
Upgrading Links For Performance *

Andrew L i m t l Yeow Meng Cheet Wynne ~ s u f

t Information Technology Institute, 71 Science Park Drive, SO511
7 DISCS, National University of Singapore

Dept of Comp Sci, University of Waterloo, Canada

Abstract
The performance of a computer network is commonly
measured by the maximum minimum time required to
move certain amount of data between any 2 nodes in the
network. Due to the advances in technology, links in the
network may now be upgraded, for instance to optical
fibre links, so that better performance can be achieved.
In this paper, we study the LINK UPGRADE prob-
lem for networks. We first show that the LINK UP-
GRADE problem is NP-complete. We also show that,
a closely related problem, the MINIMUM COST LINK
UPGRADE problem is NP-complete even if the under-
lying topology of the network is a linear array. How-
ever, for cert.ain classes of networks, the LINK UP-
GRADE problem can be solved in polynomial time. For
general networks, we provide effective heuristics for the
above problems.

1 Introduction

In recent years, advances in very large scale integra-
tion (VLSI) technology have resulted in smaller and
more powerful microprocessors that are relatively inex-
pensive. As a result there is a move from large cen-
tralized computers towards many smaller decentralized
ones. This proliferation of small autonomous machines
has increased the demand for data communications be-
tween computers. Computer networks provide the ca-
pability of interconnecting these small machines within
a geographical area.

Current developments in integrated services digital
network (ISDN) require computer networks to transfer
large amounts of data with minimum delay in order to
effectively and efficiently support various voice, digital
data, text, and image applications. The performance of
a network becomes an important issue. If an existing
network does not meet the required performance, we
can upgrade some or all of its links in order to improve
the network's performance. Optical fibers are usually
used to upgrade these links since they offer very large
bandwidths.

'This research was supported in part by the National
University of Singapore Research Grants RP940643 and
RP940644

In this paper, we consider the link upgrade prob-
lem. Given a network and a specified performance, the
link upgrade problem is to determine which links of the
network are to be upgraded so that the specified per-
formance of the network is attained. In subsequent sec-
tions, we will formulate the LINK UPGRADE problem
and the MINIMUM COST LINK UPGRADE problem,
study their computational complexities, propose exact
algorithms for special cases of the link upgrade prob-
lem and provide effective heuristics for the general link
upgrade and minimum cost link upgrade problem.

2 Problem Formulation

We model the topology of a computer network as a
weighted graph. A graph G = (V, E; w) is a set V of n
vertices which represent the communication centers or
concentrators in the network, together with a set E of
m undirected edges representing bidirectional commu-
nication links. If an edge e is incident with vertices U
and U, we will sometimes write e as the unordered pair
(U , U) . This graph incorporates information about the
network's topology, but does not include information
about the charxteristics of the links. A weighted graph
has, in addition, a weighting function w : E -+ 220.
The value w (e) is called the weight of edge e.

Let G = (V, E ; w) be a weighted graph modeling the
network N with w (e) = P / R (e) for each e E E where
R (e) is the data rate for link e and P is the amount
of data to be sent across link e. A source vertex s can
transmit data with size P to a target vertex t along
any s, t-path in G, and the shortest possible time in
which this can be done is given by the length of the
shortest s, t-path. The length of the shortest s, t-path
in G is commonly called the distance between s and t in
G, denoted distG(s, t) . The performance measure (to
send data of size P) we use for a network G = (V, E)
is its diameter:

D(G) = max{distG(s, t)} .
8,tEV

Intuitively, D(G) is a guarantee on the speed of the
network G; auy transfer of a packet of data with size P
between any two vertices in G can be done in no more
than D(G) units of time.

