1904

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014

Influence Spreading Path and Its Application to
the Time Constrained Social Influence
Maximization Problem and Beyond

Bo Liu, Gao Cong, Yifeng Zeng, Dong Xu, and Yeow Meng Chee

Abstract—Influence maximization is a fundamental research problem in social networks. Viral marketing, one of its applications, is to
get a small number of users to adopt a product, which subsequently triggers a large cascade of further adoptions by utilizing
“Word-of-Mouth” effect in social networks. Time plays an important role in the influence spread from one user to another and the time
needed for a user to influence another varies. In this paper, we propose the time constrained influence maximization problem. We
show that the problem is NP-hard, and prove the monotonicity and submodularity of the time constrained influence spread function.
Based on this, we develop a greedy algorithm. To improve the algorithm scalability, we propose the concept of Influence Spreading
Path in social networks and develop a set of new algorithms for the time constrained influence maximization problem. We further
parallelize the algorithms for achieving more time savings. Additionally, we generalize the proposed algorithms for the conventional
influence maximization problem without time constraints. All of the algorithms are evaluated over four public available datasets. The
experimental results demonstrate the efficiency and effectiveness of the algorithms for both conventional influence maximization

problem and its time constrained version.

Index Terms—Influence spreading path, influence maximization, social network, large scale, time constrained

1 INTRODUCTION

THE influence maximization problem has been exten-
sively studied (e.g., [1]-[7], [9]). It aims to find a set
of K influential nodes such that the expected number of
nodes reached by influence spreading from the selected
node set is maximized. Among others, a motivating appli-
cation of influence maximization is viral marketing in social
networks (e.g., Facebook), which has become a common
ground for businesses to target potential customers. Viral
marketing aims to select a small number of influential users
to adopt a product, and subsequently trigger a large cas-
cade of further adoptions by utilizing the “Word-of-Mouth”
effect in social networks [10], [11]. For example, a pop vocal
concert marketer may select a small number of influential
users from a social network, and offer each of them a free
ticket, such that the concert is widely known throughout
the entire social network.

e B. Liu is with Facebook, Menlo Park, CA 94086 USA.
E-mail: bol@fb.com.

e G. Cong and D. Xu are with the School of Computer Engineering,
Nanyang Technological University, Singapore 639798.
E-mail: {gaocong, dongxu)@ntu.edu.sg.

o Y. Zeng is with the School of Computing, Teesside University,
Middlesbrough TS1 3BA, U.K. E-mail: y.zeng@tees.ac.uk.

e Y. M. Chee is with the School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 639798.
E-mail: ymchee@ntu.edu.sg.

Manuscript received 27 Nov. 2012; revised 24 Apr. 2013; accepted 23 May.
2013. Date of publication 24 June 2013; date of current version 10 July 2014.
Recommended for acceptance by |. Wang.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier 10.1109/TKDE.2013.106

Recent research reveals that time plays an important role
in the influence spread from one user to another [12] and
the time needed for a user to influence another varies.
Indeed, influence propagation time is considered in the
recent work [12]-[16] on building the underlying influence
propagation graph from real world log data. On the other
hand, in many real world viral marketing applications, peo-
ple only care about how widely the influence is spread
before a fixed time. For example, to market a pop vocal con-
cert to be held on Sep 1st 2012, the marketer would want
to maximize the number of users influenced before Sep 1st
2012. A conventional influence maximization model does
not consider that influence among users may depend on
the time. For example, some users may only pass the infor-
mation to others after a rather long period. Consequently,
the selected influential users may not spread the influ-
ence within a limited time. Indeed, users influenced after
the concert would not bring any profit to the marketer.
The conventional influence maximization solutions become
invalid since the time is not considered in the influence
propagation.

This calls for the problem of considering the influence
maximization under the time constraint. We proceed to
illustrate the idea of incorporating time factor in influence
maximization using an example in Fig. 1. In this example,
five users are connected by five edges, each of which indi-
cates a user may influence over another user. Numbers over
each edge give the corresponding influencing probabilities,
and the distribution of influencing delays. For example,
user vp will influence vs with a probability of 0.7, and the
influencing delay is distributed over the first two time units

1041-4347 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
Authorized licensed use limited to: Sediangl/ WnivessityrobSingapeasesbasrlopdsidanidayht<i202 i 6dr: 2412 9ntdiaaficom IEEE Xplore. Restrictions apply.

LIU ET AL.: INFLUENCE SPREADING PATH AND ITS APPLICATION

0.35 (4/7:217;1/7)

)

0.6 (1/2;1/3;1/6)
0.5 (4/5;1/5

Fig. 1. Example illustrating the time constrained influence maximization.

(e.g., day) with probability 5/7 and 2/7 respectively. This
means that user v, would influence v5 within the first time
unit (resp. the second time unit) at a probability 0.7 x 5/7
(resp. 0.7 x 2/7), and v, cannot influence vs after the first
two time units. Suppose we are asked to find a single seed
user to maximize the expected number of influenced users.
Without any time constraint, user vq will be returned as the
result. Intuitively, it is expected to influence the maximal
number of users among all users. However, if we aim to
find a single seed user that influences the maximal num-
ber of users within 1 time unit, user v, will become the
new result. Intuitively, this is because v; can at most influ-
ence v, and v3 in 1 time unit while v, influences v4 and
vs with a higher probability as given in Fig. 1 (the algo-
rithms for calculating the result will be presented in later
sections).

In this paper, we define the time constrained influ-
ence maximization problem, which is based on the Latency
Aware Independent Cascade influence propagation model,
and which is shown to be NP-hard. We propose an algo-
rithm that considers time factor in the process of Monte
Carlo simulation to estimate the influence spread for a
given seed set. This enables us to employ a greedy algo-
rithm to solve the time constrained influence maximization
problem. However, the greedy algorithm is computation-
ally expensive particularly for solving a large scale of social
networks. To facilitate the solutions, we propose the con-
cept of Influence Spreading Path, based on which two
methods for the time constrained influence maximization
problem are designed. We further parallelize the algo-
rithms for more efficiency improvement by exploiting the
algorithmic independency. In addition, we generalize the
proposed algorithms to solve the conventional influence
maximization problem.

The contributions of this paper are summarized as
follows.

o We define the time constrained influence maximiza-
tion problem in social networks. We study the mono-
tonicity and submodularity of the corresponding
time constrained influence spread function. We pro-
pose a time step based simulation algorithm for
estimating the time constrained influence. These lead
to a simulation based approximate algorithm.

o We develop the logically augmented social net-
works and define an Influence Spreading Path for
the time constrained influence maximization prob-
lem. Accordingly, we propose a set of more efficient
algorithms that can be scaled to handle social net-
works of large scales. We design a parallel version of

1905

the proposed algorithms and show significant time
savings.

o We generalize the Influence Spreading Path to solve
the conventional influence maximization problem.
The generalized algorithms perform better than the
techniques for solving the conventional influence
maximization problem.

e We demonstrate the algorithm performance over
four public available datasets. The extensive exper-
iments show that the Influence Spreading Path
based algorithms outperform state-of-art techniques
on solving both time and conventional influence
maximization problems.

The remainder of this paper is organized as follows.
The related work is reviewed in the next section. Section 3
presents a latency aware independent cascade model and
the definition of time constrained influence maximization
problem. In Section 4, we give a greedy algorithm for
the time constrained influence maximization problem, and
then propose a simulation and two Influence Spreading
Path based solutions. In Section 5 we show that Influence
Spreading Path can be used to solve conventional influence
maximization problem. Section 6 presents the experimental
study. Finally, Section 7 concludes this paper.

2 RELATED WORK

The problem of building the underlying influence prop-
agation graph has been studied recently. Saito et al. [15]
propose an asynchronous model to extend the traditional
Independent Cascade Models by incorporating influence
spreading delay information. The proposed asynchronous
model is employed to facilitate model parameter learning of
the influence graph. Other efforts of learning parameters of
the influence graph from history data include the work [12],
[14]. The problem of building an influence graph is orthogo-
nal to influence maximization problem, which assumes that
the influence graph is known.

Richardson et al. [1], [2] are the first to study influence
maximization problem in social networks. They formulate
the problem with a probabilistic framework and employ
Markov Random Field to solve it. Kempe et al. [3] formu-
late the problem as a discrete optimization problem, which
is widely adopted by subsequent studies. They prove the
influence maximization problem is NP-hard, and propose a
greedy algorithm to approximately solve it by repeatedly
selecting the node incurring the largest marginal influence
increase to a seed set. To find the node incurring the largest
marginal influence increase at each step, one needs to know
influence spreads induced by different seed sets gener-
ated by adding each individual candidate node into current
seed set.

