} \Delta \mathrm{S}$ is known as a Golomb ruler with J marks.

We generalize difference triangle sets as follows.
Definition 4.2: Let $\bar{J}=\llbracket J_{1}, \ldots, J_{I} \rrbracket$ be a partition. A set $\mathcal{A}=\left\{A_{1}, \ldots, A_{I}\right\}$ with $A_{i}=\left\{a_{i, 1}, \ldots, a_{i, J_{i}}\right\}, 0=a_{i, 1}<$ $\cdots<a_{i, J_{i}}$, is a \bar{J}-generalized difference triangle set $(\mathrm{GD} \Delta \mathrm{S})$ if the differences $a_{i, j}-a_{i, j^{\prime}}, i \in[I], 1 \leq j^{\prime} \neq j \leq J_{i}$, are all distinct.

Thus, a GD $\Delta \mathrm{S}$ is similar to a $\mathrm{D} \Delta \mathrm{S}$, but allowing the sets to be of different sizes. In particular, if $J_{1}=\cdots=J_{I}=J$,
then a $\bar{J}-\mathrm{GD} \Delta \mathrm{S}$ is an $(I, J)-\mathrm{D} \Delta \mathrm{S}$. The scope of a $\mathrm{GD} \Delta \mathrm{S} \mathcal{A}=$ $\left\{A_{1}, \ldots, A_{I}\right\}$ is defined similarly as for a $\mathrm{D} \Delta \mathrm{S}$

$$
m(\mathcal{A})=\max _{A \in \mathcal{A}}\{a \in A\} .
$$

We now relate \bar{J}-GD Δ S to $\bar{\lambda}$-arrays. Let $\bar{\lambda}=\llbracket \lambda_{1}, \ldots, \lambda_{N} \rrbracket$ be a partition. The Ferrers diagram of $\bar{\lambda}$ is an array of cells with N left-justified rows and λ_{i} cells in row i. The conjugate of $\bar{\lambda}$ is the partition $\overline{\lambda^{*}}=\llbracket \lambda_{1}^{*}, \ldots, \lambda_{\lambda_{1}}^{*} \rrbracket$, where λ_{j}^{*} is the number of parts of $\bar{\lambda}$ that are at least $j . \overline{\lambda^{*}}$ can also be obtained by reflecting the Ferrers diagram of $\bar{\lambda}$ along its main diagonal. Conjugation of partitions is an involution.

Example 4.2: The Ferrers diagrams of the partition【5, 3, 3, 2】 and its conjugate $\llbracket 4,4,3,1,1 \rrbracket$ are shown, respectively, as follows:

Proposition 4.1: Let $\bar{\lambda}=\llbracket \lambda_{1}, \ldots, \lambda_{N} \rrbracket$ be a partition. If there exists a $\overline{\lambda^{*}}-\mathrm{GD} \Delta \mathrm{S}$ of scope s, then there exists a $\bar{\lambda}$-array of scope at most $s \lambda_{1}$.

Proof: Let $\overline{\lambda^{*}}=\left[\lambda_{1}^{*}, \ldots, \lambda_{\lambda_{1}}^{*} \rrbracket\right.$ and let $\mathcal{A}=\left\{A_{1}, \ldots, A_{\lambda_{1}}\right\}$ be a $\overline{\lambda^{*}}$-GD $\Delta \mathrm{S}$ of scope s. Construct a $\lambda_{1} \times N$ array B as follows: If $A_{i}=\left\{a_{i, 1}, \ldots, a_{i, \lambda_{i}^{*}}\right\}$, then the (i, j) th cell of $\mathrm{B}, i \in\left[\lambda_{1}\right], j \in[N]$, contains $b_{i, j}=a_{i, j} \lambda_{1}+\left(i \bmod \lambda_{1}\right)$ if $j \in\left[\lambda_{i}^{*}\right]$, and empty otherwise. Then, the filled cells of B take the shape of the Ferrers diagram of $\overline{\lambda^{*}}$. Thus, the number of nonempty cells in column j of B is precisely λ_{j}. It is also easy to see that each entry in row i of B is congruent to $i \bmod \lambda_{1}$. The differences $b_{i, j}-b_{i, j^{\prime}}$ are all distinct because the differences $a_{i, j}-a_{i, j^{\prime}}$ are all distinct in the $\mathrm{GD} \Delta \mathrm{S} \mathcal{A}$. Moreover, all of these differences are at most $s \lambda_{1}$. Finally, for any $i \in\left[\lambda_{1}\right]$ and $j \in\left[\lambda_{i}^{*}\right]$

$$
\left\lceil\frac{b_{i, j}}{2}\right\rceil \leq\left\lceil\frac{s \lambda_{1}+\left(\lambda_{1}-1\right)}{2}\right\rceil \leqslant \frac{s \lambda_{1}+\lambda_{1}}{2} \leqslant s \lambda_{1} .
$$

Therefore, B is a $\bar{\lambda}$-array of scope at most $s \lambda_{1}$.
Corollary 4.1: If there exists a $(\lambda, N)-\mathrm{D} \Delta \mathrm{S}$ of scope s, then there exists a (λ, N)-array of scope at most $s \lambda$.

Example 4.3: Since $\llbracket 3,3,2,2 \rrbracket^{*}=\llbracket 4,4,2 \rrbracket$, we can construct a $\llbracket 3,3,2,2 \rrbracket$-array from a $\llbracket 4,4,2 \rrbracket$-GD $\Delta \mathrm{S}$ via the proof of Proposition 4.1. If the $\llbracket 4,4,2 \rrbracket-\mathrm{GD} \Delta \mathrm{S}$ is $\mathcal{A}=\{\{0,1,10,18\},\{0,2,7,13\},\{0,3\}\}$, the $\llbracket 3,3,2,2 \rrbracket$-array obtained is

1	4	31	55
2	8	23	41
0	9		

This array has scope 54.
Example 4.4: From the $(3,4)-\mathrm{D} \Delta \mathrm{S} \quad \mathcal{A}=$ $\{\{0,1,10,18\},\{0,2,7,13\},\{0,3,15,19\}\}$, we can construct the following $(3,4)$-array via the proof of Proposition 4.1.

1	4	31	55
2	8	23	41
0	9	45	57

This array has scope 57.

V. Proofs of the Main Theorems

In this section, we use Golomb rulers to construct GD $\Delta \mathrm{S}$ and provide proofs to Main Theorem 1 and Main Theorem 2.

Let $\wp(x)$ denote the smallest prime power not smaller than x. Atkinson et al. [40, Lemma 2] proved the following.

Theorem 5.1: $M(1, J) \leq(J-1) \wp(J-1)$
Proposition 5.1: For any partition $\bar{J}=\llbracket J_{1}, \ldots, J_{I} \rrbracket$, there exists a \bar{J}-GD $\Delta \mathrm{S}$ of scope at $\operatorname{most}\left(\sum \bar{J}-1\right) \wp\left(\sum \bar{J}-1\right)$.

