
3702 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 6, JUNE 2019

Capacity-Achieving Codes That Mitigate Intercell
Interference and Charge Leakage in Flash Memories

Yeow Meng Chee , Senior Member, IEEE, Johan Chrisnata , Han Mao Kiah ,

San Ling , Tuan Thanh Nguyen, and Van Khu Vu

Abstract— We investigate constant-composition constrained
codes for the mitigation of intercell interference for multilevel
cell flash memories with a dynamic threshold scheme. The first
explicit formula for the maximum size of a q-ary F-avoiding
code with a given composition and certain families of substrings
F is presented. In addition, we provide methods to determine the
asymptotic rate for F-avoiding codes with any composition ratio
and to find the optimal composition ratio that maximizes the
asymptotic rate. We also give the first efficient encoder/decoder
for these q-ary constant-composition codes achieving the channel
capacity, for all q values.

Index Terms— Constrained codes, constant-composition codes,
flash memories, intercell interference.

I. INTRODUCTION

FLASH memories have become a popular nonvolatile stor-
age of information owing to its advantage of high speed,

low noise, low power consumption, compact form factor,
and good physical reliability. The basic information storage
element of a flash memory is called a cell, which consists
of a floating-gate (FG) transistor. The amount of charge in
an FG transistor is discretized into charge levels as a way to
store information. The operation of injecting charge into an
FG transistor to a desired level is called programming. In a
single level cell (SLC) flash memory, each cell has two charge
levels (corresponding to a charged or uncharged FG transistor),
and hence can store one bit per cell. More recent multi-level
cell (MLC1) flash memories have cells with q > 2 charge
levels, with the ability to store log2 q bits per cell. More
specifically, we use qLC to refer to cells with q charge levels.
The cells of a flash memory are further organized into blocks,
each containing a constant number of cells. Hence, a block in
a qLC flash memory stores a q-ary word (where symbol i is

Manuscript received March 14, 2018; revised July 25, 2018; accepted
November 11, 2018. Date of publication November 3, 2018; date of current
version May 20, 2019. Y. M. Chee, H. M. Kiah, and S. Ling were supported by
the Singapore Ministry of Education under Grant MOE2015-T2-2-086. This
paper was presented in part at the 2016 Proceedings of the IEEE International
Symposium on Information Theory [1], [2].

The authors are with the School of Physical and Mathematical Sci-
ences, Nanyang Technological University, Singapore (e-mail: ymchee@ntu.
edu.sg; johanchr001@e.ntu.edu.sg; hmkiah@ntu.edu.sg; lingsan@ntu.edu.sg;
nguyentu001@ntu.edu.sg; vankhu001@ntu.edu.sg).

Communicated by A. Jiang, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2018.2884210
1MLC is commonly used to refer to the specific technology that allows

four charge levels per cell. For lack of a better notion, we extend the use of
“MLC” here to refer to technology allowing three or more charge levels per
cell.

used to represent charge level i of a cell), and such a flash
memory stores a collection of q-ary words.

MLC technology increases the storage density of flash
memories. However, very precise programming is needed.
There are two main challenges to reliable programming and
storage:

(i) Intercell interference (ICI) caused by parasitic capaci-
tance coupling between adjacent cells [3]. Such interfer-
ence occurs when there are three adjacent cells c1, c2, c3
and we want to increase the charge levels of the left-most
and right-most cells, c1 and c3, while maintaining the
charge level of the center cell c2. Parasitic capacitance
coupling can cause the charge level of the (victim) cell
c2 to increase when we increase the charge levels of its
neighbouring cells c1 and c3. In the following example,
the victim cell 0 increases unintentionally, therefore,
the voltage misread the code as 01000111 while the
original code was 01000101.

(ii) Charge leakage [4]. The charge in an FG transistor leaks
away over time as a result of trap-assisted tunneling
effect. This results in charge levels of cells drifting
downwards over time, giving rise to asymmetric errors.

Different techniques have been explored to mitigate ICI.
Physical methods, such as using low-κ dielectric material to
reduce capacitative coupling [5], and programming methods
such as proportional programming [6], have been investigated
but one of the most effective approaches is the constrained
coding method of Berman and Birk [7]–[9]. In their approach,
certain words are forbidden to be stored, since the program-
ming required to store such a word is highly unreliable,
owing to ICI. For example, the quaternary word of length
eight (1, 2, 1, 3, 0, 3, 2, 0) should be avoided as the charge
level of the fifth cell can be increased unintentionally during
the programming of the fourth and sixth cells. More gener-
ally, Taranalli et al. [10] performed a comprehensive series
of program/erase (P/E) cycling experiments to quantify ICI
effects, and concluded that the words permitted for stor-
age on a qLC flash memory should avoid containing any
(q − 1, σ, q − 1) as a substring, where σ ∈ {0, 1, . . . , q − 2}.
Other studies of constrained codes mitigating ICI in flash
memories include [11]–[13].

To mitigate the effect of charge leakage, a straightforward
way is to adopt asymmetric error-correcting codes [14], [15].
Dynamic threshold techniques, introduced by Zhou et al. [16]
for SLC and extended to MLC by Sala et al. [17], have been

0018-9448 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:30:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7823-8068
https://orcid.org/0000-0001-5611-0848
https://orcid.org/0000-0002-1978-3557
https://orcid.org/0000-0002-3236-0575
https://orcid.org/0000-0003-1705-9597

CHEE et al.: CAPACITY-ACHIEVING CODES THAT MITIGATE INTERCELL INTERFERENCE AND CHARGE LEAKAGE 3703

shown to be not only highly effective against asymmetric
errors caused by charge leakage but also offer some protec-
tion against over-programming. In error-correcting schemes
with dynamic threshold, the codes have constant composition.
In particular, the case when the codes have both constant
composition and balanced (where the number of times a
symbol appears in a codeword is as close as possible) was
studied in detail by Zhou et al. [16] and Sala et al. [17]

Recent approaches have combined constrained coding and
dynamic threshold techniques [18], [19]. Before we give
an account of these results, we introduce some necessary
notations and terminologies.

A. Notations

Let � � {0, 1, . . . , q−1} be an alphabet of q � 2 symbols.
A q-ary word of length n over � is an element u ∈ �n . The i th
coordinate of u is denoted by ui , so that u = (u1, u2, . . . , un).
There is a natural correspondence between the data represented
by the charge levels of a block of n cells in a qLC flash
memory and a q-ary word u ∈ �n : ui is the charge level of
the i th cell in the block.

For a positive integer n, a composition of n into q parts
is a q-tuple w = [w0, w1, . . . , wq−1] of nonnegative integers
such that

∑q−1
i=0 wi = n. A q-ary word u ∈ �n is said to

have composition w if the frequency of symbol i in u is wi .
The weight of a word u ∈ �n with composition w is w =∑q−1

i=1 wi . A word u ∈ �n is said to be balanced if it has
composition w such that wi ∈ {�n/q�, �n/q�} for all i ∈ �.

A q-ary code of length n is a subset C ⊆ �n . Elements
of C are called codewords. The size of C is the number of
codewords in C. A code C is said to have

(i) constant weight w, if each codeword in C has weight w;
(ii) constant composition w, if each codeword in C has

composition w.

A code is balanced if each of its codewords is balanced.
A substring of a word u is a word (ui+1, ui+2, . . . , ui+�) ∈

��, where i � 0 and i + � � n. Let F be a set of words
over �. A word u is said to avoid F or F-avoiding if no
words in F is a substring of u. A code C is said to avoid F if
every codeword in C avoids F. For a fixed length n, we denote
the set of all q-ary words that avoid F by A(n;F).

The rate of a code C is R � log2 |C|/n. Intuitively,
it measures the number of information bits stored in each
multilevel cell. Henceforth, we adopt the notation log to mean
logarithm base two.

Let F be a set of words over �. An F-avoiding channel is
a channel whose input codewords avoid F. The capacity of
an F-avoiding channel or the capacity of the F-constraint is
given by the value

C(F) � lim sup
n→∞

log |A(n;F)|
n

.

Recent approaches combine constrained coding and
dynamic threshold techniques, leading to the consideration of
codes that both avoid F and have constant composition. We
denote an F-avoiding code of length n with constant composi-
tion w by C(n;w,F). The maximum size of a C(n;w,F), that

is, the size of the set of all F-avoiding words of composition w,
is denoted by A(n;w,F) and the set is denoted by A(n;w,F).