However, the problem of calculating influence spread
induced by a given seed set is very difficult (Chen et al. [5]
prove it to be #P-hard). Kempe et al. [3] propose to simulate
influence spreading process starting from the given seed
set for a large number of times, and then use the average
value of simulation results to approximate it. However, the
simulation based method is computationally expensive and
cannot scale well with large social networks [4]-[6]. To ease
this problem, Leskovec et al. [4] propose a mechanism called

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:24:19 UTC from IEEE Xplore. Restrictions apply.

1906

Cost-Effective Lazy Forward (CELF) to reduce the number
of times required to calculate influence spread, which will
be used to optimize our algorithms in the conducted exper-
iments. Chen et al. propose two fast heuristics algorithms,
DegreeDiscount [5] and PMIA [6], to select nodes at each
step of the greedy algorithm. At each step, DegreeDiscount
adds the node with the largest degree to a seed set, and then
degrees of neighbors of the selected node are discounted
accordingly. PMIA calculates influence spread by employ-
ing local influence arborescences, which are based on the
most probable influence path between two nodes. As PMIA
needs to maintain arborescence for each node, it consumes
a huge amount of memory, which makes it unscalable to a
large social graph. We compare with DegreeDiscount and
PMIA in our experimental studies. In addition, Wang et
al. [7] solve the problem by exploring the underlying com-
munity structure of social networks. Jiang et al. [8] employ
the Simulated Annealing algorithm to find the top-k influ-
ential nodes from networks whose edges have the identical
activation probability.

In parallel, Chen et al. [17] propose the time-critical
influence maximization problem, in which the influencing
model is a special case of the model proposed in this paper.
In their model influence delays are constrained to follow
the geometric distribution. In contrast, our model has no
such a constraint and our algorithm is applicable when
other distributions are used in the influencing model. Lee
et al. [21] propose a different influence model where every
active node has multiple chances to activate its neighbors,
and the activation processes stop before a time.

3 TIME CONSTRAINED INFLUENCE
MAXIMIZATION PROBLEM

We present the conventional influence maximization prob-
lem and the Independent Cascade (IC) model in Section 3.1.
Then, we present the proposed Latency Aware Independent
Cascade (LAIC) model. Subsequently, we define the time
constrained influence maximization problem in Section 3.2.
Notations used in this paper are summarized in Table 1.

3.1 Conventional Influence Maximization

A conventional influence maximization problem aims to
select K nodes so that the expected number of nodes
influenced by K nodes will be maximized.

Definition 1 (Influence Maximization Problem). Given a
social network G = {V, £}, a positive integer K < |V|, acti-
vating probability Py, € (0, 1] for each (u,v) € &, find a seed
set S C V of K nodes, such that the expected number of nodes
influenced by S, or(S), is maximized.

A popular model describing how influence spreads in
social networks is Independent Cascade (IC) Model [18],
which is widely adopted by the existing influence maxi-
mization algorithms [3]-[7], [9]. In the IC model, each node
is either active (e.g., buying a product) or inactive in a social
network. A node is allowed to switch from inactive to active
state, but not vice versa. Given a set of seed nodes S, the
IC model propagates influence in inductive steps. Let A; be
the set of nodes activated at step t, and Ag = S. At step t+1,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014

TABLE 1
Notation Table

Notation Definition

G={V,&} Social Network

n V|

m £

K Number of seed nodes

S Seed set

N(u) Neighbor set of u

Puw Probability u activates v

plat Distribution of influence propagation latency of u

or(S) Expected number of nodes influenced by S within
T time units

a(S) Expected number of nodes influenced by S without
time constraint

APD (u, S) Probability wu is first activated by S at time ¢

AP (u,S) Probability u is activated within time 7" by S

ISP(S) All influence spreading paths

ISP(u,S) All influence spreading paths ending with u

0 A positive influence threshold value

ISPy (S) Influence spreading paths with length no larger
than T, probability no less than 6

ISPy r(u,S) | Influence spreading paths with Iength no larger than
T, probability no less than 6 and ending with u

neT maz|s| <k {[ISPo,T(S)[}

every node u € A; has a single chance to activate each of its
currently inactive neighbors v, i.e., v ¢ U,_,A;. The probabil-
ity that u activates v is given by the activating probability
Puov associated with edge (i, v). The influence propagation
process terminates at step ¢, if and only if A; = #. In the
IC model, once a node u is activated, it either activates its
currently inactive neighbor v in the immediate next step, or
does not activate v at all.

As mentioned in Section 1, influence propagation delay
exists in a real-world social network, which is not cap-
tured by the IC model. We proceed to present the Latency
Aware Independent Cascade (LAIC) model, which encodes
the influence propagation latency information into the IC
model.

3.2 Time Constrained Influence Maximization
The LAIC model considers the delayed influence propaga-
tion by encoding the time into the activation probability
of edges in a social network. In the LAIC model, when a
node u is first activated at step ¢, it activates its currently
inactive neighbor v in step t+6; with probability Pm,Pllf’t(St),
where §; is the influencing delay and is randomly drawn
from the delay distribution 7. Note that a node can be
activated at most once. If a node has been influenced by
multiple neighbors, it is activated at the earliest activation
time while the rest activations are ignored. The influence
propagation process terminates at step ¢, iff there is no node
activated after .

Based on the proposed LAIC model, we present the time
constrained influence maximization problem in Eq. 2.

Definition 2 (Time Constrained Influence Maximization).
Given a social network G = {V, E}, time bound T, posi-
tive integer K < |V|, activating probability Py, € (0,1]
for each (u,v) € &, and latency distribution PM for
each u € V, find a seed set S C V of K nodes, such
that the expected number of nodes influenced by S
within T time, o7(S), is maximized under the LAIC
model.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:24:19 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: INFLUENCE SPREADING PATH AND ITS APPLICATION

1907

Algorithm 1: Greedy Algorithm Framework

Algorithm 2: o7(S) based on Simulation

Input: G, T, K, Py, and P{ff
Output: S
initialize S = ¢
fori < 1to Kdo
u < argmax, or(S U {v}) — or(S)
S« SU{u}
return S

N

Analogous to the conventional influence maximization
problem, the time constrained version is NP-hard, which is
shown in Theorem 1. Due to the limited space, we remove
the proof and refer readers for details in [19].

Theorem 1. The time constrained influence maximization prob-
lem is NP-hard.

4 INFLUENCE SPREADING PATH BASED
SOLUTION

We present a greedy algorithm to calculate the expected
influence spread in Section 4.1. To alleviate the compu-
tational complexity of the greedy algorithm, we propose
a simulation based algorithm in Section 4.2, and define
the Influence Spreading Path in Section 4.3. Subsequently,
we develop an Influence Spreading Path based algorithm
in Section 4.4. Furthermore, we improve the algorithm by
employing faster marginal influence spread estimation in
Section 4.5. In Section 4.6, we provide a parallelization
version of the set of algorithms.

4.1 Monotonicity, Submodularity and Greedy
Algorithm

Let or(S) be the expected number of nodes influenced by
S within T time units. By replacing o (S) with o7(5), we
adapt the greedy algorithm [3] to approximately solve the
time constrained influence maximization problem, which is
given in Algorithm 1.

The greedy algorithm repeatedly adds the node incur-
ring the largest marginal influence increase to the seed
set S, until |S| = K. The time complexity of Algorithm 1
is O(KnT (o7(S))), where n is the number of nodes in
G and 7 (o7(S)) the running time for calculating or(S U
{v}). As Theorem 2 shows the influence function o7(S) is
monotonous and submodular [19], and thus the greedy
algorithm approximates the optimal solution with a lower
bound ratio of 1 — 1/e, where ¢ is the base of the natural
logarithm [20].

Theorem 2. With the LAIC model, the influence function o7(S)
is monotonous and submodular.

The main difficulty in applying the greedy algorithm lies
in calculating the expected influence spread for a given set
of seeds (Line 3 of Algorithm 1), whose special case has
been shown to be #P-hard [6]. In the following sections,
we propose a set of approximate algorithms including a
simulation based algorithm and two Influence Spreading
Path based algorithms.

