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Combinatorial Batch Codes Using
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Abstract— The class of multiset combinatorial batch codes
(MCBCs) was introduced by Zhang et al. (2018) as a generaliza-
tion of combinatorial batch codes (CBCs), which are replication-
based batch codes. The MCBCs allow multiple users to retrieve
items in parallel in a distributed storage and a fundamental
objective in this study is to determine the minimum total storage
given certain requirements. We formulate linear programs so that
the optimal solutions provide lower bounds on the total storage
of MCBCs. Borrowing techniques from linear programming,
we improve known lower bounds in some cases. Furthermore, for
some parameters, we showed that these lower bounds are either
tight or asymptotically tight by constructing the corresponding
codes.

Index Terms— Distributed storage codes, combinatorial batch
codes, multiset combinatorial batch codes, linear programming.

I. INTRODUCTION

MOTIVATED by applications such as load balancing in
distributed storage, private information retrieval and

cryptographic protocols, Ishai et al. introduced the notions of
batch codes and multiset batch codes [15]. Formally, a batch
code encodes a database of n items into a set of m servers (or
buckets), so that a user’s request that comprises a batch or set
of k database items can be retrieved by reading a restricted
number of encoded symbols from each server. In the same
paper, Ishai et al. defined multiset batch codes to facilitate
parallel item retrieval by multiple users. In this distributed
setup, we allow each user to download directly from the
servers, but each server can only serve the request of at most
one user. Furthermore, Ishai et al. assume that there are k users
who each requests a data item. Hence, the total request is a
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multiset of k items, or simply, a k-tuple (see Figure 1(a)–(c)).
Since the seminal work of Ishai et al. and recent interest in
coding for distributed data storage, there has been extensive
study on the fundamental limits and constructions of batch and
multiset batch codes [1], [12], [15], [22], [26]–[28].

In this paper, we study replication-based batch codes,
where each server stores a subset of data items and
decoding simply means reading items from servers (see
Figure 1(d) and (e)). While replication-based batch codes
were introduced by Ishai et al. [15], these codes were
systematically studied by Paterson et al. later in [21]. In the
latter paper, these codes were called combinatorial batch code
(CBC) and Paterson et al. studied the fundamental objective
of minimizing storage, i.e. the total number of items (counting
all replicates) stored in all the servers, for fixed values of
n, k and m.

A large amount of research has been done on CBCs after
the primary work of Paterson et al. [2], [4], [7]–[11], [16],
[18], [23]–[25], [29]. In particular, one special class, called
uniform CBC defined in [21], is a CBC in which each item
is stored in exactly the same number of servers (see also
[2], [4], [11], [21], [25]). Later, to address availability issues
in distributed storage systems, Silberstein [23] introduced
the notion of erasure CBCs and these erasure CBCs were
also studied in [16], [18]. There are also other applications
of combinatorial batch codes. For example, the connection
between fractional repetition codes and combinatorial batch
codes was established in [24], where the authors demonstrate
that fractional repetition batch codes facilitate uncoded
efficient exact repairs and load balancing in distributed
storage system simultaneously. More recently, CBCs were
used to construct efficient multi-point function secret sharing
schemes [5] and design recovery schemes with performance
guarantees in network middleboxes [19].

In the same spirit as multiset batch codes, Zhang et al.
generalised the concept of CBCs to that of multiset CBCs
(MCBCs) [29]. Here, we require that any multiset request can
be retrieved as long as each item appears at most r times for
some nonnegative integer r. Similar to CBCs, a fundamental
problem in the study on MCBCs is to minimize the total
storage N , given the requirements on the number of data items
n, request size k, number of servers m, and the maximum
multiplicity r of any request. In particular, when r = 1,
the MCBC is simply a CBC. Readers may refer to [29] for a
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Fig. 1. Batch codes and its variants. (a) In all definitions, we are interested in designing the encoding functions Ej(x) ∈ Σ∗ for the string x over an
alphabet Σ, so as to distribute the storage of the n data items on Server j for j ∈ [m]. (b) and (c) Original definitions of batch codes and multiset batch
codes provided by Ishai et al. [15]. (d) Combinatorial batch codes (CBCs), or replication-based batch codes. (e) Multiset combinatorial batch codes (MCBCs).
Notice that as described in Definition 2, Cj is composed of all the indices of data items stored in Ej(x) for j ∈ [m] in (d) and (e).

summary of parameters about CBCs and MCBCs for which the
exact values of minimum total storage have been determined.

In this work, we continue the investigation for MCBCs.
Specifically, we introduce a new technique1, linear program-
ming, to provide new lower bounds on the minimum total
storage of the MCBCs. Using certain necessary conditions,
we formulate integer linear programming problems so that
the optimal solutions provide lower bounds to our quantity
of interest. In particular, we provide an alternative proof
of the lower bounds in previous work [4], [29] by solving
the linear programming problem. Later, we also introduce

1Our techniques are applicable to other variants of CBCs and MCBCs and
we defer this investigation to future work.

additional constraints which are imposed from the definitions
of MCBCs. In this case, we not only improve the known lower
bound, but also determine the optimal values in certain cases
that cannot be determined in previous work, especially when
r ∈ {1, k/2, k − 2}. Finally, we focus on a specific set of
parameters (k, r) = (6, 3) and formulate a linear program as
in previous cases. A stronger lower bound is obtained and con-
structions of codes reaching this bound exactly or asymptoti-
cally are given. To conclude, we remark that our lower bounds
and code constructions rely on known results of optimal
constant weight codes. The class of constant weight codes is a
fundamental well-studied combinatorial object in coding the-
ory and these codes have been widely used in digital communi-
cation systems (see [6], [14], [17] and the references therein).
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II. PRELIMINARIES

In this section, we formally introduce the background,
definitions and a brief summary of known results. Given
integers m < n, we use [m, n] to denote the set of integers
{m, m + 1, . . . , n} and [n] to denote the set [1, n].

A. Background and Definitions

Suppose that a database is partitioned into n data items
x1, x2, . . . , xn. Batch codes and multiset batch codes were
introduced in [15] as a means to represent systems that dis-
tribute these n data items on m servers. The formal definitions
are as follows.

Definition 1:

(i) An (n, N, k, m, t) batch code over an alphabet Σ,
encodes a string x ∈ Σn into an m-tuple of strings
E1(x), . . . , Em(x) ∈ Σ∗ (called buckets or servers) of
total length N , such that for each k-tuple (called batch
or request) of distinct indices i1, . . . , ik ∈ [n], the k data
items xi1 , . . . , xik

can be decoded by reading at most t
symbols from each server.

(ii) An (n, N, k, m, t) multiset batch code is an
(n, N, k, m, t) batch code which also satisfies the
following property: for any multiset request of k indices
i1, . . . , ik ∈ [n] there is a partition of the servers
into k subsets S1, . . . , Sk ⊆ [m] such that each item
xij , j ∈ [k], can be retrieved by reading at most t
symbols from each bucket in Sj .

As mentioned in the former section, an MCBC simply
distributes the physical items of the database into the servers.
For convenience, we only list the indices of data items storing
in each server, which is a subset of [n].

Definition 2: An (n, N, k, m; r) multiset combinatorial
batch code (MCBC) is a set system 2 ([n], C), where the
following hold.

(i) C is a collection of m blocks Cj , j ∈ X with∑
j∈X |Cj | = N . We refer to each block Cj as a server

and so, Cj comprises the indices of all items stored in
the corresponding server. Here, X is the index set for
the servers and |X | = m. In this paper, unless otherwise
state, the index set X is always [m].

(ii) For every multiset request {i1, i2, . . . , ik} where each
element has multiplicity at most r, we can find distinct
blocks C�j such that ij ∈ C�j for all j ∈ [k].

