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Abstract 
The performance of a computer network is commonly 
measured by the maximum minimum time required to 
move certain amount of data between any 2 nodes in the 
network. Due to the advances in technology, links in the 
network may now be upgraded, for instance to optical 
fibre links, so that better performance can be achieved. 
In this paper, we study the LINK UPGRADE prob- 
lem for networks. We first show that the LINK UP- 
GRADE problem is NP-complete. We also show that, 
a closely related problem, the MINIMUM COST LINK 
UPGRADE problem is NP-complete even if the under- 
lying topology of the network is a linear array. How- 
ever, for cert.ain classes of networks, the LINK UP- 
GRADE problem can be solved in polynomial time. For 
general networks, we provide effective heuristics for the 
above problems. 

1 Introduction 

In recent years, advances in very large scale integra- 
tion (VLSI) technology have resulted in smaller and 
more powerful microprocessors that are relatively inex- 
pensive. As a result there is a move from large cen- 
tralized computers towards many smaller decentralized 
ones. This proliferation of small autonomous machines 
has increased the demand for data communications be- 
tween computers. Computer networks provide the ca- 
pability of interconnecting these small machines within 
a geographical area. 

Current developments in integrated services digital 
network (ISDN) require computer networks to transfer 
large amounts of data with minimum delay in order to 
effectively and efficiently support various voice, digital 
data, text, and image applications. The performance of 
a network becomes an important issue. If an existing 
network does not meet the required performance, we 
can upgrade some or all of its links in order to improve 
the network's performance. Optical fibers are usually 
used to upgrade these links since they offer very large 
bandwidths. 
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In this paper, we consider the link upgrade prob- 
lem. Given a network and a specified performance, the 
link upgrade problem is to determine which links of the 
network are to be upgraded so that the specified per- 
formance of the network is attained. In subsequent sec- 
tions, we will formulate the LINK UPGRADE problem 
and the MINIMUM COST LINK UPGRADE problem, 
study their computational complexities, propose exact 
algorithms for special cases of the link upgrade prob- 
lem and provide effective heuristics for the general link 
upgrade and minimum cost link upgrade problem. 

2 Problem Formulation 

We model the topology of a computer network as a 
weighted graph. A graph G = (V, E; w) is a set V of n 
vertices which represent the communication centers or 
concentrators in the network, together with a set E of 
m undirected edges representing bidirectional commu- 
nication links. If an edge e is incident with vertices U 
and U,  we will sometimes write e as the unordered pair 
( U ,  U) .  This graph incorporates information about the 
network's topology, but does not include information 
about the charxteristics of the links. A weighted graph 
has, in addition, a weighting function w : E -+ 220. 
The value w ( e )  is called the weight of edge e. 

Let G = (V, E ;  w) be a weighted graph modeling the 
network N with w ( e )  = P / R ( e )  for each e E E where 
R ( e )  is the data rate for link e and P is the amount 
of data to be sent across link e. A source vertex s can 
transmit data with size P to a target vertex t along 
any s, t-path in G, and the shortest possible time in 
which this can be done is given by the length of the 
shortest s, t-path. The length of the shortest s, t-path 
in G is commonly called the distance between s and t in 
G, denoted distG(s,  t ) .  The performance measure (to 
send data of size P )  we use for a network G = (V, E )  
is its diameter: 

D(G) = max{distG(s, t )} .  
8,tEV 

Intuitively, D(G) is a guarantee on the speed of the 
network G; auy transfer of a packet of data with size P 
between any two vertices in G can be done in no more 
than D(G) units of time. 
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Suppose now we are given a network G = (V, E; w) 
and optical fibers whose data rate is R. Let c = P/R. 
We assume that the data rate R is so large that P / R  is 
negligible when compared to other links in the network 
G. Therefore, upgrading a subset S of the links in E to 
the available optical fibers simply means transforming 
G into a new network G' = (VI E; w'), where 

We may assume without loss of generality that all 
weights are integers, by normalizing, if necessary. We 
can now formally state the LINK UPGRADE problem. 