Let ρ = [ρ0, ρ1, . . . , ρq−1] be a real-valued vector such that
∑q−1

i=0 ρi = 1. Let (w(n))∞n=1 be a sequence of compositions
of n such that wi (n) = �ρi ·n� for all i ∈ � \{0} and w0(n) =
n −∑q−1

i=1 wi (n). We define the asymptotic information rate
of (ρ,F) to be

R(ρ,F) � lim sup
n→∞

log A(n;w(n),F)

n
,

and refer to ρ as the composition ratio.
Notice for the family of balanced codes, the ratio

ρ = [1/q, 1/q, . . . , 1/q]. In this case, we write
R([1/q, 1/q, . . . , 1/q],F) simply as Rbal(F).

B. Previous Work

As mentioned earlier, a number of proposals for the avoid-
ance set F have been put forth to mitigate the effects of
ICI. In view of these proposals, we consider the following
set of words over �. Fix 0 � a < b � q − 1 and let
I(a, b) � {(c1, c2, c3) : 0 � c2 � a and b � c1, c3 � q − 1}.

Taranalli et al. [10] proposed the avoidance set I1(q) �
I(q−2, q−1), while Qin et al. [18] proposed the set I2(q) �
I(0, q−1). We note that I1(2) = I2(2). Therefore, in this work,
we always consider I1(q) for q ≥ 2 and I2(q) for q ≥ 3.

Example 1: I1(2) = I2(2) = {(1, 0, 1)}. I1(4) =
{(3, 0, 3), (3, 1, 3), (3, 2, 3)}, while I2(4) = {(3, 0, 3)}.

In general, the capacity of the F-constraint may be com-
puted using the standard techniques detailed in [20]. For the
purpose of mitigating ICI, the following results are known.

Proposition 1 [19], [21]:
(i) C(I1(2)) = C(I2(2)) = log2 λ ≈ 0.81137, where λ is the

unique real root to the polynomial X3 − 2X2 + X − 1.
(ii) C(I1(4)) ≈ 1.9374.

For completeness, we state the following proposition with-
out proof.

Selected capacities are computed and provided in Table I.
In particular, the capacity values C(I1(q)) are presented in
the fifth column of Table I for 2 ≤ q ≤ 8 and the capacity
values C(I2(q)) are presented in the ninth column of Table I
for 3 ≤ q ≤ 8.

Proposition 2: Fix q and 0 � a < b � q − 1. We have
C(I(a, b)) = log2 λa,b, where λa,b is the maximum real root
of the polynomial X3−q X2+(q−b)(a+1)X−(q−b)(a+1)b.

The asymptotic rate of balanced I1(2)-avoiding codes were
investigated by Qin et al. and in the same paper, they docu-
mented the asymptotic rate of balanced I2(3)-avoiding codes.

Proposition 3 (Qin et al. [18]): Rbal(I1(2)) = (log 3)/2 ≈
0.79428 and Rbal(I2(3)) ≈ 1.52576.

Observe that the balanced I1(2)-avoiding codes have
rates that fall short of over 2% of the capacity of the
I1(2)-constraint. We state our question of interest: is there
a ratio ρ where the asymptotic rate of I1(2)-avoiding codes
with composition ratio ρ achieves capacity?

Next, we consider efficient encoding and decoding algo-
rithms for constant-composition F-avoiding codes.

Let 0 < p < 1. Kayser and Siegel [19] constructed a family
{Cn,m}n,m≥1 of constant-weight I1(2)-avoiding codes such that

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:30:03 UTC from IEEE Xplore. Restrictions apply.

3704 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 6, JUNE 2019

each Cn.m is an I1(2)-avoiding code of length N = mn +
o(mn) and constant composition [(1−p)N, pN]. Furthermore,
Kayser and Siegel showed that there exists a p such that

lim
n→∞ lim

m→∞
log2 |Cn,m |

mn + o(mn)
= C(I1(2)).

Unfortunately, for the encoder/decoder pair to work, an auxil-
iary codebook Cn of length n is required. Here, the size of the
codebook Cn is exponential in n. In order to approach capacity,
both m and n are required to be sufficiently large. Since the
encoding and decoding complexity grows in terms of m and
|Cn|, we have that the encoding and decoding complexity is
exponential in term of n (see [19, Remark 1] for more details).

For q > 2, no such concrete results are even known.

C. Our Contributions

Our first contribution is a closed formula for the number of
I(a, b)-avoiding words with composition w.

Theorem 1: Fix q, n, I(a, b) with a < b and w. Then

A(n;w, I(a, b))

=
(

s1

w0, · · · , wa

)(
s2

wa+1, · · · , wb−1

)(
s3

wb, · · · , wq−1

)

×
min(s2,s3−1)∑

m=0

(
n − s3 − m

s1

)

B(m,s3)
n ,

where s1 =∑a
i=0 wi , s2 =∑b−1

i=a+1 wi , s3 =∑q−1
i=b wi , and

B(m,s3)
n =

(
s3−1

m

) s3−m−1∑

i=0

(
s3−m−1

i

)(
n − s3 − m − i + 1

n − s3 − m − 2i

)

.

(1)

In the instance where b = a + 1, we have s2 = 0 and so we
have only one summand in the outer summation. Therefore,

A(n;w, I(a, b)) =
(

s1

w0, · · · , wa

)(
s3

wb, · · · , wq−1

)

B(0,s3)
n .

We defer the proof of Theorem 1 to Section II and explain
the significance of the term B(m,s3)

n therein.
While it is difficult to derive a closed expression for

R(ρ, I(a, b)) from Theorem 1 for general ρ and I(a, b), it
is possible to compute numerically R(ρ, I(a, b)) for specific
values. From Theorem 1, we can compute R(ρ, I(a, b)) for
general ρ and I(a, b). Our next contributions are procedures
that:
• determine the rates R(ρ, I(a, b)) for any composition

ratio ρ;
• find optimal composition ratios ρ that maximize the

rates R(ρ, I(a, b)). Furthermore, we also show that these
maximum asymptotic rates yield the channel capacity.

Section III provides a detailed description of the procedure
and the numerical computations of certain rates.

Finally, we provide efficient encoding and decoding algo-
rithms for binary constant-weight I1(q)-free codes and a
special class of q-ary constant-composition I1(q)-free codes
in Section IV. Therefore, our work gives the first efficient
encoding and decoding of constant-composition codes that
achieves channel capacity.

II. PROOF OF THEOREM 1

We enumerate the set of all q-ary I(a, b)-avoiding words
of composition w, and hence, prove Theorem 1. To do so,
we first enumerate binary words that obey certain properties
in Section II-A, and then provide a mapping from these binary
words to q-ary I(a, b)-avoiding words in Section II-B.

A. A Family of Binary Words

Let 0 � m � s3. Define B
(m,s3)
n to be the set of words over

the alphabet {◦, •} of length n with the following properties:

(i) each word has exactly s3 •’s;
(ii) each word has exactly m substrings of the form (•, ◦, •).

We demonstrate the following lemma.
Lemma 1: Let 0 � m � s3 − 1. Then

∑

n�0

∣
∣
∣B

(m,s3)
n

∣
∣
∣

(s3−1
m

) Xn = Xs3+m(1− X + X2)s3−m−1

(1− X)s3−m+1 .

To prove this lemma, we map u ∈ B
(m,s3)
n to an integer-

valued (s3+1)-tuple du = (d1, d2, . . . , ds3+1) such that di ≥ 0
for all 1 ≤ i ≤ s3 + 1 and {t j =∑ j

i=1 di : 1 � j � s3} is the
set of coordinates where ut j = •, and ds3+1 = n −∑s3

i=1 di .
Example 2: The word u = (•, ◦, •, •, ◦, •, •, ◦) belongs

to B
(2,5)
8 , where m = 2, s3 = 5, n = 8. Hence, du =

(1, 2, 1, 2, 1, 1) and {1, 3, 4, 6, 7} is the set of coordinates
where u has the symbol •.

It is not difficult to see that du = du� implies u = u�. We
observe further that for u ∈ B

(m,s3)
n , the (s3 + 1)-tuple du has

the following properties:

(C1) the sum of entries in du is n;
(C2) exactly m entries of d2, d3, . . . , ds3 are two;
(C3) all entries except ds3+1 of du are positive, and ds3+1 is

nonnegative.

Conversely, for each (s3+ 1)-tuple c that obeys the properties
(C1), (C2) and (C3), there exists a u ∈ B

(m,s3)
n such that du =

c. Therefore, the cardinality of B
(m,s3)
n is equal to the number

of (s3 + 1)-tuples satisfying these properties.
From (C1) and (C3), such (s3 + 1)-tuples are compositions

of n with s3 + 1 parts and in general, the combinatorics
of compositions have been well studied (see Heubach and
Mansour [22] for a survey). If we impose restrictions for
each part of the composition, we have what is known as
compositions with restricted parts and the following theorem.