When r = 1, an (n, N, k, m; r)-MCBC is simply a CBC.
Note that in the setting of MCBC, it suffices to consider the
case where each user reads or accesses only one item in a
server. This is because in a replication-based batch code, all
stored items are replicates of the original n data items. Since
each user only requests one item, there is no incentive for a
user to download more than one replicate. However, for CBCs,
we may allow the user to read more than one symbol from each
server and in this case, there are gains due to space savings.
Interested readers may refer to [10] for more details.

2A set system refers to a pair (V, C), where V is a set of points and C is
a collection of subsets of V called blocks.

Finally, to avoid triviality, we always assume r ≤ k ≤ m
throughout the paper.

Example 3: Let n = 31 and m = 12. We distribute the
data items x1, x2, . . . , x31 across 12 servers according to the
set system described in Figure 2. For example, Server 1 stores
the replicates x1, x5, x8, x11, x14, x17, x20, x23, x26, and x31.

Here, ([31], {Ci : i ∈ [12]}) forms a set system for a
(31, 120, 6, 12; 3)-MCBC. In other words, for any multiset
request of length six and multiplicity at most three, we are
able to contact six distinct servers to retrieve the request.

For example, if six users request for items x1, x1, x1, x2, x2,
and x2, respectively, one for each user, then they may access
Servers of indices 1, 5, 9, 2, 6, and 10, respectively, to retrieve
their items in parallel. Also, if they request for items x5, x5,
x5, x8, x8, and x8, respectively, then they may access Servers
of indices 1, 3, 4, 2, 7, and 8, respectively, to retrieve their
items.

In this example, since every server stores exactly ten
items, we have that the total storage N is 120. The results
in this paper will demonstrate that N = 120 is indeed
optimal. �

B. Previous Results

Following the primary work of Paterson et al. [21], a signifi-
cant amount of work has been done to determine the minimum
total storage N of an MCBC given the other parameters n, k,
m and r (see Zhang et al. [29] for a survey).

In particular, let N(n, k, m; r) denote the smallest N such
that an (n, N, k, m; r)-MCBC exists, and set N(n, k, m) =
N(n, k, m; 1) as in [21]. The MCBC with N = N(n, k, m; r)
is said to be optimal. Naturally, for fixed n, k, r, we define
an (n, N, k, m; r)-MCBC is asymptotically optimal if N −
N(n, k, m; r) = o(N(n, k, m; r)) with respect to m.

Exact values of N(n, k, m) have been established for the
following parameters.

(i) n ≥ (
m

k−2

)
(see [4], [8], [21]).

(ii) k ∈ {2, 3, 4} (see [9], [21]).
(iii) n ∈ {m + 1, m + 2} (see [7], [9], [21]).
(iv) m = k (see [15], [21]).
(v)

(
m

k−2

) − (m − k + 1)A(m, 4, k − 3) ≤ n ≤ (
m

k−2

)
(see [4]).

For MCBCs with r > 1, the values of N(n, k, m; r) have been
determined when r ≥ k − 1 for all n; and when r ≤ k − 2
and n ≥ ⌊

k−1
r

⌋ (
m

k−1

) − (m − k + 1)A(m, 4, k − 2). Other
adhoc results are given in [29]. Here, A(n, d, w) refers to
the maximum size of a binary constant-weight code of length
n and minimum Hamming distance at least d, where every
codeword has weight exactly w. For more details about the
state-of-the-art of binary constant-weight codes, please refer
to [6], [14], [17].

So far, the exact value of N(n, k, m; r) remains open for
most cases when r ≤ k−2 and n <

⌊
k−1

r

⌋ (
m

k−1

)− (m−k +
1)A(m, 4, k − 2). Thus, this motivates us to study the possi-
bility of improving known lower bounds of N(n, k, m; r).

The following lower bound is due to
Zhang et al. [29].
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Fig. 2. The set system of a (31, 120, 6, 12; 3)-MCBC and its corresponding dual set system.

Theorem 4 (Zhang et al. [29, Theorem 7]): Let r ≤ k − 1.
For any r ≤ c ≤ k − 1,

N(n, k, m; r) ≥ nc −
⌊

k − c

m − k + 1

(⌊
k−1

r

⌋ (
m
c

)(
k−1

c

) − n

)⌋
.

(1)

We remark that the proof of Theorem 4 is based on
Lemma 3.2 in Bhattacharya et al. [4], and indeed when r = 1,
Theorem 4 reduces to the latter one. For the convenience of
comparison with the proof in this paper, we give the proof
sketch of Theorem 4 in the appendix. In this paper, we formu-
late an integer linear program whose solutions provide lower
bounds on N(n, k, m; r). In the following sections, we intro-
duce related results in this area to provide our constraints for
the linear program.

C. Multiset Hall’s Conditions

To formulate our linear constraints, we follow
Zhang et al. [29] and consider the dual set system of
an MCBC. Specifically, given a set system (V, C) with
V = [n] and C = {Cj : j ∈ X}, its dual set system is (X, B),
where B = {B1, B2, . . . , Bn} with Bj = {i ∈ X : j ∈ Ci}.
In other words, Bj consists of the indices of servers that
store the j-th item. The following theorem characterizes the
dual set system of an MCBC.

Theorem 5 (Zhang et al. [29]): The set system (V, C) is
an (n, N, k, m; r)-MCBC if and only if its dual set system

(X, B) satisfies the following multiset Hall’s condition: for
all h ∈ [�k

r �], any h distinct blocks Bi1 , Bi2 , . . . , Bih
∈ B,

we have |⋃j∈[h] Bij | ≥ min{hr, k}.
Example 6: The dual set system for the (31, 120, 6, 12; 3)-

MCBC is given in Figure 2. We check for example that the
indices of servers that contain the item x1 are 1, 5, and 9, and
thus B1 = {1, 5, 9}.

According to Theorem 5, any two blocks in the dual set
system contain at least six distinct points. For example, B1 ∪
B2 = {1, 2, 5, 6, 9, 10} and B5∪B8 = {1, 2, 3, 4, 7, 8}. In fact,
the six distinct points correspond to the six distinct servers that
the users contact. �

For the dual set system (X, B), let xi be the number of
blocks in B of size i for any i > 0. Note that for i < r,
we must have xi = 0 since every item is contained in
at least r different servers in an (n, N, k, m; r)-MCBC [29,
Lemma 1(i)]. As pointed in [21], for an optimal MCBC,
we may assume that xi = 0 for i ≥ k + 1 since for any block
of size larger than k, we can reduce the block to k points
and the multiset Hall’s condition is still satisfied. We state the
following simple properties without proof.

Proposition 7: For a set system (X, B), the multiset Hall’s
condition is equivalent to any of the following:

(i) |⋂j∈[h] Bij | ≤ m−min{hr, k} for any Bij ∈ B, where
B is the complement of B in X ;

(ii) any (m − min{hr, k} + 1)-subset of X is contained in
at most h − 1 blocks in B, where B = {B : B ∈ B}.
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Thus, by counting the occurrence of (m−min{hr, k}+1)-
subsets in B, we have for any h ∈ [�k

r �]:
�

i∈[r,k−1]

�
m − i

m−min{hr, k}+1

�
xi≤ (h − 1)

�
m

m−min{hr, k}+1

�
.

(2)

Especially, when h = �k
r � = 	k−1

r 
 + 1, we have∑
i∈[r,k−1]

(
m − i

k − 1 − i

)
xi ≤

⌊
k − 1

r

⌋(
m

k − 1

)
. (3)

Remark 8: Inequality (3) was in [29, Lemma 3]. Here,
we provide a different proof that may be more intuitive.
Furthermore, as in [4, Lemma 2.1], it can be proved that in
(2), the inequality for h implies the inequality for h−1 for any
h ∈ [2, �k

r �]. In other words, it suffices to impose the constraint
given by (3) in our linear program. We will show that by
solving the linear programming problem with this constraint
we are able to provide a new proof of Theorem 4.