Input: G, T, S, Py and Pf,”t

Output: or(S)
1 v.status < inactive, v.actTime <— oo forv e V\ S
2 v.status < active, v.actTime < 0 forv e S

3 AO «~ S

4 t<1

5 do

6 for u € A;_1 do

7 for (u,v) € € and v.status # active do
8 draw flag from Bernoulli(Pyy)

9 if flag = 1 then

10 draw &; from P/

11 if v.status = inactive then

12
13
14

if t+8; < T then
v.status < latent active
v.actTime < t + 8

15 else if t + §; < v.actTime then

16 | v.actTime <t + 6

17 At < {u|u.actTime = t N u.status = latent active}
18 u.status < active for u € A;_1

19 t<—t+1
o while |{u|u.status = latent active}| # 0 or Ay # ¢;
1 return Z;:O |Aj]

NN

4.2 Simulation Based Algorithm for o 7(S)

We propose Algorithm 2 to simulate the time constrained
influence spreading process based on time steps. Note that
Algorithm 2 differs from the simulation algorithm for con-
ventional influence maximization problem [3], which is
based on Breadth-first Search (BFS) and does not consider
time factor.

In Algorithm 2, we simulate the influence propagation
process starting from S. In the beginning, all nodes in S
are set to be active, while all other nodes are set to be
inactive (Lines 1-2 of Algorithm 2). The set of nodes acti-
vated at time t are denoted by A;. Nodes in S are treated
as being activated at time O (Line 3). At time t > 0, each
node u € A;_1 intends to activate each of its inactive or latent
active (to be explained) outgoing neighbors v € Ny, (1) with
the probability P,,. If u successfully activates v (Lines 9-
20), an activating latency 8; (8; = 0,1,2...) is drawn from
the discrete distribution P/ associated with node u. If v is
in inactive state and t + §; < T, v switches to latent active
state with activating time t 4 §;, which specifies when v
will switch from latent active to active. If v is already in latent
active state, v updates its activating time with the minimum
of t + 8 and its current activating time. All latent active
nodes with activating time t automatically switch to active
state at time step f (Line 23-24). The process terminates if
and only if there are no more latent active nodes and newly
activated nodes. When the process terminates, the number
of activated nodes is returned (Line 27).

Time and space complexities Let n (resp. m) be the number
of nodes (resp. edges) in social network G. The first four
lines of Algorithm 2 take O(n) time. For the entire while
loop, the dominant cost is on exploring the graph start-
ing from S along edges. In the worst case, the algorithm
needs to explore all nodes and edges in the graph. Thus
the running time is O(n 4+ m) for the while loop, which is
also the time complexity of Algorithm 2. In addition to the

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:24:19 UTC from IEEE Xplore. Restrictions apply.

1908
02t=1 _ _
:— - R 05
0.1 =2 ‘;: M T B
1\ // 4l\ S o ‘\]
1 2Ll Qs %
n N s n N f S
Lyl i Ly oyl ‘%@
S IR T B
2
ST ///,L" S e
T

Fig. 2. Logically augmented multigraph with T = 2.

input social graph, Algorithm 2 only needs to store status
and actTime for each node, the space needed by which is
O(n). Thus the space complexity of Algorithm 2 is O(n+m),
which is dominated by the input of social network.

To approximate the expected influence spread within
T time units, we may repeat Algorithm 2 for a large
number (R) of times and average the returned numbers.
Consequently the total running time of the combination of
Algorithm 1 and 2 is O(KnR(n 4+ m)). By following [3], [5],
[6], R = 20,000 simulations are employed to calculate the
expected influence spread for a given seed set.

4.3 Influence Spreading Path Based Activation
Probability Calculation

Due to the computational curse, the simulation based algo-
rithm is not suitable to large social networks. We proceed
to describe how a social network is augmented by incorpo-
rating influence delay information into the graph structure,
based on which the definition of influence spreading path
is given. Then we propose an algorithm for calculating the
activation probability of a node given a seed set.

4.3.1 Augmenting Social Network With Influencing
Delay Information

In the LAIC model, when a node u is first activated at
time ¢, it tries to activate each of its outgoing neighbors
v at a later time t 4 §; with a probability of PuvPL”t((St). To
incorporate influence propagation delay information into
the social network structure, we logically augment the orig-
inal social network G = (V, £) into a directed multigraph
Gt = (V,E), where V V. For each (u,v) € &€, we put T
edges, el . e, --- el , from u to v in G. Each edge ¢!, (e
E) is guarded w1th two values, ie., length(e!,) = t and
prob(et,y) = PuoPl (t).

Fig. 2 gives the multigraph augmented from the example
of social network in Fig. 1 under the case of T = 2. We note
that this augmentation is done logically. All algorithms pro-
posed in this paper are able to infer the augmented graph
from an original graph on the fly.

4.3.2 Constrained Influence Spreading Path

Given a seed set S, the expected influence spread within
time T, or(S), is the expected number of nodes activated
no later than time T, denoted by), . APT(1, S), where
APr(u, S) is the probability that S activates u within T. It is
easy to find out that APr(u, S) = 0, if there is no path from
S to u in the augmented directed multigraph Gr = (V, E).
Thus in what follows, we ignore those nodes not reachable
from S.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014

To estimate AP7(u,S) for each node u, we define
Influence Spreading Path in the augmented graph below.

Definition 3 (Influence Spreading Path). Given a seed set
S and a directed multigraph G = (V,E), a simple path
p = (n a Up 2 us. .. N uyx) in graph G is an
Influence Spreading Path, zf and only if uy € S and u; ¢ S
for i # 1, where k > 1. For an influence spreading path p, the
length of p is Zl ~Vlength(e;), while the probability of p is
T8 prob(ey.

From Definition 3, we notice that an Influence Spreading
Path cannot contain duplicate nodes, as a node cannot be
activated more than once. Furthermore, except the starting
point, an influence spreading path cannot contain any of
other nodes belonging to S, which resides in the fact that
seed nodes are already in active state at the very begin-
ning and cannot be activated at a later step. Note that the
proposed algorithms do not need the detailed path infor-
mation, and we only need to store length, probability and
the ending node of each Influence Spreading Path.

We observe that each Influence Spreading Path p ending
with u gives a possible way for S to activate u. The acti-
vating time taken by following p to activate u is length(p),
while the activating probability of this path is prob(p). For a
given seed set S, we denote ISP(u, S) to be all possible influ-
ence spreading paths ending with u. Note that [ISP(u, S)|
grows exponentially as the number of nodes increases. To
reduce the number of paths in ISP(u, S), we apply two
restrictions to filter out some Influence Spreading Paths
which are not or less related to our problem. First, we
prune paths with length larger than T, which are not related
to influence spread within time T. Furthermore, we filter
out paths with probability less than a small threshhold
6, as Influence Spreading Paths with small probabilities
have limited impact on the influence spread estimation.
The resulting constrained Influence Spreading Paths are
denoted by ISPy 1(u, S).

4.3.3 Activation Probability Calculation Based on
Influence Spreading Paths

By assuming all Influence Spreading Paths ending at u
(ISPy (1, S)) are independent with each other, we are able
to calculate the probability u gets activated by S within
time T (APt(u,S)) from ISPy 7(u,S). The computation is
outlined in Function AP. The function iterates over all
possible time steps from 1 to T, calculates the probabil-
ity that u is first activated at time t (AP (u, S)) (Line 3),
and adds it to AP7(u, S) at Line 4. At Line 3, 1-AP1(u, S)
is the probability u# has not been activated before f, and
1= Tlperspy 1 u.5).tengthpy=t (1 — prob(p)) is the probability u is
activated at time t. At the end of each iteration t, APT(u, S)
is updated to store the probability u is activated before
t+1. The loop results in the probability APr(u, S) that u is
activated within time T.

Time and space complexities For the running time, the
dominant part of Function AP is the for loop in which
every Influence Spreading Path in ISPy r(u, S) is checked
exactly once. Thus the running time of Function AP
is O(|ISPy.r(u,S)]). Note that the space complexity of
Function AP is also O(|ISPy.1(u, S)|).