Proof: By Theorem 5.1, there exists a Golomb ruler $\{R\}$ of $\sum \bar{J}$ marks and scope $m(\{R\}) \leq\left(\sum \bar{J}-1\right) \wp\left(\sum \bar{J}-1\right)$. Partition R into I subsets, $R=R_{1} \sqcup \cdots \sqcup R_{I}$, where $\left|R_{i}\right|=$ $J_{i}, i \in[I]$. Suppose

$$
R_{i}=\left\{r_{i, 1}, \ldots, r_{i, J_{i}}\right\}
$$

where $0 \leq r_{i, 1}<\cdots<r_{i, J_{i}}$. For each $i \in[I]$, let

$$
A_{i}=\left\{a_{i, 1}, \ldots, a_{i, J_{i}}\right\}
$$

where $a_{i, j}=r_{i, j}-r_{i, 1}, j \in\left[J_{i}\right]$. Then, the set $\mathcal{A}=$ $\left\{A_{1}, \ldots, A_{I}\right\}$ forms a \bar{J}-GD $\Delta \mathrm{S}$ of scope

$$
m(\mathcal{A}) \leq m(\{R\}) \leq\left(\sum \bar{J}-1\right) \wp\left(\sum \bar{J}-1\right) .
$$

The following corollary is immediate.
Corollary 5.1: For any $I>0$ and $J>0$, there exists an $(I, J)-\mathrm{D} \Delta \mathrm{S}$ of scope at most $(I J-1) \wp(I J-1)$.

A. Proof of Main Theorem 1

Let $\bar{w}=\llbracket w_{1}, \ldots, w_{q-1} \rrbracket$ be a partition and consider $\overline{w^{*}}=$ $\llbracket w_{1}^{*}, \ldots, w_{w_{1}}^{*} \rrbracket$. By Proposition 5.1, there exists a $\overline{w^{*}}$-GD $\Delta \mathrm{S}$ of scope at most $\left(\sum \bar{w}-1\right) \wp\left(\sum \bar{w}-1\right)$. Therefore, by Proposition 4.1, there exists a \bar{w}-array of scope at most $w_{1}\left(\sum \bar{w}-\right.$ 1) $\wp\left(\sum \bar{w}-1\right)$. Finally, Proposition 3.1 guarantees the existence of a w_{1}-quasicyclic optimal $\left(n, 2 \sum \bar{w}-1, \bar{w}\right)_{q}$-code of size n / w_{1} for all $n \equiv 0\left(\bmod w_{1}\right), n \geq 2 w_{1}\left(\sum \bar{w}-1\right) \wp\left(\sum \bar{w}-\right.$ 1) +1 . This, together with Lemma 2.1, proves Main Theorem 1.

B. Proof of Main Theorem 2

Suppose $w \mid(q-1) n$. Then, by Lemma 2.2, let $w=\beta \ell$, where $\beta \mid(q-1)$. By Corollary 5.1, there exists an $(\ell, q-1)$-D $\Delta \mathrm{S}$ of scope at most $(\ell(q-1)-1) \wp(\ell(q-1)-1)$. Therefore, by Corollary 4.1, there exists an $(\ell, q-1)$-array of scope at most $\ell(\ell(q-1)-1) \wp(\ell(q-1)-1)$. Finally, Proposition 3.2 guarantees the existence of an ℓ-quasicyclic optimal $(n, 2 w-1, w)_{q}$-code of size $(q-1) n / w$ for all $n \equiv 0 \quad(\bmod \ell), n \geq 2 \ell(\ell(q-1)-$ 1) $\wp(\ell(q-1)-1)+1$. This proves Main Theorem 2 .

In particular, by taking $\beta=1$ and $\beta=w$, respectively, we have the following results.
i) There exists a w-quasicyclic optimal ($n, 2 w-$ $1, w)_{q}$-code for all $n \equiv 0(\bmod w), n \geq 2 w(w(q-$ 1) -1$) \wp(w(q-1)-1)+1$.
ii) If $w \mid(q-1)$, then there exists a cyclic optimal $(n, 2 w-$ $1, w)_{q}$-code for all $n \geq 2(q-2) \wp(q-2)+1$.

VI. Resolution of an Open Problem of Etzion

A set system is a pair $S=(X, \mathcal{B})$, where X is a finite set of points, and $\mathcal{B} \subseteq 2^{X}$. The elements of \mathcal{B} are called blocks. The order of S is the number of points $|X|$. If $|B|=k$ for all $B \in \mathcal{B}$, then S is said to be k-uniform. Let $\mathcal{A} \subseteq 2^{X}$. A transverse of \mathcal{A} is set $T \subseteq X$ such that $|T \cap A| \leq 1$ for all $A \in \mathcal{A}$. Hanani [41] introduced the following generalization of t-designs.

Definition 6.1: An $\mathrm{H}(n, q, w, t)$ design is a triple $(X, \mathcal{G}, \mathcal{B})$, where (X, \mathcal{B}) is a w-uniform set system of order $n q, \mathcal{G}=\left\{G_{1}, \ldots, G_{n}\right\}$ is a partition of X into n sets, each of cardinality q, such that:
i) B is a transverse of \mathcal{G} for all $B \in \mathcal{B}$;
ii) each t-element transverse of \mathcal{G} is contained in precisely one block of \mathcal{B}.
From an $\mathrm{H}(n, q, w, t)$ design $(X, \mathcal{G}, \mathcal{B})$, we can form a constant-weight code $\mathcal{C} \subseteq \mathbb{Z}_{q+1}^{n}$ as follows. Let $G_{i}=$ $\left\{\gamma_{1, i}, \gamma_{2, i}, \ldots, \gamma_{q, i}\right\}$, where $0 \notin G_{i}$. The code \mathcal{C} has a codeword for each block. Assume $B=\left\{b_{1}, b_{2}, \ldots, b_{w}\right\}$ is a block of \mathcal{B} (this block is denoted by $\left\{\left\langle i_{1}, j_{1}\right\rangle,\left\langle i_{2}, j_{2}\right\rangle, \ldots,\left\langle i_{w}, j_{w}\right\rangle\right\}$, where $b_{s}=\gamma_{j_{s}, i_{s}}$). We form the codeword $\mathrm{u} \in \mathcal{C}$ corresponding to B as follows: for $i \in[n]$

$$
\mathrm{u}_{i}= \begin{cases}j, & \text { if } b_{r}=\gamma_{j, i} \text { for some } r \in[w] \\ 0, & \text { otherwise }\end{cases}
$$

The distance of \mathcal{C} is at least $w-t+1$. If \mathcal{C} has distance $2(w-$ $t)+1$, Etzion [31] calls the $\mathrm{H}(n, q, w, t)$ design, from which \mathcal{C} is constructed, a generalized Steiner system $\mathrm{GS}(t, w, n, q)$.