D. Uniform MCBCs

The uniform CBCs were introduced as a special class of
CBCs by Paterson et al. in [21]. In this subsection, we gen-
eralize the notion of uniform CBCs to uniform MCBCs. In
Section IV, uniform MCBCs play a key role in improving
Theorem 4. Specifically, uniform MCBCs impose additional
constraints in our optimization problem and hence, improves
the corresponding lower bounds.

An (n, N, k, m; r)-MCBC is a c-uniform (n, cn, k, m; r)-
MCBC if each item is stored in exactly c servers. In other
words, in its dual set system (X, B), we have |B| = c for any
B ∈ B. We denote the maximum n for which there exists a c-
uniform (n, cn, k, m; r)-MCBC by nc(k, m; r), and abbreviate
it to nc if there is no confusion.

It follows from Proposition 7 (or proceeding in a similar
manner as the proof for uniform CBCs in [21, Theorem 3.1]),
we obtain the following inequality:

nc(k, m; r) ≤
⌊

k−1
r

⌋ (
m

k−1

)(
m−c

k−1−c

) =

⌊
k−1

r

⌋ (
m
c

)(
k−1

c

) . (4)

We derive the following Johnson-type bound for
nc(k, m; r).

Theorem 9: nc(k, m; r) ≤
⌊

m
m−cnc(k, m − 1; r)

⌋
.

Proof: Suppose the dual set system of (X = [m], B)
is a c-uniform (n, cn, k, m; r)-MCBC with n = nc(k, m; r).
By the pigeonhole principle, there must exist some i′ ∈ [m],
such that it is not contained in at least (m−c)n/m blocks of B.

Now, we define a new set system in which the points are
obtained by removing i′ from X , and the block set consists
of all the blocks in B that are not containing i′, that is,
(X ′ = [m] \ {i′}, B′ = {B ∈ B : i′ �∈ B}). By checking the
multiset Hall’s condition in Theorem 5, we obtain that: the
dual set system of (X ′, B′) is a c-uniform (n′, cn′, k, m−1; r)-
MCBC for some n′ ≤ n. Obviously, n′ ≤ nc(k, m − 1; r).

Finally, by the statements above, we have

(m−c)nc(k, m; r)/m = (m−c)n/m ≤ n′ ≤ nc(k, m−1; r),

and the desired inequation holds since nc(k, m; r) should be
an integer.

When r = 1, the values of nc(k, m; 1) have been studied in
[2], [4], [11], [21], [25]. It was proved that nk−1(k, m; 1) =
(k − 1)

(
m

k−1

)
and nk−2(k, m; 1) =

(
m

k−2

)
[21]. The value

of n2(k, m; 1) was determined asymptotically in [2], [21],
while for general c, the asymptotic behaviour of nc(k, m; 1)
was studied in [2], [4], [21]. A few constructions of optimal
uniform CBCs from affine planes and transversal designs were
also given in [25]. When r > 1, the value of nc(k, m; r) was
not studied before, but Theorem 5 implies that

nc(k, m; r) = A(m, 2(k − c), c) when r ≥ k

2
. (5)

E. Main Contributions and Organizations

In this paper, we formulate integer linear programs so that
the optimal solutions provide lower bounds of N(n, k, m; r).
Our first set of linear constraints from multiset Hall’s condition
yields a new proof of Theorem 4 in Section III.

In Section IV, we derive additional constraints from the
uniform MCBCs that are naturally imposed on the prob-
lem for the optimization, and obtain new lower bounds of
N(n, k, m; r). In particular, we demonstrate the following
theorem and analyze the cases where Theorem 10 improves
Theorem 4.

Theorem 10: Let nc(k, m; r) be the maximum n such that
a c-uniform (n, cn, k, m; r)-MCBC exists as defined. Then

N(n, k, m; r) ≥ n(r + 1) − nr(k, m; r). (6)

Also, for c ∈ [r + 1, k − 2], we have that N(n, k, m; r) ≥
nk − 	Z
, where

Z =
�

k−1
r

� �
m

k−1

�
�

m−c
k−c

� · 2(m − c)(m − k + 1)

(m − c + 1)(m − c) − (k − c)(k − c − 1)

+n

�
k − c − (m − c + 1)(m − c) + (k − c)(k − c − 1)

(m − c + 1)(m − c) − (k − c)(k − c − 1)

	

+nc(k, m; r)
(m − k + 1)(m − k)

(m − c + 1)(m − c) − (k − c)(k − c − 1)
. (7)

Using the new set of lower bounds, we provide constructions
and determine the exact values of N(n, 2r, r(r + 1); r)
for n ∈ [r + 1, 2r + 1] and N(n, k, m; k − 2) for
n ∈ [A(m, 4, k − 2),

(
m

k−1

) − (m − k + 1)A(m, 4, k − 2)] in
Section IV. Thus, combining the results in [29], the value of
N(n, k, m; k − 2) is completely determined. When r = 1,
we also analyse the improvement on the lower bounds of
N(m(m − 1)/(k − 2), k, m).

Finally, in Section V, we focus on the special case (k, r) =
(6, 3), and formulate a linear program as in the former
sections. A lower bound and detailed constructions of codes
reaching this bound exactly or asymptotically are both given.
In particular, when m ≡ 0 (mod 6), we determine the value
of N(n, 6, m; 3) exactly or asymptotically for all n.

We conclude with some open problems in Section VI.

III. LINEAR PROGRAMMING WITH THE FIRST

SETS OF CONSTRAINTS

In this section, we formulate an integer linear program so
that its optimal value yields a lower bound for N(n, k, m; r).
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We then solve its linear relaxation and hence, obtain a new
proof of Theorem 4.

Let xi be the number of blocks of size i in the dual set
system (X, B) of an (n, N, k, m; r)-MCBC. Now, observe that∑

i∈[r,k] xi yields the number of n, while
∑

i∈[r,k] ixi yields
the total storage N . In other words, we have

xk = n −
∑

i∈[r,k−1]

xi,

and
N =

∑
i∈[r,k]

ixi = kn −
∑

i∈[r,k−1]

(k − i)xi .

Therefore, minimizing N is equivalent to maximizing the
quantity

∑
i∈[r,k−1](k − i)xi, and we are ready to state our

optimization problem.

Let A be the following 2 × (k − r)-matrix

A =
[( m−r

k−1−r

) (
m−r−1
k−2−r

) · · · 1
1 1 · · · 1

]
, (8)

c = (k − r, k − r − 1, . . . , 1), b = (	(k − 1)/r
 ( m
k−1

)
, n)T

and x = (xr , xr+1, . . . , xk−1)T .

Let ξ be the optimal value given by

ξ � max{cx : Ax ≤ b, xi ∈ Z≥0 for i ∈ [r, k − 1]}. (9)

Following our discussion, we have that N(n, k, m; r) ≥
kn− ξ. Nevertheless, it is not easy to solve this integer linear
program. Hence, we relax the integer constraint and consider
its linear programming (LP) relaxation. Specifically, set

ξ∗ � max{cx : Ax ≤ b, xi ≥ 0 for i ∈ [r, k − 1]}, (10)

and it follows that ξ ≤ ξ∗. Applying the strong duality of
linear programming (see Chvatal [13]), ξ∗ can be computed
via its dual problem.

ξ∗ = min{yb : yA ≥ c, y = (y1, y2) ≥ 0}. (11)

Therefore, we have the following lower bound

N(n, k, m; r) ≥ kn − 	ξ∗
 . (12)

It is obvious that any feasible solution y of the dual problem
(11) provides an upper bound yb for the primal problem
(10). Actually, in the remaining of this section, we solve the
dual problem (11) that involves only two variables. In fact,
the feasible region, i.e. {y : yA ≥ c, y ≥ 0}, can be described
as in the following lemma. Since the proof only relies on
tedious computation, we omit its technical detail here.

