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388 Y. M. Chee et al.

1 Introduction

Constant-weight codes (CWCs) play an important role in coding theory (see [26, Chap.
17] for example). While a vast amount of knowledge exists for binary CWCs [1,4,26],
the study of q-ary constant-weight codes with q > 2 has intensified only recently [2,3,5–
10,13–18,20,22–25,27–29,31,32,35–42], due to several important applications requiring
nonbinary alphabets, such as power line communications, bandwidth-efficient channels, and
DNA computing.

Let Aq(n, d, w) denote the maximum size of a q-ary code of length n, minimum (Ham-
ming) distance d and constant weight w. Such a code is said to be optimal if it achieves this
size. Most work on the determination of Aq(n, d, w) focused on some specified small q ,
usually for q ≤ 4, for fixed d and w. The only known nontrivial values Aq(n, d, w) deter-
mined completely for all n and q ≥ 2 are (d, w) = (3, 2) and (4, 3) [6,8]. Our concern in
this paper is on Aq(n, 2w − 1, w), and more specifically Aq(n, 5, 3). The following results
summarise the present state of knowledge concerning Aq(n, 2w − 1, w).

Theorem 1.1 (Östergård and Svanström [27])

A3(n, 2w − 1, w) = max

{
M : n ≥

⌈
Mw

2

⌉
+ max

{⌊
Mw

2

⌋
−

(
M

2

)
, 0

}}
.

Theorem 1.2 (Chee and Ling [8]) Aq(n, 3, 2) = min

{⌊
(q−1)n

2

⌋
,

(
n

2

)}
for all n and q ≥ 2.

Theorem 1.3 (Chee et al. [7]) Aq(n, 2w − 1, w) = (q−1)n
w

if either

(i) w|(q − 1)n and n ≥ 2w(w(q − 1) − 1)2 + 1, or
(ii) w|n and n ≥ w((w − 1)(q − 2) + 1).

In particular, when w ≥ 3 and q ≥ 4, the value of Aq(n, 2w − 1, w) is only known when
n is large enough (Theorem 1.3).

Our contribution in this paper is the complete determination of Aq(n, 5, 3). The solution is
constructive and is based on the theory of combinatorial designs. In particular, we generalize
the concept of Hanani triple systems to Hanani triple packings and strong Hanani triple
packings. These designs are shown to have intimate relationships to q-ary codes of constant
weight three and distance five. We settle the existence problem completely for Hanani triple
packings and with a small number of possible exceptions for strong Hanani triple packings.
An application of these results gives:

Main Theorem Aq(n, 5, 3) = min
{⌊

(q−1)n
3

⌋
, D(n, 3)

}
, where

D(n, 3) =
{⌊ n

3

⌊ n−1
2

⌋⌋ − 1, i f n ≡ 5 mod 6;⌊ n
3

⌊ n−1
2

⌋⌋
, otherwise.

2 Preliminaries

2.1 q-Ary constant-weight codes

Let n be a positive integer. The set {1, 2, . . . , n} is denoted by In , and the ring Z/nZ is
denoted by Zn . For finite sets R and X, RX denotes the set of vectors of length |X |, where
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Hanani triple packings 389

each component of a vector u ∈ RX has value in R and is indexed by an element of X , that
is, u = (ux )x∈X , and ux ∈ R for each x ∈ X .

A q-ary code of length n is a set C ⊆ Z
X
q , for some X of size n. The elements of C are

called codewords. The (Hamming) weight of a vector u ∈ Z
X
q is defined as ‖u‖ = |{x ∈

X : ux �= 0}|. The metric induced by this weight is the (Hamming) distance, dH , so that
dH (u, v) = ‖u − v‖, for u, v ∈ Z

X
q . The support of a vector u ∈ Z

X
q is supp(u) = {x ∈ X :

ux �= 0}.
A code C is said to have distance d if dH (u, v) ≥ d for all distinct u, v ∈ C. If ‖u‖ = w

for every u ∈ C, then C is said to be of constant weight w. A q-ary code of length n,
distance d , and constant weight w is denoted an (n, d, w)q -code. The number of codewords
in an (n, d, w)q -code is called its size. The maximum size of an (n, d, w)q -code is denoted
Aq(n, d, w), and an (n, d, w)q -code achieving this size is said to be optimal.