IEEE Catalogue No. 95TH8061
0-7803-2579-6/95/$4.0001995IEEE

398

Suppose now we are given a network G = (V, E; w)
and optical fibers whose data rate is R. Let c = P/R.
We assume that the data rate R is so large that P / R is
negligible when compared to other links in the network
G. Therefore, upgrading a subset S of the links in E to
the available optical fibers simply means transforming
G into a new network G' = (VI E; w'), where

We may assume without loss of generality that all
weights are integers, by normalizing, if necessary. We
can now formally state the LINK UPGRADE problem.

LINK UPGRADE
INSTANCE A weighted graph G = (V, E; w) and a
nonnegative integer D.
QUESTION: Find a smallest (in cardinality) subset
S E E such that the weighted graph G' = (V, E; w'),

has diameter D(G') 5 D.

If the cost of upgrading each link differs and is given
by C(e), and the objective is to find a subset of edges
with the minimum cost to be upgraded such that the
D(G') 5 D , we name this problem, MINIMUM COST
LINK UPGRADE problem:

MINIMUM COST LINK UPGRADE
INSTANCE: A weighted graph G = (V ,E,w,C) , a
nonnegative integer D, <and positive integer K.
QUESTION: Is there a subset S E E, xeES C (e) 5 K ,
such that the weighted graph G' = (VI E; w', C), where

has diameter D(G') 5 D?

3 Computational Complexity

Theorem 1 The decision version of the LINK UP-
GRADE problem is NP-complete.

Proof: See [7]. CI

Theorem 2
The MINIMUM COST LINK UPGRADE problem is
NP-complete even for linear array.

Proof: See [7]. 0

4 Exact Algorithms for Re-
stricted Classes

The following are some common network topologies [8].

(i)Liinear Array (ii)Star (iii)Tkee

0 The linear array, in which nodes axe connected lin-
early.

The star, in which every node or communication
site is connected to a single central communication
node, the hub of the star.

0 The tree, in which the path between any 2 nodes in
the network is unique. The linear array and star
topologies are restricted forms of trees.

4.1 'The Linear Array and Star
Let G = (VI E; w) and D, be an instance of LINK
UPGRADE problem, where G is a linear array of n
vertices, and let S be a solution to this instance. A
linear array has the property that its diameter lis the
sum of all its edge weights. So, obviously, the greedy
method which works iteratively by selecting at each
step an edge of highest weight among those not in S
and putting it in S until D(G' = (V, E;w')) 5 D ,
solves tlhe problem. Since the sorting step to reorder
the edge weight takes O(n1ogn) time and all the edge
selections and diameter computations and recomputa-
tions takes O(n) time, the overall time complexity of
the greedy algorithm is O(n log n).

The diameter of the star is the sum of its 2 highest
edges. The same approach used for the linear array
can be applied to the star. The complexity reinains
the same, which is O(n log n).

4.2 'I'rees
If the graph given G(V,E;w) is a tree (i.e. the path
between any 2! nodes in the graph is unique), the dy-
namic programming approach may be used to obtain
the smalllest number of upgrades given the required di-
ameter D. The details of the algorithm are given in
Figure 1.

Our method begins with the leaves of the tree. At
a leaf naide, the maximum distance from its subtrees of
the leaf is 0, i.e. there is actually no subtree. For each
node, we keep an ordered list of pairs (a, p), where a is
the number of upgrades that has been carried out and
p is the farthest node in the current node% subtrees
from the node. For each leaf, the list of ordered pairs
is initialized to ((0,O)).

An edge has similar ordered pairs. Given the or-
dered pairs list L of the child node of the edge and
the edge cost c, the list of ordered pairs associated
with each edge can be computed using the procedure
Edge-Comb(c, L) . The root of the subtrees obtains
its list d ordlered pairs by merging the lists of its

Procedure UP-TREES(T)
/*Return a list of possible optimal upgrades
and their resultant diameters. */

begin
if l e a f (T) return { (0 , 0))
else
begin

// l e f t (T) returns the left subtree
L:= U p r r ee(l e f t (T)) ;
// right(T) returns the right subtree
R:= UPTree (r igh t (T)) ;
Le:= EdgeComb(Ieft-edge-cost(T), L) ;
&:= Edge-Cmnb(right-edge_cost(T), R);
return Node_Conzb(L,, &);

end,
end;