LINK UPGRADE 
INSTANCE A weighted graph G = (V, E; w) and a 
nonnegative integer D. 
QUESTION: Find a smallest (in cardinality) subset 
S E E such that the weighted graph G' = (V, E; w'), 

has diameter D(G')  5 D. 

If the cost of upgrading each link differs and is given 
by C(e), and the objective is to find a subset of edges 
with the minimum cost to be upgraded such that the 
D(G')  5 D ,  we name this problem, MINIMUM COST 
LINK UPGRADE problem: 

MINIMUM COST LINK UPGRADE 
INSTANCE: A weighted graph G = (V ,E,w,C) ,  a 
nonnegative integer D, <and positive integer K. 
QUESTION: Is there a subset S E E, xeES C ( e )  5 K ,  
such that the weighted graph G' = (VI E; w', C), where 

has diameter D(G') 5 D? 

3 Computational Complexity 

Theorem 1 The decision version of the LINK UP- 
GRADE problem is NP-complete. 

Proof: See [7]. CI 

Theorem 2 
The MINIMUM COST LINK UPGRADE problem is 
NP-complete even for linear array. 

Proof: See [7]. 0 

4 Exact Algorithms for Re- 
stricted Classes 

The following are some common network topologies [8]. 

(i)Liinear Array (ii)Star (iii)Tkee 

0 The linear array, in which nodes axe connected lin- 
early. 

The star, in which every node or communication 
site is connected to a single central communication 
node, the hub of the star. 

0 The tree, in which the path between any 2 nodes in 
the network is unique. The linear array and star 
topologies are restricted forms of trees. 

4.1 'The Linear Array and Star 
Let G = (VI E;  w) and D,  be an instance of LINK 
UPGRADE problem, where G is a linear array of n 
vertices, and let S be a solution to this instance. A 
linear array has the property that its diameter lis the 
sum of all its edge weights. So, obviously, the greedy 
method which works iteratively by selecting at each 
step an edge of highest weight among those not in S 
and putting it in S until D(G' = (V, E;w'))  5 D ,  
solves tlhe problem. Since the sorting step to reorder 
the edge weight takes O(n1ogn) time and all the edge 
selections and diameter computations and recomputa- 
tions takes O(n) time, the overall time complexity of 
the greedy algorithm is O(n log n). 

The diameter of the star is the sum of its 2 highest 
edges. The same approach used for the linear array 
can be applied to the star. The complexity reinains 
the same, which is O(n log n). 

4.2 'I'rees 
If the graph given G(V,E;w) is a tree (i.e. the path 
between any 2! nodes in the graph is unique), the dy- 
namic programming approach may be used to obtain 
the smalllest number of upgrades given the required di- 
ameter D. The details of the algorithm are given in 
Figure 1. 

Our method begins with the leaves of the tree. At 
a leaf naide, the maximum distance from its subtrees of 
the leaf is 0, i.e. there is actually no subtree. For each 
node, we keep an ordered list of pairs (a, p), where a is 
the number of upgrades that has been carried out and 
p is the farthest node in the current node% subtrees 
from the node. For each leaf, the list of ordered pairs 
is initialized to ((0,O)). 