Proposition 11: For i ∈ [r, k − 1], set the line Li � {y :
y2 +

(
m−i

k−1−i

)
y1 = k − i}. Then the following are true.

(i) The feasible region {y : yA ≥ c, y ≥ 0} is bounded by
Li, i ∈ [r, k − 1] and the y1-, y2-axes.

(ii) The gradient of Li is −( m−i
k−1−i

)
. The gradients are

negative and increase with i.
(iii) The vertices of the region are given by (1, 0), (0, k− r)

and (1/
(
m−i
k−i

)
, k−i−(k−i)/(m−k+1)), the intersection

point of Li−1 and Li for i ∈ [r + 1, k − 1].

Fig. 3. Feasible region when n = 20, k = 5, m = 10 and r = 2.

(iv) Furthermore, the intersection point of Li−1 and Li+1 for
i ∈ [r + 1, k − 2] lies below Li when m > k, and on Li

when m = k.

Figure 3 displays a feasible region when k = 5 and r = 2.
Therefore, by analysing the gradients, we compute the

optimal solutions of (11). Recall that the objective function
is given by

⌊
k−1

r

⌋ (
m

k−1

)
y1 + ny2. We summarize the optimal

solutions and their corresponding objective values in Table I.
Therefore, since the optimal objective value ξ in (9) is at

most ξ∗, and ξ is an integer, we have the following theorem.
Theorem 12: N(n, k, m; r) ≥ Ξ, where

Ξ �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

nr, when n ≤ ⌊
k−1

r

⌋ (m
r )

(k−1
r ) ;⌈(

c + k−c
m−k+1

)
n − 	 k−1

r 
( m
k−1)

(m−c
k−c)

⌉
,

when
	k−1

r 
( m
c−1)

(k−1
c−1)

< n ≤ 	k−1
r 
(m

c )
(k−1

c ) , c ∈ [r+1, k−1];

kn − ⌊
k−1

r

⌋ (
m

k−1

)
, when n ≥ ⌊

k−1
r

⌋ (
m

k−1

)
.

Remark 13: Notice that we recover Theorem 4 when c ∈
[r + 1, k − 1], i.e.,

⌊
k−1

r

⌋ (
m
r

)
/
(
k−1

r

)
< n ≤ ⌊

k−1
r

⌋ (
m

k−1

)
,

while it also yields a new proof of Theorem 4. Actually, when
n ≤ ⌊

k−1
r

⌋ (
m
r

)
/
(
k−1

r

)
and n ≥ ⌊

k−1
r

⌋ (
m

k−1

)
, the correspond-

ing lower bounds can also be obtained from [29, Theorem 2
(i)] and [21, Theorem 2.9] respectively.

In the next section, we provide a new lower bound of
N(n, k, m; r) by adding some constraints to the optimization
problem (9) and thus obtain an improvement of Theorem 12.
Before that, we show an example.

Example 14: When (n, k, m; r) = (31, 6, 12; 3), the integer
optimization problem (9) is given by

max 3x3 + 2x4 + x5

subject to 36 x3 + 8 x4 + x5 ≤ 792,

x3 + x4 + x5 ≤ 31,

x3, x4, x5 ∈ Z≥0.
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TABLE I

SOLUTION FOR THE DUAL PROBLEM (11)

Solving the dual of its linear relaxation (11) yields ξ∗ ≈
81.429 (here, the solution corresponds to c = 4 in Table I).
Hence, we have that N(31, 6, 12; 3) ≥ 6(31) − 81 = 105. �

IV. IMPROVED LOWER BOUNDS WITH CONSTRAINTS

FROM UNIFORM MCBCS

In the former section, we formulate an integer linear pro-
gram utilizing the constraints derived from the multiset Hall’s
condition. In this section, we derive new constraints that are
imposed from definitions of the uniform MCBCs. We provide
certain sufficient conditions where a solution to the new ILP
problem is optimal and hence, obtain some new lower bounds
and exact values of N(n, k, m; r). Recall that we use nc to
abbreviate nc(k, m; r) for some fixed k, m, and r whenever
there is no confusion.

A. Linear Programming With the Second Sets of Constraints

Given the dual set system (X, B) of an (n, N, k, m; r)-
MCBC, recall that xi counts the number of blocks of size i.
Clearly, these blocks form the dual set system of an i-uniform
(xi, ixi, k, m; r)-MCBC. Therefore, we have the following
additional constraints

xi ≤ ni(k, m; r) for i ∈ [r, k − 1]. (13)

Therefore, we reformulate our optimization program as
such. Let A, x, c be as defined before. Set

A′ =
[

A
Ik−r

]
,

b′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

	(k − 1)/r
 ( m
k−1

)
n
nr

nr+1

...
nk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Let ζ be the optimal value given by

ζ � max{cx : A′x ≤ b′, xi ∈ Z≥0 for i ∈ [r, k − 1]}. (14)

As before, we consider the LP relaxation of (14) and its
corresponding dual

ζ∗ � max{cx : A′x ≤ b′, xi ≥ 0 for i ∈ [r, k − 1]} (15)

= min{zb′ : zA′ ≥ c, z = (y1, y2, zr, . . . , zk−1) ≥ 0}.
(16)

We have the following chain of inequalities

N(n, k, m; r) ≥ kn − 	ζ∗
 ≥ kn − 	ξ∗
 . (17)

Example 15: When (n, k, m; r) = (31, 6, 12; 3), the integer
optimization problem (14) is given by

max 3x3 + 2x4 + x5

subject to 36 x3 + 8 x4 + x5 ≤ 792,

x3 + x4 + x5 ≤ 31,

x3 ≤ 4,

x4 ≤ 51,

x5 ≤ 792,

x3, x4, x5 ∈ Z≥0.

(See (20) for the values of ni for i ∈ {3, 4, 5}.) Solving
the dual of its linear relaxation (16) yields ζ∗ = 66. Hence,
N(31, 6, 12; 3) ≥ 6 × 31 − 66 = 120. Now, since we
have a (31, 120, 6, 12; 3)-MCBC in Figure 2, we have that
N(31, 6, 12; 3) = 120 and that the optimal solution ζ of (14)
is 66. �

Instead of providing a closed formula for ζ∗, we propose a
few feasible solutions for the dual problem (16) and demon-
strate that these solutions are optimal under certain conditions.

To demonstrate the optimality, we appeal to the notion of
optimality certificates.

Definition 16: A pair (x∗, z∗) is an optimality certificate for
(15) and (16) if the following hold. Here, x∗ and z∗ are some
specific assignment of x and z.

(i) x∗ is feasible solution for the primal problem (15).
(ii) z∗ is feasible solution for the dual problem (16).

(iii) The corresponding objective values are the same. In other
words, cx∗ = z∗b′.

Given an optimality certificate, it is then straightforward to
obtain the optimal value ζ∗.

Proposition 17 (See Chvatal [13]): If (x∗, z∗) is an opti-
mality certificate for (15) and (16), then ζ∗ = cx∗ = z∗b′.

B. The First Set of Feasible Solutions

Proposition 18: Set y∗
2 = k − r − 1, z∗r = 1, and

y∗
1 = z∗r+1 = z∗r+2 = · · · = z∗k−1 = 0. Then z∗ =

(y∗
1 , y∗

2 , z∗r , . . . , z∗k−1) is a feasible solution for (16) and so,
ζ∗ ≤ n(k − r − 1) + nr.
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Furthermore, whenever

nr≤n≤min

{⌊
k−1

r

⌋ (
m

k−1

)(
m−r−1
k−r−2

) − (m − k + 1)nr

k − r − 1
, nr + nr+1

}
,

(18)

the solution z∗ is also optimal and we have that

ζ∗ = n(k − r − 1) + nr.