Procedure Edge-Comb(c, L)
/*Procedure takes in a integer value c (the edge cost)

and a list L and returns a new list L' that
considers if the edge is upgraded. */

begin
L' := 0;
for each element e = (a , p) E L
begin

el := (a,@ + c);
e2 := (a+ I,@);
add el and e2 to L' and
eliminate all infeasible and suboptimal entries;

end
return L';

end

Procedure NodeComb(L, R)
/*Procedure combines 2 lists L and R. */

begin
L' := 0;
for each element e L = (~ L , P L) E L & eR = (~ R , P R) E R
begin

if

end
return L';

e := (aL + aR,maX{PL,PR}); + @R 5 D then
add e to L' and eliminate suboptimal entries;

end

Figure 1: Algorithms for link-upgrades for binary
trees

A Tree, the required diameter is D 5 5

Figure 2; An example of our approach,

branches (edges) to its subtrees using the procedure
Node-Comb(L, R) (U P T R E E (T) algorithm assumes
T to be a binary tree. In general, i t works for all trees,
but binary trees will give an O(n2) time complexity).

An entry (a , p) is znfeasible if, as a result of not up-
grading the edge, the maximum distance to the leaves
is greater than D (in Edge-Comb) or when merging 2
entries, the sum of distance from the furthest leaf in
the left subtree and right subtree is greater than D (in
Node-Comb).

A merged pair (aJ , p J) is sub-optimal if there exists
a merged pair (ah, ,&) such that (a,+ 5 aj and ,& < p3)
or (a h < crJ and ,f?k 5 p J) . Sub-optimal pairs are not
needed for the optimal solution.

Using the example in Figure 2, the 4 merged pairs
in f are given by :

(0,3) and (0,4) --t not feasible as 3 + 4 > D = 5

(1 , O) and (0 , 4) -+ (1 ,4) eliminated (suboptimal)

So, the f ' s list is {(1,3) , (2,O)). For the edge (9, f), the
decision is whether to upgrade the link (g , f) :

(1 ,3) and (gl f) not upgraded --+ (1,5)
(L 3) and (g , f) upgraded -+ (2,3) subopt
(2,O) and (9, f) not upgraded --+ (2,2)

(~ 3) and (1,o) -+ (~ 3)

(LO) and (LO) -+ (2,O)

(2 , O) and (g , f upgraded -+ (3,O)

The final result is {(1,5), (2 ,2) , (3,O)).
The process of deriving the ordered pair list for each

node and edge continues until the root is reached. The
pair with the smallest a gives the solution. During
the course of creating (a,P) pairs, the edges that are
upgraded are stored with the ordered pairs so that these
edges can be retrieved and given as part of the solution
when the algorithm terminates.

Theorem 3 The number of ordered pairs at each node
or edge as at most min(n, D+ 1) where n 2s the number
of nodes in the tree and D the diameter required.

Proof: If a tree has n nodes, it has n - 1 links. Let
c1 be the number of edges that have been upgraded so

Heuristiic H I // F~~ H: we L,se r(c(v,E))-T(c(v,E-et~ in Step 3 C (e)

Step 1: Find the shortest path between all pairs of

Step 2: Remove d l redundant edges.
Step 3: Select the edge, e, in the graph G(V, E) with

the Ilargest .F(G(V, E)) -F(G(V, E - e)) such that:

vert ices.