Theorem 2 (Folklore, see [22, Ch. 3]): Let P =
(P1, P2, . . . , Pk) be an ordered collection of subsets of
integers. Define Comp(n; P) � {c = (c1, c2, . . . , ck) :∑k

j=1 c j = n and c j ∈ Pj for 1 � j � k}. Then

∑

n�0

|Comp(n; P)|Xn =
k∏

j=1

∑

i∈Pj

Xi .

For each (s3 + 1)-tuple c satisfying properties (C1), (C2)
and (C3), we have

(s3−1
m

)
ways to choose exactly m entries of

c2, c3, . . . , cs3 to be two. Without loss of generality, we assume

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:30:03 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: CAPACITY-ACHIEVING CODES THAT MITIGATE INTERCELL INTERFERENCE AND CHARGE LEAKAGE 3705

c2 = c3 = · · · = cm+1 = 2. Set k = s3 + 1 and consider the
ordered collection P be such that

Pj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z�1, if j = 1,

{2}, if 2 � j � m + 1,

Z�1 \ {2}, if m + 2 � j � s3,

Z�0, j = s3 + 1,

where Z�t denote the set of integers at least t . Then, we have

∣
∣
∣B(m,s3)

n

∣
∣
∣ = |Comp(n; P)|

(
s3 − 1

m

)

.

Since
∑

i∈Z�t
X i = Xt/(1− X), we have

∑

n�0

∣
∣
∣B

(m,s3)
n

∣
∣
∣

(s3−1
m

) Xn

=
∑

n�0

|Comp(n; P)| Xn

=
(

X

1− X

)(
X2

)m
(

X + X3

1− X

)s3−m−1 (
1

1− X

)

= Xs3+m(1− X + X2)s3−m−1

(1− X)s3−m+1 .

This completes the proof of Lemma 1. To compute
∣
∣
∣B

(m,s3)
n

∣
∣
∣,

we extract the coefficient of Xn and multiply it by
(s3−1

m

)
. For

convenience, we let [X j]
{

g(X)
}

denote the coefficient of X j

in g(X). Hence,

[
Xn]

{
Xs3+m(1− X + X2)s3−m−1(1− X)−s3+m−1

}

= [
Xn−s3−m] {

(1− X + X2)s3−m−1(1− X)−s3+m−1
}

=
s3−m−1∑

i=0

(
s3 − m − 1

i

)[
Xn−s3−m−2i

] {
(1− X)−2−i

}

=
s3−m−1∑

i=0

(
s3 − m − 1

i

)(
n − s3 − m − i + 1

n − s3 − m − 2i

)

.

Setting B(m,s3)
n =

∣
∣
∣B

(m,s3)
n

∣
∣
∣ yields (1).

B. Mapping to q-Ary Words

Finally, to complete the proof of Theorem 1, we take a word
in B

(m,s3)
n and replace the symbols in {•, ◦} with symbols in

�. For convenience, we partition � into three parts:

�1 = {0, . . . , a}, �2 = {a + 1, . . . , b − 1},
�3 = {b, . . . , q − 1}.

In addition, for i = 1, 2, 3, we consider Ei to be a set of
words over �i of length si such that E1,E2,E3 are the sets of
all words with compositions [w0, . . . , wa], [wa+1, . . . , wb−1],
and [wb, . . . , wq−1], respectively.

Example 3: Let q = 5, a = 1, b = 4. So, �1 = {0, 1},
�2 = {2, 3}, and �3 = {4}. Furthermore, let n = 8 with

w = (1, 1, 1, 2, 3). Hence, (s1, s2, s3) = (2, 3, 3) and

E1 = {(0, 1), (1, 0)},
E2 = {(2, 3, 3), (3, 2, 3), (3, 3, 2)},
E3 = {(4, 4, 4)}.

For u ∈ B
(m,s3)
n , we further define T (u) to be the set of

n− s3−m coordinates such that t ∈ T (u) implies that ut = ◦,
but (ut−1, ut , ut+1) �= (•, ◦, •). In other words, T (u) is the
set of n− s3−m ◦’s in u that do not belong to the substrings
(•, ◦, •). Let D(u) be the collection of all subsets of T (u) of
size s1.

Example 4: Let u = (•, ◦, •, ◦, •, ◦, ◦, ◦) with n = 8, s3 =
3, m = 2. Then T (u) = {6, 7, 8} and for s1 = 2, we have
D(u) = {{6, 7}, {6, 8}, {7, 8}}.

Next, we define the following collection of pairs:

D(m,s3)
n �

{
(u, D) : u ∈ B(m,s3)

n , D ∈ D(u)
}
.

Observe that
∣
∣
∣D

(m,s3)
n

∣
∣
∣ = B(m,s3)

n
(n−s3−m

s1

)
and consider the

following map,

�1 : E1 × E2 × E3 ×
min(s2,s3−1)⋃

m=0

D(m,s3)
n → A(n;w, I(a, b)),

(e1, e2, e3, u, D) �→ v,

in which, ei ∈ Ei for i = 1, 2, 3, u ∈ B
(m,s3)
n and D1 ∈ D(u)

are given. Let D2 be the set of coordinates of ◦ in u that do not
belong to D1 and �1(e1, e2, e3, u, D) = v ∈ A(n;w, I(a, b))
is the q-ary word obtained by substituting

• the s1 ◦’s of u at index set D1 with e1,
• the s2 ◦’s of u at index set D2 with e2, and
• the s3 •’s of u with e3.

Lemma 2: The map �1 is a bijection.
Proof: We define the following map,

�2 : A(n;w, I(a, b)) → E1 × E2 × E3 ×
min(s2,s3−1)⋃

m=0

D(m,s3)
n

v �→ (e1, e2, e3, u, D),

in which, v ∈ A(n;w, I(a, b)) is given and �2(v) =
(e1, e2, e3, (u, D)) is determined as follows.

• ei is the subsequence of v whose symbols belong to �i

for i = 1, 2, 3,
• u is the word obtained by substituting symbols in �1∪�2

with ◦ and symbols in �3 with •, and
• D is the set of indices with symbols in �1.

We observe that �1 ◦�2 and �2 ◦�1 are identity maps on
their respective domains.

Therefore, �1 is a bijection.
Example 5: Let q, a, b, n, w, and u be as defined in

Examples 3 and 4. Consider e1 = (0, 1), e2 =
(3, 2, 3), e3 = (4, 4, 4) and D = {6, 8}. Then
�1(e1, e2, e3, (u, D)) = (4, 3, 4, 2, 4, 0, 3, 1). Conversely,
if we set v = (4, 3, 4, 2, 4, 0, 3, 1), then �2(v) recovers
e1, e2, e3, u and D.

Combining Lemmas 1 and 2 yields Theorem 1.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:30:03 UTC from IEEE Xplore. Restrictions apply.

3706 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 6, JUNE 2019

III. RATES OF CONSTANT-COMPOSITION

F-AVOIDING CODES

In this section, we provide an efficient numerical procedure
to determine the asymptotic information rates of (ρ, I(a, b))-
pairs.

In what follows, we consider the entropy function
H(p1, p2, . . . , pk) = −∑k

i=1 pi log pi and the binary entropy
function H2(p) = H(1− p, p), where

∑k
i=1 pi = 1 and p, pi

are nonnegative for all 1 � i � k.
Theorem 3: Let q � 3 and ρ = (ρ0, ρ1, . . . , ρq−1). Let

∑a
k=0 ρk = x1. Let

∑b−1
k=a+1 ρk = x2. Let

∑q−1
k=b ρk = x3. For

0 ≤ i ≤ a, let pi = ρi/x1. For a + 1 ≤ i ≤ b − 1, let
pi = ρi/x2. For b ≤ i ≤ q − 1, let pi = ρi/x3.

Define the function F(ρ, y, z) such that

F(ρ, y, z) � x1H(p0, . . . , pa)+x2H(pa+1, . . . , pb−1)

+ x3H(pb, . . . , pq−1)

+ (1− x3 − x3 y)H2

(
x1

(1− x3 − x3 y)

)

+ x3H2(y)+ (x3 − x3y)H2(z)

+ (1− x3 − x3y − z(x3 − x3y))

×H2

(
1− x3 − x3y − 2z(x3 − x3y)

1− x3 − x3y − z(x3 − x3y)

)

.