The following Johnson-type bound for q-ary CWCs was established by Svanström [32].

Proposition 2.1 (Johnson Bound)

Aq(n, d, w) ≤
⌊

n(q − 1)

w
Aq(n − 1, d, w − 1)

⌋
.

The Johnson bound implies the following upper bound.

Corollary 2.2 Aq(n, 2w − 1, w) ≤
⌊

n(q−1)
w

⌋
.

In particular, we have Aq(n, 5, 3) ≤
⌊

(q−1)n
3

⌋
.

2.2 Designs

A set system is a pair (X, B) such that X is a finite set of points and B is a set of subsets of
X , called blocks. The order of the set system is |X |, the number of points. For a nonnegative
integer k, a set system (X, B) is said to be k-uniform if |B| = k for all B ∈ B.

Let v ≥ k. A (v, k)-packing is a k-uniform set system (X, B) of order v, such that each
2-subset of X occurs in at most one block in B. The packing number D(v, k) is the maximum
number of blocks in any (v, k)-packing. A (v, k)-packing (X, B) is said to be optimal if
|B| = D(v, k). The values of D(v, k) have been determined for all v when k ∈ {3, 4} [30].
In particular, we have

D(v, 3) =
{⌊

v
3

⌊
v−1

2

⌋⌋ − 1, if v ≡ 5 mod 6;⌊
v
3

⌊
v−1

2

⌋⌋
, otherwise.

Let (X, B) be a set system and G = {G1, G2, . . . , Gu} be a partition of X into subsets,
called groups. The triple (X, G, B) is a group divisible design (GDD) when

(i) each 2-subset of X not contained in a group appears in exactly one block, and
(ii) |B ∩ G| ≤ 1 for all B ∈ B and G ∈ G.

Denote a GDD (X, G, B) by k-GDD if |B| = k for all B ∈ B. The type of the GDD is the
multiset {|G| : G ∈ G}. An “exponential” notation is usually used to describe the type: a
type gu1

1 gu2
2 . . . gut

t denotes ui occurrences of gi , 1 ≤ i ≤ t .
A partial parallel class (PPC) of a k-uniform set system of order v is a collection of disjoint

blocks, and is maximum if it contains 
v/k� blocks and non-maximum otherwise. If a PPC
covers each point exactly once, we call it a parallel class (PC). A set system is resolvable

123



390 Y. M. Chee et al.

if its blocks can be partitioned into PCs. A resolvable k-GDD is denoted by k-RGDD. A
3-RGDD of type 1v is known as a Kirkman triple system, and is denoted by KTS(v).

Given a k-uniform set system (X, B) and a PPC P ⊂ B, we use P to denote the set of
missing points of P in X , that is, P = X\ ∪B∈P B.

We require the following results.

Proposition 2.3 (Ge and Miao [21]) A 3-RGDD of type hu exists if and only if u ≥ 3, h(u−1)

is even, hu ≡ 0 mod 3, and (h, u) �∈ {(2, 3), (2, 6), (6, 3)}.
A k-frame is a k-GDD (X, G, B), such that B can be partitioned into a collection of PPCs,

where the complement of each PPC is exactly a group.

Proposition 2.4 (Ge and Miao [21], Wei and Ge [34]) There exist 3-frames of the following
types:

(i) hu, when u ≥ 4, h ≡ 0 mod 2 and h(u − 1) ≡ 0 mod 3,
(ii) 12um1, when u ≥ 4 and m ∈ {6, 18}.
2.3 Connection between codes and packings

Chee et al. [7] showed that the following two conditions are necessary and sufficient for a
q-ary code C of constant weight w to have distance 2w − 1:

(C1) for any distinct u, v ∈ C, |supp(u) ∩ supp(v)| ≤ 1, and
(C2) for any distinct u, v ∈ C, if x ∈ supp(u) ∩ supp(v), then ux �= vx .

