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Linear Size Optimal �-ary Constant-Weight Codes
and Constant-Composition Codes

Yeow Meng Chee, Senior Member, IEEE, Son Hoang Dau, Alan C. H. Ling, and San Ling

Abstract—An optimal constant-composition or constant-weight
code of weight � has linear size if and only if its distance � is at
least �� � �. When � � ��, the determination of the exact size of
such a constant-composition or constant-weight code is trivial, but
the case of � � �� � � has been solved previously only for binary
and ternary constant-composition and constant-weight codes, and
for some sporadic instances. This paper provides a construction
for quasicyclic optimal constant-composition and constant-weight
codes of weight � and distance �� � � based on a new general-
ization of difference triangle sets. As a result, the sizes of optimal
constant-composition codes and optimal constant-weight codes of
weight � and distance ��� � are determined for all such codes of
sufficiently large lengths. This solves an open problem of Etzion.
The sizes of optimal constant-composition codes of weight � and
distance �� � � are also determined for all � � �, except in two
cases.

Index Terms—Constant-composition codes, constant-weight
codes, difference triangle sets, generalized Steiner systems,
Golomb rulers, quasicyclic codes.

I. INTRODUCTION

T HERE are two generalizations of binary constant-weight
codes as we enlarge the alphabet beyond size two. These

are the classes of constant-composition codes and -ary con-
stant-weight codes. While a vast amount of knowledge exists for
binary constant-weight codes [1]–[4], relatively little is known
about constant-composition codes and -ary constant-weight
codes. Recently, these classes of codes have attracted some at-
tention [5]–[20] due to several important applications requiring
nonbinary alphabets, such as in determining the zero error
decision feedback capacity of discrete memoryless channels
[21], multiple-access communications [22], spherical codes for
modulation [23], DNA codes [24]–[26], powerline commu-
nications [10], [11], frequency hopping [27], and coding for
bandwidth-limited channels [28].

As in the case of binary constant-weight codes, the deter-
mination of the maximum size of a constant-composition code
or a -ary constant-weight code of length , given constraints
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on its distance, weight and/or composition, constitutes a central
problem in their investigation.

The ring is denoted by . For integers , the
set of integers is denoted . The set

is further abbreviated to . A partition is a tuple
of integers such that . The

’s are the parts of the partition. Disjoint set union is denoted
by .

If and are sets, where is finite, then denotes
the set of vectors of length , where each component of a
vector has value in and is indexed by an element
of , that is, . A -ary code of length is a
set , for some of size . The elements of are
called codewords. For any , their support is the set

. We also abbreviate
to . The Hamming norm or weight of

is defined as . The distance induced by this
norm is called the Hamming distance, denoted , so that

, for . A code is said to have
distance if for all distinct . The com-
position of a vector is the tuple ,
where . A code is said
to have constant weight if every codeword in has weight ,
and is said to have constant composition if every codeword in

has composition . Hence, every constant-composition code
is a constant-weight code. We refer to a -ary code of length

, distance , and constant weight as an -code.
If in addition the code has constant composition , then it is
referred to as an -code. An -code and an

-code coincide in definition, and are binary con-
stant-weight codes. The maximum size of an -code is
denoted and that of an -code is denoted

. Any -code or -code attaining
the maximum size is called optimal.

The following operations do not affect distance and compo-
sition properties of an -code:

1) reordering the components of ;
2) deleting zero components of .
Consequently, throughout this paper, attention is restricted to

those compositions , where
, that is, is a partition. For succinctness, the sum

of all the parts of a partition is
denoted by .

The focus of this paper is on determining and
for those , and for which

and .
The Johnson-type bound of Svanström for ternary constant-

composition codes [5, Th. 1] extends easily to the following (see
also [27, Prop. 1.3]:
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Proposition 1.1 (Johnson Bound):

The following Johnson-type bound for -ary constant-weight
codes was established in [6, Th. 10].