Then the asymptotic rate

R(ρ, I(a, b)) = max
0�z�1

0�y�min{1,x2/x3}
F(ρ, y, z).

Proof: For each n, let w(n) = (w0, w1, . . . , wq−1) such
that wi = �ρi · n� for all 0 � i � q − 2 and wq−1 = n −
∑q−2

i=0 wi . We verify that the sequence w(n)/n converges to
ρ componentwise.

From Theorem 1, we know that

A(n;w(n), I(a, b)) =
min{s2,s3−1}∑

m−0

s3−m−1∑

i=0

Di,m ,

where

Di,m =
(

s1

w0, · · · , wa

)(
s2

wa+1, · · · , wb−1

)(
s3

wb, · · · , wq−1

)

×
(

n − s3 − m

s1

)(
s3 − 1

m

)(
s3 − m − 1

i

)

×
(

n − s3 − m − i + 1

n − s3 − m − 2i

)

.

For 0 � m � min{s2, s3 − 1} and 0 � i � s3 − m − 1, let
0 � y = m/s3 � min{1, x2/x3} and 0 � z = i/(s3 − m) � 1.
Then by Stirling’s approximation,

2nF(ρ,y,z)−o(n) � Di,m � 2nF(ρ,y,z)+o(n) for all i, m.

Hence, A(n;w(n), I(a, b)) � Di,m � 2nF(ρ,y,z)−o(n).
Taking logarithms, dividing by n and taking limits in n

yields the inequality R(ρ, I(a, b)) � F(ρ, y, z) for all 0 �
y � min{1, x2/x3} and 0 � z � 1. Let

F(ρ, y∗, z∗) = max
0�z�1;

0�y�min{1,x2/x3}
F(ρ, y, z).

Therefore, R(ρ, I(a, b)) � F(ρ, y∗, z∗).

On the other hand, we have

A(n;w(n), I(a, b)) �
∑

i,m

2nF(ρ,y,z)+o(n)

� n2 × 2nF(ρ,y∗,z∗)+o(n).

Again, taking logarithms, dividing by n and taking limits
in n, we obtain R(ρ, I(a, b)) � F(ρ, y∗, z∗). Therefore,
R(ρ, I(a, b)) = F(ρ, y∗, z∗), completing the proof.

So, for each composition ratio ρ, we can find the asymptotic
rate R(ρ, I (a, b)) by maximizing the multivariate function
F(ρ, y, z). The corollaries in the next subsection follow from
direct application of Theorem 3.

A. Avoiding I1(q)

Corollary 1: Let ρ = (ρ0, ρ1, . . . , ρq−1). For 0 ≤ i ≤ q −
2, let pi = ρi/

∑q−2
k=0 ρk and pq−1 = ρq−1. Define the function

F1 so that

F1(x) � (1− pq−1)H(p0, . . . , pq−2)+ pq−1H2(x)

+ (1− pq−1 − pq−1x)H2

(
1− pq−1 − 2 pq−1x

1− pq−1 − pq−1x

)

.

Then the asymptotic rate R(ρ, I1(q)) is given by
max0�x�1 F1(x).

Proof: Apply Theorem 3 with a = q − 2 and b = q − 1.
Here, y = 0 since x2 = 0.

Example 6: Let q = 2 and ρ = (1/2, 1/2). Then

F1(x) = 1

2

(

H2(x)+ (1− x)H2

(
1− 2x

1− x

))

.

Now, F1(x) is maximized when x = 1/3 and achieves the
value (log 3)/2. This yields Rbal(I1(2)) and recovers the result
in Qin et al. [18]. Continuing this example, we compute the
rates Rbal(I1(q)) for 2 � q � 8 and tabulate these values in
the second column of Table I.

B. Avoiding I2(q)

Corollary 2: Let q � 3 and ρ = (ρ0, ρ1, . . . , ρq−1). For
1 ≤ i ≤ q − 2, let pi = ρi/

∑q−2
k=1 ρk . Define the function

F2(y, z) such that

F2(y, z) � (1− ρ0 − ρq−1)H(p1, . . . , pq−2)

+ (1− ρq−1 − ρq−1 y)H2

(
ρ0

(1− ρq−1 − ρq−1 y)

)

+ ρq−1H2(y)+ (ρq−1 − ρq−1 y)H2(z)

+ (1− ρq−1 − ρq−1 y − z(ρq−1 − ρq−1 y))

×H2

(
1− ρq−1 − ρq−1 y − 2z(ρq−1 − ρq−1 y)

1− ρq−1 − ρq−1 y−z(ρq−1 − ρq−1 y)

)

.

Then the asymptotic rate

R(ρ, I2(q)) = max{F2(y, z) : 0 � z

� 1 and 0 � y � min{1,
(1− ρ0 − ρq−1)

ρq−1
}.

Proof: Apply Theorem 3 with a = 0 and b = q − 1.
As before, for 3 � q � 8, we compute Rbal(I2(q)) and

tabulate these results in the sixth column of Table I.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:30:03 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: CAPACITY-ACHIEVING CODES THAT MITIGATE INTERCELL INTERFERENCE AND CHARGE LEAKAGE 3707

C. Capacity-Achieving Codes With Constant Composition

Consider the function F defined in Theorem 3. Since we
are interested in constant-composition codes with high rates,
we want to find the composition ratio ρ such that the rate
R(ρ, I(a, b)) is maximal. A natural approach is to maximize
F(ρ, y, z) in the variables ρ, y and z, that have q + 2 real
components. However, the following theorem demonstrates
that it suffices to maximize a function in four variables
(independent of q). Furthermore, we also show that these
codes achieve capacity when the rates are maximized.

Theorem 4: Given q � 2 and a, b such that 0 � a < b �
q − 1. Define

F∗(x1, x3, y, z) � x1 log(a + 1)

+ (1− x1 − x3) log(b − a − 1)+ x3H2(y)

+ (x3 − x3y)H2(z)

+ x3 log(q − b)+ (1− x3 − x3 y)

×H2

(
x1

(1− x3 − x3 y)

)

+ (1− x3 − x3y − z(x3 − x3y))

×H2

(
1− x3 − x3y − 2z(x3 − x3y)

1− x3 − x3y − z(x3 − x3y)

)

.

Then, C(I(a, b)) = max{F∗(x1, x3, y, z) : 0 �
x1, x3, y, z � 1, y � (1− x1 − x3)/x3}.

Furthermore, if x∗1 , x∗3 , y∗, z∗ satisfy C(I(a, b)) =
F∗(x∗1 , x∗3 , y∗, z∗), then R(ρ, I(a, b)) = C(I(a, b)) where
ρi = x∗1/(a+1) for all 0 � i � a, ρi = (1−x∗1−x∗3)/(b−a−1)
for all a + 1 � i � b − 1 and ρi = x∗3/(q − b) for all
b � i � q − 1.

Proof: Let F∗(x∗1 , x∗3 , y∗, z∗) = max{F∗(x1, x3, y, z) :
0 � x1, x3, y, z � 1; y � (1− x1 − x3)/x3}.

Let Dmax(n) = max{A(n;w,F) : ∑
wi = n} for all n.

Since A(n;w(n), I(a, b)) � n2 ·2n maxy,z F(ρ,y,z)+o(n), we have
that

Dmax(n) � n2 · 2n maxρ,y,z F(ρ,y,z)+o(n).

From the definition of capacity,

C(I(a, b)) = lim sup
n→∞

log |A(n; I(a, b))|
n

= lim sup
n→∞

log
∑

∑
wi=n A(n, w(n), I(a, b))

n

� lim sup
n→∞

log nq max∑
wi=n A(n, w, I(a, b))

n

� lim sup
n→∞

log Dmax(n)

n
� max

ρ,y,z
F(ρ, y, z).

Now, H(p0, . . . , pa) � log(a + 1), H(pa+1, . . . , pb−1) �
log(b−a−1), and H(pb, . . . , pq−1) � log(q−b). Therefore,
F(ρ, y, z) � F∗(x1, x2, x3, y, z), where x1 = ∑a

i=0 ρi and
x3 =∑q−1

i=b ρi . So,

C(I(a, b)) � max
ρ,y,z

F(ρ, y, z) � F∗(x∗1 , x∗3 , y∗, z∗).

On the other hand, C(I(a, b)) ≥ R(ρ, I(a, b)) for all
composition ratios ρ.