It is not hard to verify that a $\operatorname{GS}(t, w, n, q)$ contains exactly $q^{t}\binom{n}{t} /\binom{w}{t}$ blocks. By the Johnson bound, we have

$$
A_{q+1}(n, 2(w-t)+1, w) \leq q^{t} \frac{\binom{n}{t}}{\binom{w}{t}}
$$

It follows from the above construction that if a $\operatorname{GS}(t, w, n, q)$ exists, then

$$
A_{q+1}(n, 2(w-t)+1, w)=q^{t} \frac{\binom{n}{t}}{\binom{w}{t}}
$$

The next result establishes the converse when $\binom{w}{t} \left\lvert\, q^{t}\binom{n}{t}\right.$.
Proposition 6.1: Suppose that $\binom{w}{t} \left\lvert\, q^{t}\binom{n}{t}\right.$. Then, a $\mathrm{GS}(t, w, n, q)$ exists if

$$
A_{q+1}(n, 2(w-t)+1, w)=q^{t} \frac{\binom{n}{t}}{\binom{w}{t}}
$$

Proof: Let \mathcal{C} be an (optimal) $(n, 2(w-t)+1, w)_{q+1}$-code of size $q^{t}\binom{n}{t} /\binom{w}{t}$. Define

$$
\begin{aligned}
X & =\{(i, j): i \in[n] \text { and } j \in[q]\} \\
\mathcal{G} & =\left\{G_{i}: i \in[n]\right\}
\end{aligned}
$$

where $G_{i}=\{(i, j): j \in[q]\}$. We associate with each codeword $\mathrm{u} \in \mathcal{C}$ a block $B^{\mathrm{u}} \subseteq X$ as follows:

$$
B^{\mathrm{u}}=\left\{(i, j): \mathrm{u}_{i}=j, i \in[n], j \in[q]\right\}
$$

Finally, let $\mathcal{B}=\left\{B^{\mathrm{u}}: \mathrm{u} \in \mathcal{C}\right\}$.

We claim that $(X, \mathcal{G}, \mathcal{B})$ is a $\operatorname{GS}(t, w, n, q)$. Indeed, $|B|=w$ for all $B \in \mathcal{B}$, and $\left|B \cap G_{i}\right| \leq 1$ for all $B \in \mathcal{B}$ and $i \in[n]$. Hence, it remains to show that any t-element transverse of \mathcal{G} is contained in exactly one block of \mathcal{B}. Suppose B^{u} and B^{v} are two different blocks containing a particular t-element transverse of \mathcal{G}. Then, $|\operatorname{supp}(\mathrm{u}) \cap \operatorname{supp}(\mathrm{v})| \geq t$, implying $d_{H}(\mathrm{u}, \mathrm{v}) \leq 2(w-$ $t)<2(w-t)+1$, a contradiction. Therefore, any t-element transverse of \mathcal{G} is contained in at most one block, and hence in exactly one block, since $|\mathcal{B}|=|\mathcal{C}|=q^{t}\binom{n}{t} /\binom{w}{t}$.

Corollary 6.1: Suppose that $\binom{w}{t} \left\lvert\, q^{t}\binom{n}{t}\right.$. Then, there exists a $\operatorname{GS}(t, w, n, q)$ if and only if

$$
A_{q+1}(n, 2(w-t)+1, w)=q^{t} \frac{\binom{n}{t}}{\binom{w}{t}}
$$

Etzion [31, Problem 7] raised the following as an open problem for further research.

Problem 6.1 (Etzion): Given k and w, show that there exists an n_{0} such that for all $n \geq n_{0}$, where $w \mid n k$, a $\operatorname{GS}(1, w, n, k)$ exists.

The following result, which is a direct consequence of Main Theorem 2 and Corollary 6.1, solves Problem 6.1.

Theorem 6.1: There exists a $\operatorname{GS}(1, w, n, k)$ for all sufficiently large n satisfying $w \mid n k$.

Proof: By Main Theorem 2, we have

$$
A_{k+1}(n, 2 w-1, w)=k n / w
$$

for all sufficiently large n satisfying $w \mid k n$. It follows immediately from Corollary 6.1 that there also exists a $\operatorname{GS}(1, w, n, k)$ for all sufficiently large n satisfying $w \mid k n$.

VII. Explicit Bounds

Main Theorem 1 and Main Theorem 2 are asymptotic statements: the hypothesis that n is sufficiently large must be satisfied. But how large must n be? More precisely, for a partition $\bar{w}=\llbracket w_{1}, \ldots, w_{q-1} \rrbracket$ and a positive integer w, define
$N_{\mathrm{ccc}}(\bar{w})$

$$
=\min \left\{n_{0}: A_{q}\left(n, 2 \sum \bar{w}-1, \bar{w}\right)=\left\lfloor\frac{n}{w_{1}}\right\rfloor \text { for all } n \geq n_{0}\right\}
$$

and

$$
\begin{aligned}
& N_{\mathrm{cwc}}(w) \\
& =\min \left\{n_{0}: A_{q}(n, 2 w-1, w)=\frac{(q-1) n}{w} \text { for all } n \geq n_{0}\right. \\
& \quad \text { satisfying } w \mid(q-1) n\} .
\end{aligned}
$$

We give explicit bounds on $N_{\text {ccc }}(\bar{w})$ and $N_{\text {cwc }}(w)$ in this section.

A. Bounds on $N_{\mathrm{ccc}}(\bar{w})$

The proof of Main Theorem 1 in Section V-A shows that

$$
\begin{equation*}
N_{\mathrm{ccc}}(\bar{w}) \leq 2 w_{1}\left(\sum \bar{w}-1\right) \wp\left(\sum \bar{w}-1\right)+1 \tag{3}
\end{equation*}
$$

By Bertrand's postulate, $\wp(x) \leq 2 x$ for all $x \geq 1$. For x sufficiently large, better asymptotic bounds on $\wp(x)$ exist (see, for example, [42]), but we are after quantifiable bounds. This implies

$$
N_{\mathrm{ccc}}(\bar{w}) \leq 4 w_{1}\left(\sum \bar{w}-1\right)^{2}+1
$$

We now prove a lower bound on $N_{\text {ccc }}(\bar{w})$.
Proposition 7.1: Let $\bar{w}=\llbracket w_{1}, \ldots, w_{q-1} \rrbracket$ be a partition. If $w_{1} \mid n$ and there exists an $\left(n, 2 \sum \bar{w}-1, \bar{w}\right)_{q}$-code of size n / w_{1}, then $n \geq w_{1}^{2} k(k-1)+w_{1}$, where $k=\left\lfloor\sum \bar{w} / w_{1}\right\rfloor$. In particular, when $w_{1}=w_{2}=\cdots=w_{q-1}$, we have $n \geq w_{1}+w_{1}^{2}(q-1)(q-$ $2)$.