Proposition 1.2 (Johnson Bound):

Definition 1.1 (Refinement): A partition is
a refinement of (written ) if there exist
pairwise disjoint sets satisfying

such that for each .
Chu et al. [27] made the following observation.

Lemma 1.1: If , then .

Given and , the condition for to hold
can be characterized as follows.

Proposition 1.3: if and only if
.

Proof: when follows
easily from the Johnson bound.

Rödl’s proof [29] of the Erdös–Hanani conjecture [30] im-
plies that ,

so that for all . Therefore,
by Lemma 1.1, for all

.
A similar proof yields the following.

Proposition 1.4: if and only if
.

A. Problem Status and Contribution

For constant-composition codes, it is trivial to see that

if
if .

When , our knowledge of is limited.
We know that ,
trivially. has also been completely deter-
mined by Svanström et al. [7]. In particular,

holds for all sufficiently large. Beyond this
(for ), has not been determined,
except in one instance: for , estab-
lished by Chee et al. [18]. For constant-weight codes, we have

if
if .

An explicit formula for has been obtained
by Östergård and Svanström [6]. When , the value of

is not known.
The main contribution of this paper are the following two

results.

Main Theorem 1: Let . Then
for all sufficiently large

.

Main Theorem 2: for all
sufficiently large satisfying .

In particular, Main Theorem 2 solves an open problem of Et-
zion concerning generalized Steiner systems [31, Problem 7].

The optimal constant-weight and constant-composition codes
constructed in the proofs of Main Theorem 1 and Main Theorem
2 are quasicyclic, and are obtained from difference triangle sets
and their generalization.

II. QUASICYCLIC CODES

A code is quasicyclic if there exists an such that a cyclic shift
of a codeword by places is another codeword. More formally,
let and define on the cyclic shift operator

. A -ary code of length is
quasicyclic (or more precisely, -quasicyclic) if it is invariant
under for some integer . If , such a code is just
a cyclic code.

The following two conditions are necessary and sufficient for
a code of constant weight to have distance .

C1) For any distinct .
C2) For any distinct , if ,

then .

A. Quasicyclic Constant-Composition Codes

The strategy for proving Main Theorem 1 is to construct
optimal -codes (meeting the Johnson bound)
that are -quasicyclic when . Optimal

-codes for can be obtained
easily from those with by lengthening, as in
the lemma below.

Lemma 2.1 (Lengthening): If
and , then
for all .

Proof: Let be an -code of size
. Let , where

, and define such that ,
where

if
if .

Then is an -code of size . Since
is optimal by the Johnson bound.

As opposed to lengthening a code, we can also shorten a
code by selecting a position , removing those codewords with a
nonzero coordinate , and deleting the th coordinate from every
remaining codeword.

Let . A -quasicyclic
-code of size can be obtained by developing a

particular vector
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Such a vector is called a base codeword of the quasicyclic
code . The remainder of this section develops criteria for a
vector of composition to be a base codeword of a

-quasicyclic -code .
Conditions C1) and C2) may be stated in terms of the base

codeword as follows.
C3) For such that , and

, we have the following:
• if , then

;
• if , then

.
C4) If , then .

B. Quasicyclic Constant-Weight Codes

Lemma 2.2: Let and . Then if
and only if there exist positive integers , and such that

, and .
Proof: Assume that . Let , and let

. Then . Since , we
have . Hence, . Now let .

The converse is obvious.

Suppose that . By Lemma 2.2, there exist posi-
tive integers , and such that , and

. Our strategy is to construct -quasicyclic optimal
-codes of size (meeting

the Johnson bound). In other words, we want to find vectors,
, each of weight , such that

and

is an -code of size . The vectors
are referred to as base codewords of .

Conditions C1) and C2) can be stated in terms of the base
codewords as follows.

C5) Let and such that
, and if . Then, we

have the following:
• if , then

;
• if , then

.
C6) If and , then ,

for all .
C7) If ( and are not necessarily distinct),

then , for all .