These easily imply the following result.

Corollary 2.5 Let C ⊆ Z
X
q be an (n, 2w − 1, w)q -code, and B = {supp(u) : u ∈ C}. Then

(X, B) is an (n, w)-packing.

By Corollary 2.5, Aq(n, 2w − 1, w) cannot be larger than the packing number D(n, w).
In fact, we show that Aq(n, 2w − 1, w) = D(n, w) for all sufficiently large q . First, we
introduce the following definition.

Definition 2.6 Let (X, B) be a set system, and let P ⊆ B. For a positive integer i , define

C(P, i) = {uB ∈ Z
X
i+1 : B ∈ P},

where

uB
x =

{
i, if x ∈ B;
0, if x �∈ B.

Proposition 2.7 Aq(n, 2w − 1, w) = D(n, w) for all q ≥
⌊

n−1
w−1

⌋
+ 1.

Proof Let (X, B) be an optimal (n, w)-packing with D(n, w) blocks, then each point occurs

in at most
⌊

n−1
w−1

⌋
blocks. For the code C(B, 1), there are at most

⌊
n−1
w−1

⌋
1’s at each coordinate.

We replace these 1’s with 1, 2, 3, . . . to make the nonzero elements at each coordinate all
distinct. The result is an (n, 2w − 1, w)⌊ n−1

w−1

⌋
+1

-code with D(n, w) codewords. It is also an

(n, 2w − 1, w)q -code for each q ≥
⌊

n−1
w−1

⌋
+ 1. By Corollary 2.5, these codes are optimal.��

Corollary 2.8 Aq(n, 5, 3) = D(n, 3) for all q ≥ ⌊ n−1
2

⌋ + 1.
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Hanani triple packings 391

Table 1 The number of blocks
in an HTP(n)

n D(n, 3) = b · h + �

6t 6t2 − 2t = 2t (3t − 1) + 0

6t + 1 6t2 + t = 2t · 3t + t

6t + 2 6t2 + 2t = 2t · 3t + 2t

6t + 3 6t2 + 5t + 1 = (2t + 1)(3t + 1) + 0

6t + 4 6t2 + 6t + 1 = (2t + 1)(3t + 1) + t

6t + 5 6t2 + 9t + 2 = (2t + 1)(3t + 2) + 2t

3 Hanani triple packings and optimal (n, 5, 3)q -codes

In this section, we construct optimal (n, 5, 3)q -codes from Hanani triple packings.
Throughout this section, let h = ⌊ n−1

2

⌋
, b = ⌊ n

3

⌋
, t = ⌊ n

6

⌋
, and c ≡ n mod 3, where

0 ≤ c ≤ 2. Then n = 3b + c, and

Aq(n, 5, 3) ≤
⌊

(q − 1)(3b + c)

3

⌋
= (q − 1)b +

⌊
(q − 1)c

3

⌋
.

3.1 Hanani triple packings

A Hanani triple packing (HTP) of order n, denoted H T P(n), is an optimal (n, 3)-packing
whose block set can be partitioned into PPCs with all but at most one being maximum.
Hanani triple packings are a generalization of some well known objects in combinatorial
design theory, such as Hanani triple systems [12,33] and Kirkman triple systems [11].

The number of blocks of an HTP(n) is provided in Table 1.
We mainly use HTP(n)’s to construct optimal (n, 5, 3)q -codes for q ≤ h + 1. For these

q , a stronger condition is needed.

Definition 3.1 Let n �≡ 0 mod 3, and consider an HTP(n) with PPCs P1, P2, . . . , Ph+1,
where P1, P2, . . . , Ph are maximum PPCs. For each 1 ≤ i ≤ h, let ai,1, ai,2, . . . , ai,c be the
elements in Pi . The HTP(n) is called strong if it satisfies the property that for each 1 ≤ s ≤ t ,

(i) {a3s−2, j , a3s−1, j , a3s, j } is a block in Ph+1 for each 1 ≤ j ≤ c, and
(ii) if c = 2, then any 2-subset of {a3s−2,1, a3s−2,2, a3s−1,1} is not contained in any blocks

of (
⋃3s−1

i=1 Pi ) ∪ (
⋃s−1

i=1
⋃c

j=1{{a3i−2, j , a3i−1, j , a3i, j }}).
When n ≡ 0 mod 3, every HTP(n) is called strong.