Choose ρ = (ρ0, . . . , ρq−1) such that ρi = x∗1/(a + 1)
for all 0 � i � a, ρi = (1 − x∗1 − x∗3)/(b − a − 1) for all
a+1 � i � b−1, and ρi = x∗3/(q−b) for all b � i � q−1.
Then F(ρ, y, z) = F∗(x∗1 , x∗3 , y, z) and applying Theorem 3,
we have

R(ρ, I(a, b)) = max
0�z�1

0�y�min{1,(1−x1−x3)/x3}
F(ρ, y, z)

= max
0�z�1

0�y�min{1,(1−x1−x3)/x3}
F(ρ, y, z)

= F∗(x∗1 , x∗3 , y∗, z∗).

Therefore, C(I(a, b)) � F∗(x∗1 , x∗3 , y∗, z∗) and we con-
clude C(I(a, b)) = F∗(x∗1 , x∗3 , y∗, z∗).

Applying Theorem 4 for I1(q)-avoiding codes and I2(q)-
avoiding codes, we obtain the following corollary.

Corollary 3: (i) Let

F∗1 (x, z) = (1− x) log(q − 1)+ xH2(z)

+ (1− x − xz)H2

(
1− x − 2xz

1− x − xz

)

.

Then C(I1(q)) = max{F∗1 (x, z) : 0 � x, z � 1} for
q � 2. Moreover, for ρ = ((1 − x∗)/(q − 1), (1 −
x∗)/(q − 1), . . . , (1− x∗)/(q− 1), x∗), where (x∗, z∗) ∈
arg max{F∗1 (x, z) : 0 � x, z � 1}, the asymptotic rate
R(ρ, I1(q)) = C(I1(q)).

(ii) Let

F∗2 (x0, x, y, z)

= (1− x0 − x) log(q − 2)

+ (1− x − xy)H2

(
x0

(1− x − xy)

)

+ xH2(y)+ (x − xy)H2(z)

+ (1− x − xy − z(x − xy))

×H2

(
1− x − xy − 2z(x − xy)

1− x − xy − z(x − xy)

)

.

Then C(I2(q)) = max{F∗(x0, x, y, z) : 0 �
x0, x, y, z � 1, y � (1 − x0 − x)/x} for q ≥ 3.
Moreover, for ρ = (x∗0 , (1− x∗0 − x∗)/(q − 2), . . . , (1−
x∗0 − x∗)/(q − 2), x∗), where (x∗0 , x∗, y∗, z∗) ∈
arg max{F∗1 (x0, x, y, z) : 0 � x0, x, y, z � 1; y � (1 −
x0− x)/x}, the asymptotic rate R(ρ, I2(q)) = C(I2(q)).

We apply Corollary 3 to determine composition ratios ρ
that allow I1(q)-avoiding and I2(q)-avoiding codes to achieve
capacity. In the case of I1(q)-avoiding codes, the values of
asymptotic rates R(ρ, I1(q)) for 2 ≤ q ≤ 8 are listed in the
fourth column of Table I. Here, the composition ratio is ρ =
[ρ, ρ, . . . , ρ, ρq−1(I1(q))], where ρ = (1−ρq−1(I1(q)))/(q−
1) and the corresponding values of ρq−1(I1(q)) are listed in
the third column of Table I. In the case of I2(q)-avoiding
codes, we observe that the function F∗2 (x0, x, y, z) is maxi-
mized when x∗0 = (1− x∗0 − x∗)/(q − 2) = (1− x∗)/(q − 1).
For 3 ≤ q ≤ 8, we computed x∗ = ρq−1(I2(q)) and listed in
the seventh column of Table I. The corresponding asymptotic
rates R(ρ, I2(q)) are listed in the eighth column of Table I.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:30:03 UTC from IEEE Xplore. Restrictions apply.

3708 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 6, JUNE 2019

TABLE I

RATES OF I1(q) AND I2(q)-AVOIDING CODES WITH CONSTANT COMPOSITION

Fig. 1. Primitive graph G presenting the I(a, b)-avoiding channel.

D. Markov Chain Approach

In this subsection, we present an alternative approach to
compute the asymptotic information rate of q-ary I(a, b)-
avoiding constant-composition codes. The approach was com-
municated to us after the conference version [1] of the paper
was presented. For completeness, we present this approach
here and remark that the connection between the Markov
chain approach and the approach using enumerative techniques
remains unclear.

Recently, Roth and Siegel independently computed the
asymptotic information rate of the ICI-free balanced codes
using Markov chain approach [27]. The technique is presented
in [25] and in [28, Ch. 9].

Here, we mimic the argument in [27] to compute the rate
R(ρ, I(a, b)). Figure 1 shows the minimum primitive graph G
that presents the constraint of avoiding all patterns in the set
I(a, b). Recall that ρ = (ρ0, ρ1, . . . , ρq−1) is the composition
ratio. Define the vector indicator function I W : EG �→
R

q−1 where I W = (I1, I2, . . . , Iq−1) with Im denoting the
indicator function for the symbol m ∈ {1, . . . , q−1}. We then
consider stationary Markov chains such that E(I W) = p =
(ρ1, . . . , ρq−1).

Theorem 5: Let x = (x1, x2, . . . , xq−1) be a vector of
real numbers. Let p = (ρ1, . . . , ρq−1) and set the compo-
sition ratio to be ρ = (1 − ∑q−1

i=1 ρi , ρ1, . . . , ρq−1). The
maximum asymptotic rate of q-ary I(a, b)-avoiding constant-
composition constraint is given by

R(ρ, I(a, b)) = inf
x∈Rq−1

{x · p + log λ(AG;IW (x))},
where

AG;IW (x) =

⎡

⎢
⎢
⎢
⎣

∑q−1

i=b
2−xi 1+

∑a

i=1
2−xi

∑b−1

i=a+1
2−xi

0 0 1+
∑b−1

i=1
2−xi

∑q−1

i=b
2−xi 0 1+

∑b−1

i=1
2−xi

⎤

⎥
⎥
⎥
⎦

.

However, it is not trivial to solve the above optimization
problem in Theorem 5 in general, especially when q is large.
In [27], Roth and Siegel presented numerical result in the case
q = 3 and a = 0, b = q − 1 for balanced codes. However,
using the approach from Theorem 3, we calculated the results
Rbal(I2(q)) for all 3 ≤ q ≤ 8 in the sixth column in Table I.
Furthermore, we also computed the optimal composition ratios
ρ0 such that the rate R(ρ0, I(a, b)) achieves the capacity of
the I(a, b)-avoiding channel C(I(a, b)) for some specific cases
in Table I.

IV. ENCODING AND DECODING ALGORITHMS

We consider efficient encoding and decoding algorithms
for I1(q)-avoiding codes with certain constant compositions.
In this section, we focus on the avoidance set I1(q) as
Taranalli et al. [10] have shown that avoiding I2(q) is not
enough to mitigate ICI effects. As such, we adopt the following
notations in this section for convenience.

A q-ary code C ⊆ �n is ICI-free if it avoids I1(q). An ICI
channel is a channel whose input codewords are ICI-free and
the capacity of a q-ary ICI channel is CICI(q) = C(I1(q)).

The set of all q-ary ICI-free words of length n with constant
composition w is denoted S(n, w). Note that q , the size of the
alphabet, is determined by the composition w. In the case
q = 2, we further abbreviate S(n, [w0, w1]) to S(n, w1). The
size of S(n, w) is denoted by AICI(n, w). Finally, we use [[n]]
to denote the set of integers {1, 2, . . . , n}.

A. A Recursive Construction for (Binary) S(n, w)

Let n ≥ w ≥ 2 and define the map

φ :
⋃

k∈[[n−w+1]]\{2}
S(n − k, w − 1)→ S(n, w),

such that

φ(u1, u2, . . . , un−k)

= (u1, u2, . . . , ur(u), 0, 0, . . . , 0
︸ ︷︷ ︸

k − 1 0’s

, 1, ur(u)+1,

ur(u)+2, . . . , un−k),

where r(u) is the position of the rightmost “1” in u =
(u1, u2, . . . , un−k), that is,

r(u) = max{i ∈ [[n − k]] : ui = 1 and u j = 0 for all j ≥ i}.
Theorem 6: The map φ is a bijection.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:30:03 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: CAPACITY-ACHIEVING CODES THAT MITIGATE INTERCELL INTERFERENCE AND CHARGE LEAKAGE 3709

Proof: We first show injectivity of φ. If u and v are distinct
elements of S(n − k, w − 1) for some k ∈ [[n −w + 1]] \ {2},
then
• when r(u) = r(v), φ(u) and φ(v) must differ in some of

their first r(u) positions;
• when r(u) �= r(v), φ(u) and φ(v) must differ in some of

their last n − k − r(u) positions.
If u ∈ S(n − k1, w − 1) and v ∈ S(n − k2, w − 1) for some
k1, k2 ∈ [[n −w + 1]] \ {2}, where k1 �= k2, then the rightmost
occurrence of a substring of the form (1, 0, 0, . . . , 0, 1) in
φ(u) and φ(v) has lengths k1 + 1 and k2 + 2, respectively.