An edge has similar ordered pairs. Given the or- 
dered pairs list L of the child node of the edge and 
the edge cost c, the list of ordered pairs associated 
with each edge can be computed using the procedure 
Edge-Comb(c, L ) .  The root of the subtrees obtains 
its list d ordlered pairs by merging the lists of its 



Procedure UP-TREES(T) 
/*Return a list of possible optimal upgrades 
and their resultant diameters. */  

begin 
if l e a f ( T )  return { ( 0 ,  0)) 
else 
begin 

// l e f t ( T )  returns the left subtree 
L:= U p r r  ee( l e f t  (T))  ; 
// right(T) returns the right subtree 
R:= UPTree ( r igh t (T ) ) ;  
Le:= EdgeComb(Ieft-edge-cost(T), L) ;  
&:= Edge-Cmnb(right-edge_cost(T), R); 
return Node_Conzb(L,, &); 

end, 
end; 

Procedure Edge-Comb(c, L )  
/*Procedure takes in a integer value c (the edge cost) 

and a list L and returns a new list L' that 
considers if the edge is upgraded. */ 

begin 
L' := 0; 
for each element e = (a ,  p) E L 
begin 

el := (a,@ + c); 
e2 := (a+ I,@); 
add el and e2 to L' and 
eliminate all infeasible and suboptimal entries; 

end 
return L'; 

end 

Procedure NodeComb(L, R)  
/*Procedure combines 2 lists L and R. */ 

begin 
L' := 0; 
for each element e L  = ( ~ L , P L )  E L & eR = ( ~ R , P R )  E R 
begin 

if 

end 
return L'; 

e := (aL + aR,maX{PL,PR}); + @R 5 D then 
add e to L' and eliminate suboptimal entries; 

end 

Figure 1: Algorithms for link-upgrades for binary 
trees 

A Tree, the required diameter is D 5 5 

Figure 2; An example of our approach, 

branches (edges) to its subtrees using the procedure 
Node-Comb(L, R) ( U P T R E E ( T )  algorithm assumes 
T to be a binary tree. In general, i t  works for all trees, 
but binary trees will give an O(n2) time complexity). 

An entry (a ,  p) is znfeasible if, as a result of not up- 
grading the edge, the maximum distance to the leaves 
is greater than D (in Edge-Comb) or when merging 2 
entries, the sum of distance from the furthest leaf in 
the left subtree and right subtree is greater than D (in 
Node-Comb). 

A merged pair (aJ ,  p J )  is sub-optimal if there exists 
a merged pair (ah, ,&) such that (a,+ 5 aj and ,& < p3) 
or ( a h  < crJ and ,f?k 5 p J ) .  Sub-optimal pairs are not 
needed for the optimal solution. 

Using the example in Figure 2, the 4 merged pairs 
in f are given by : 

(0,3) and (0,4)  --t not feasible as 3 + 4  > D = 5 

( 1 , O )  and ( 0 , 4 )  -+ (1 ,4)  eliminated (suboptimal) 

So, the f ' s  list is {(1,3) ,  (2,O)). For the edge (9, f), the 
decision is whether to upgrade the link ( g , f )  : 

(1 ,3)  and (gl f )  not upgraded --+ (1,5) 
( L 3 )  and ( g ,  f) upgraded -+ (2,3) subopt 
(2,O) and (9, f )  not upgraded --+ (2,2) 

( ~ 3 )  and (1,o) -+ ( ~ 3 )  

(LO) and (LO) -+ (2,O) 

( 2 , O )  and (g ,  f upgraded -+ (3,O) 

The final result is {(1,5), (2 ,2) ,  (3,O)). 
The process of deriving the ordered pair list for each 

node and edge continues until the root is reached. The 
pair with the smallest a gives the solution. During 
the course of creating (a,P) pairs, the edges that are 
upgraded are stored with the ordered pairs so that these 
edges can be retrieved and given as part of the solution 
when the algorithm terminates. 

Theorem 3 The number of  ordered pairs at each node 
or edge as at most min(n, D+ 1) where n 2s the number 
of nodes in the tree and D the diameter required. 

Proof: If a tree has n nodes, it has n - 1 links. Let 
c1 be the number of edges that have been upgraded so 



Heuristiic H I  // F~~ H: we L,se r(c(v,E))-T(c(v,E-et~ in Step 3 C ( e )  

Step 1: Find the shortest path between all pairs of 

Step 2: Remove d l  redundant edges. 
Step 3: Select the edge, e,  in the graph G(V, E )  with 

the Ilargest .F(G(V, E)) -F(G(V, E -  e ) )  such that: 

vert ices. 