T(G:(v, E)) = dist(e)
YeEE & d i s t (e)>D

(i)Non binary tree (ii)Transformed to a binary tree

Figure 3: An Example to illustrate the transforma-
tion of trees into binary trees

far. a can take values from 0 to n - 1. Hence, there
can be only n distinct as, if all suboptimal pairs are
eliminated. Similarly, with the required diameter of no
more than D, PI the maximum distance to the leaves
can take values from 0 to D. Hence, there are at most
D+1 unique values of P, as P E ZLO . Combining both
constraints, the number of ordered pairs at each node
is at most min(n, D + 1). 0
Theorem 4 The number of steps required to produce
the last of ordered pairs for any edge e is 2n, where n
i s the number of nodes in the subtree connected to e .

Proof: Let T be the root of the subtree connected to
e. e's list may be derived from rk list by simply con-
sidering if the link e is to be upgraded or not. For each
ordered pair in r , 2 pairs are produced of which some
may be infeasible or suboptimal. Since r has n nodes,
from Theorem 3, there can be at most n number of or-
dered pairs. This implies that e will produce at most
2n ordered pairs, which at most n + 1 will remain after
eliminating suboptimal and infeasible solutions. 0

Our method works only for binary trees. For k-nary
trees, the number of ordered pairs produced at node p
prior to removal of suboptimal or infeasible solutions is
the product of the sizes of the lists of ordered pairs of
the edges linking the subtrees to p . In the worst case,
the time complexity is O((2) ') . This happens when all
the subtrees have equal size; n is the total numbers of
nodes in the tree. If IC = :I then the time complexity
for producing the ordered pairs for p with n nodes in
its subtree becomes O(Zn).

We can transform all non-binay trees to binary
trees with the addition of dummy nodes and edges with
weight 0. This transformation can be seen in Figure 3.
The size of the new tree is at most twice the size of the
original tree and the transformation can be done easily
in O(n2) time.

Theorem 5 The time complexity of deriving the or-
dered pairs for all nodes in a binary tree of size n i s
O(n2) .

Proof: The time required at each node in the binary
tree to produce the its ordered pairs is at most (f)',
where m is the total number of nodes in the 2 subtrees
of the node. The total number of steps is maximize
if the tree is balanced;'i.e. subtrees of every node has

Step 4: If F(G(V, E - e)) = 0 then goto Step 9.
Step 5: Upgrade the edge e = (U, v) by contraction of

Step 6: Update the graph G due the Step 5.
Step 7: Updatte the shortest path matrix of the ver-

Step 8: Goto Step 2 .

Step 9: End.

e.

tice:j.

Figure 4: Heuristics H I and Hi

almost equal number of leaves. The number of !steps
required is :

Therefore, the time complexity is O(n'). 0

Theoreim 6 The time complexity for the LINK UP-
GRADE problem for trees i s O(n2) .

Proof: IFollows from the above discussions. U

5 HCeuristics for General Net-
work:s

For general networks, the link upgrade problem is NP-
complete. The situation is even worse for the minimum
cost link upgrade problem, which is NP-complete even
for linear list/array. As a result, an effective heuristic
H I is proposed for the link upgrade problem. A variant
of the heuristic H I , which is Hi is proposed for the
minimurn cost link upgrade problem. Both H I and Hi
can be found in Figure 4.

Step 1, finds the all pairs shortest path. This can be
done in O(ns)). In Step 2 , the algorithm compares the
edge weight w (e) and dist(e). If dist(e) < w(e) then
this edge is reidundant and can be removed (note that
remove is not the same as upgrade). This takes at most
O(lE1) time. Step 3, finds the edge e, where its upgrade
results in the litrgest F(G(V, E))-F(G(V, E - e)) . This
implie5 that dl pairs shortest path must be recomputed
or updated. To update the all pairs shortest path ma-
trix, let ins take a look at the shortest path between any

401

Table 1: Test set 1 (density=0.5, max cost=50)

]VI

25
50

IEI D D’=O.75D D‘ = 0.50
D‘ H o I Hi D‘ H Q Hi

63 98 74 9 3 49 16 5
223 59 45 7 2 30 18 8

75
100

Table 2: Test set 2 (density=O.2, maxcost= 50)