To prove surjectivity of φ, consider u ∈ S(n, w). Let s(u)
be the starting position of the rightmost substring in u of the
form (1, 0, 0, . . . , 0

︸ ︷︷ ︸
k − 1 0’s

, 1), where k ≥ 1. Deleting the substring

(us(u)+1, us(u)+2, . . . , us(u)+k) from u gives an element v ∈
S(n − k, w − 1) such that φ(v) = u.

Corollary 4:

AICI(n, w) =
∑

k∈[[n−w+1]]\{2}
AICI(n − k, w − 1). (2)

Theorem 6 and Corollary 4, together with Proposition 4
below, give recurrence for the construction of S(n, w) and the
determination of AICI(n, w).

Proposition 4: For n ≥ 1,
(i) S(n, 1) is the set of all words of weight one in �n, and

hence AICI(n, 1) = n;
(ii) S(n, n) = {(1, 1, . . . , 1)}, and hence AICI(n, n) = 1.

Example 7: We can construct S(5, 3) from S(4, 2) and
S(2, 2). Moreover, S(4, 2) can in turn be constructed from
S(3, 1) and S(1, 1). Hence, with the trivial codes S(3, 1) =
{100, 010, 001}, S(1, 1) = {1}, and S(2, 2) = {11}, we obtain

S(4, 2) = φ(S(3, 1)) ∪ φ(S(1, 1))

= {1100, 0110, 0011} ∪ {1001},
which in turn gives

S(5, 3) = φ(S(4, 2)) ∪ φ(S(2, 2))

= {11100, 01110, 00111, 10011}∪ {11001}.
Similarly,

AICI(5, 3) = AICI(4, 2)+ AICI(2, 2)

= AICI(3, 1)+ AICI(1, 1)+ AICI(2, 2)

= 5.
In fact, Corollary 4 gives rise to a polynomial time algo-

rithm, via dynamic programming, for computing the value
of AICI(n, w), for any given n and w. Let A be the n × w
matrix whose (i, j)-th entry, A(i, j) = AICI(i, j). Prefill the
first column so that A(i, 1) = i for all i ∈ [[n]], and the
diagonal entries so that A(i, i) = 1 for all i ∈ [[w]]. Now
fill the remaining entries A(i, j), where i > j , column wise
from left to right (that is, by increasing value of j), and within
each column j from top to bottom (that is, by increasing value
of i), until we fill in the entry A(n, w), which gives the value
of AICI(n, w).

As the recurrence given by (2) involves
(n) terms and
there are
(nw) entries in the matrix to fill, a naive imple-
mentation of the above algorithm requires O(n2w) arithmetic

operations. However, the number of arithmetic operations may
be reduced to O(nw) by considering an auxiliary n×w matrix.

Corollary 5: The set of values {AICI(i, j) : 1 � j � i �
n} can be computed with O(nw) arithmetic operations, or
running time O(n2w), using
(nw) space.

Proof: Recall that A is the n ×w matrix whose (i, j)-th
entry, A(i, j) = AICI(i, j), and our objective is to compute
A(i, j) for 1 � j � i � n. To reduce the running time,
we define an auxiliary n × w matrix B, whose (i, j)-th entry
is B(i, j) = A(i, j)+ A(i − 2, j − 1) for 2 � j < i � n.

For 2 � j < i � n, observe that A(i, j)+A(i −2, j−1) =∑
k∈[[i− j+1]] A(i − k, j − 1) = B(i − 1, j)+ A(i − 1, j − 1).

Therefore, we have the following recurrences,

B(i, j) = B(i − 1, j)+ A(i − 1, j − 1), (3)

A(i, j) = B(i, j)− A(i − 2, j − 1). (4)

Since the recurrences given by (3) and (4) involve
(1) terms
and there are
(nw) entries in the matrices to fill, the required
number of arithmetic operations to fill both A and B is O(nw).
Since |A(n, w)| = 2
(n), the running time is O(n2w).

The building up of codewords in S(n, w) from shorter
codewords in S(n − k, w − 1) via φ leads also to an effi-
cient ranking/unranking algorithm for codewords in S(n, w).
We describe this next.

B. Ranking and Unranking S(n, w)

A ranking function for a finite set S of cardinality N is a
bijection

rank : S → [[N]].

There is a unique unranking function associated with the
function rank:

unrank : [[N]]→ S,

so that rank(s) = i if and only if unrank(i) = s for all s ∈ S
and i ∈ [[N]]. In this section, we present an algorithm for
ranking and unranking S(n, w).

The basis of our ranking and unranking algorithms is the
unfolding of the recurrence

S(n, w) =
⋃

k∈[[n−w+1]]\{2}
φ(S(n − k, w − 1)) (5)

implied by Theorem 6, which yields a natural total ordering
of codewords in S(n, w), given a total ordering of codewords
in S(n, 1) and S(n, n). Throughout this paper, the reverse
lexicographic order is used as a total ordering on S(n, w),
so that the rank of u ∈ S(n, 1) is the position of the symbol
“1” in u. Note that the total ordering on S(n, n) is trivial
since it contains only one element. Let us first illustrate the
idea behind the unranking algorithm through an example.

Example 8: Consider S(7, 3). This code has size 18. Sup-
pose we want to compute unrank(13). First, (5) gives

S(7, 3) = φ(S(6, 2)) ∪ φ(S(4, 2)) ∪ φ(S(3, 2)) ∪ φ(S(2, 2)),

where the codes in the union on the right hand side are ordered
in decreasing length. Now, |S(6, 2)| = 11, |S(4, 2)| = 4,
|S(3, 2)| = 2, and |S(2, 2)| = 1. We are interested in the 13th

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:30:03 UTC from IEEE Xplore. Restrictions apply.

3710 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 6, JUNE 2019

element of S(7, 3). Since |S(6, 2)| < 13 ≤ |S(6, 2)|+|S(4, 2)|,
the 13th element of S(7, 3) is the 13−|S(6, 2)| = 2-nd element
of φ(S(4, 2)), which can be obtained from the 2nd element of
S(4, 2). Recursing gives

S(4, 2) = φ(S(3, 1)) ∪ φ(S(1, 1)),

where |S(3, 1)| = 3 and |S(1, 1)| = 1.
Hence the second element of S(4, 2) is the second element

of φ(S(3, 1)), which can be obtained from the second element
of S(3, 1), namely 010. This gives

unrank(13) = φ2(010)

= φ(0110)

= 0110010.

The formal unranking algorithm is described in Algo-
rithm 1 below.

Algorithm 1 unrank(n, w, m)

Input: Integers n ≥ w ≥ 1 and 1 ≤ m ≤ AICI(n, w).
Output: (u, r), where u is the codeword of rank m in S(n, w),

and r is the position of the rightmost “1” in u.
if w = n then

return (j, n), where j is an all-ones vector of length n;
if w = 1 then

return (em , m), where em is a vector of length n with
“1” at its mth position and zero elsewhere;

let k ≥ 1 be such that

L =
∑

i∈[[k−1]]\{2}
AICI(n − i, w − 1) < m

≤
∑

i∈[[k]]\{2}
AICI(n − i, w − 1); (6)

(u, r) = unrank(n − k, w − 1, m − L);
return ((u1, . . . , ur , 0, 0, . . . , 0

︸ ︷︷ ︸
k − 1 0’s

, 1, ur+1, . . . , un−k), r+k);

The values of AICI(n, w) required in Algorithm 1 can be pre-
computed using the dynamic programming method described
at the end of the previous subsection.

The corresponding ranking algorithm for S(n, w) has a
similar recursive structure and is described in Algorithm 2.

Example 9: Consider S(7, 3) again. Suppose we want to
compute rank(7, 3, 0110010). First, we look for the rightmost
“1” in 0110010 and set k − 1 to be the number of zeroes
preceding it. In other words, k = 3 and so,

rank(7, 3, 0110010) = rank(4, 2, 0110)+ AICI(6, 2)

= rank(4, 2, 0110)+ 11.

To compute rank(4, 2, 0110), we observe that k = 1 and we
have

rank(4, 2, 0110) = rank(3, 1, 010).

Finally, since the weight of 010 is one, we have that
rank(3, 1, 010) = 2. Therefore, rank(7, 3, 0110010) = 2 +
11 = 13, and we recover the rank of 0110010.