III. A NEW COMBINATORIAL ARRAY

Conditions C3) and C4) [respectively, C5)–C7)] sug-
gest organizing the elements of [respectively,

] of those quasicyclic con-
stant-composition codes (respectively, constant-weight codes)
into a two-dimensional array, with respect to their congruence
class modulo (respectively, ) and the value of their corre-
sponding components in [respectively, ].

Definition 3.1: Let be a partition. A -
array is a array with rows indexed by and
columns indexed by , such that:

P1) each cell is either empty or contains a nonnegative in-
teger congruent to its row index modulo ;

P2) the number of nonempty cells in column is ;
P3) if is the set of entries in row of

, then the differences
, are all nonzero and distinct.

The scope of is

In particular, if , then a -array has all
cells nonempty, and is referred to as a -array. From the
definition, it is easy to see that the entries of a -array are all
distinct.

Example 3.1: A -array of scope 15

Example 3.2: A -array of scope 42

Proposition 3.1: Let . If there ex-
ists a -array , then there exists a -quasicyclic optimal

-code for all
.

Proof: Let be a -array and let denote the set of
entries in column of . Define a vector

, as follows:

if
otherwise.

Then, has composition and satisfies conditions C3) and C4).
Therefore, is a base codeword of a -quasicyclic optimal

-code.

Example 3.3: The -array in Example 3.1 gives the
base codeword

for a -quasicyclic optimal -code when
.

Proposition 3.2: Suppose that and .
If there exists an -array , then there exists an -qua-
sicyclic optimal -code of size

, provided that and .
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Proof: Let be an -array and let denote the set
of entries in column of . We define the vectors

as follows: for and

if for some
otherwise.

(1)

Since the entries of are distinct, is well defined. Moreover,
the set of nonzero entries of is precisely ,
and by property P2), each symbol in occurs
exactly times in . Therefore, and has weight

.
We claim that the vectors satisfy conditions

C5)–C7), and hence form the base codewords for an -quasi-
cyclic optimal -code. The following establishes
this claim.

First, suppose that . If and are nonzero, then
and . Since

, we have . Therefore, C7) is satisfied.
Next, suppose that and . By (1),

. Since , and must belong to different rows
of . Therefore, by P1). Thus,
satisfy C6).

Now suppose that . By (1), there
exist and such that and . If

, then by P1), and are in the same row of .
Therefore

and, hence

It follows that .
Let and , where

such that , and if , then
. We want to show that

or, equivalently

(2)

Again, by (1), , and are entries of . Moreover, and
are in the same row. We consider two cases.
— Case : Since , we have

. Therefore, if , then (2) holds.
If and both and are in the same row, then (2)
holds by property P3) of and the assumption that
and . If and are in different rows, then
by P1), . Since
and , (2) follows.

— Case : We claim that . Indeed, assume that
and . Then, and

. Hence, if , then .
Therefore, there are two entries in different columns of

that have the same value , which is a contradiction.

Hence, . Since , we have .
Therefore, (2) holds.

Consequently, satisfy C5).

Example 3.4: The -array of scope in Example 3.2
gives and , where

if
if
otherwise

if
if
otherwise.

In this case, , and . The
vectors and form the base codewords of a -quasicyclic
optimal -code when is even and .

In view of Proposition 3.1 and Proposition 3.2, to prove
Main Theorem 1 and Main Theorem 2, it suffices to construct
a -array for every partition .

IV. GENERALIZED DIFFERENCE TRIANGLE SETS

In this section, the concept of difference triangle sets is gen-
eralized and used to produce -arrays. We begin with the defi-
nition of a difference triangle set.

Definition 4.1: An -difference triangle set is
a set , where

, are lists of integers such that the differences
, are all distinct.

Example 4.1: A - is

The corresponding differences are displayed in triangular arrays

The scope of an - is

Difference triangle sets with scope as small as possible are often
required for applications. Define

is an

Difference triangle sets were introduced by Kløve [32], [33] and
have numerous applications [34]–[40]. A - is known
as a Golomb ruler with marks.

We generalize difference triangle sets as follows.