517 41 31 22 4 21 55 13
946 34 26 40 6 17 44 12

2 vertices x and y. With the upgrade of e = (U , U), the
minimum distance between them becomes,

dist(x,y) = min{ dist(x,y),dist(z,u) + dzst(v,y),
dist(z, v) + dist(u, y) }

This is done for every edge and there can be at most
O(lE1) edges. The time required for Step 3 is at most
O(IEllV12). F(G(V, E - e)) = 0 implies that the diam-
eter 5 D, hence the algorithm terminates (see Step 4).
Steps 5-9 are quite self explanatory. The entire process
will be repeated at most IVI - 1 times, i.e. every up-
grade decrease the number of vertices in the graph by
1, the entire algorithm takes at most O(IEIJV13) time.
In practice the algorithm’s running time is proportional
to the cube of its input size.

6 Experimental Results
In order to test the effectiveness of our heuristic, H L ,
we implemented a simple greedy algorithm, Ho, that
selects the first kth largest edges to be upgraded such
that the diameter of the graph is no more than D. k
is made as small as possible. This can be done by first
sorting the edges according to their weights and using
binary search to determine k. A simple implementation
takes at most O(nS log n) time.

We tested HO and H I on graphs that are randomly
generated. The density, d, of a graph is defined as the
probability that an edge between any 2 vertices exists.
The results are summarized in Table 1 and Table 2.
Column 1 is the number of vertices in the graph and
column 2, the number of edges. Column 3, D, is the
current diameter. The first row of column 4 indicates
the desired diameter, D‘, of the graph as a percent-
age with respect to the original diameter. For instance,
take the graph with 10 nodes in Table 1, the original
diameter is 42, if the desired diameter is 75% of the
original, we would like’to use the smallest number of

upgrades such that the diameter of the graph after the
upgrade is 75% of 42 which is approximately 31. Col-
umn 5 has similar interpretation as column 4. The first
sub-column of column 4 and column 5 are the desired
diameter D’s and the second and third sub-columns
of column 4 and column 5 are the number of upgrades
needed by the greedy approach HQ and HI respectively.

As you can see from the experimental results, only
small number of edges need to be upgraded to improve
the performance of the network by 100% in many in-
stances.

7 Conclusion

We have defined and studied the LINK UPGRADE
problem and the MIN COST LINK UPGRADE prob-
lem. We have proposed fast algorithms for restricted
cases of the link upgrade problem and have shown that
the problem is NP-complete for general graphs. As
for the minimum cost link upgrade problem, we have
shown that it is NP-complete even for linear lists. As
a result, we have developed effective heuristics for both
problem. Our experiment results show that our heuris-
tic greatly outperformed the simple greedy method for
the LINK UPGRADE problem. The link upgrade prob-
lem and its variations find applications not only in com-
puter networks but also in road and transportation net-
works [6].

References
E.W. Dijkstra. A note on two problems in connex-
ion with graphs. Numer. Math., 1 (1959) 269-271.

R.W. Floyd. Algorithm 97: Shortest path. Com-
munications of the ACM, 5 (1962) 345.

M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Company, New
York, 1979.

R.M. Karp. Reducibility among combinatorial
problems. In: R.E. Miller and J.W. Thatcher
(eds.), Complerity of Computer Computations,
Plenum Press, New York, 85-103, 1972.

T. Li. Advances in optical fiber communica-
tions: An historical perspective. IEEE Journal
on Selected Areas an Communications, SAC-l(3)

A. Lim. Minimum Cost Upgrades to Improve the
Public Roadfl’ransportation Networks. In prepa-
ration.
A. Lim, Y . Chee and W. Hsu. Upgrading Links
for Performance. Manuscript, submitted for publi-
cation.
C.D. Tsao. A local area network architecture
overview. IEEE Communications Magazine, 22

(1983) 356-372.

(1984) 7-11.

402