Proof: It is straightforward to verify that z∗A′ ≥ c and
hence, z∗ is feasible.

To show that z∗ is optimal, we then produce an optimality
certificate. Let x∗

r = nr, x∗
r+1 = n − nr, and x∗

j = 0 for j ∈
[r+2, k−1]. Then (18) implies that A′x∗ ≤ b′. In other words,
x∗ is a feasible solution for (15). It is also straightforward to
verify that cx∗ = z∗b′.

Therefore, (x∗, z∗) is an optimality certificate and the value
of ζ∗ follows from Proposition 17.

The bound (6) in Theorem 10 is therefore immediate from
Proposition 18. In what follows, we construct MCBCs whose
size attains the lower bound (6). In other words, we show that
the lower bound (6) is in fact tight in some cases.

Construction A: For any r ≥ 1, let k = 2r, m = r(r + 1),
and r + 1 ≤ n ≤ 2r + 1. In this case, we have nr(2r, r(r +
1); r) = A(r(r + 1), 2r, r) by (5). Since it is well known that
A(m, 2w, w) = 	m/w
, we have nr(2r, r(r + 1); r) = r + 1.
Set X = [r + 1] × [r] and

Br � {{i} × [r] : i ∈ [r + 1]},
Br+1 � {[r + 1] × {j} : j ∈ [r]}.

Observe that Br is a collection of r + 1 disjoint blocks of
size r, while Br+1 is a collection of r disjoint blocks of size
r + 1. Also, any block in Br intersects with any block in
Br+1 at most one point. Let B be a collection of blocks from
Br and any n − r − 1 blocks from Br+1. By Theorem 5,
we have that the dual set system of (X, B) is an (n, (n −
1)(r + 1), 2r, r(r + 1); r)-MCBC. Therefore, it follows from
(6) that when n ∈ [r + 1, 2r + 1]

N(n, 2r, r(r + 1); r) = (n − 1)(r + 1).

Hence, Theorem 10 yields the exact value in some cases.
Note that, in Construction A, the blocks of size r + 1 need
not be disjoint. Thus, the choice of more blocks of size r + 1
is possible, which leads to larger n that reaches the bound.
We will see this from the construction for (k, r) = (6, 3) in
Section V.

Next, we consider the case for r = k − 2. The previous
bound in Theorem 12 states that

N(n, k, m; k − 2) ≥

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(k − 2)n, when n ≤ 1
k−1

(
m

k−2

)
;

(k − 1)n −
⌊

( m
k−1)−n

m−k+1

⌋
,

when 1
k−1

(
m

k−2

)
< n ≤ (

m
k−1

)
;

kn − (
m

k−1

)
, when n ≥ (

m
k−1

)
.

In [29], codes attaining this bound were constructed when
n ≤ A(m, 4, k− 2) and n ≥ (

m
k−1

)− (m− k + 1)A(m, 4, k−
2). Hence, the exact value of N(n, k, m; k − 2) has been

determined for this range and thus, it remains to consider the
range A(m, 4, k−2) < n <

(
m

k−1

)−(m−k+1)A(m, 4, k−2).
Now, in this range, the proof of Proposition 18 states that

the optimization problem (15) attains maximum when x∗
k−2 =

nk−2 and x∗
k−1 = n − nk−2. Hence, this hints that if the

bound in Proposition 18 is attained, then the dual set system
comprises blocks of size k − 2 and k − 1 only. Furthermore,
of these n blocks, exactly nk−2 = A(m, 4, k−2) blocks are of
size k−2. Now, a natural choice is to pick these nk−2 blocks
to correspond to blocks in the dual set system of an optimal
(k−2)-uniform (nk−2, (k−2)nk−2, k, m; k−2)-MCBC. Then
we proceed to augment the set system with blocks of size
k−1 so that the multiset Hall’s condition (Theorem 5) is met.
It turns out that this is always possible in our range of interest.

Construction B: Assume nk−2 ≤ n ≤ (
m

k−1

) − (m − k +
1)nk−2. Set X = [m] and

Bk−2 � blocks of the dual set system of an optimal

(k−2)-uniform (nk−2, (k − 2)nk−2, k, m; k−2)-MCBC,

Bk−1 � {B ⊂ X : |B| = k − 1, B �⊃ B′ for B′ ∈ Bk−2}.
So, the size of Bk−2 is nk−2, while the size of Bk−1 is

(
m

k−1

)−
(m− k + 2)nk−2. Moreover, the union of any block in Bk−2

with any block in Bk−1 contains at least k points. Let B be a
collection of all blocks from Bk−2 and any n − nk−2 blocks
from Bk−1. By Theorem 5, we have that the dual set system
of (X, B) is an (n, n(k − 1) − nk−2, k, m; k − 2)-MCBC.
Therefore, it follows from (6) that in this case

N(n, k, m; k − 2) = n(k − 1) − nk−2.

Thus, combining the results in [29], the exact value of
N(n, k, m; k − 2) is determined for all values of n in
Theorem 19, shown at the bottom of the next page.

C. The Second Set of Feasible Solutions

Proposition 20: For c ∈ [r+1, k−2], consider the following
3 × 3-submatrix M of A′,

M =

⎡⎣(m−c+1
k−c

) (
m−c

k−c−1

) (
m−c−1
k−c−2

)
1 1 1
0 1 0

⎤⎦ .

Set z∗j = 0 for j �= c and let y∗
1 , y∗

2 and z∗c be the unique
solution of

(y∗
1 , y∗

2 , z∗c )M = (k − c + 1, k − c, k − c − 1).

Then z∗ = (y∗
1 , y∗

2 , z
∗
r , . . . , z∗k−1) is a feasible solution for

(16).
Furthermore, let x∗

c−1, x∗
c and x∗

c+1 be the unique solution
of

M

⎡⎣x∗
c−1

x∗
c

x∗
c+1

⎤⎦ =

⎡⎣⌊k−1
r

⌋ (
m

k−1

)
n
nc

⎤⎦
If 0 ≤ x∗

c−1 ≤ nc−1 and 0 ≤ x∗
c+1 ≤ nc+1, then z∗ is optimal.

Proof: We use the observations in Proposition 11 to
provide a lower bound for z∗A′. By definition, the point
(y∗

1 , y∗
2) is the intersection of the two lines Lc−1 and Lc+1. It

follows from Proposition 11 that the point (y∗
1 , y∗

2) lies above
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the line Li for i ∈ [c − 2] and for i ∈ [c + 2, k − 1], but not
above the line Lc. In other words,

y∗
1

(
m − i

k − 1 − i

)
+ y∗

2 ≥ k − i for i �= c,

and

y∗
1

(
m − c

k − 1 − c

)
+ y∗

2 ≤ k − c. (19)

Furthermore when i = c, the i-th entry of z∗A′ is given by
y∗
1

(
m−c

k−1−c

)
+ y∗

2 + z∗c = k − c. Therefore, z∗A′ ≥ c holds
as desired. By the property of intersection point, y∗

1 ≥ 0 and
y∗
2 ≥ 0, and by (19) z∗c ≥ 0, and thus z∗ ≥ 0 also holds.

When 0 ≤ x∗
c−1 ≤ nc−1 and 0 ≤ x∗

c+1 ≤ nc+1,
we construct an optimality certificate. In addition to x∗

c−1,
x∗

c and x∗
c+1, we set x∗

j = 0 when j /∈ [c − 1, c + 1]. Then
it is straightforward to verify that A′x∗ ≤ b′ and so, x∗ is
feasible.

Finally, it remains to show cx∗ = z∗b′. Indeed, following
standard manipulations,

z∗b′ = (y∗
1 , y∗

2 , z∗c )

⎡⎣⌊k−1
r

⌋ (
m

k−1

)
n
nc

⎤⎦
= (y∗

1 , y∗
2 , z∗c )M

⎡⎣x∗
c−1

x∗
c

x∗
c+1

⎤⎦
= (k − c + 1, k − c, k − c − 1)

⎡⎣x∗
c−1

x∗
c

x∗
c+1

⎤⎦ = cx∗.