Definition 4.2: Let be a partition. A set
with

, is a -generalized difference triangle set
if the differences , are all
distinct.

Thus, a is similar to a , but allowing the sets
to be of different sizes. In particular, if ,
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then a - is an - . The scope of a
is defined similarly as for a

We now relate - to -arrays. Let be
a partition. The Ferrers diagram of is an array of cells with

left-justified rows and cells in row . The conjugate of
is the partition , where is the number of
parts of that are at least . can also be obtained by reflecting
the Ferrers diagram of along its main diagonal. Conjugation
of partitions is an involution.

Example 4.2: The Ferrers diagrams of the partition
and its conjugate are shown, re-

spectively, as follows:

Proposition 4.1: Let be a partition. If there
exists a - of scope , then there exists a -array of
scope at most .

Proof: Let and let
be a - of scope . Con-

struct a array as follows: If ,
then the th cell of , contains

if , and empty otherwise.
Then, the filled cells of take the shape of the Ferrers diagram
of . Thus, the number of nonempty cells in column of
is precisely . It is also easy to see that each entry in row of

is congruent to . The differences are all
distinct because the differences are all distinct in
the . Moreover, all of these differences are at most

. Finally, for any and

Therefore, is a -array of scope at most .

Corollary 4.1: If there exists a - of scope , then
there exists a -array of scope at most .

Example 4.3: Since , we can
construct a -array from a - via
the proof of Proposition 4.1. If the - is

, the -array
obtained is

This array has scope 54.

Example 4.4: From the -
, we can

construct the following -array via the proof of Proposition
4.1.

This array has scope 57.

V. PROOFS OF THE MAIN THEOREMS

In this section, we use Golomb rulers to construct and
provide proofs to Main Theorem 1 and Main Theorem 2.

Let denote the smallest prime power not smaller than .
Atkinson et al. [40, Lemma 2] proved the following.

Theorem 5.1:

Proposition 5.1: For any partition , there
exists a - of scope at most .

Proof: By Theorem 5.1, there exists a Golomb ruler
of marks and scope .
Partition into subsets, , where

. Suppose

where . For each , let

where . Then, the set
forms a - of scope

The following corollary is immediate.

Corollary 5.1: For any and , there exists an
- of scope at most .

A. Proof of Main Theorem 1

Let be a partition and consider
. By Proposition 5.1, there exists a - of

scope at most . Therefore, by Propo-
sition 4.1, there exists a -array of scope at most

. Finally, Proposition 3.1 guarantees the existence
of a -quasicyclic optimal -code of size

for all
. This, together with Lemma 2.1, proves Main Theorem 1.

B. Proof of Main Theorem 2

Suppose . Then, by Lemma 2.2, let , where
. By Corollary 5.1, there exists an - of

scope at most . Therefore, by
Corollary 4.1, there exists an -array of scope at most

. Finally, Proposition 3.2 guarantees
the existence of an -quasicyclic optimal -code
of size for all

. This proves Main Theorem 2.
In particular, by taking and , respectively, we

have the following results.
i) There exists a -quasicyclic optimal

-code for all
.

ii) If , then there exists a cyclic optimal
-code for all .

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 02:05:05 UTC from IEEE Xplore.  Restrictions apply. 



CHEE et al.: LINEAR SIZE OPTIMAL -ARY CONSTANT-WEIGHT CODES AND CONSTANT-COMPOSITION CODES 145

VI. RESOLUTION OF AN OPEN PROBLEM OF ETZION

A set system is a pair , where is a finite set of
points, and . The elements of are called blocks. The
order of is the number of points . If for all ,
then is said to be -uniform. Let . A transverse of
is set such that for all . Hanani [41]
introduced the following generalization of -designs.

Definition 6.1: An design is a triple
, where is a -uniform set system of order

is a partition of into sets, each of
cardinality , such that:

i) is a transverse of for all ;
ii) each -element transverse of is contained in precisely

one block of .