Example 3.2 A strong HTP(8). Let X = Z6 ∪ {∞0,∞1}. The PPCs of the HTP(8) are
given below. The elements of Pi are listed here (and elsewhere in this paper) in the order
ai,1, ai,2, . . . , ai,c.

P1 = {{1, 5,∞0}, {2, 4,∞1}}, P1 = {0, 3};
P2 = {{2, 3,∞0}, {0, 5,∞1}}, P2 = {1, 4};
P3 = {{0, 4,∞0}, {1, 3,∞1}}, P3 = {2, 5};
P4 = {{0, 1, 2}, {3, 4, 5}}.

Example 3.3 A strong HTP(10). Let X = Z6 ∪ {∞0,∞1,∞2,∞3}. The PPCs of the
HTP(10) are given below.
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392 Y. M. Chee et al.

P1 = {{∞2, 0, 1}, {∞3, 2, 3}, {∞0, 4, 5}}, P1 = {∞1};
P2 = {{∞1, 2, 4}, {∞3, 0, 5}, {∞0, 1, 3}}, P2 = {∞2};
P3 = {{∞1, 1, 5}, {∞2, 3, 4}, {∞0, 0, 2}}, P3 = {∞3};
P4 = {{∞1, 0, 3}, {∞2, 2, 5}, {∞3, 1, 4}}, P4 = {∞0};
P5 = {{∞1,∞2,∞3}}.

Example 3.4 A strong HTP(17). Let X = Z12 ∪ {∞0,∞1,∞2,∞3,∞4}. The PPCs of the
HTP(17) are given below.

P1 = {{2, 8,∞0}, {6, 5,∞1}, {4, 3,∞2}, {9, 11,∞3}, {10, 7,∞4}}, P1 = {0, 1};
P2 = {{9, 3,∞0}, {1, 7,∞1}, {0, 10,∞2}, {6, 8,∞3}, {11, 2,∞4}}, P2 = {4, 5};
P3 = {{7, 6,∞0}, {3, 10,∞1}, {11, 5,∞2}, {0, 2,∞3}, {1, 4,∞4}}, P3 = {8, 9};
P4 = {{11, 10,∞0}, {8, 9,∞1}, {1, 6,∞2}, {7, 4,∞3}, {0, 5,∞4}}, P4 = {2, 3};
P5 = {{5, 4,∞0}, {0, 11,∞1}, {2, 9,∞2}, {1, 10,∞3}, {3, 8,∞4}}, P5 = {6, 7};
P6 = {{1, 0,∞0}, {2, 4,∞1}, {8, 7,∞2}, {3, 5,∞3}, {6, 9,∞4}}, P6 = {10, 11};
P7 = {{0, 9, 7}, {11, 4, 6}, {2, 3, 1}, {8, 5, 10}, {∞0,∞1,∞2}}, P7 = {∞3,∞4};
P8 = {{0, 6, 3}, {4, 10, 9}, {1, 8, 11}, {2, 5, 7}, {∞0,∞3,∞4}}, P8 = {∞1,∞2};
P9 = {{0, 4, 8} + i : i = 0, 1, 2, 3}.

3.2 Connection between Hanani triple packings and optimal codes

A strong HTP(n) can be used to construct optimal (n, 5, 3)q -codes for all q ≥ 2.

Proposition 3.5 If there exists a strong HTP(n), then

Aq(n, 5, 3) = min

{⌊
(q − 1)n

3

⌋
, D(n, 3)

}

for all q ≥ 2.