Proof: Let $\mathcal{C}=\left\{\mathbf{u}^{(1)}, \ldots, \mathbf{u}^{\left(n / w_{1}\right)}\right\}$ be an $\left(n, 2 \sum \bar{w}-\right.$ $1, \bar{w})_{q}$-code of size n / w_{1}. Then, \mathcal{C} can be regarded as an $n / w_{1} \times$ n matrix C, whose i th row is $\mathrm{u}^{(i)}, i \in\left[n / w_{1}\right]$. Let N_{i} be the number of nonzero entries in column i of C. Then, $\sum_{i=1}^{n} N_{i}=$ $\left(n \sum \bar{w}\right) / w_{1}$. In each column of C, we associate each pair of distinct nonzero entries with the pair of rows that contain these entries. There are $\binom{N_{i}}{2}$ such pairs of nonzero entries in column i of C. Therefore, there are $\sum_{i=1}^{n}\binom{N_{i}}{2}$ such pairs in all the columns of C. Since there are no pairs of distinct codewords in \mathcal{C} whose supports intersect in two elements, the $\sum_{i=1}^{n}\binom{N_{i}}{2}$ pairs of rows associated with the $\sum_{i=1}^{n}\binom{N_{i}}{2}$ pairs of distinct nonzero entries are also all distinct. Hence

$$
\sum_{i=1}^{n}\binom{N_{i}}{2} \leq\binom{|\mathcal{C}|}{2}=\binom{n / w_{1}}{2}
$$

or, equivalently

$$
\begin{equation*}
\sum_{i=1}^{n} N_{i}\left(N_{i}-1\right) \leq \frac{n\left(n-w_{1}\right)}{w_{1}^{2}} \tag{4}
\end{equation*}
$$

Since $k=\left\lfloor\sum \bar{w} / w_{1}\right\rfloor=\left\lfloor\left(\left(n \sum \bar{w}\right) / w_{1}\right) / n\right\rfloor$, there exists $r \in$ $[0, n-1]$ such that

$$
\frac{n \sum \bar{w}}{w_{1}}=k n+r .
$$

As $\sum_{i=1}^{n} N_{i}=\left(n \sum \bar{w}\right) / w_{1}$, we have

$$
\begin{align*}
\sum_{i=1}^{n} N_{i}\left(N_{i}-1\right) & \geq r(k+1) k+(n-r) k(k-1) \\
& \geq n k(k-1) \tag{5}
\end{align*}
$$

From (4) and (5), we have

$$
\frac{n\left(n-w_{1}\right)}{w_{1}^{2}} \geq n k(k-1)
$$

giving $n \geq w_{1}^{2} k(k-1)+w_{1}$.
Corollary 7.1:

$$
\begin{aligned}
\left(\sum \bar{w}\right)^{2}-w_{1}\left(\sum \bar{w}-1\right) & \leq N_{\mathrm{ccc}}(\bar{w}) \\
& \leq 4 w_{1}\left(\sum \bar{w}-1\right)^{2}+1
\end{aligned}
$$

The upper and lower bounds on $N_{\text {ccc }}(\bar{w})$ in Corollary 7.1 differ approximately by a factor of $4 w_{1}$.

B. Bounds on $N_{\text {cwc }}(w)$

The proof of Main Theorem 2 in Section V-B shows that $N_{\text {cwc }}(w) \leq 2 w(w(q-1)-1)^{2}+1$.

For constant-weight codes, the following result of Etzion [31, Th. 1] gives $N_{\text {cwc }}(w) \geq(w-1)(q-1)+1$.

Proposition 7.2: Given q and w, if there exists an optimal $(n, 2 w-1, w)_{q}$-code of size $(q-1) n / w$, then $n \geq(w-1)(q-$ 1) +1 .

There is a considerable gap between these upper and lower bounds on $N_{\text {cwc }}(w)$. However, when $w \mid n$, a better upper bound can be obtained. We describe the construction below. The idea of the construction is similar to the idea of the previous ones. We determine $q-1$ base codewords, denoted $g^{(1)}, \ldots, g^{(q-1)}$, for which the (n / w)-quasicyclic code

$$
\mathcal{C}=\left\{T^{w j}\left(\mathrm{~g}^{(i)}\right): i \in[q-1], j \in[0, n / w-1]\right\}
$$

is an $(n, 2 w-1, w)_{q}$-code. Let us write $\mathrm{u} \stackrel{T}{\leftarrow} \mathrm{~g}^{(i)}$ if $\mathrm{u}=$ $T^{w j}\left(\mathrm{~g}^{(i)}\right)$ for some j. Suppose that $\mathrm{g}^{(i)} \in\{0, i\}^{n}, i \in[q-1]$. Then, \mathcal{C} is an $(n, 2 w-1, w)_{q}$-code if the following two conditions hold.
C8) $|\operatorname{supp}(\mathrm{u}, \mathrm{v})|=0$ if $\mathrm{u} \stackrel{\mathrm{T}}{\leftarrow} \mathrm{g}^{(i)}$ and $\mathrm{v} \stackrel{\mathrm{T}}{\leftarrow} \mathrm{g}^{(i)}$ for some i.
C9) $|\operatorname{supp}(\mathrm{u}, \mathrm{v})| \leq 1$ if $\mathrm{u} \stackrel{\mathrm{T}}{\leftarrow} \mathrm{g}^{(i)}$ and $\mathrm{v} \stackrel{\mathrm{T}}{\leftarrow} \mathrm{g}^{(j)}$ for $i \neq j$.
We observe that C8) holds immediately if for every $i \in[q-$ $1], \mathrm{g}^{(i)}$ is chosen so that $\operatorname{supp}\left(\mathrm{g}^{(i)}\right)$ contains w elements which are congruent to $0,1, \ldots, w-1(\bmod w)$, respectively.

Theorem 7.1: If $w \mid n$ and $n \geq w((w-1)(q-2)+1)$, then $A_{q}(n, 2 w-1, w)=(q-1) n / w$.

Proof: It suffices to show that there exists an $(n, 2 w-$ $1, w)_{q}$-code of size $(q-1) n / w$ for any $n \geq w((w-1)(q-$ $2)+1), n \equiv 0(\bmod w)$. We construct $q-1$ base codewords $\mathrm{g}^{(1)}, \ldots, \mathrm{g}^{(q-1)}$ for such a code as follows. For $i \in[q-$ 1], $\mathrm{g}^{(i)} \in\{0, i\}^{n}$ satisfies

$$
\begin{align*}
\operatorname{supp}\left(\mathrm{g}^{(i)}\right)=\{0,1+(i-1) w, 2+2(i-1) w & , \ldots \\
& (w-1)+(w-1)(i-1) w\} \tag{6}
\end{align*}
$$

Condition C8) is satisfied immediately. It remains to show that these $q-1$ base codewords satisfy C9). We prove this by contradiction. Assume that there exist $\mathrm{u}=T^{k w}\left(\mathrm{~g}^{(i)}\right)$ and $\mathrm{v}=$ $T^{l w}\left(\mathrm{~g}^{(j)}\right), i \neq j$, so that $|\operatorname{supp}(\mathrm{u}, \mathrm{v})| \geq 2$. Suppose that $a, b \in$ $\operatorname{supp}(\mathrm{u}, \mathrm{v})$ and $a \equiv x \quad(\bmod w), b \equiv y \quad(\bmod w)$. By (6), we have

$$
\begin{array}{rlr}
a & =x+x(i-1) w+k w & (\bmod n) \\
& =x+x(j-1) w+\ell w & (\bmod n)
\end{array}
$$

and

$$
\begin{array}{rlr}
b & =y+y(i-1) w+k w & (\bmod n) \\
& =y+y(j-1) w+\ell w & (\bmod n)
\end{array}
$$

where the terms $k w$ and ℓw result from the cyclic shift operations applied on $\mathrm{g}^{(i)}$ and $\mathrm{g}^{(j)}$. These equations imply

$$
x w(i-j)+(k-\ell) w \equiv 0 \quad(\bmod n)
$$

TABLE I
Linear Size Optimal $\left(n, 2 \sum \bar{w}-1, \bar{w}\right)_{q}$-Codes of Weight at Most Six