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:24:19 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: INFLUENCE SPREADING PATH AND ITS APPLICATION

1909

Algorithm 3: o7(S) based on Influence Spreading Path

Input: G, 0, T, S
Output: or(S)
or(S) <0
2 get all Influence Spreading Paths with length no larger than
T and probability no less than 6 by DFS.
divide them into different ISPy 1(u, S).
for every u with non-empty ISPy 7(u, S) do
| or(S) < or(S) + AP(USPy,1(u,5), T)
return or(S)

=

(- NS BTN

Function AP

Input: ISPy 7(1,S), T

Output: AP7(1, S)
1 APr(u,S) <0
2 fort < 1to T do
3 APO (1, S) «

(1= APr(u, $)(1 — HpelSPgAT(u,S),Iength(p):t(l - p?’Ob(p))

4 APT(u, S) < APT(, S) + APD 1, S)
5 return AP7(u, S)

4.4 Influence Spreading Path Based Algorithm for
or(S)
Algorithm 3 computes the expected influence spread within
time T for a given seed set (o7(S)). First, Algorithm 3 gets
all constrained Influence Spreading Paths starting from S
by a Depth-First Search (DFS) (Line 2), which are then
divided into disjoint sets based on their ending nodes
(Line 3). For each node u with at least one constrained
Influence Spreading Path, i.e., ISPy 1(u,S) # ¥, Function
AP is applied to calculate the probability APt(u, S) that u
is activated by S within time T (Line 5). Finally, activation
probabilities of all nodes are summed together and returned
as the expected influence spread of S.

Similar to Algorithm 2, Algorithm 3 is embedded in
Algorithm 1 (calculating o7(5)) to find a seed set of K nodes.

Time and space complexities. Let npr = max)sj<x
{|ISPy.7(S)|}, where |ISPy 7(S)| be the number of Influence
Spreading Paths starting from S with length no less than
T and probability no less than 6. The second line of
Algorithm 3 can be done using DFS algorithm in O(ngr)
time, which is also the time needed for the third line. As
calculating APr(u, S) by Function AP takes O(|ISPy, 1(u, S)|)
time and), .y, ISPy v(u, S)| = |ISPs 1(S)| < ngr, the for
loop also takes O(nyt) time. Thus the total running time of
Algorithm 3 is O(ngr). Note that the Influence Spreading
Path based solution (combination of Algorithms 1 and 3)
takes O(Knngr) time, which is much less than the time
needed by the simulation based solution (combination of
Algorithms 1 and 2) O(KnR(n + m)). It is obvious to see
that the space complexity of Algorithm 3 is O(n+m+ng7),
where the n + m is the size of social graph, and nyr for
storing ISPy 7(S).

4.5 Faster Marginal Influence Spread Estimation

In the greedy Algorithm 1, when trying to add one more
node into the currently selected seed set S, we need to cal-
culate the marginal influence increase brought by adding
each u € V\S. Instead of calculating or(SU{u}) from scratch

Algorithm 4: Marginal Discount of Influence Spread
Path

Input: G, T, K, Py, P, 0
Output: S
for every u € V do
| calculate or({u}) by Algorithm 3.
u < argmax, or({v})
S <« {u}
Psw < Puw for w € Noys (1)
Psw < 0 for w ¢ Nyys(u)
fork < 1to K—1do

8 u < argmax, o ({v})

9 S« SU{u}
10 update Psy, for every w € Nout(S).
11 return S

N U W N R

Z(v.w)es Pow(1=Psw)or({w})
Z(U_w)gg Powor ({w})

in Algorithm 3, we propose to employ a faster marginal
influence spread estimation.

Suppose the currently selected seed set is S, we want to
calculate the marginal influence spread increase if node v
is added to S, i.e., or(S U {v}) — or(S), which is obviously
no larger than or({v}). As or({v}) is already known in the
computation for selecting the first seed node, we propose
to approximate o7(SU {v}) — o7(S) by making a discount of
or({v}) in Equation 1.

Z(v,w)eg Pow(l — Psw)or({w})

oSV D —or(S)For((oh == Powor({w))
(v,wye& "vw

)

)

where Psy = 1 = [pyegues(l = Puw) if w € N(S); oth-
erwise, Psy, = 0. In other words, Psy, is the probability w
gets immediately activated by seed nodes. The rationality
behind Equation 1 is that the marginal influence increase
is a discount of or({v}). The higher probability v’s neigh-
bors are already activated by S, the larger discount should
be applied to or({v}). With this marginal influence spread
increase approximation, we propose Algorithm 4 to solve
the time constrained influence maximization problem.

Algorithm 4 calculates time constrained influence spread
based on influence spreading paths for each single node
(Lines 1-3). Seed nodes are selected by picking the node
with the largest discounted marginal influence one by one
(Lines 8-12).

Time and space complexities. As Algorithm 3 takes O(1y7)
time, the first for loop of Algorithm 4 takes O(nngr) time.
Line 9 takes O(ne;,,y) time while line 11 takes O(Ke;;y) time,
where ¢4y is the largest degree among all nodes. Thus the
second for loop takes O((K—1)neyx) time, and the total run-
ning time of Algorithm 4 is O(n(ngr + (K — 1)eyay)). Note
that Algorithm 4 itself solves the time constrained influence
maximization problem, and does not need to be combined
with Algorithm 1. By comparing Algorithm 4 and the com-
bination of Algorithms 1 and 3, whose running time is
O(Knnyt), we find that they have the same running time
when K = 1, and Algorithm 4 runs faster when K > 1. This
observation is consistent with the experimental results that
will be presented in the experimental section. The mem-
ory space needed by Algorithm 4 is dominated by running
Algorithm 3 at line 2, and thus the space complexity for

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:24:19 UTC from IEEE Xplore. Restrictions apply.

1910

548

Fig. 3. Parallelization architecture.

Host 1

Host 2

Algorithm 4 is the same as that for Algorithm 3, which is
O+ m + ngT).

4.6 Parallelized Algorithm
The running time of Algorithm 4 (resp. the combination
of Algorithms 1 and 3) is mostly dominated by applying
Algorithm 3 to calculate o ({v}) for each v € V in Line 1-3 of
Algorithm 4 (resp. Line 3 of Algorithms 1). Different from
local arborescences based methods [6], [17], Algorithm 3 is
based on Influence Spreading Path, in which there exists
no inter-dependency between calculating o ({v}) for differ-
entnode v € V. Therefore, the most time consuming parts of
Algorithm 4 (resp. the combination of Algorithms 1 and 3)
can be easily parallelized on a multi-core or distributed
system with a multi-threaded Queue or distributed Queue.
As depicted in Fig. 3, all nodes V are put into the Queue,
every thread repeatedly fetches node v from the Queue and
applies Algorithm 3 to calculate o (v). Let ¢ be the total num-
ber of cores on a single machine or in a distributed system,
parallelized Influence Spreading Path based methods can
run up to c times faster. The effectiveness of this paral-
lelization strategy will be demonstrated in the experimental
study.

5 APPLYING INFLUENCE SPREADING PATH TO
CONVENTIONAL INFLUENCE MAXIMIZATION
PROBLEM

The conventional influence maximization problem based
on IC Model [18] can be regarded as a special case of
the time constrained influence maximization problem. The
proposed Influence Spreading Path based methods can be
applied to the conventional influence maximization prob-
lem with slight modifications on Function APr(u, S) and
Algorithm 1, 3, 4. In what follows we brief the modifica-
tions.

Function AP7(u, S) is modified into AP(u, S), which is
presented below. It takes as input the Influence Spreading
Paths starting from S and ending with u without consid-
ering time constraint T; it returns the probability u gets
influenced by seed set S, which can be computed under the
same assumption made for time constrained problem pre-
viously. With the assumption that all Influence Spreading
Paths starting from S and ending with u are independent,
we can calculate AP (u, S) by iterating over all p € ISPy (u, S)
as described in Lines 2-4 of Function AP. AP(u, S) at the
right hand side of Line 3 is the probability u gets influ-
enced by following the paths which has been checked by

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014

Algorithm 5: Greedy Algorithm Framework (For
Conventional Influence Maximization Problem)
Input: G, K and Pyo
Output: S
1 initialize S = ¢
2 fori <1 to K do
3 u < argmax, o (SU {v}) — o (S)
4
5

S« SU{u}
return S

Algorithm 6: o (S) based on Influence Spreading Path
(For Conventional Influence Maximization Problem)

Input: G, 6 and S
Output: o (S)
1 0(5)«<0
get all Influence Spreading Paths with probability no less
than 6 by DFS.
divide them into different ISPy (u, S).
for every u with non-empty ISPg(u, S) do
\ o (S) < o(S) + AP(ISPy(u, S))
return o (S)

N

(S NS BTN

the for loop before current iteration. (1 — AP (u, S))prob(p) is
the probability u is not influenced by previously checked
paths and influenced by current path p.

Function AP (For Conventional Influence

Maximization Problem)
Input: ISPy (u, S)
Output: AP(u, S)
AP, S) <0
for p € ISPy(u, S) do
| AP, S) < AP, S) + (1 — AP(u, S))prob(p)
return AP(u, S)

BwW N =

Time and space complexities For the running time, the
dominant part of Function AP is the for loop in which
every Influence Spreading Path in ISPy(u, S) is checked
exactly once. Thus the time complexity of Function AP is
O(|ISPy(u, S)|). The space complexity of Function AP is also
O(ISPg (u, S)|)-

Algorithm 1 is modified into Algorithm 5, where ¢ (S) is
computed by Algorithm 6.