Proof When q ≤ h + 1, we consider three cases:

(i) If n ≡ 0 mod 3, there are h maximum PPCs, P1, P2, . . . , Ph , in a strong HTP(n), and
each has size b. For 2 ≤ q ≤ h + 1, let Cq = ⋃q−1

i=1 C(Pi , i). Cq satisfies Conditions
(C1) and (C2) and is hence an (n, 5, 3)q -code. Optimality of this code follows from the
Johnson bound.

(ii) If n ≡ 1 mod 3, there are h maximum PPCs P1, P2, . . . , Ph , and a PPC Ph+1 with
t blocks in a strong HTP(n). Let Pi = {xi }, for 1 ≤ i ≤ h. For each 1 ≤ s ≤ h,
s ≡ 0 mod 3, define the vector us with support {xs−2, xs−1, xs}, where us

xi
= i for

i ∈ {s − 2, s − 1, s}. Finally, let C2 = C(P1, 1) and recursively define

Cq =
{

Cq−1 ∪ C(Pq−1, q − 1), if q �≡ 1 mod 3;
Cq−1 ∪ C(Pq−1, q − 1) ∪ {uq−1}, otherwise.

Then each Cq is an optimal (n, 5, 3)q -code.
(iii) If n ≡ 2 mod 3, there are h+1 PPCs P1, P2, . . . , Ph+1, in a strong HTP(n). All PPCs are

maximum when n ≡ 2 mod 6, and with the exception of Ph+1 (which is non-maximum
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Hanani triple packings 393

with 2t blocks) when n ≡ 5 mod 6. Let Pi = {ai,1, ai,2}, for 1 ≤ i ≤ h. For each
1 ≤ s ≤ h, define the vector us with support

supp(us) =

⎧⎪⎨
⎪⎩

{as,1, as,2, as+1,1}, if s ≡ 1 mod 3;
{as−1,1, as,1, as+1,1}, if s ≡ 2 mod 3;
{as−2,2, as−1,2, as,2}, if s ≡ 0 mod 3,

where us
ai, j

= i , for each ai, j in the support of us . Let C2 = C(P1, 1). For each q ,
3 ≤ q ≤ h + 1, except when n ≡ 5 mod 6 and q = h + 1, define recursively

Cq =

⎧⎪⎨
⎪⎩

Cq−1 ∪ C(Pq−1, q − 1) ∪ {uq−2}, if q ≡ 0 mod 3;
(Cq−1\{uq−3}) ∪ C(Pq−1, q − 1) ∪ {uq−2, uq−1}, if q ≡ 1 mod 3;
Cq−1 ∪ C(Pq−1, q − 1), if q ≡ 2 mod 3.

When n ≡ 5 mod 6 and q = h + 1, define recursively Cq = Cq−1 ∪ C(Pq−1, q − 1).
Then each Cq is an optimal (n, 5, 3)q -code.

For q ≥ h + 1, the conclusion follows from Corollary 2.8. ��
Before closing this section, we give three examples as applications of Proposition 3.5

using Examples 3.2–3.4. We list the codes for q ≤ h + 1.

Example 3.6 For n = 8, C2 = C(P1, 1) = {01000110, 00101001}; C3 = C2 ∪ C(P2, 2) ∪
{u1}, where u1 is the vector with u1

0 = 1, u1
3 = 1, u1

1 = 2 and u1
x = 0 for all other x ∈ X ,

i.e., C3 = C2 ∪ {00220020, 20000202, 12010000}; C4 = (C3\{u1}) ∪ C(P3, 3) ∪ {u2, u3},
where C(P3, 3) = {30003030, 03030003} and u2 = 12300000, u3 = 00012300. Then Cq is
an optimal (8, 5, 3)q -code for q ∈ {2, 3, 4}.

In the following two examples, we omit listing the codewords in C(Pi , i) since they are
obvious.