Weight	Distance	Composition \bar{w}	Base codeword	Condition on length n	Size	Remark
2	3	[1, 1]	12	$n \geq 3$	n	Trivial
3	5	$\begin{aligned} & \boxed{U}, 1 \rrbracket \\ & \llbracket 1,1,1 \rrbracket \end{aligned}$	$\begin{aligned} & 112 \\ & 1203 \end{aligned}$	$\begin{aligned} & n \geq 5 \\ & n \geq 7 \end{aligned}$	$\begin{gathered} \lfloor n / 2\rfloor \\ n \end{gathered}$	Trivial [18]
4	7	$\llbracket 3,1 \rrbracket$ $\llbracket 2,2 \rrbracket$ $\llbracket 2,1,1 \rrbracket$ $\llbracket 1,1,1,1 \rrbracket$	$\begin{aligned} & \hline 1112 \\ & 112002 \\ & 112003 \\ & 1200304 \\ & \hline \end{aligned}$	$\begin{aligned} & n \geq 7 \\ & n \geq 10 \\ & n \geq 10 \\ & n \geq 13 \end{aligned}$	$\begin{gathered} \lfloor n / 3\rfloor \\ \lfloor n / 2\rfloor \\ \lfloor n / 2\rfloor \\ n \end{gathered}$	Trivial This paper Refinement of $\llbracket 2,2 \rrbracket$ This paper
5	9	$\begin{aligned} & \llbracket 4,1 \rrbracket \\ & \llbracket 3,2 \rrbracket \\ & \llbracket 3,1,1 \rrbracket \\ & \llbracket 2,2,1 \rrbracket \\ & \llbracket 2,1,1,1 \rrbracket \\ & \llbracket 1,1,1,1,1 \rrbracket \end{aligned}$	11112 110200020001 110200030001 100120000203 100120000304 120030000405 12003000000000405	$\begin{aligned} & n \geq 9 \\ & n \geq 15 \\ & n \geq 15 \\ & n \geq 18 \\ & n \geq 18 \\ & n \geq 23 \\ & n=21 \end{aligned}$	$\begin{gathered} \lfloor n / 4\rfloor \\ \lfloor n / 3\rfloor \\ \lfloor n / 3\rfloor \\ \lfloor n / 2\rfloor \\ \lfloor n / 2\rfloor \\ n \\ 21 \end{gathered}$	Trivial This paper Refinement of $\llbracket 3,2 \rrbracket$ This paper Refinement of $\llbracket 2,2,1 \rrbracket$ This paper This paper
6	11	$\llbracket 5,1 \rrbracket$ $\llbracket 4,2 \rrbracket$ $\llbracket 4,1,1 \rrbracket$ $\llbracket 3,3 \rrbracket$ $\llbracket 3,2,1 \rrbracket$ $\llbracket 3,1,1,1 \rrbracket$ $\llbracket 2,2,2 \rrbracket$ $\llbracket 2,2,1,1 \rrbracket$ $\llbracket 2,1,1,1,1 \rrbracket$ $\llbracket 1,1,1,1,1,1 \rrbracket$	111112 1111200002 1111200003 111200020002 111200020003 111200030004 1120020030000003 1120020030000004 1120030040000005 120030000040500006	$\begin{aligned} & n \geq 11 \\ & n \geq 20 \\ & n \geq 20 \\ & n \geq 21 \\ & n \geq 21 \\ & n \geq 21 \\ & n \geq 30 \text { or } n=26 \\ & n \geq 30 \text { or } n=26 \\ & n \geq 30 \text { or } n=26 \\ & n \geq 35 \text { or } n=31 \\ & \hline \end{aligned}$	$\lfloor n / 5\rfloor$ $\lfloor n / 4\rfloor$ $\lfloor n / 4\rfloor$ $\lfloor n / 3\rfloor$ $\lfloor n / 3\rfloor$ $\lfloor n / 3\rfloor$ $\lfloor n / 2\rfloor$ $\lfloor n / 2\rfloor$ $\lfloor n / 2\rfloor$ n	Trivial This paper Refinement of $\llbracket 4,2 \rrbracket$ This paper Refinement of $\llbracket 3,3 \rrbracket$ This paper This paper Refinement of $\llbracket 2,2,2 \rrbracket$ Refinement of $\llbracket 2,2,2 \rrbracket$ This paper

and

$$
y w(i-j)+(k-\ell) w \equiv 0 \quad(\bmod n)
$$

which together yield

$$
\begin{equation*}
(x-y)(i-j) \equiv 0 \quad(\bmod n / w) \tag{7}
\end{equation*}
$$

However, since $0 \leq x \neq y \leq w-1$ and $1 \leq i \neq j \leq q-1$, we have

$$
\begin{equation*}
0<|(x-y)(i-j)| \leq(w-1)(q-2)<n / w \tag{8}
\end{equation*}
$$

as $n \geq w(1+(w-1)(q-2))$. Thus, (7) and (8) lead to a contradiction.

VIII. Tables For Small-Weight Constant-Composition Codes

In this section, we provide two tables of exact values of $A_{q}\left(n, 2 \sum \bar{w}-1, \bar{w}\right)$ with $\sum \bar{w} \leq 6$, for almost all n. The only undetermined values in this range are $A_{7}(n, 11, \llbracket 1,1,1,1,1,1 \rrbracket)$ when $n \in\{33,34\}$. The following (trivial) upper bound happens to be very useful when we build up the tables, as it is often tight for codes of small lengths.

$$
\text { Lemma 8.1: } A_{q}\left(n, 2 \sum \bar{w}-1, \bar{w}\right) \leq A_{2}\left(n, 2 \sum \bar{w}-2, \sum \bar{w}\right)
$$

Table I provides the base codewords for quasicyclic optimal codes of sufficiently large lengths. For succinctness, we do not indicate trailing zeros at the end of each base codeword. Therefore, the base codeword 1203, say, should be interpreted as 12030^{n-4}. In order to construct these base codewords, we use either optimal Golomb rulers or a simple computer search to establish the best $\bar{\lambda}$-array corresponding to the codes. Table II
includes the sizes of optimal codes with small length n. These two tables together give an almost complete solution for the sizes of optimal constant-composition codes of weight at most six.

In Table II, if a cell is empty, then it means that the corresponding size is already determined in Table I. The upper bound for the sizes of codes comes from either the Johnson bound or Lemma 8.1, whichever is smaller. The lower bounds come from optimal codes constructed by hand or by a hill-climbing algorithm. We refer the interested reader to the Appendix for a complete description of these optimal codes. We note that the values of $A_{3}\left(n, 2\left(w_{1}+w_{2}\right)-1, \llbracket w_{1}, w_{2} \rrbracket\right)$ are included for completeness although they have been determined earlier by Östergård and Svanström [6, Th. 8].

Table III gives the exact value of $N_{\text {ccc }}(\bar{w})$ for all \bar{w} such that $\sum \bar{w} \leq 6$, except when $\bar{w}=\llbracket 1,1,1,1,1,1 \rrbracket$. We compare these values with bounds on $N_{\mathrm{ccc}}(\bar{w})$ given by (3) and Proposition 7.1. There is a large gap between these bounds. It would be interesting to close this gap.