From an design , we can form
a constant-weight code as follows. Let

, where . The code has a code-
word for each block. Assume is a block
of (this block is denoted by ,
where ). We form the codeword corresponding
to as follows: for

if for some
otherwise.

The distance of is at least . If has distance
, Etzion [31] calls the design, from which

is constructed, a generalized Steiner system .
It is not hard to verify that a contains exactly

blocks. By the Johnson bound, we have

It follows from the above construction that if a
exists, then

The next result establishes the converse when .

Proposition 6.1: Suppose that . Then, a
exists if

Proof: Let be an (optimal) -code
of size . Define

and

where . We associate with each codeword
a block as follows:

Finally, let .

We claim that is a . Indeed,
for all , and for all and .
Hence, it remains to show that any -element transverse of is
contained in exactly one block of . Suppose and are two
different blocks containing a particular -element transverse of

. Then, , implying
, a contradiction. Therefore, any -element

transverse of is contained in at most one block, and hence in
exactly one block, since .

Corollary 6.1: Suppose that . Then, there exists
a if and only if

Etzion [31, Problem 7] raised the following as an open
problem for further research.

Problem 6.1 (Etzion): Given and , show that there exists
an such that for all , where , a
exists.

The following result, which is a direct consequence of Main
Theorem 2 and Corollary 6.1, solves Problem 6.1.

Theorem 6.1: There exists a for all sufficiently
large satisfying .

Proof: By Main Theorem 2, we have

for all sufficiently large satisfying . It follows immedi-
ately from Corollary 6.1 that there also exists a
for all sufficiently large satisfying .

VII. EXPLICIT BOUNDS

Main Theorem 1 and Main Theorem 2 are asymptotic state-
ments: the hypothesis that is sufficiently large must be satis-
fied. But how large must be? More precisely, for a partition

and a positive integer , define

for all

and

for all

satisfying

We give explicit bounds on and in this
section.

A. Bounds on

The proof of Main Theorem 1 in Section V-A shows that

(3)
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By Bertrand’s postulate, for all . For
sufficiently large, better asymptotic bounds on exist (see,
for example, [42]), but we are after quantifiable bounds. This
implies

We now prove a lower bound on .

Proposition 7.1: Let be a partition. If
and there exists an -code of size ,

then , where . In particular,
when , we have

.
Proof: Let be an

-code of size . Then, can be regarded as an
matrix , whose th row is . Let be the

number of nonzero entries in column of . Then,
. In each column of , we associate each pair of

distinct nonzero entries with the pair of rows that contain these
entries. There are such pairs of nonzero entries in column

of . Therefore, there are such pairs in all the
columns of . Since there are no pairs of distinct codewords
in whose supports intersect in two elements, the

pairs of rows associated with the pairs of distinct
nonzero entries are also all distinct. Hence

or, equivalently

(4)

Since , there exists
such that

As , we have

(5)

From (4) and (5), we have

giving .

Corollary 7.1:

The upper and lower bounds on in Corollary 7.1
differ approximately by a factor of .

B. Bounds on

The proof of Main Theorem 2 in Section V-B shows that
.

For constant-weight codes, the following result of Etzion [31,
Th. 1] gives .

Proposition 7.2: Given and , if there exists an optimal
-code of size , then

.

There is a considerable gap between these upper and lower
bounds on . However, when , a better upper bound
can be obtained. We describe the construction below. The idea
of the construction is similar to the idea of the previous ones.
We determine base codewords, denoted ,
for which the -quasicyclic code

is an -code. Let us write if
for some . Suppose that .

Then, is an -code if the following two condi-
tions hold.
C8) if and for some .

C9) if and for .
We observe that C8) holds immediately if for every

is chosen so that contains elements which
are congruent to , respectively.

Theorem 7.1: If and , then
.