Hence, z∗ is an optimal solution.
Solving for y∗

1 , y∗
2 and z∗c and with some algebraic manip-

ulations, we obtain (7) in Theorem 10. However, it is unclear
whether Theorem 10 provides a better bound as compared
to Theorem 4. Nevertheless, Proposition 20 provides the
conditions whereby (7) yields the value ζ∗. Since ζ∗ ≤ ξ∗,
we have that Theorem 10 is not worse than Theorem 4 in
these cases.

In the following example, we compare the two lower bounds
and show that Theorem 10 improves the lower bound by a
strictly positive quantity.

Example 21: Fix k ≥ 5 and r = 1. Let n = m(m−1)/(k−
2) = m2/(k − 2) + o(m2) and we study the lower bound for
N(n, k, m) as a function of m.

In this case, the optimal value ξ∗ in (11) is given by

ξ∗ =
(k − 1)

(
m

k−1

)(
m−2
k−2

) +
(

k − 2 − k − 2
m − k + 1

)
n

= m(m − 1) = m2 + o(m2).

Therefore, Theorem 4 implies that N(n, k, m) ≥
nk − m2 − o(m2).

In contrast, we estimate the quantity given by (7). Now,
Balachandran and Bhattacharya estimated n2(k, m; 1) as
follows [2, Theorems 4.1, 6.2, Corollary 6.4].

(i) n2(5, m; 1) =
⌊

m2

4

⌋
= m2

4 + o(m2).

(ii) For k ∈ {6, 7, 8}, n2(k, m; 1) = Θ
(
m3/2

)
= o(m2).

(iii) For k ≥ 9, n2(k, m; 1) = O
(
m1+1/�k/4�) = o(m2).

Setting c = 2 in (7), we have

Z = n(k − 3) + n2(k, m; 1) + o(m2)

=

{
11
12m2 + o(m2), for k = 5,
k−3
k−2m2 + o(m2), for k ≥ 6.

Since N(n, k, m) ≥ nk − 	Z
, we have that Theorem 10
improves the lower bound by a quantity of m2/12 + o(m2)
when k = 5 and m2/(k − 2) + o(m2) when k ≥ 6. �

Furthermore, when k = 5, the new lower bound can be
reached asymptotically.

Construction C: Let k = 5 and r = 1. For m ≥ 5, set
n = m(m − 1)/3 with m �≡ 2 (mod 3). Set X = [m], X1 =[
	m/2


]
, X2 =

[
	m/2
+ 1, m

]
, and

B2 � {{i, j} : i ∈ X1, j ∈ X2},
B3 � {|B| = 3 : B ⊆ X1 or B ⊆ X2}.

So, the size of B2 is
⌊
m2/4

⌋
and in fact, the dual

set system of (X = [m], B2) is an optimal 2-uniform
(
⌊
m2/4

⌋
, 2
⌊
m2/4

⌋
, 5, m)-CBC. Now, the size of B3 is(�m/2�

3

)
+
(�m/2	

3

)
, which is greater than n− ⌊

m2/4
⌋
. More-

over, the union of h blocks in B2∪B3 contains at least h points
for h ∈ [5]. Let B be a collection of all blocks from Bk−2 and
any n− ⌊

m2/4
⌋

blocks from Bk−1. By Theorem 5, we have
that the dual set sytem of (X, B) is an (n, N, 5, m)-CBC with
N = (3/4)m2 + o(m2).

Therefore, it follows from Example 21 that N(m(m −
1)/3, 5, m) = (3/4)m2 + o(m2).

Remark 22: To formulate the optimization program (15),
we need to provide estimates for nc(k, m; r). While it is not
clear on how we can constrain nc(k, m; r), we note that certain
constraints do not provide better results. Applying the bound
of nc(k, m; r) from (4) as a new constraint in (13) does not
yield a better lower bound for N(n, k, m; r). This is because
(4) is implied by (3), a constraint that is in the linear program
(10). Nevertheless, the Johnson-type bound and bounds from
constant weight codes may be applied to obtain better bounds,
as illustrated in this section and the next.

Theorem 19: Let k ≥ 4.

N(n, k, m; k − 2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(k − 2)n, if n ≤ A(m, 4, k − 2);
(k − 1)n − A(m, 4, k − 2), if A(m, 4, k − 2) ≤ n ≤ (

m
k−1

)− (m − k + 1)A(m, 4, k − 2);

(k − 1)n −
⌊

( m
k−1)−n

m−k+1

⌋
, if

(
m

k−1

)− (m − k + 1)A(m, 4, k − 2) ≤ n ≤ (
m

k−1

)
;

kn − (
m

k−1

)
, if n ≥ (

m
k−1

)
.
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V. THE CASE (k, r) = (6, 3)

In the previous section, we included constraints arising from
uniform MCBCs to improve the known lower bound, and
subsequently, obtain exact values in certain cases, especially
when r = k − 2. In this section, we study the next open
case where r = k − 3 and focus on the special instance
where (k, r) = (6, 3). Furthermore, for this set of parameters,
we show Construction A can be improved. We formulate an
LP problem as in the former sections, and also provide con-
structions reaching the lower bound of N(n, 6, m; 3) exactly
or asymptotically.

A. A Lower Bound of N (n, 6, m; 3)

Firstly, in this case (5) provides the following values of
nc(6, m; 3) for c ∈ {3, 4, 5}:

n3(6, m; 3) = A(m, 6, 3) =
⌊m

3

⌋
,

n4(6, m; 3) = A(m, 4, 4),

n5(6, m; 3) = A(m, 2, 5) =
(

m

5

)
,

(20)

where the value of A(m, 4, 4) was determined as below.
Lemma 23 (Bao and Ji [3]):

A(m, 4, 4) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m(m−1)(m−2)
24 , if m ≡ 2, 4 (mod 6);

m(m−1)(m−3)
24 , if m ≡ 1, 3 (mod 6);

m(m2−3m−6)
24 , if m ≡ 0 (mod 6);

m3−4m2+m−6
24 , if m ≡ 5 (mod 12);

m3−4m2+m−18
24 , if m ≡ 11 (mod 12).

To obtain a tighter bound, we also derive the following
constraint from the property of codes with this parameter.

Proposition 24: Let (X, B) be the dual set system of an
(n, N, 6, m; 3)-MCBC. For i ∈ {3, 4}, recall that xi is the
number of blocks in B of size i. Then

(3m − 8)x3 + 4x4 ≤
(

m

3

)
.

Proof: For i ∈ {3, 4}, let Bi ⊆ B comprise the blocks
of size i. By the multiset Hall’s condition in Theorem 5,
in an (n, N, 6, m; 3)-MCBC, any two blocks in B3 are disjoint;
any two blocks in B4 intersect at most two points; and any
block in B3 intersect in at most one point with any block
in B4.