IX. CONCLUSION

The exact sizes of optimal constant-composition and con-stant-weight codes having linear size are determined for all such codes of sufficiently large lengths. In the course of establishing these results, we introduced several new concepts, including that of generalized difference triangle sets and showed how they can be constructed from Golomb rulers. The results obtained in this paper solve an open problem of Etzion.

ApPENDIX

Only codes of size at least five are listed here. Those optimal codes of size four or less can be constructed easily by hand.

TABLE II
Sizes of Some Small Optimal Constant－Composition Codes With $d=2 \sum \bar{w}-1$

TABLE III
$\operatorname{Nccc}(\overline{\mathrm{w}})$ AND Bounds on $N_{\mathrm{ccc}}(\bar{w})$

Weight	Distance	Composition \bar{w}	$N_{\text {ccc }}(\bar{w})$	Bounds on $N_{\text {ccc }}(\bar{w})$ from（3）and Proposition 7.1
2	3	［1，1】	3	［3，3］
3	5	［2，1］	5	$[5,17]$
		［1，1，1］	7	［ 7,9 ］
4	7	［3，1］	7	$[7,55]$
		［2，2】	10	［10，37］
		【2，1，1】	10	［10，37］
		［1，1，1，1】	13	［13，19］
5	9	［4，1］	9	［9，129］
		【3，2】	14	［13，97］
		【3，1，1】	14	［13，97］
		【2，2，1】	18	［17，65］
		【2，1，1，1】	18	［17，65］
		【1，1，1，1，1】	23	$[21,33]$
6	11	［5，1］	11	［11，251］
		【4，2】	18	［16，201］
		［4，1，1】	18	［16，201］
		【3，3】	21	［21，151］
		【3，2，1】	21	［21，151］
		【3，1，1，1】	21	［21，151］
		【2，2，2】	30	［26，101］
		【2，2，1，1】	30	［26，101］
		$\llbracket 2,1,1,1,1 \rrbracket$	30	［26，101］
		$\llbracket 1,1,1,1,1,1 \rrbracket$	$\in[33,35]$	［31，51］

A．Weight Four Codes

1）An optimal $(10,7, \llbracket 1,1,1,1 \rrbracket)_{5}$－code：
$0004021300 \quad 2103000040 \quad 0040000132 \quad 1000204003$ 0320140000.

2）An optimal $(11,7, \llbracket 1,1,1,1 \rrbracket)_{5}$－code：
$3000020004100100034020 \quad 20014003000 \quad 00003040102$ 0132000000404000301200.

3）An optimal $(12,7, \llbracket 1,1,1,1 \rrbracket)_{5}$－code：

$$
\begin{array}{ccc}
010020043000 & 000200301004 & 120000000403 \\
200040100030 & 400301020000 & 002000430100 \\
003014000002 & 034100000020 & 000002004310 .
\end{array}
$$

B．Weight Five Codes

1）An optimal $(15,9, \llbracket 2,2,1 \rrbracket)_{4}$－code：
002100200000103201010003200000000300000122010 000021030010002010002002001300120000120000030.

2）An optimal $(16,9, \llbracket 2,2,1 \rrbracket)_{4}$－code：
Lengthening of an optimal $(15,9, \llbracket 2,2,1 \rrbracket)_{4}$－code．
3）An optimal $(17,9, \llbracket 2,2,1 \rrbracket)_{4}$－code：

00301002000020010	00003210010000200
10000031000200002	00020100002100030
20000000123010000	00010003200002100
01200020001003000	

4）An optimal $(n, 9, \llbracket 2,1,1,1 \rrbracket)_{5}$－code，$n \in[15,17]$ ： Refinement of an optimal $(n, 9, \llbracket 2,2,1 \rrbracket)_{4}$－code $n \in[15,17]$ ．
5）An optimal $(n, 9, \llbracket 1,1,1,1,1 \rrbracket)_{6}$－code $n \in[15,18]$ ：
Refinement of an optimal $(n, 9, \llbracket 2,1,1,1 \rrbracket)_{4}$－code $n \in$ ［15，18］．
6）An optimal $(19,9, \llbracket 1,1,1,1,1 \rrbracket)_{6}$－code：

0045203000000000010	5010020040000000003
0000100050034002000	3004000100000205000
0000400000000320501	0100340200500000000
0503000014000000200	0000002301040000005
4000001000205000300	0000010002003500040
0020000005100034000	2300000000010040050.

7) An optimal $(20,9, \llbracket 1,1,1,1,1 \rrbracket)_{6}$-code:

0002000050030000401051000003400002000000 00000005040000000132 02100040003000000050 00400200100000030005 04050000000030010200 20003100000050000040 30200000000100400500 00030502004000100000 00000350000001002400 00001034000200050000 00000010250040300000 10000000025000043000 03005000000000201004 00000000001524000003 00342000010005000000 .
8) An optimal $(22,9, \llbracket 1,1,1,1,1 \rrbracket)_{6}$-code:

Lengthening of an optimal $(21,9, \llbracket 1,1,1,1,1 \rrbracket)_{6}$-code.

C. Weight Six Codes

1) An optimal $(20,11, \llbracket 3,3 \rrbracket)_{3}$-code:
$10000000020201002010 \quad 00101002001020000020$ 0002212000010000000100010000202000201100 01000001000002010202.
2) An optimal $(20,11, \llbracket 3,2,1 \rrbracket)_{4}$-code:

Refinement of an optimal $(20,11, \llbracket 3,3 \rrbracket)_{3}$-code.
3) An optimal $(20,11, \llbracket 3,1,1,1 \rrbracket)_{5}$-code:

Refinement of an optimal $(20,11, \llbracket 3,3 \rrbracket)_{3}$-code.
4) An optimal $(20,11, \llbracket 2,2,2 \rrbracket)_{4}$-code:

Refinement of an optimal $(20,11, \llbracket 4,2 \rrbracket)_{3}$-code.
5) An optimal $(21,11, \llbracket 2,2,2 \rrbracket)_{4}$-code:
$010000332000100020000 \quad 033000000021020000010$ 302010200300000000001000103000210000032000 $200001020003000300100 \quad 000200001000001000323$ 000020000000213103000 .
6) An optimal $(22,11, \llbracket 2,2,2 \rrbracket)_{4}$-code:

Lengthening of an optimal $(21,11, \llbracket 2,2,2 \rrbracket)_{4}$-code.
7) An optimal $(23,11, \llbracket 2,2,2 \rrbracket)_{4}$-code:

10020200000001000033000 00000003020000200110030 00000000013000013002002 00100000001330000020200

20000031200100030000000 00031020000000000000123 01000000300023000200001 02302300000000101000000
8) An optimal $(24,11, \llbracket 2,2,2 \rrbracket)_{4}$-code:

300000100000200300000012 030200201300000000001000 010020030002000103000000 000010300020030000010200 003000012000100020000300 200000000213003010000000 000100000000020031200003 100001020000000000332000 001332000000001000000020.
9) An optimal $(25,11, \llbracket 2,2,2 \rrbracket)_{4}$-code:

0000000001223100030000000 0000000100002030003002100 0003001000001003000020002 0030000210000200100000003 1000030020000002010000300 0000100000100000200330200 0101000030300000002000020 3012300002000010000000000 0020003000000000020101030 0300212300010000000000000 .
10) An optimal $(27,11, \llbracket 2,2,2 \rrbracket)_{4}$-code:

Lengthening of an optimal $(26,11, \llbracket 2,2,2 \rrbracket)_{4}$-code.
11) An optimal $(28,11, \llbracket 2,2,2 \rrbracket)_{4}$-code:

1100000000220000300000003000 00000011020000000000030032000 0000110000003003200020000000 0200000001001030003200000000 2010200000000000000300010003 0020020003100100000000300000 0000302000030020000001100000 0000000200302000010000000031 0031003000000002001000000020 3000000010000000022013000000 0002030000010000030100000200 0000000000000301000002001302 03000000300000000000000220110 0003000320000210100000000000 .
12) An optimal $(29,11, \llbracket 2,2,2 \rrbracket)_{4}$-code:

Lengthening of an optimal $(28,11, \llbracket 2,2,2 \rrbracket)_{4}$-code.
13) An optimal $(n, 11, \llbracket 2,2,1,1 \rrbracket)_{5}$-code $n \in[20,29]$:

Refinement of an optimal $(n, 11, \llbracket 2,2,2 \rrbracket)_{4}$-code $n \in[20,29]$.
14) An optimal $(n, 11, \llbracket 2,1,1,1,1 \rrbracket)_{6}$-code $n \in[20,29]$:

Refinement of an optimal $(n, 11, \llbracket 2,2,2 \rrbracket)_{4}$-code $n \in[20,29]$.
15) An optimal $(n, 11, \llbracket 1,1,1,1,1,1 \rrbracket)_{7}$-code $n \in[20,26]$:

Refinement of an optimal $(n, 11, \llbracket 2,1,1,1,1 \rrbracket)_{6}$-code $n \in$ [20, 26].
16) An optimal $(27,11, \llbracket 1,1,1,1,1,1 \rrbracket)_{7}$-code:

010000000002003040506000000 001000000200300004650000000 100000000020030400065000000 020000000300000100000405060 002000000030000010000560004 200000000003000001000056400 000030400000000005001000026 000003040000000500100000602 000300004000000060020000510 000004500000610020000003000 000400050000061002000300000 000040005000106200000030000 345126000000000000000000000 000000123456000000000000000.
17) An optimal $(28,11, \llbracket 1,1,1,1,1,1 \rrbracket)_{7}$-code:

Shorten an optimal $(29,11, \llbracket 1,1,1,1,1,1 \rrbracket)_{7}$-code.
18) An optimal $(29,11, \llbracket 1,1,1,1,1,1 \rrbracket)_{7}$-code:

Shorten an optimal $(30,11, \llbracket 1,1,1,1,1,1 \rrbracket)_{7}$-code.
19) An optimal $(30,11, \llbracket 1,1,1,1,1,1 \rrbracket)_{7}$-code:

Shorten an optimal $(31,11, \llbracket 1,1,1,1,1,1 \rrbracket)_{7}$-code.
20) An optimal $(32,11, \llbracket 1,1,1,1,1,1 \rrbracket)_{7}$-code:

Lengthening of an optimal $(31,11, \llbracket 1,1,1,1,1,1 \rrbracket)_{7}$-code.