T(G:(v, E ) )  = dist(e) 
YeEE & d i s t ( e )>D 

(i)Non binary tree (ii)Transformed to a binary tree 

Figure 3: An Example to illustrate the transforma- 
tion of trees into binary trees 

far. a can take values from 0 to n - 1. Hence, there 
can be only n distinct as, if all suboptimal pairs are 
eliminated. Similarly, with the required diameter of no 
more than D, PI the maximum distance to the leaves 
can take values from 0 to D. Hence, there are at most 
D+1 unique values of P, as P E ZLO . Combining both 
constraints, the number of ordered pairs at each node 
is at most min(n, D + 1). 0 
Theorem 4 The number of steps required to produce 
the last of ordered pairs for any edge e is 2n, where n 
i s  the number of nodes in the subtree connected to e .  

Proof: Let T be the root of the subtree connected to 
e. e's list may be derived from rk list by simply con- 
sidering if the link e is to be upgraded or not. For each 
ordered pair in r ,  2 pairs are produced of which some 
may be infeasible or suboptimal. Since r has n nodes, 
from Theorem 3, there can be at most n number of or- 
dered pairs. This implies that e will produce at  most 
2n ordered pairs, which at most n + 1 will remain after 
eliminating suboptimal and infeasible solutions. 0 

Our method works only for binary trees. For k-nary 
trees, the number of ordered pairs produced at node p 
prior to removal of suboptimal or infeasible solutions is 
the product of the sizes of the lists of ordered pairs of 
the edges linking the subtrees to p .  In the worst case, 
the time complexity is O((2) ' ) .  This happens when all 
the subtrees have equal size; n is the total numbers of 
nodes in the tree. If IC = :I then the time complexity 
for producing the ordered pairs for p with n nodes in 
its subtree becomes O(Zn). 

We can transform all non-binay trees to binary 
trees with the addition of dummy nodes and edges with 
weight 0. This transformation can be seen in Figure 3. 
The size of the new tree is at most twice the size of the 
original tree and the transformation can be done easily 
in O(n2) time. 

Theorem 5 The time complexity of deriving the or- 
dered pairs for all nodes in a binary tree of size n i s  
O(n2) .  

Proof: The time required at each node in the binary 
tree to produce the its ordered pairs is at most (f)', 
where m is the total number of nodes in the 2 subtrees 
of the node. The total number of steps is maximize 
if the tree is balanced;'i.e. subtrees of every node has 

Step 4: If F(G(V, E - e ) )  = 0 then goto Step 9. 
Step 5: Upgrade the edge e = (U, v) by contraction of 

Step 6: Update the graph G due the Step 5. 
Step 7: Updatte the shortest path matrix of the ver- 

Step 8: Goto Step 2 .  

Step 9: End. 

e. 

tice:j. 

Figure 4: Heuristics H I  and Hi 

almost equal number of leaves. The number of !steps 
required is : 

Therefore, the time complexity is O(n'). 0 

Theoreim 6 The time complexity for the LINK UP- 
GRADE problem for trees i s  O(n2) .  

Proof: IFollows from the above discussions. U 

5 HCeuristics for General Net- 
work:s 

For general networks, the link upgrade problem is NP- 
complete. The situation is even worse for the minimum 
cost link upgrade problem, which is NP-complete even 
for linear list/array. As a result, an effective heuristic 
H I  is proposed for the link upgrade problem. A variant 
of the heuristic H I ,  which is Hi is proposed for the 
minimurn cost link upgrade problem. Both H I  and Hi 
can be found in Figure 4. 