For any B ∈ B3, let B̂ consist of all the 3-subsets of [m] in
which there are two elements from B and one element from
[m] \ B. Hence, |B̂| = 3(m − 3). Let B3

4 consist of all the
3-subsets of blocks in B4, and |B3

4| = 4x4. By the properties
stated in the former paragraph, we have that there exists no 3-
subset of [m] that appears twice in B3 ∪ {B̂ : B ∈ B3} ∪B3

4.
Thus, by counting the number of triples in [m], we get the
desired inequality.

Here, we explicitly state our optimization problem obtained
by taking the new constraint into account in (15).

max 3x3 + 2x4 + x5

subject to
(

m−3
2

)
x3 + (m − 4)x4 + x5 ≤ (

m
5

)
x3 + x4 + x5 ≤ n

x3 ≤ ⌊
m
3

⌋
x4 ≤ A(m, 4, 4)
x5 ≤ (

m
5

)
(3m − 8)x3 + 4x4 ≤ (

m
3

)
x3, x4, x5 ≥ 0

The corresponding dual problem is hence

min
(

m
5

)
y1 + ny2 +

⌊
m
3

⌋
z3 + A(m, 4, 4)z4

+
(
m
5

)
z5 +

(
m
3

)
w

subject to
(
m−3

2

)
y1 + y2 + z3 + (3m − 8)w ≥ 3
(m − 4)y1 + y2 + z4 + 4w ≥ 2

y1 + y2 + z5 ≥ 1
y1, y2, z3, z4, z5, w ≥ 0

(21)

By judiciously choosing certain feasible solutions of (21),
we obtain the following lower bound for N(n, 6, m; 3).

Theorem 25: Let m ≥ 6.

N(n, 6, m; 3) ≥ max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3n,

4n − �
m
3

�
,


12m−44
3m−12

n − �
m
3

�
1

3m−12

�
,


5n − 3m−16
3m−8

A(m, 4, 4) − 2
3m−8

�
m
3

��
,


5m−24
m−5

n − 1
m−5

�
m
5

��
,

6n − �
m
5

�
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Proof: The following six specific assignments gives fea-

sible solutions (y∗
1 , y∗

2 , z
∗
3 , z∗4 , z∗5 , w∗) of (21).

• y∗
2 = 3 and y∗

1 = z∗3 = z∗4 = z∗5 = w∗ = 0;
• y∗

2 = 2, z∗3 = 1 and y∗
1 = z∗4 = z∗5 = w∗ = 0;

• y∗
2 = 6m−28

3m−12 , w∗ = 1
3m−12 , and y∗

1 = z∗3 = z∗4 = z∗5 = 0;
• y∗

2 = 1, z∗4 = 3m−16
3m−8 , w∗ = 2

3m−8 , and y∗
1 = z∗3 = z∗5 =

0;
• y∗

1 = 1
m−5 , y∗

2 = m−6
m−5 , and z∗3 = z∗4 = z∗5 = w∗ = 0;

• y∗
1 = 1 and y∗

2 = z∗3 = z∗4 = z∗5 = w∗ = 0.

To obtain the above feasible solutions, we assign certain
variables to be zero, and certain constraints to be equalities3.
For example, assigning y∗

1 = z∗3 = z∗4 = z∗5 = 0, and
the first two constraints to be equalities, results in the third
one above. As in Section IV, if W is the objective value of
(21) obtained from one feasible solution, it then follows that
N(n, 6, m; 3) ≥ �6n − W �, and thus the desired bound is
obtained via straightforward calculations.

3In fact, these feasible solutions are known as basic solutions in linear
programming literature. We refer the interested reader to Chvatal [13] for
details.
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B. Constructions of the (n, N, 6, m; 3)-MCBC

First, we recall that the exact value of N(n, 6, m; 3) has
been determined for some specific ranges of n.

Lemma 26 (Zhang et al. [29, Theorem 3]):

N(n, 6, m; 3) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3n, if n ≤ ⌊

m
3

⌋
;⌈

5m−24
m−5 n − 1

m−5

(
m
5

)⌉
,

if n ∈ [(m5 )− (m − 5)A(m, 4, 4),
(
m
5

)]
;

6n − (
m
5

)
, if n ≥ (

m
5

)
.

In the remainder of this section, we provide constructions
of codes reaching the bound in Theorem 25 exactly or
asymptotically for the remaining range of n, that is, n ∈[	m/3
 ,

(
m
5

)− (m − 5)A(m, 4, 4)
]
. It is easy to check that

N(n, 6, 6; 3) has been determined for all n by Lemma 26,
and therefore we only consider m > 6.

1) When n ∈ [
A(m, 4, 4),

(
m
5

)− (m − 5)A(m, 4, 4)
]
:

In this range, we have the following statements of
N(n, 6, m; 3).

Theorem 27: Let m > 6 and n ∈ [A(m, 4, 4),
(
m
5

)−
(m − 5)A(m, 4, 4)].

(i) N(n, 6, m; 3) = 5n − A(m, 4, 4) whenever m is even
and m /∈ {12, 18, 24}.

(ii) N(n, 6, m; 3) ∈ {5n−A(m, 4, 4)− 1, 5n−A(m, 4, 4)}
when m ∈ {12, 18, 24}.

(iii) N(n, 6, m; 3) = 5n − A(m, 4, 4) − O(m) whenever m
is odd.

Proof: Similarly as in Construction B, we can
construct an (n, 5n − A(m, 4, 4), 6, m; 3)-MCBC
for this range of n, and Theorem 25 implies that
N(n, 6, m; 3) ≥

⌈
5n − 3m−16

3m−8 A(m, 4, 4) − 2
3m−8

(
m
3

)⌉
.

Hence, the gap between the upper bound 5n−A(m, 4, 4) and
this lower bound of N(n, 6, m; 3) is given by⌊

m(m − 1)(m − 2) − 24A(m, 4, 4)
3(3m − 8)

⌋
(22)

When m ≡ 2, 4 (mod 6), the gap (22) is zero and hence,
the bound is tight. When m ≡ 0 (mod 6), the gap (22)

reduces to
⌊

8m
3(3m−8)

⌋
. This value is zero when m ≥ 30 and

is one when m ∈ {12, 18, 24}. Therefore, we obtain the first
two statements. Finally, when m is odd, the gap (22) reduces
to
⌊

m2+O(m)
3(3m−8)

⌋
= O(m). This yields the last statement.

2) When 	m/3
 < n < A(m, 4, 4): To simplify our
exposition, we focus on the case when m ≡ 0 (mod 6), and
the cases for other congruence classes will be left for future
research. To this end, we introduce the following combinatorial
structure from design theory, which has close connection with
the optimal constant weight code of weight 4 and minimum
distance 4.

Definition 28: An H(gu)-design is a triple (X, G, BH) such
that:

(i) X is a set of gu points;
(ii) G is partition of X into u subsets of size g, called groups;

(iii) BH is a collection of 4-subsets of X , called blocks, such
that each block B in BH intersects any group G ∈ G in
at most one point;

(iv) every 3-subset of X that intersects every G ∈ G in
at most one point is contained in exactly one block
B ∈ BH .

It was proved that [20]: an H(3m/3) design exists if and
only if m ≡ 0 (mod 6). Let (X, G, BH) be an H(3m/3)
design with δm � m(m − 3)(m − 6)/24 blocks. Notice that
the dual set system of (X, BH) is a 4-uniform (n, 4n, 6, m; 3)-
MCBC with n = δm, but it is not optimal with respect to n
because δm < n4(6, m; 3) = A(m, 4, 4). Now, we provide
a construction of an (n, N, 6, m; 3)-MCBC when m ≡ 0
(mod 6) utilizing the H-designs.

Construction D: Let m ≡ 0 (mod 6) and suppose that n ∈
[m/3, m/3 + δm]. Set X = [m] and let (X, G, BH) be an
H(3m/3) design of size δm. We take the collection of groups
of size three in G and any n−m/3 blocks of BH as B. Then
the dual set system of (X, B) is an (n, 4n − m/3, 6, m; 3)-
MCBC by Theorem 5, and hence by Theorem 25 we have

N(n, 6, m; 3) = 4n− m

3
when n ∈

[m

3
,
m

3
+ δm

]
.

Theorem 29: Let m ≡ 0 (mod 6) and m > 6.