Algorithm 2 rank(n, w, u)

Input: Integers n ≥ w ≥ 1 and u ∈ S(n, w).
Output: m, where m = rank(u).

if w = n then
return 1;

if w = 1 then
return m, where m is the position of the rightmost “1”
in u;

let r be the starting position of the rightmost substring in u
of the form (1, 0, 0, . . . , 0

︸ ︷︷ ︸
k − 1 0’s

, 1), where k ≥ 1;

v← (u1, u2, . . . , ur , ur+k+1, ur+k+2, . . . , un);
return rank(n−k, w−1, v)+∑

i∈[[k−1]]\{2} AICI(n−i, w−
1);

In summary, suppose that we are given a set of AICI(n, w)
messages. To encode the mth message, we compute u =
unrank(n, w, m) as described in Algorithm 1 and set u to
be the codeword. On the other hand, to decode an ICI-free
codeword u of length n and weight w, we compute m =
rank(n, w, u) and decode u to the mth message.

It remains to determine the running times of Algorithms 1
and 2. Here, we fix 0 < p < 1 and set w = �pn�, and
let m ∈ [[AICI]]. Since the routine rank recursively calls upon
itself with a smaller weight, the routine rank(n, w, m) requires
at most w =
(n) recursive calls. However, computing k in
(6) requires k = O(n) arithmetic operations and hence, this
simple analysis implies that Algorithm 1 requires O(n2) arith-
metic operations. Nevertheless, a refined analysis shows that
Algorithm 1 requires O(n) arithmetic operations. Similarly,
we can show that Algorithm 2 can be computed with O(n)
arithmetic operations.

Theorem 7: Fix 0 < p < 1 and let w = �pn�. Suppose
that the set of values {AICI(i, j) : 1 � j � i � n} has been
precomputed. Then Algorithms 1 and 2 can be computed with
O(n) arithmetic operations, or running time O(n2).

Proof: Suppose that unrank(n, w, m) makes J recursive
calls. Specifically, for j ∈ [[J]], let k j and L j be the variables
k and L in (6) that are computed by j th recursive call. In
other words, for the J th iteration, we make the recursive
call to unrank

(
n −∑

j∈[[J]] k j , w − J, m −∑
j∈[[J]] L j

)
and

therefore,
∑

j∈[[J]] k j � n.
Now, in the j th recursive call, we require Ck j arithmetic

operations to compute k j and L j for some constant C .
Hence, the total number of arithmetic operations required
to compute unrank(n, w, m) is

∑
j∈[[J]] Ck j � Cn. In other

words, Algorithm 1 requires O(n) arithmetic operations. Since
|AICI(n, w)| = 2
(n), the running time of Algorithm 1 is
O(n2).

The running time analysis for Algorithm 2 is similar. Sup-
pose that rank(n, w, u) makes J recursive calls. For j ∈ [[J]],
let k j be the variable k that is computed by j th recursive call,
and we similarly verify that

∑
j∈[[J]] k j � n.

Since we require Dk j arithmetic operations in in the j th
recursive call for some constant D, the total number of
arithmetic operations required to compute rank(n, w, m) is

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:30:03 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: CAPACITY-ACHIEVING CODES THAT MITIGATE INTERCELL INTERFERENCE AND CHARGE LEAKAGE 3711

∑
j∈[[J]] Dk j � Dn. In other words, Algorithm 2 requires

O(n) arithmetic operations. Again, since |AICI(n, w)| = 2
(n),
the running time of Algorithm 2 is O(n2).

C. Extension to q > 2

Let C ⊆ �n and � ⊆ �. Let f : � → �. By canonical
extension, we have f : �n → �n , so that

�n � (u1, u2, . . . , un)
f�→(f (u1), f (u2), . . . , f (un)) ∈ �n.

The restriction of C by f is the code f (C) ⊆ �n .
The idea behind the extension of our results in the previous

section for binary codes to q-ary codes is based on the simple
observation that if a q-ary code is ICI-free, then its restriction
by f : �→ {0, 1}, where

f (σ) =
{

1, if σ = q − 1,

0, otherwise,

is a binary ICI-free code. Hence, a binary ICI-free code
C ⊆ {0, 1}n can be used as a template to construct a q-ary
ICI-free code C� ⊆ �n : for each codeword u ∈ C, replace a
coordinate with symbol “1” by q−1 and replace a coordinate
with symbol “0” by all possible symbols from � \ {q − 1}.
Therefore, a binary codeword of weight w in C generates
(q − 1)n−w codewords in C�.

We are concerned here with q-ary ICI-free codes of constant
composition [w0, w1, . . . , wq−1], where w0 = w1 = · · · =
wq−2. We call codes of such composition almost balanced.
The intuition behind this condition is that an ICI-free code
avoids substrings of the form q − 1, σ, q − 1, for all σ ∈
� \ {q − 1}, and so the symbol q − 1 has a special status.
Therefore, if we were to look for a constant-composition
ICI-free code of maximum size, it would be a good strategy
to look within almost balanced codes. Indeed, we have found
ICI channel capacity-achieving ICI-free codes that are almost
balanced (presented in Section III).

To construct an almost balanced ICI-free code C ⊆ �n of
constant composition [w0, w1, . . . , wq−1], we can start with
S(n, wq−1) as a template and replace every occurrence of
symbol “1” in each codeword u ∈ S(n, wq−1) by q − 1.
However, instead of replacing the remaining n−wq−1 “0”s in
u with all possible words in (� \ {q − 1})n−wq−1 , we replace
them with codewords from a balanced (q − 1)-ary code of
length n − wq−1 over � \ {q − 1}.

Efficient encoder/decoder pairs for capacity-achieving bal-
anced q-ary codes are known [23], [24]. We can combine the
encoder/decoder for S(n, w) and that for a capacity-achieving
balanced (q−1)-ary code B of length n−w to give an efficient
encoder/decoder for an almost balanced q-ary ICI-free code
C. The encoding algorithm is described in Algorithm 3.

The corresponding decoding algorithm is given in
Algorithm 4.

From Theorem 7, it is not hard to see that the running time
for both algorithms is O(n2), assuming the values of AICI
have been precomputed.

Algorithm 3 encode(m)

Input: 0 ≤ m < |S(n, w)| · |B|.
Output: u, where u is an encoding of m as a codeword in C.

let m = s · |B| + t , where 0 ≤ t < |B|;
u← encoding of s as a codeword in S(n, w);
v← encoding of t as a codeword in B;
w← word obtained by replacing each occurrence of symbol
“1” in u by q − 1 and all the other n −w “0”s in u by the
word v;
return w;

Algorithm 4 decode(u)

Input: u ∈ C.
Output: m, where u = encode(m).

v ← word obtained from u by deleting occurrences of
symbol q − 1;
t ← decoding of v ∈ B;
w ← word obtained from u by replacing each occurrence
of symbol q − 1 in u by “1” and all the other symbols by
“0”;
s ← decoding of w ∈ S(n, w);
return s · |B| + t ;

D. Application to the Case q = 4

Using Perron-Frobenius theory, the capacity of q-ary ICI
channels can be determined to be log2 λ, where λ is the
largest root of x3 − qx2 + (q − 1)x − (q − 1)2 (see [20],
[28]). This gives CICI(4) ≈ 1.9374. Taranalli et al. [10] gave
an encoding/decoding algorithm for quaternary ICI-free codes
that has rate 1.6942.

We have constructed almost balanced quaternary ICI-free
codes of composition [αn, αn, αn, βn], where α ≈ 0.268582
and β ≈ 0.194254, and showed them to be capacity-achieving
(having rate 1.9374) in Section IV. These codes can be
encoded and decoded with the algorithms described earlier in
this section. Hence, we now have efficient encoding/decoding
algorithms for quaternary constant-composition ICI-free codes
that are capacity-achieving.

V. CONCLUSION

We enumerated the set of all F-avoiding words with a
fixed composition for certain avoidance sets F = I(a, b).
Using this formula, we presented procedures to determine
the rates of I(a, b)-avoiding codes with fixed composition
ratios. We also determined the optimal composition ratios that
maximize the rates of I(a, b)-avoiding constant-composition
codes and showed that these codes achieve the capacity of
the I(a, b)-avoiding channel. Efficient encoding and decoding
algorithms for certain special classes of constant-composition
I1(q)-avoiding codes are presented.

ACKNOWLEDGEMENT

The authors are also grateful to Ron Roth and
Paul H. Siegel for the helpful discussions and sharing the
preprint [27]. They would like to thank Bei Xiaohui for his

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:30:03 UTC from IEEE Xplore. Restrictions apply.