Algorithm 6 is modified from Algorithm 3 by filtering
Influence Spreading Path by 6 only at Line 2, and calling
the modified AP(u, S) at Line 5.

Time and space complexities. Let 1y = max s<x{|ISPs(S)|},
where |ISPg(S)| is the number of Influence Spreading Paths
starting from S with probability no less than 6. Following
a similar analysis of Algorithm 3, we find that the time
complexity of Algorithm 6 is O(np). Thus the combination
of Algorithm 5 and 6 takes O(Knng) time. It is evident that
the space complexity of Algorithm 6 is O(n+m+ny), where
n + m comes from the input social graph, and ng is for
storing ISPy (S).

To modify Algorithm 4 to cope with the conventional
influence maximization problem, we replace all o7(S) with
o (S), which can be computed by Algorithm 6.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:24:19 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: INFLUENCE SPREADING PATH AND ITS APPLICATION

TABLE 2
Statistics of Four Social Networks
Networks Wiki Epinions | Slashdot | LiveJournal
Node Number 7,115 5K 82K 4.8 M
Edge Number 103K 508 K 948K 68.9M
Clustering Coefficient | 0.2089 0.2283 0.0617 0.3123

We note that the parallelization strategy in Section 4.6 is
also applicable to Influence Spreading Path based methods
for conventional influence maximization problem.

6 EXPERIMENTS

6.1 Experimental Setup

Datasets. Four public real-world social networks ! are
used in the experiments, which are also widely used in
previous work on influence maximization. The basic statis-
tics of these networks are summarized in Table 2. The
first one (Wiki) is a Wikipedia voting network where
nodes represent wikipedia users and an edge from node
i to j represents that user i voted on user j. The sec-
ond one (Epinions) is a who-trust-whom social network
of a general consumer review site Epinions.com. The third
one (Slashdot) is a social network extracted from the user
community of Slashdot.org. The last one (LiveJournal) is a
large social network formed by LiveJournal community.
Evaluated Methods. The experimental study is to demon-
strate the capability of Influence Spreading Path based
methods for solving both conventional and time con-
strained influence maximization problems. We note that all
methods proposed in this paper are based on the greedy
algorithm framework. The difference lies in the way of
calculating the marginal influence increase, i.e., Line 3 of
Algorithm 1. The following methods are evaluated.

e Monte Carlo (MC). For time constrained influ-
ence maximization problem, MC calculates both
or(S U {v}) and o7(S) by simulations (combination
of Algorithms 1 and 2). For conventional influence
maximization, MC is the simulation based greedy
algorithm proposed in [3]. 20,000 simulations are
employed for each seed set by following [3], [5], [6].

o Influence Spreading Path (ISP). Calculate both o7 (SU
{v}) and or(S) by using Influence Spreading Paths
(combination of Algorithms 1 and 3). The Influence
Spreading Paths starting from each seed set are
calculated from scratch by DFS.

o Marginal Discount of Influence Spread Path (MISP).
Calculate influence spread or(u) for each single node
u with Influence Spreading Paths starting from u,
then select a seed node with the largest discounted
marginal influence spread one by one (Algorithm 4).

¢ Random. Randomly select K nodes as seeds, which
acts as the baseline method.

o Degree Discount (DC). The degree discount heuristic
proposed by [5].

o Prefix excluding Maximum Influence Arborescence
(PMIA). PMIA [6] is a state-of-the-art solution for
conventional influence maximization problems.

1. http://snap.stanford.edu/data

1911

o Maximum Influence Arborescence for IC-M (MIAM)
and Maximum Influence Arborescence with
Converted propagation probabilities (MIAC) [17].
MIAM and MIAC are proposed for time constrained
influence maximization problem based on PMIA
algorithm. They only apply to the scenario of
geometric influencing delay (to be further explained
in the next subsection).

The implementations of DC, PMIA, MIAM and MIAC
are provided by their authors. Note that all evaluated meth-
ods are enhanced by CELF [4] optimization if applicable.

We apply the aforementioned algorithms to the time
constrained influence maximization problem, and all except
MIAM and MIAC to the conventional influence maximiza-
tion problem, for which MIAM and MIAC reduce to PMIA.
Parameter Setting The activating probability P,, of each
edge (u, v) is set by the “Weighted Cascade” policy, which is
widely adopted by the existing conventional influence max-
imization techniques [3], [5], [6]. With “Weighted Cascade”
policy, Pyy is set to be ﬁ, where Nj,(v) is the indegree
of v.

In time constrained influence maximization problems,
we consider two types of distributions for the influencing
delays (P!™), namely Poisson Delay Distribution or Geometric
Delay Distribution. For each node u € V, the parameter
for its Poisson distribution (expected number of occur-
rences in a given interval) is randomly selected from the
set {1,2,3,...,20}; the parameter for its Geometric distri-
bution is generated by 5/(d°*(u) + 5), which follows the
same way as [17]. We note that the distributions of both
activating probability and influencing delay are orthogonal
to the proposed methods.

The threshold parameters for PMIA, MIAM and MIAC
are set to ﬁ suggested by [6], [17]. We ran them with other
threshold values, which resulted in less influence spread.

Parameter 6 controls the number of Influence Spreading
Paths for MISP and ISP. Intuitively, a smaller value of 6
results in a larger number of Influence Spreading Paths
used by MISP and ISP, and thus should achieve larger influ-
ence spread. However, on the other hand, a smaller value
of 0 incurs a larger amount of running time. Thus there
exists a tradeoff between influence spread and running
time, which is tunable by 6.

To investigate the tradeoff and select an optimal value of
6, we ran MISP and ISP with different values of 6 for both
conventional and time constrained problems. The running
time and influence spread for different & on Wiki dataset
with T = 10 (for time constrained problem only), K = 50
are depicted in Figs. 4 and 5. Note that results for other
datasets and/or different values of T and K are similar,
which are not included in this paper due to the limited
space. Not surprisingly, Figs. 4 and 5 show that a smaller
value of § achieves larger influence spread but consumes
more running time for both MISP and ISP methods. As both
MISP and ISP achieve relatively large influence spread and
short running time for time constrained (resp. conventional)
influence maximization problem with = 107° (9§ = ﬁ), 0
is set to 10~ (31%) for time constrained (resp. conventional)
problem in the rest of the experimentations.
Measurement. For the time constrained social influence
maximization problem, a critical performance metric is the

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:24:19 UTC from IEEE Xplore. Restrictions apply.

hec
12001 35 -neg
2 1000 00) .
H a.
3 i “
& a0 £ 250
3 a LY
£ £
's 600 3 200, .
£ £ %
2 w0 150 |
3
\
200, 100 \
° "
10 10 10 10 10 il 10° 10 10 10 10 10
o o
=
o oS Butuia,
°
700, 130] &
\
: 0y
S 1 X
H 8 R
&0 3
g g
£ o £ Y
: .
S 300 = 110 ®,
H
200} 105) °
100 100
®g oo d b
10° 107° 10" 10° 107 10" 10° 107° 10 107 107 107
o o

Fig. 4. Running time and influence spread on Wiki for different 6
(T =10, K =50, Time Constrained Version). (a) Poisson delay distri-
bution. (b) Geometric delay distribution.

T T

700] 5
U’

Influence Spread

Fig. 5. Running time and influence spread on Wiki for different 6
(K = 50, Conventional Version).

number of nodes influenced by the selected seed set within
a given time. As the time constrained influence maximiza-
tion problem is NP-hard, we are not able to get the result in
polynomial time. Thus we apply 20, 000 Monte Carlo simu-
lations with seed set selected by each evaluated method, and
the average influenced node number is used as the influ-
ence spread of the seed set. We also measure the running
time and memory needed for each method. Furthermore,
we will analyze the impact of different values of T on the
time constrained influence maximization problem.

For the conventional influence maximization problem,
we measure the number of nodes influenced by the selected
seed set, which is calculated by applying 20,000 Monte
Carlo simulations as done by the previous work. Similarly
we also measure the running time and memory needed for
each method.

All algorithms are implemented in C++ language, and
compiled by gcc 4.4.3 on a Linux server with an 8-core Intel
Xeon 3.0 GHz CPU and 12 GB memory.