N(n, 6, m; 3)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4n − m

3 , if m
3 ≤ n ≤ m3−9m2+26m

24 ;

4n − O(m),
if m3−9m2+26m+24

24 ≤n≤ m3−3m2−16m+72
24 ;

4n, if m3−3m2−16m
24 +4≤n≤A(m, 4, 4);

Proof: When n ∈ [m/3, (m3 − 9m2 + 26m)/24],
the value of N(n, 6, m; 3) is from Construction D. For
n ∈ [m/3 + δm + 1, A(m, 4, 4)], (5) implies that there
exists a 4-uniform (n, 4n, 6, m; 3)-MCBC, and therefore
N(n, 6, m; 3) ≤ 4n. On the other hand, we have the lower

bound N(n, 6, m; 3) ≥
⌈

12m−44
3m−12 n − (

m
3

)
1

3m−12

⌉
from Theo-

rem 25. Hence, the gap between the upper and lower bounds is⌊
(
(
m
3

)− 4n)/(3m− 12)
⌋
. We analyze this gap for two ranges

of n.

• When (m3 − 3m2 − 16m)/24 + 4 ≤ n ≤ A(m, 4, 4),⌊(
m
3

)− 4n

3m − 12

⌋
< 1.

Hence, the gap is zero and upper bound is tight.
• When m/3+ δm +1 ≤ n ≤ (m3 − 3m2 − 16m)/24+ 3,⌊(

m
3

)− 4n

3m − 12

⌋
≤
⌊

m2 − 4m − 4
3m − 12

⌋
= O(m).

Hence, the gap is O(m) while the upper bound is 4n =
Ω(m3). In other words, the bound is asymptotically tight.

Now, when m/3+δm+1 ≤ n ≤ (m3−3m2−16m)/24+3,
we may improve the upper bound 4n of N(n, 6, m; 3) for
certain parameters. We show this by some examples.

Example 30: When n = m/3 + δm + 1 = (m3 − 9m2 +
26m)/24 + 1, we let B be the union of G, BH and one 5-
subset of [m], which does not contain any block in G∪BH . By
checking the multiset Hall’s condition in Theorem 5, the dual
set system of (X, B) is an (n, N, 6, m; 3)-MCBC with N =
m + 4δm + 5 = (m3 − 9m2)/6 + 4m + 5. We can check
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Fig. 4. Comparison of the upper and lower bounds of N(n, 6, 12; 3) for
n < 80. (a) In the ranges of n ≤ 22 and n > 22, the segments represent the
lower bounds 3n and

�
30n
7

− 198
7

�
, which can also be obtained from [29,

Theorem 2 (i)] and Theorem 4 ( [29, Theorem 7]) respectively, as stated in
Remark 13. (b) In the ranges of n ≤ 67 and n > 67, the segments represent
the lower bounds 4n−4 and

�
177
35

n − 531
7

�
respectively. (c) When n ranges

in the intervals [1, 4], [4, 31], [31, 52], and [52, 79], the segments represent
the lower bounds 3n, 4n − 4,

�
25
6

n − 55
6

�
, and

�
5n − 365

7

�
respectively.

(d) When n ≤ 4, the upper bounds are obtained from Lemma 26 ([29,
Theorem 3]), and when n > 4, the upper bounds are obtained from the
constructions in Section V-B.

that it reaches the lower bound
⌈

12m−44
3m−12 n − (

m
3

)
1

3m−12

⌉
by

calculation. �
For other values of n, the construction depends on the

H(3m/3) design, and we illustrate via an example for m = 12.
Example 31: Let m = 12, and (X, G, BH) be an H(34)

design with X = {ij : i ∈ [4], j ∈ [3]} and G =
{{i1, i2, i3} :

i ∈ [4]
}

. For the following values of n, we choose the block
collection B as follows such that the dual set system of (X, B)
forms an (n, N, 6, 12; 3)-MCBC.

Now, we set B = G∪BH and the current size of B is 31. In
fact, if we relabel the points in X according to the following
rule:

11 �→ 1, 12 �→ 5, 13 �→ 9, 21 �→ 2, 22 �→ 6, 23 �→ 10,

31 �→ 3, 32 �→ 7, 33 �→ 11, 41 �→ 4, 42 �→ 8, 43 �→ 12,

then we recover the dual system of the (31, 120, 6, 12; 3)-
MCBC given in Figure 2.

When we increase the number of data items n, we can make
the following modifications.

(i) When n ∈ {33, 34}, remove the two blocks{{i1, i2, i3} : i ∈ [2]
}

from B, and add any 4 or 5
blocks from below to obtain the desired set of blocks.

{1j, 1j′ , 2j , 2j′} for 1 ≤ j < j′ ≤ 3,

and {11, 12, 13, 41}, {21, 22, 23, 42}.

(ii) When n ∈ [35, 40], remove the three blocks{{i1, i2, i3} : i ∈ [3]
}

from B, and add any [7, 12] blocks
from below to obtain the desired set of blocks.

{ij, ij′ , i′j, i′j′}, for 1 ≤ i < i′ ≤ 3, 1 ≤ j < j′ ≤ 3,

and {11, 12, 13, 41}, {21, 22, 23, 42}, {31, 32, 33, 43}.
We can check that for each n ∈ [33, 40], the gap between
the resulting upper bound and the lower bound

⌈
25
6 n − 55

6

⌉
is at most two. In Figure 4, for n < 80, we compare the
lower bounds of N(n, 6, 12; 3) from Theorems 10, 12, 25. In
addition, we also summarize the upper bounds resulting from
the constructions presented in this section. �

VI. CONCLUSION AND OPEN PROBLEMS

We studied the lower bounds on the minimum total stor-
age N(n, k, m; r) of MCBCs. To this end, we formulated
optimization programs whose optimal solutions yielded lower
bounds for N(n, k, m; r). We improved known lower bounds
of N(n, k, m; r) and determined the exact values in some
cases. To conclude, we discuss some open problems.

(i) Critical to our lower bound derivations are the linear
constraints obtained from variations of Hall’s conditions.
It is conceivable that these techniques are applicable to
CBCs where more than one item can be read from each
server (see [10]), and also other variants of CBCs like
erasure CBCs (see [23]).

(ii) In addition to the constraints imposed by Hall’s con-
ditions, we utilized constraints implied from uniform
MCBCs to improve the lower bounds (see Sections IV
and V). Informed by the choice of certain feasible solu-
tions, we again utilized uniform MCBCs to build optimal
MCBCs with varying block sizes. Hence, it appears
promising to study uniform CBCs and MCBCs in depth
to discover the connections with optimal codes.

(iii) Notice that our constructions of the (n, N, 6, m; 3)-
MCBC when m ≡ 0 (mod 6) in Construction D and
Example 31 rely on the existence of H designs. For other
congruence classes of m, or other parameters, it will be
interesting to find other similar combinatorial structures
to construct the corresponding codes.

APPENDIX

PROOF SKETCH OF THEOREM 4

Proof Sketch [4, Lemma 3.2]: Dividing both sides of (3)
by
(

m−c
k−c−1

)
and then subtracting

∑
i∈[r,k] xi = n on both sides

respectively, we get∑
i∈[r,k−1]

((
m−i

k−i−1

)(
m−c

k−c−1

) − 1

)
xi − xk ≤ Um,k,c;r − n,

where Um,k,c;r = 	 k−1
r 
(m

c )
(k−1

c ) . Since
( m−i

k−i−1)
( m−c

k−c−1)
− 1 ≥

(m−k+1)(c−i)
k−c for any c ∈ [k−1] (see [4, Lemma 3.1]), we have∑

i∈[r,k−1]

(c − i)xi ≤ (k − c)(Um,k,c;r − n + xk)
m − k + 1

,
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and therefore

N(n, k, m; r) =
∑

i∈[r,k]

ixi = nc −
∑

i∈[r,k]

(c − i)xi

≥ nc − (k − c)(Um,k,c;r − n)
m − k + 1

+
(k − c)(m − k)

m − k + 1
xk.

Since xk ≥ 0 and N(n, k, m; r) is an integer, we get (1).
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