Proof: It suffices to show that there exists an
-code of size for any

. We construct base code-
words for such a code as follows. For

satisfies

(6)

Condition C8) is satisfied immediately. It remains to show that
these base codewords satisfy C9). We prove this by con-
tradiction. Assume that there exist and

, so that . Suppose that
and . By (6),

we have

and

where the terms and result from the cyclic shift opera-
tions applied on and . These equations imply
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TABLE I
LINEAR SIZE OPTIMAL ��� � �� � �� ��� -CODES OF WEIGHT AT MOST SIX

and

which together yield

(7)

However, since and ,
we have

(8)

as . Thus, (7) and (8) lead to a
contradiction.

VIII. TABLES FOR SMALL-WEIGHT

CONSTANT-COMPOSITION CODES

In this section, we provide two tables of exact values of
with , for almost all . The only

undetermined values in this range are
when . The following (trivial) upper bound hap-
pens to be very useful when we build up the tables, as it is often
tight for codes of small lengths.

Lemma 8.1: .

Table I provides the base codewords for quasicyclic optimal
codes of sufficiently large lengths. For succinctness, we do
not indicate trailing zeros at the end of each base codeword.
Therefore, the base codeword 1203, say, should be interpreted
as . In order to construct these base codewords, we
use either optimal Golomb rulers or a simple computer search
to establish the best -array corresponding to the codes. Table II

includes the sizes of optimal codes with small length . These
two tables together give an almost complete solution for the
sizes of optimal constant-composition codes of weight at most
six.

In Table II, if a cell is empty, then it means that the corre-
sponding size is already determined in Table I. The upper bound
for the sizes of codes comes from either the Johnson bound or
Lemma 8.1, whichever is smaller. The lower bounds come from
optimal codes constructed by hand or by a hill-climbing algo-
rithm. We refer the interested reader to the Appendix for a com-
plete description of these optimal codes. We note that the values
of are included for complete-
ness although they have been determined earlier by Östergård
and Svanström [6, Th. 8].

Table III gives the exact value of for all such that
, except when . We compare these

values with bounds on given by (3) and Proposition
7.1. There is a large gap between these bounds. It would be
interesting to close this gap.

IX. CONCLUSION

The exact sizes of optimal constant-composition and con-
stant-weight codes having linear size are determined for all such
codes of sufficiently large lengths. In the course of establishing
these results, we introduced several new concepts, including that
of generalized difference triangle sets and showed how they can
be constructed from Golomb rulers. The results obtained in this
paper solve an open problem of Etzion.

APPENDIX

Only codes of size at least five are listed here. Those optimal
codes of size four or less can be constructed easily by hand.
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TABLE II
SIZES OF SOME SMALL OPTIMAL CONSTANT-COMPOSITION CODES WITH � � � �� � �

TABLE III
�������� AND BOUNDS ON � � ���

A. Weight Four Codes

1) An optimal -code:

2) An optimal -code:

3) An optimal -code:

B. Weight Five Codes

1) An optimal -code:

2) An optimal -code:
Lengthening of an optimal -code.

3) An optimal -code:

4) An optimal -code, :
Refinement of an optimal -code

.
5) An optimal -code :

Refinement of an optimal -code
.

6) An optimal -code:
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7) An optimal -code:

8) An optimal -code:
Lengthening of an optimal -code.

C. Weight Six Codes

1) An optimal -code:

2) An optimal -code:
Refinement of an optimal -code.

3) An optimal -code:
Refinement of an optimal -code.

4) An optimal -code:
Refinement of an optimal -code.

5) An optimal -code:

6) An optimal -code:
Lengthening of an optimal -code.

7) An optimal -code:

8) An optimal -code:

9) An optimal -code:

10) An optimal -code:
Lengthening of an optimal -code.

11) An optimal -code:

12) An optimal -code:
Lengthening of an optimal -code.

13) An optimal -code :
Refinement of an optimal -code

.
14) An optimal -code :

Refinement of an optimal -code
.

15) An optimal -code :
Refinement of an optimal -code

.
16) An optimal -code:
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17) An optimal -code:
Shorten an optimal -code.

18) An optimal -code:
Shorten an optimal -code.

19) An optimal -code:
Shorten an optimal -code.

20) An optimal -code:
Lengthening of an optimal -code.
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