6.2 Experimental Results
In this section, we present the experimental results of the
proposed methods on four real world social networks.

6.2.1 Influence Spread

Time constrained influence maximization problem MIAM
and MIAC are only applicable to Geometric influence
delay distribution. All the other six methods outlined in

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014

Section 6.1 are evaluated over datasets Wiki, Epinions,
and Slashdot for both Geometric and Poisson distributions.
However, PMIA, MIAM and MIAC are not evaluated on the
LiveJournal dataset as the memory needed for these meth-
ods exceeds 12GB, which is the total amount of available
memory in the experiments. We cannot obtain the result for
MC method on LiveJournal dataset after running it for two
days.

Fig. 6 shows the results of influence spread over the
four datasets with T = 10 for different K values. It shows
that both ISP and MISP methods achieve similar influence
spread as the computationally expensive greedy algorithm
MC, which verifies the effectiveness of Influence Spreading
Path based methods.

As to MIAC and MIAM, which are developed for the
time constrained problem with Geometric influence delay
distribution, MIAC achieves less influence spread than ISP
and MISP. Though MIAM is able to achieve similar influ-
ence spread as ISP and MISP, it cannot run with LiveJournal
due to a huge memory consumption. As expected, a larger
number of seed nodes achieve larger influence spread for
all evaluated methods, and the randomly selected seed set
result in very poor performance.

Among the algorithms originally designed for conven-

tional influence maximization problem, PMIA performs the
best, but it achieves considerably lower influence spread
than do MISP, ISP and MC, which demonstrates that meth-
ods for conventional influence maximization problem do
not work for the time constrained version.
Conventional influence maximization problem Fig. 7
depicts the influence spread generated by different methods
for conventional influence maximization problems. Again,
MC and PMIA cannot run with LiveJournal due to either
long running time or huge memory consumption. From
Fig. 7, we can see that ISP and MISP achieve similar influ-
ence spread as computationally expensive MC. Random
and DC generate low influence spread. PMIA is able to
achieve similar influence spread as ISP and MISP, but the
huge memory consumption limits its applicability to large
datasets such as LiveJournal.

6.2.2 Running Time and Memory Usage

Time constrained influence maximization problem. Fig. 8
shows the running time of different methods for each
dataset with T = 10. As the running time for Random
and DC is trivial, we do not include them to make the
figure more distinguishable. When K = 1, ISP and MISP
have similar running time, which is about two orders of
magnitude faster than MC. The running time of ISP and
MC increases as K increases, while the running time of
MISP almost remains constant for different values of K. The
results are mainly due to the fact that MISP follows the
same way as ISP to select the first seed node (by Influence
Spreading Path), but employs a faster marginal influence
spread estimation mechanism to select the rest seed nodes.
The time needed by MISP is dominated by selecting the
first seed node, and thus the total running time of MISP
is almost constant for different values of K. We note that
MISP is nearly three orders of magnitude faster than MC
when K = 50. For small values of K, PMIA runs faster
than all other methods except DC and Random, which

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:24:19 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: INFLUENCE SPREADING PATH AND ITS APPLICATION

1913

Poisson Delay Distribution

—9— Random
—a—DC

g
\!

Ifluence Spread

20 30 0 50
Seed Number (K)

20 30
Seed Number (K)

—%— Random
—s—nC

% 8000]

7000t

6000] s
5000]

4000]

Influence Spread

3000] °

2000

1000 / A
o

Influence Spread

20 30
‘Seed Number (K)

(a) (b)

—%— Rando|
1600 —8—
o | e

1200

& 1000 &
'3 250, 2

Influence Spread

800
600

400 o’

200

o 0 4 50 o 10

20 30 20 30
‘Seed Number (K) ‘Seed Number (K)

(©) (d)

Fig. 6. Influence spread on four real world social networks for different values of K (T = 10, Time Constrained Version). (a) Wiki. (b) Epinions.

(c) Slashdot. (d) LiveJournal.

—%— Random|

+IsP i A

) 10 0 50

2 0
Seed Number (K)

(a)

) 1o P o
‘Seed Number (K)

(d)

Fig. 7. Influence spread on four real world social networks for different values of K (Conventional Version). (a) Wiki. (b) Epinions. (c) Slashdot.

(d) LiveJournal.

are not depicted, on the three datasets where PMIA can
return results. However, for a large K (K > 10 for Wiki and
Epinions, K > 20 for Slashdot), MISP is faster than PMIA.
MIAM runs slower than MISP for almost all settings except
K = 1 with Wiki. Though MIAC runs faster than MISP,
it achieves lower influence spread as indicated in Fig. 6,
and cannot run with LiveJournal due to a huge memory
consumption.

Table 3 shows the number of the Influence spreading
paths at different lengths. Together with Fig. 8, we can
see that the runtime on datasets with a larger number of
Influence Spreading Paths is consistently larger.
Conventional influence maximization problem Fig. 9
shows the running time for different methods. Again,
PMIA cannot run with LiveJournal, MC cannot finish over
Epinions with K > 20, and Slashdot with K > 10 in two
days, which is the reason why we do not have the cor-
responding data points in Fig. 9. We observe that MISP
consistently runs faster than other methods. Again, the
running time of methods other than MISP increases as K
increases, while that of MISP almost remains constant.
Memory Usage Tables 4, 5 and 6 show the peak memory
usage of each method for different datasets with T = 10
for conventional and time constrained influence maximiza-
tion problems, respectively. We find that Random, MISP
and MC always need the same amount of memory, which

is mainly occupied by the social network data. For the
two Influence Spreading Path based methods, the memory
consumption of ISP grows as K increases, while the mem-
ory needed by MISP remains constant. PMIA, MIAM and
MIAC consume the largest amount of memory, which ren-
ders them inapplicable to social networks of large scales
(e.g., LiveJournal).

6.2.3 Effect of Different Values of T

To investigate the impact of T on the algorithm perfor-
mance, we run MC with Wiki, Slashdot and Epinions
datasets for T € (1,2, ..., 10} (as indicated in the previous
sections, we cannot run MC with LiveJournal). Tables 7
and 8 depict the overlaps of seed sets returned by MC
for different values of T with K = 50 for Poisson and
Geometric distributions repectively. For example, value 34
at row T = 1 and column T = 4 in Table 7 (Wiki) is the
number of common nodes for the two T values. We find
that seed sets maximizing influence spread with different
time constraints differ significantly. We argue that time con-
straint plays an important role in influence maximization
problem, and the set of nodes maximizing influence spread
before a given time do not necessarily maximize that for a
different time constraint.

To investigate how the value of T affects the running
time needed and influence spread achieved by different

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:24:19 UTC from IEEE Xplore. Restrictions apply.

1914 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014

TABLE 3
Numbers of ISP Lengths Over Four Datasets
Length 1 2 3 4 5 6 7 8 9 10
Wiki 36,440 55,953 90,045 122,547 146,233 155,476 148,632 135,682 118,437 97,992
Epinions 181,777 409,483 774,760 1,190,460 1,587,003 1,896,070 2,092,568 2,188,456 2,175,690 2,072,851
Slashdot 299,875 712,727 1,377,842 2,093,187 2,701,194 3,101,107 3,250,077 3,210,867 3,005,332 2,689,608
LiveJournal 24,595,582 53,644,066 100,115,927 151,621,610 198,504,194 233,224,950 251,705,564 255,912,939 247,828,529 229,682,326

Poisson Delay Distribution

10 10°
A A o= wisr
o misp 10400+ 15P
v ise
1wl —e—me g 10200
7) @ @ @ 10000
2. = £ g g
§o— i i § o0
g g 2 £ s600]
£ £ £ £
g . 4 £ £ § oo
@ * 2 2 2 9200} £
-
9000)
8800 + ¥
GG o @ m G o i g i mim
10° 10' 10'
o o 2 S w0 E o 0 0 0 w© E] o 0 2 0 W E o 0 2 0 w© 0
Seed Number (K) Seed Number (€) Seed Number () Seed Number (K)
P x10'
It '
A
-0 MiSP @ —= O~
TP i) 1078} _—m0m - -
WM | T o= RIS R
—— MiAM
. ot o [o
»
i i) § 1o
2 2 ——4 2
5 ' = B i e 5 1072
b L € 107,
10' 10'
SEIENS RENENE TR R . B
=i g m S gmee g 1068/ + + * *
10°! 10° 1.
o 0 o E o 1 £ % o 0 W %0

20 30 20 30 20 30
‘Seed Number (K) Seed Number (K) ‘Seed Number (K)

(a) (b) (©) (d)

Fig. 8. Running time on four real world social networks for different values of K (T = 10, Time Constrained Version). (a) Wiki. (b) Epinions.
(c) Slashdot. (d) LiveJournal.