REFERENCES

[1] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. Amsterdam, The Netherlands: North-Holland, 1977.
[2] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, "A new table of constant weight codes," IEEE Trans. Inf. Theory, vol. 36, no. 6, pp. 1334-1380, Nov. 1990.
[3] E. Agrell, A. Vardy, and K. Zeger, "Upper bounds for constant-weight codes," IEEE Trans. Inf. Theory, vol. 46, no. 7, pp. 2373-2395, Nov. 2000.
[4] D. H. Smith, L. A. Hughes, and S. Perkins, "A new table of constant weight codes of length greater than 28," Electron. J. Combin., vol. 13, no. 1, pp. 18-0, 2006, Article \#A2 (electronic).
[5] M. Svanström, "Constructions of ternary constant-composition codes with weight three," IEEE Trans. Inf. Theory, vol. 46, no. 7, pp. 2644-2647, Nov. 2000.
[6] P. R. J. Östergård and M. Svanström, "Ternary constant weight codes," Electron. J. Combin., vol. 9, no. 1, 2002, Research Paper 41 (electronic).
[7] M. Svanström, P. R. J. Östergård, and G. T. Bogdanova, "Bounds and constructions for ternary constant-composition codes," IEEE Trans. Inf. Theory, vol. 48, no. 1, pp. 101-111, Jan. 2002.
[8] G. T. Bogdanova and S. N. Kapralov, "Enumeration of optimal ternary codes with a given composition," Problemy Peredachi Informatsii, vol. 39, no. 4, pp. 35-40, 2003.
[9] Y. Luo, F.-W. Fu, A. J. H. Vinck, and W. Chen, "On constant-composition codes over Z_{q}," IEEE Trans. Inf. Theory, vol. 49, no. 11, pp. 3010-3016, Nov. 2003.
[10] W. Chu, C. J. Colbourn, and P. Dukes, "Constructions for permutation codes in powerline communications," Des. Codes Cryptogr., vol. 32, no. 1-3, pp. 51-64, 2004.
[11] C. J. Colbourn, T. Kløve, and A. C. H. Ling, "Permutation arrays for powerline communication and mutually orthogonal Latin squares," IEEE Trans. Inf. Theory, vol. 50, no. 6, pp. 1289-1291, Jun. 2004.
[12] W. Chu, C. J. Colbourn, and P. Dukes, "Tables for constant composition codes," J. Combin. Math. Combin. Comput., vol. 54, pp. 57-65, 2005.
[13] C. Ding and J. Yin, "Algebraic constructions of constant composition codes," IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1585-1589, Apr. 2005.
[14] C. Ding and J. Yin, "Combinatorial constructions of optimal con-stant-composition codes," IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. 3671-3674, Oct. 2005.
[15] C. Ding and J. Yuan, "A family of optimal constant-composition codes," IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. 3668-3671, oct. 2005.
[16] C. Ding and J. Yin, "A construction of optimal constant composition codes," Des. Codes Cryptogr., vol. 40, no. 2, pp. 157-165, 2006.
[17] Y. M. Chee and S. Ling, "Constructions for q-ary constant-weight codes," IEEE Trans. Inf. Theory, vol. 53, no. 1, pp. 135-146, Jan. 2007.
[18] Y. M. Chee, A. C. H. Ling, S. Ling, and H. Shen, "The PBD-closure of constant-composition codes," IEEE Trans. Inf. Theory, vol. 53, no. 8, pp. 2685-2692, Aug. 2007.
[19] Y. M. Chee, S. H. Dau, A. C. H. Ling, and S. Ling, "The sizes of optimal q-ary codes of weight three and distance four: A complete solution," IEEE Trans. Inf. Theory, vol. 54, no. 3, pp. 1291-1295, Mar. 2008.
[20] Y. M. Chee, G. Ge, and A. C. H. Ling, "Group divisible codes and their application in the construction of optimal constant-composition codes of weight three," IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3552-3564, Aug. 2008.
[21] I. E. Telatar and R. G. Gallager, "Zero error decision feedback capacity of discrete memoryless channels," in Proc. Bilkent Int. Conf. New Trends Commun. Control Signal Process., E. Arikan, Ed., 1990, pp. 228-233, Elsevier.
[22] A. G. D'yachkov, "Random constant composition codes for multiple access channels," Problems Control Inf. Theory/Problemy Upravlen. Teor. Inf., vol. 13, no. 6, pp. 357-369, 1984.
[23] T. Ericson and V. Zinoviev, "Spherical codes generated by binary partitions of symmetric pointsets," IEEE Trans. Inf. Theory, vol. 41, no. 1, pp. 107-129, Jan. 1995.
[24] O. D. King, "Bounds for DNA codes with constant GC-content," Electron. J. Combin., vol. 10, no. 1, 2003, Research Paper 33 (electronic).
[25] O. Milenkovic and N. Kashyap, On the Design of Codes for DNA Computing, ser. Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag, 2006, vol. 3969, pp. 100-119.
[26] Y. M. Chee and S. Ling, "Improved lower bounds for constant GC-content DNA codes," IEEE Trans. Inf. Theory, vol. 54, no. 1, pp. 391-394, Jan. 2008.
[27] W. Chu, C. J. Colbourn, and P. Dukes, "On constant composition codes," Discrete Appl. Math., vol. 154, no. 6, pp. 912-929, 2006.
[28] D. J. Costello and G. D. Forney, "Channel coding: The road to channel capacity," Proc. IEEE, vol. 95, no. 6, pp. 1150-1177, Jun. 2007.
[29] V. Rödl, "On a packing and covering problem," Eur. J. Combin., vol. 5, pp. 69-78, 1985.
[30] P. Erdös and H. Hanani, "On a limit theorem in combinatorial analysis," Publ. Math. Debrecen, vol. 10, pp. 10-13, 1963.
[31] T. Etzion, "Optimal constant weight codes over Z_{k} and generalized designs," Discrete Math., vol. 169, no. 1-3, pp. 55-82, 1997.
[32] T. Kløve, "Bounds on the size of optimal difference triangle sets," IEEE Trans. Inf. Theory, vol. IT-34, no. 2, pp. 355-361, Mar. 1988.
[33] T. Kløve, "Bounds and construction for difference triangle sets," IEEE Trans. Inf. Theory, vol. 35, no. 4, pp. 879-886, Jul. 1989.
[34] W. C. Babcock, "Intermodulation interference in radio systems," Bell System Tech. J., vol. 31, pp. 63-73, 1953.
[35] A. R. Eckler, "The construction of missile guidance codes resistant to random interference," Bell System Tech. J., vol. 38, pp. 973-994, 1960.
[36] J. Robinson and A. Bernstein, "A class of binary recurrent codes with limited error propagation," IEEE Trans. Inf. Theory, vol. IT-13, no. 1, pp. 106-113, Jan. 1967.
[37] F. Biraud, E. J. Blum, and J. C. Ribes, "On optimal synthetic linear arrays with applications to radioastronomy," IEEE Trans. Antennas Propag., vol. AP-22, no. 1, pp. 108-109, Jan. 1974.
[38] E. J. Blum, J. C. Ribes, and F. Biraud, "Some new possibilities of optimal synthetic linear arrays for radioastronomy," Astronom. Astrophys., vol. 41, pp. 409-411, 1975.
[39] R. J. F. Fang and W. A. Sandrin, "Carrier frequency assignment for nonlinear repeaters," COMSAT Tech. Rev., vol. 7, pp. 227-245, 1977.
[40] M. D. Atkinson, N. Santoro, and J. Urrutia, "Integer sets with distinct sums and differences and carrier frequency assignment for nonlinear repeaters," IEEE Trans. Commun., vol. COMM-34, no. 6, pp. 614-617, Jun. 1986.
[41] H. Hanani, "On some tactical configurations," Can. J. Math., vol. 15, pp. 702-722, 1963.
[42] R. C. Baker, G. Harman, and J. Pintz, "The difference between consecutive primes. II," Proc. London Math. Soc. (3), vol. 83, no. 3, pp. 532-562, 2001.

Yeow Meng Chee (SM'08) received the B.Math. degree in computer science and combinatorics and optimization and the M.Math. and Ph.D. degrees in computer science from the University of Waterloo, Waterloo, ON, Canada, in 1988, 1989, and 1996, respectively.

Currently, he is an Associate Professor at the Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore. Prior to this, he was Program Director of Interactive Digital Media R\&D in the Media Development Authority of Singapore, Postdoctoral Fellow at the University of Waterloo and IBM's Zürich Research Laboratory, General Manager of the Singapore Computer Emergency Response Team, and Deputy Director of Strategic Programs at the Infocomm Development Authority, Singapore. His research interest lies in the interplay between combinatorics and computer science/engineering, particularly combinatorial design theory, coding theory, extremal set systems, and electronic design automation.

Son Hoang Dau received the B.S. degree in applied mathematics and informatics from the College of Science, Vietnam National University, Hanoi, Vietnam, in 2006 and the M.S. degree in mathematical sciences from the Division of Mathematical Sciences, Nanyang Technological University, Singapore, where he is currently working towards the Ph.D. degree.
His research interests are coding theory and combinatorics.

Alan C. H. Ling was born in Hong Kong in 1973. He received the B.Math., M.Math., and Ph.D. degrees in combinatorics and optimization from the University of Waterloo, Waterloo, ON, Canada, in 1994, 1995, and 1996, respectively.
He worked at the Bank of Montreal, Montreal, QC, Canada, and Michigan Technological University, Houghton, prior to his present position as Associate Professor of Computer Science at the University of Vermont, Burlington. His research interests concern combinatorial designs, codes, and applications in computer science.

San Ling received the B.A. degree in mathematics from the University of Cambridge, Cambridge, U.K., in 1985 and the Ph.D. degree in mathematics from the University of California, Berkeley, in 1990.

Since April 2005, he has been a Professor with the Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore. Prior to that, he was with the Department of Mathematics, National University of Singapore. His research fields include arithmetic of modular curves and application of number theory to combinatorial designs, coding theory, cryptography, and sequences.

[^0]: Manuscript received March 02, 2009; revised September 07, 2009. Current version published December 23, 2009. The work of Y. M. Chee and S. Ling was supported in part by the National Research Foundation of Singapore under Research Grant NRF-CRP2-2007-03. The work of Y. M. Chee was also supported in part by the Nanyang Technological University under Research Grant M58110040.
 Y. M. Chee, S. H. Dau, and S. Ling are with the Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore (e-mail: ymchee @ ntu.edu.sg; daus0001@ntu.edu.sg; lingsan@ntu.edu.sg).
 A. C. H. Ling is with the Department of Computer Science, University of Vermont, Burlington, VT 05405 USA (e-mail: aling @emba.uvm.edu).

 Communicated by T. Etzion, Associate Editor for Coding Theory.
 Digital Object Identifier 10.1109/TIT.2009.2034814