3712 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 6, JUNE 2019

insightful comments in running time analysis. The authors
thank the editor and the reviewers for their constructive
feedback and helpful suggestions.

REFERENCES

[1] Y. M. Chee, J. Chrisnata, H. M. Kiah, S. Ling, T. T. Nguyen, and
V. K. Vu, “Rates of constant-composition codes that mitigate intercell
interference,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2016,
pp. 200–204.

[2] Y. M. Chee, C. Johan, H. M. Kiah, S. Ling, T. T. Nguyen, and
V. K. Vu, “Efficient encoding/decoding of capacity-achieving constant-
composition ICI-free codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2016, pp. 205–209.

[3] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interfer-
ence on NAND flash memory cell operation,” IEEE Electron Device
Lett., vol. 23, no. 5, pp. 264–266, May 2002.

[4] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error patterns in
MLC NAND flash memory: Measurement, characterization, and analy-
sis,” in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), May 2012,
pp. 521–526.

[5] D. Kang et al., “The air spacer technology for improving the cell
distribution in 1 giga bit NAND flash memory,” in Proc. 21st IEEE
Non-Volatile Semiconductor Memory Workshop, Feb. 2006, pp. 36–37.

[6] R. Fastow and S. Park, “Minimization of FG-FG coupling in flash
memory,” U.S. Patent 6 996 004 B1, Feb. 7, 2006.

[7] A. Berman and Y. Birk, “Mitigating inter-cell coupling effects in
MLC NAND flash via constrained coding,” in Proc. Flash Memory
Summit, 2010.

[8] A. Berman and Y. Birk, “Error correction scheme for constrained inter-
cell interference in flash memory,” in Proc. 2nd Annu. Non-Volatile
Memories Workshop (NVMW), 2011, pp. 1–20.

[9] A. Berman and Y. Birk, “Constrained flash memory programming,” in
Proc. IEEE Int. Symp. Inf. Theory, Jul./Aug. 2011, pp. 2128–2132.

[10] V. Taranalli, H. Uchikawa, and P. H. Siegel, “Error analysis and inter-
cell interference mitigation in multi-level cell flash memories,” in Proc.
IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 271–276.

[11] S. Buzaglo, P. H. Siegel, and E. Yaakobi, “Coding schemes for inter-
cell interference in flash memory,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2015, pp. 1736–1740.

[12] S. Buzaglo and P. H. Siegel, “Row-by-row coding schemes for inter-cell
interference in flash memory,” IEEE Trans. Commun., vol. 65, no. 10,
pp. 4101–4113, Oct. 2017.

[13] O. Torii and P. H. Siegel, “Novel ICI-mitigation Codes for
MLC NAND Flash Memory,” Presented in 8th Annu. Non-Volatile
Memories Workshop (NVMW), Mar. 2017.

[14] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for
asymmetric limited-magnitude errors with application to multilevel flash
memories,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1582–1596,
Apr. 2010.

[15] E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “On codes that
correct asymmetric errors with graded magnitude distribution,” in Proc.
IEEE Int. Symp. Inf. Theory, Jul./Aug. 2011, pp. 1056–1060.

[16] H. Zhou, A. Jiang, and J. Bruck, “Error-correcting schemes with
dynamic thresholds in nonvolatile memories,” in Proc. IEEE Int. Symp.
Inf. Theory, Jul./Aug. 2011, pp. 2143–2147.

[17] F. Sala, R. Gabrys, and L. Dolecek, “Dynamic threshold schemes for
multi-level non-volatile memories,” IEEE Trans. Commun., vol. 61,
no. 7, pp. 2624–2634, Jul. 2013.

[18] M. Qin, E. Yaakobi, and P. H. Siegel, “Constrained codes that mit-
igate inter-cell interference in read/write cycles for flash memories,”
IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp. 836–846, May 2014.

[19] S. Kayser and P. H. Siegel, “Constructions for constant-weight ICI-
free codes,” in Proc. IEEE Int. Symp. Inf. Theory, Jun./Jul. 2014,
pp. 1431–1435.

[20] K. A. S. Immink, Codes for Mass Data Storage Systems. Denver, CO,
USA: Shannon Foundation, 2004.

[21] P. H. Siegel, “Constrained codes for multilevel flash memory,”
North Amer. School Inf. Theory, Tech. Rep., Aug. 2015.

[22] S. Heubach and T. Mansour, Combinatorics of Compositions and Words.
Boca Raton, FL, USA: CRC Press, 2009.

[23] T. G. Swart and J. H. Weber, “Efficient balancing of q-ary sequences
with parallel decoding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun./Jul. 2009, pp. 1564–1568.

[24] T. G. Swart and K. A. S. Immink, “Prefixless q-ary balanced codes with
ECC,” in Proc. IEEE Inf. Theory Workshop (ITW), Sep. 2013, pp. 1–5.

[25] B. H. Marcus and R. M. Roth, “Improved Gilbert-Varshamov bound
for constrained systems,” IEEE Trans. Inf. Theory, vol. 38, no. 4,
pp. 1213–1221, Jul. 1992.

[26] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applica-
tions. Springer, 2010.

[27] R. Roth and P. H. Siegel, “A Markov chain approach to computing the
capacity of ICI-free balanced codes,” Tech. Rep.

[28] B. H. Marcus, R. M. Roth, and P. H. Siegel, An Introduction to Coding
for Constrained Systems, 5th ed., 2001.

Yeow Meng Chee (SM’08) received the B.Math. degree in computer science
and combinatorics and optimization and the M.Math. and Ph.D. degrees in
computer science from the University of Waterloo, Waterloo, ON, Canada,
in 1988, 1989, and 1996, respectively.

Currently, he is a Professor at the Division of Mathematical Sciences,
School of Physical and Mathematical Sciences, Nanyang Technological Uni-
versity, Singapore. Prior to this, he was Program Director of Interactive Digital
Media R&D in the Media Development Authority of Singapore, Postdoctoral
Fellow at the University of Waterloo and IBMs Zürich Research Laboratory,
General Manager of the Singapore Computer Emergency Response Team,
and Deputy Director of Strategic Programs at the Infocomm Development
Authority, Singapore.

His research interest lies in the interplay between combinatorics and com-
puter science/engineering, particularly combinatorial design theory, coding
theory, extremal set systems, and electronic design automation.

Johan Chrisnata received his Bachelor degree in mathematics from Nanyang
Technological University (NTU), Singapore in 2015. From August 2015 until
August 2018, he was a research officer in NTU. Currently he is pursuing a
Ph.D. degree in mathematics from School of Physical and Mathematical Sci-
ences at Nanyang Technological University, Singapore. His research interest
includes enumerative combinatorics and coding theory.

Han Mao Kiah received his Ph.D. degree in mathematics from Nanyang
Technological University (NTU), Singapore, in 2014. From 2014 to 2015, he
was a Postdoctoral Research Associate at the Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign. From 2015 to 2018, he was a
Lecturer at the School of Physical and Mathematical Sciences (SPMS), NTU,
Singapore. Currently he is an Assistant Professor at SPMS, NTU, Singapore.
His research interests include combinatorial design theory, coding theory, and
enumerative combinatorics.

San Ling received the B.A. degree in mathematics from the University of
Cambridge and the Ph.D. degree in mathematics from the University of
California, Berkeley.

Since April 2005, he has been a Professor with the Division of Math-
ematical Sciences, School of Physical and Mathematical Sciences, in the
Nanyang Technological University, Singapore. Prior to that, he was with the
Department of Mathematics, National University of Singapore. His research
fields include: arithmetic of modular curves and application of number theory
to combinatorial designs, coding theory, cryptography and sequences.

Tuan Thanh Nguyen received his B.Sc. degree in mathematics from Nanyang
Technological University (NTU), Singapore, in 2014. Currently he is pursuing
the Ph.D. degree in mathematics from School of Physical and Mathematical
Sciences at Nanyang Technological University, Singapore. His research inter-
ests include combinatorics, coding theory, and codes for DNA-based data
storage.

Van Khu Vu received his B.Sc. degree in mathematics from Vietnam National
University (VNU), Hanoi, in 2010 and the Ph.D. degree in mathematics from
Nanyang Technological University (NTU), Singapore in 2018. From 2010 to
2012, he was a lecturer at VNU College of Sciences, Hanoi. Currently, he is
a Research Fellow at School of Physical and Mathematical Sciences, NTU,
Singapore. His primary research interests lies in the areas of algorithms,
combinatorics and coding theory.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:30:03 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