= —
o e “ -0~ MisP
" - 10 = o= E—
" o Mo o | o= mise 1280
_ _ v// o W + ISP _ +
2w 2w g | [=w 2 10
8 8 8 8
i i 1 30
g 10 2 10 2 10] 3
5 5 5 5 0
£ £ £ £
S /ﬁ 5 H S
H B H 7 H 5
* ¥ " g //r—"—‘ 1180
10° + 10'}@m m = 2 2 @im m O m @ mmm g & + P
% 1609222 o i@
o g mim o
w0 T e SR SR :
% 3 0 W o o m W

% k] 20 30 20 30
Seed Number (K) ‘Seed Number (K) ‘Seed Number (K)

(a) (b) (©) (d)

Fig. 9. Running time on four real world social networks for different values of K (Conventional Version). (a) Wiki. (b) Epinions. (c) Slashdot.
(d) LiveJournal.

20 30
Seed Number (K)

TABLE 4
Memory Usage in MB (Conventional Version)
K 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50
Wiki ini Slashdot LiveJournal
Random 12 12 12 12 12 12 50 50 50 50 50 50 84 84 84 84 84 84 5785 5785 5785 5785 5785 5785
DC 15 15 15 15 15 15 74 74 74 74 74 74 119 119 119 119 119 119 8358 8358 8358 8358 8358 8358
PMIA 19 19 19 19 19 19 145 145 146 147 147 148 186 186 187 188 189 189 N.A N.A N.A N.A N.A N.A
MISP 12 12 12 12 12 12 50 50 50 50 50 50 84 84 84 84 84 84 5785 5785 5785 5785 5785 5785
ISP 12 12 12 12 12 12 50 50 50 50 50 50 84 84 84 84 84 84 5785 5785 5785 5785 5785 5785
MC 12 12 12 12 12 12 50 50 50 N.A N.A N.A 84 84 N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A
TABLE 5
Memory Usage in MB (T = 10, Poisson Delay Distribution)
K | 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50
Wiki Epinions Slashdot LiveJournal
Random 13 13 13 13 13 13 51 51 51 51 51 51 85 85 85 85 85 85 5785 5785 5785 5785 5785 5785
DC 19 19 19 19 19 19 74 74 74 74 74 74 119 119 119 119 119 119 8358 8358 8358 8358 8358 8358
PMIA 19 19 19 20 20 20 145 146 147 147 148 149 186 187 188 188 189 190 N.A N.A N.A N.A N.A N.A
MISP 13 13 13 13 13 13 51 51 51 51 51 51 85 85 85 85 85 85 5785 5785 5785 5785 5785 5785
ISP 18 19 20 21 21 21 51 57 74 78 82 83 85 99 106 138 142 147 5785 5785 5785 5785 5785 5785
MC 13 13 13 13 13 13 51 51 51 51 51 51 85 85 85 85 85 85 N.A N.A N.A N.A N.A N.A

methods, we show the running time and influence spread and DC is trivial, to make the figure more distinguishable,
for different T on Wiki dataset with K = 50 in Fig. 10. Random and DC methods are excluded from these figures.
Note that results for other datasets and/or different val- We find that the running time of MISP, ISP, MIAM and MC
ues of K are similar, which are not included in this paper increases as T increases, while that of PMIA and MIAC
due to the limited space. As the running time for Random remains constant. MISP achieves much less running time

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:24:19 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: INFLUENCE SPREADING PATH AND ITS APPLICATION 1915
TABLE 6
Memory Usage in MB (T = 10, Geometric Delay Distribution)
K l 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50
Wiki Epinions Slashdot LiveJournal
Random 12 12 12 12 12 12 50 50 50 50 50 50 84 84 84 84 84 84 5787 5787 5787 5787 5787 5787
DC 15 15 15 15 15 15 74 74 74 74 74 74 119 119 119 119 119 119 8360 8360 8360 8360 8360 8360
PMIA 19 19 19 19 19 19 145 145 146 147 147 148 186 186 187 188 189 189 N.A N.A N.A N.A N.A N.A
MISP 12 12 12 12 12 12 50 50 50 50 50 50 84 84 84 84 84 84 5787 5787 5787 5787 5787 5787
ISP 12 12 12 12 12 13 50 50 50 50 50 56 84 84 84 84 84 84 5787 5787 5787 5787 5787 5787
MC 12 12 12 12 12 12 50 50 50 50 50 50 84 84 84 84 84 86 N.A N.A N.A N.A N.A N.A
MIAC 21 21 21 21 21 21 106 106 106 106 106 106 144 144 144 144 144 144 N.A N.A N.A N.A N.A N.A
MIAM 295 334 360 398 456 521 934 1224 2004 2524 2768 3157 1031 1258 1587 2133 2531 2672 N.A N.A N.A N.A N.A N.A
TABLE 7
Overlaps of Seed Sets Returned by MC with Different T (K = 50, Poisson Delay Distribution)
T | 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Wiki Epinions Slashdot
1 50 43 36 34 32 30 28 24 23 22 50 44 34 28 22 18 18 18 18 17 50 42 36 28 23 19 15 13 12 11
2 50 41 39 37 35 33 29 27 26 50 40 34 28 23 22 22 21 20 50 44 36 31 27 23 20 20 16
3 50 46 44 42 39 33 31 28 50 43 37 31 30 30 29 27 50 42 37 31 25 2 22 18
4 50 48 46 42 36 34 31 50 44 38 36 36 34 32 50 45 39 33 30 30 26
5 50 47 43 37 35 32 50 44 40 39 37 35 50 43 36 33 33 29
6 50 46 40 38 35 50 45 43 41 39 50 43 40 39 35
7 50 44 42 39 50 48 46 44 50 47 46 42
8 50 48 45 50 48 46 50 48 45
9 50 46 50 48 50 46
10 50 50 50
TABLE 8
Overlaps of Seed Sets Returned by MC with Different T (K = 50, Geometric Delay Distribution)
T [1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7: 8 9 10
Wiki Epinions Slashdot
i 50 37 36 33 25 12 7 4 il 1 50 40 32 25 22 22 19 16 16 15 50 40 31 26 23 18 15 14 13 12
2 50 46 41 35 24 16 13 8 8 50 40 34 30 27 25 21 20 19 50 40 34 30 23 16 15 14 13
3 50 43 37 26 18 15 11 11 50 39 35 33 30 27 26 24 50 41 35 28 21 20 19 18
4 50 41 28 24 21 17 17 50 46 43 41 37 35 33 50 42 37 30 28 27 25
5 50 34 30 28 22 22 50 46 45 41 39 37 50 41 36 33 32 31
6 50 37 37 29 30 50 46 43 42 40 50 42 38 38 35
7 50 39 31 34 50 45 43 41 50 4 45 40
8 50 39 39 50 47 46 50 43 40
9 50 42 50 47 50 42
10 50 50 50

than MC and ISP. MIAC runs faster than all other methods,
but it achieves less influence spread and consumes a huge
amount of memory. Again, MC needs the largest amount
of running time among all methods. We also find that all
methods achieve more influence spread as T increases. This
is due to the fact that a larger value of T poses less restric-
tion on time slots during which influence spread is counted.
Again, MC, ISP, MISP and MIAM achieve similar influence
spread, which is much more than that of other methods.

Poisson Delay Distribution

Running Time (seconds)

5 6 5 6
Time Constraint T Time Constraint T

Geometric Delay Distribution

10°

——PMIA _—
-0 MiSP. Y
+1sP —

——NMC |

—— MM [~
—i- MIAC

Influence Spread

Running Time (seconds)
\

\
N
by
v
°
Y
\
Q k+
'
°
i
|
A
P
®
o
'
Q
\

4 5 6 7
“Time Constraint T

(a) (b)

Fig. 10. Results on Wiki with different T (K = 50). (a) Influence Spread.
(b) Running Time.

6.2.4 Effect of Parallelized Processing

Parallelized algorithms are tested in the same environment
as described in Section 6.1. Fig. 11 shows the running time
needed by ISP and MISP over LiveJournal with different
number of threads running on different CPU cores. As
expected, the running time decreases as more threads are
added. This demonstrates that the parallelism of ISP and
MISP further speeds up the solutions.