Example 3.7 For n = 10, C2 = C(P1, 1); C3 = C2 ∪ C(P2, 2); C4 = C3 ∪ C(P3, 3) ∪ {u3},
where u3 = 0000000123; C5 = C4 ∪ C(P4, 4). Then Cq is an optimal (10, 5, 3)q -code for
q ∈ {2, 3, 4, 5}.
Example 3.8 For n = 17, C2 = C(P1, 1); C3 = C2 ∪ C(P2, 2) ∪ {u1}, where u1 =
11002000000000000; C4 = (C3\{u1})∪C(P3, 3)∪{u2, u3}, where u2 =10002000300000000
and u3 = 01000200030000000; C5 = C4 ∪ C(P4, 4); C6 = C5 ∪ C(P5, 5) ∪ {u4},
where u4 = 00440050000000000; C7 = (C6\{u4}) ∪ C(P6, 6) ∪ {u5, u6}, where u5 =
00400050006000000, u6 = 00040005000600000; C8 = C7 ∪ C(P7, 7); C9 = C8 ∪ C(P8, 8).
Then Cq is an optimal (17, 5, 3)q -code for 2 ≤ q ≤ 9.

4 Existence of strong Hanani triple packings

We establish the existence of strong Hanani triple packings in this section. Note that the
existence of a strong HTP(n) for n ≤ 5 is trivial.

4.1 The case n ≡ 0 mod 3

When n ≡ 3 mod 6, a KTS(n) is a (strong) HTP(n). When n ≡ 0 mod 6, a 3-RGDD of type
2n/2 is a (strong) HTP(n). Proposition 2.3 then implies the following.

Proposition 4.1 There exists a strong HTP(n) for all n ≡ 0 mod 3, except when n ∈ {6, 12}.
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394 Y. M. Chee et al.

4.2 The case n ≡ 1 mod 6

When n = 6t +1, an HTP(n) is a 3-GDD of type 16t+1, whose set of blocks can be partitioned
into 3t maximum PPCs, and a non-maximum PPC with t blocks. Such a design is called a
Hanani triple system and it has been shown by Vanstone et al. [33] that Hanani triple systems
of order n exist for all n ≡ 1 mod 6, except when n ∈ {7, 13}. We proof that every Hanani
triple system is strong.

Proposition 4.2 Every Hanani triple system is strong.

Proof Let (X, B) be a Hanani triple system of order 6t + 1, with B being partitioned into 3t
maximum PPCs P1, P2, . . . , P3t , and a non-maximum PPC P3t+1 with t blocks. If x ∈ X is
contained in the blocks of P3t+1, then x is missed by exactly one Pi , 1 ≤ i ≤ 3t , since each
point of X occurs in exactly 3t blocks in B. Thus, we can arrange the order of Pi , 1 ≤ i ≤ 3t ,
in such a way that for each 1 ≤ s ≤ t, P3s−2 ∪ P3s−1 ∪ P3s is a block in P3t+1. ��
Corollary 4.3 There exists a strong HTP(n) for all n ≡ 1 mod 6, except when n ∈ {7, 13}.
4.3 The case n ≡ 2 mod 6

Example 4.4 A strong HTP(20) can be constructed on the point set Z18 ∪ {∞0,∞1} as
follows. The maximum PPCs P1, P4, P7 and the corresponding sets Pi are given by

P1 = {{14, 7,∞0}, {10, 15,∞1}, {5, 16, 8}, {1, 3, 11}, {2, 12, 4}, {13, 6, 17}}, P1 = {0, 9};
P4 = {{16, 9,∞0}, {17, 1,∞1}, {14, 13, 10}, {0, 4, 5}, {7, 3, 6}, {8, 12, 15}}, P4 = {2, 11};
P7 = {{6, 5,∞0}, {12, 14,∞1}, {8, 9, 11}, {4, 17, 3}, {0, 16, 13}, {7, 2, 15}}, P7 = {1, 10}.
For i ∈ {2, 3, 5, 6, 8, 9}, the maximum PPC Pi = (Pi−1 + 6) mod 18, and Pi is obtained the
same way. The non-maximum PPC is P10 = {{0, 6, 12} + i : i = 0, 1, . . . , 5}.
Proposition 4.5 There exists a strong HTP(n) for all n ≡ 2 mod 6, except possibly when
n = 14.