Step 1, finds the all pairs shortest path. This can be 
done in O(ns)).  In Step 2 ,  the algorithm compares the 
edge weight w ( e )  and dist(e).  If dist(e) < w(e)  then 
this edge is reidundant and can be removed (note that 
remove is not the same as upgrade). This takes at most 
O(lE1) time. Step 3, finds the edge e,  where its upgrade 
results in the litrgest F(G(V, E))-F(G(V, E - e ) ) .  This 
implie5 that dl pairs shortest path must be recomputed 
or updated. To update the all pairs shortest path ma- 
trix, let ins take a look at the shortest path between any 
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Table 1: Test set 1 (density=0.5, max cost=50) 

]VI 

25 
50 

IEI D D’=O.75D D‘ = 0.50 
D‘ H o I Hi D‘ H Q Hi 

63 98 74 9 3 49 16 5 
223 59 45 7 2 30 18 8 

75 
100 

Table 2: Test set 2 (density=O.2, maxcost= 50) 

517 41 31 22 4 21 55 13 
946 34 26 40 6 17 44 12 

2 vertices x and y. With the upgrade of e = ( U ,  U), the 
minimum distance between them becomes, 

dist(x,y) = min{ dist(x,y),dist(z,u) + dzst(v,y), 
dist(z, v )  + dist(u, y) } 

This is done for every edge and there can be at most 
O(lE1) edges. The time required for Step 3 is at  most 
O(IEllV12). F(G(V, E - e)) = 0 implies that the diam- 
eter 5 D, hence the algorithm terminates (see Step 4). 
Steps 5-9 are quite self explanatory. The entire process 
will be repeated at most IVI - 1 times, i.e. every up- 
grade decrease the number of vertices in the graph by 
1, the entire algorithm takes at most O(IEIJV13) time. 
In practice the algorithm’s running time is proportional 
to the cube of its input size. 

6 Experimental Results 
In order to test the effectiveness of our heuristic, H L ,  
we implemented a simple greedy algorithm, Ho,  that 
selects the first kth largest edges to be upgraded such 
that the diameter of the graph is no more than D. k 
is made as small as possible. This can be done by first 
sorting the edges according to their weights and using 
binary search to determine k. A simple implementation 
takes at most O(nS log n) time. 

We tested HO and H I  on graphs that are randomly 
generated. The density, d, of a graph is defined as the 
probability that an edge between any 2 vertices exists. 
The results are summarized in Table 1 and Table 2. 
Column 1 is the number of vertices in the graph and 
column 2, the number of edges. Column 3, D, is the 
current diameter. The first row of column 4 indicates 
the desired diameter, D‘, of the graph as a percent- 
age with respect to the original diameter. For instance, 
take the graph with 10 nodes in Table 1, the original 
diameter is 42, if the desired diameter is 75% of the 
original, we would like’to use the smallest number of 

upgrades such that the diameter of the graph after the 
upgrade is 75% of 42 which is approximately 31. Col- 
umn 5 has similar interpretation as column 4. The first 
sub-column of column 4 and column 5 are the desired 
diameter D’s and the second and third sub-columns 
of column 4 and column 5 are the number of upgrades 
needed by the greedy approach HQ and HI respectively. 

As you can see from the experimental results, only 
small number of edges need to be upgraded to improve 
the performance of the network by 100% in many in- 
stances. 

7 Conclusion 

We have defined and studied the LINK UPGRADE 
problem and the MIN COST LINK UPGRADE prob- 
lem. We have proposed fast algorithms for restricted 
cases of the link upgrade problem and have shown that 
the problem is NP-complete for general graphs. As 
for the minimum cost link upgrade problem, we have 
shown that it is NP-complete even for linear lists. As 
a result, we have developed effective heuristics for both 
problem. Our experiment results show that our heuris- 
tic greatly outperformed the simple greedy method for 
the LINK UPGRADE problem. The link upgrade prob- 
lem and its variations find applications not only in com- 
puter networks but also in road and transportation net- 
works [6]. 
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