6.3 Summary and Discussion

From the experimental results, we find that time constraint
plays an important role in influence maximization problem.
Straightforward methods, like Random and DC, are not
suitable for the time constrained influence maximization
problem thereby leading to poor influence spread. PMIA, a
state-of-the-art solution for the conventional influence max-
imization problem, achieves much less time constrained
influence spread than do MC, ISP and MISP. Another
drawback of applying PMIA to maximize time constrained
influence is its large memory consumption, which makes
it unsuitable for large social networks. MIAM is able to
achieve similar influence spread as ISP and MISP, while
MIAC performs worse in terms of influence spread when
Geometric delay distribution is employed. MIAM and
MIAC suffer from the same problem as PMIA on large net-
works, i.e., huge memory consumption. By investigating
the effect of different values of T, we find that the set of
nodes maximizing influence spread before a given time do
not necessarily maximize that for a different time constraint,
which shows that time constraint plays an important role in
influence maximization problem. Influence Spreading Path
based methods (ISP and MISP) run much faster than other
methods and can be easily parallelized.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:24:19 UTC from IEEE Xplore. Restrictions apply.

1916

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014

—5— MISP|
-0- ISP

Running Time (seconds)

8 8 8 3
8 8 8 8

—o—MisP.
-0- ISP

—o—MisP
-o- ISP

2 3

(a)

0 5
Number of Threads

(b)

Fig. 11. Running time on Livejournal with different number of threads (K = 50). (a) Poisson Delay Distribution, T = 10). (b) Geometric Delay

Distribution, T = 10). (c) Conventional Version.

Influence Spreading Path based method ISP and MISP
can be successfully used to solve conventional influence
maximization problem. Moreover, MISP runs faster than the
state-of-the-art method PMIA, achieves similar influence
spread, and needs much less memory.

One limitation of Influence Spreading Path based meth-
ods is that parameter 6 needs to be manually tuned to make
a good tradeoff between influence spread and running time.

7 CONCLUSION

In this paper, we define a new problem of the time con-
strained influence maximization in social networks based on
a Latency Aware Independent Cascade model. We develop a
simulation based greedy algorithm with performance guar-
antees to solve the problem. However, the simulation based
implementation of the greedy algorithm is rather expensive,
and is not scalable for large social networks. We propose
to use Influence Spreading Paths to quickly and effectively
approximate the time constrained influence spread for a
given seed set, which is the expensive part of the greedy
algorithm. Further, by employing faster marginal influence
spread calculating methods, we propose MISP to improve
the speed of ISP. Experimental results show that MISP is the
fastest and multiple orders of magnitude faster than simu-
lation based greedy algorithm MC while achieving similar
time constrained influence spread. Other nice properties of
MISP include that its running time almost remains constant
as K increases, and can be easily parallelized.

Influence Spreading Path based methods are also suc-
cessfully applied to conventional influence maximization
problem. Experimental results show that MISP outperforms
the state-of-the-art method PMIA in terms of running time
and memory consumption, while achieving similar amount
of influence spread.

REFERENCES

[1] P. Domingos and M. Richardson, “Mining the network value of
customers,” in Proc. KDD, New York, NY, USA, 2001, pp. 57-66.
M. Richardson and P. Domingos, “Mining knowledge-sharing
sites for viral marketing,” in Proc. KDD, New York, NY, USA,
2002, pp. 61-70.

D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread
of influence through a social network,” in Proc. KDD, 2003,
pp. 137-146.

J. Leskovec et al., “Cost-effective outbreak detection in networks,”
in Proc. KDD, New York, NY, USA, 2007, pp. 420—429.

W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization
in social networks,” in Proc. KDD, New York, NY, USA, 2009,
pp. 199-208.

[2]

[3]

[4]

[6] W.Chen, C. Wang, and Y. Wang, “Scalable influence maximization
for prevalent viral marketing in large-scale social networks,” in
Proc. KDD, New York, NY, USA, 2010, pp. 1029-1038.

Y. Wang, G. Cong, G. Song, and K. Xie, “Community-based
greedy algorithm for mining top-K influential nodes in mobile
social networks,” in Proc. KDD, New York, NY, USA, 2010,
pp. 1039-1048.

Q. Jiang et al., “Simulated annealing based influence maximiza-
tion in social networks,” in Proc. AAAI, 2012, pp. 127-132.

A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “A data-based
approach to social influence maximization,” PVLDB, vol. 5, no. 1,
pp. 73-84, 2011.

[10] E Bass, “A new product growth model for consumer durables,”
Manage. Sci., vol. 15, no. 5, pp. 215-227, 1969.

V. Mahajan, E. Muller, and F. M. Bass, “New product diffu-
sion models in marketing: A review and directions for research,”
J. Market., vol. 54, no. 1, pp. 1-26, 1990.

A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “Learning influence
probabilities in social networks,” in Proc. WSDM, New York, NY,
USA, 2010, pp. 241-250.

M. G. Rodriguez, J. Leskovec, and A. Krause, “Inferring networks
of diffusion and influence,” in Proc. KDD, New York, NY, USA,
2010, pp. 1019-1028.

M. G. Rodriguez, D. Balduzzi, and B. Schélkopf, “Uncovering the
temporal dynamics of diffusion networks,” in Proc. ICML, New
York, NY, USA, 2011, pp. 561-568.

[15] K. Saito, M. Kimura, K. Ohara, and H. Motoda, “Selecting infor-
mation diffusion models over social networks for behavioral
analysis,” in Proc. PKDD, Berlin, Germany, 2010, pp. 180-195.

K. Saito, K. Ohara, Y. Yamagishi, M. Kimura, and H. Motoda,
“Learning diffusion probability based on node attributes in social
networks,” in Proc. ISMIS, Warsaw, Poland, 2011, pp. 153-162.
W. Chen, W. Lu, and N. Zhang, “Time-critical influence maxi-
mization in social networks with time-delayed diffusion process,”
in Proc. AAAI 2012, pp. 1-5.

[18] J. Goldenberg, B. Libai, and E. Muller, “Talk of the network:
A Complex systems look at the underlying process of word-of-
mouth,” Market. Lett., vol. 12, no. 3, pp. 211-223, 2001.

B. Liu, G. Cong, D. Xu, and Y. Zeng, “Time constrained influence
maximization in social networks,” in Proc. ICDM, Washington,
DC, USA , 2012, pp. 439-448.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions,” Math.
Program., vol. 14, no. 1, pp. 265-294, 1978.

W. Lee, J. Kim, and H. Yu, “CT-IC: Continuously activated and
time-restricted independent cascade model for viral marketing,”
in Proc. ICDM, Washington, DC, USA, 2012, pp. 960-965.

(71

(8]
191

(1]

(12]

(13]

(14]

[16]

[17]

[19]

[20]

[21]

Bo Liu is working with Facebook Inc. He
received his PhD degree in 2009 from Huazhong
University of Science and Technology, China.
Before he joined Facebook, Dr. Liu was a lec-
turer in Huazhong University of Science and
Technology and research fellow in Nanyang
Technological University, Singapore. His current
research interests are on social networks.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:24:19 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: INFLUENCE SPREADING PATH AND ITS APPLICATION

Gao Cong is an assistant professor at Nanyang
Technological University, Singapore. He received
his PhD degree from the National University
of Singapore in 2004. Before he relocated to
Singapore, he worked at Aalborg University,
Microsoft Research Asia, and the University of
Edinburgh. His current research interests include
geo-textual data management and data mining.

Yifeng Zeng is a Reader in the School of
Computing in Teesside University. He received
his PhD degree in 2006 from National University
of Singapore, Singapore. Before he moved to
Teesside University, Dr. Zeng was an assis-
tant professor and an associate professor during
2006 - 2012 in Aalborg University, Denmark.
His current research interests include intelligent
agents, decision making, social networks, and
computer games.

Dong Xu is currently an associate professor at
Nanyang Technological University in Singapore.
He received the B.Eng. and PhD degrees from
the University of Science and Technology of
China, in 2001 and 2005, respectively. He also
worked at Columbia University for one year as
a postdoctoral research scientist. His research
interests include computer vision and machine
learning.

1917

Yeow Meng Chee is an associate professor
at Nanyang Technological University, Singapore.
He received the B.Math. degree in computer sci-
ence and combinatorics and optimization and
the M.Math. and Ph.D. degrees in computer
science, from the University of Waterloo, in
1988, 1989, and 1996, respectively. He was
Program Director of Interactive Digital Media
R&D in the Media Development Authority of
Singapore. His research interest lies in the inter-
play between combinatorics and computer sci-
ence/engineering, particularly combinatorial design theory, coding the-
ory, extremal set systems, and electronic design automation.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:24:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