Proof When n ∈ {8, 20}, a strong HTP(n) exists by Examples 3.2 and 4.4.
When n ≥ 26, write n = 6t + 2 and note that a 3-frame of type 23t+1 is an HTP(6t + 2).

Let (X, G, B) be a 3-frame of type 6t , which exists by Proposition 2.4, with X = Z6 × It , G =
{Z6 ×{i} : 1 ≤ i ≤ t}, and B being partitioned into PPCs P1, P2, . . . , P3t . Assume, for each
1 ≤ i ≤ t , that P3i−2, P3i−1, P3i are the PPCs missing the points in the group Z6 ×{i}. Now
adjoin two new points ∞0 and ∞1 to X and for each 1 ≤ i ≤ t , construct a strong HTP(8) on

(Z6 × {i}) ∪ {∞0,∞1} with maximum PPCs Pi
1 , Pi

2 , Pi
3 and Pi

4 , such that Pi
4 = {∞0,∞1}.

Let P ′
j+3(i−1) = Pj+3(i−1) ∪ Pi

j for 1 ≤ i ≤ t and 1 ≤ j ≤ 3. Further, let P ′
3t+1 = ∪t

i=1 Pi
4 .

Then (X ∪ {∞0,∞1},∪3t+1
i=1 P ′

i ) is a strong HTP(n). ��
4.4 The case n ≡ 4 mod 6

Lemma 4.6 There exists a strong HTP(n) for n ∈ {16, 22, 28, 34, 40, 46}.
Proof For n ∈ {16, 22, 28, 34, 40, 46}, write n = 6t +4. We construct a strong HTP(6t +4)

on point set Z6t ∪{∞0,∞1,∞2,∞3}. Then maximum PPCs P1, P2, P3 for each t are given
in the table below.

123



Hanani triple packings 395

i Pi Pi

t = 2 1 {9, 2, ∞0}{3, 10, ∞1}{7, 8, ∞2}{4, 5,∞3}{6, 11, 1} 0

2 {10, 7,∞0}{1, 0,∞1}{11, 4,∞2}{8, 6,∞3}{2, 3, 5} 9

3 {0, 11,∞0}{5, 8,∞1}{9, 6,∞2}{3, 1,∞3}{2, 4, 7} 10

t = 3 1 {5, 13,∞0}{2, 7,∞1}{3, 16,∞2}{14, 4, ∞3}{15, 11, 12}{8, 6, 1}{9, 10, 17} 0

2 {14, 15, ∞0}{6, 3,∞1}{5, 8, ∞2}{12, 17, ∞3}{2, 1, 9}{4, 0, 7}{13, 16, 11} 10

3 {10, 12, ∞0}{17, 16,∞1}{6, 7,∞2}{13, 9, ∞3}{1, 3, 5}{15, 2, 4}{11, 8, 0} 14

t = 4 1 {16, 7,∞0}{18, 21,∞1}{6, 8, ∞2}{4, 3,∞3}{9, 13, 23}{12, 17, 19}{15, 1, 14}
{10, 5, 11}{2, 20, 22}

0

2 {9, 18,∞0}{5, 16, ∞1}{4, 11,∞2}{1, 12, ∞3}{15, 22, 8}{13, 20, 17}{0, 19, 10}
{23, 14, 3}{7, 2, 6}

21

3 {14, 5, ∞0}{19, 20,∞1}{17, 0, 6}{1, 3, ∞2}{8, 11, ∞3}{10, 7, 13}{21, 12, 2}
{22, 18, 16}{9, 15, 4}

23

t = 5 1 {20, 28,∞0}{17, 3, ∞1}{25, 8, ∞2}{19, 24,∞3}{21, 23, 4}{11, 12, 29}{10, 16, 15}
{22, 6, 18}{0, 1, 13}{7, 5, 14}{26, 9, 27}

2

2 {23, 1,∞0}{20, 22, ∞1}{6, 17,∞2}{4, 15, ∞3}{3, 29, 24}{25, 26, 18}{21, 0, 27}
{7, 11, 10}{9, 2, 13}{16, 19, 28}{14, 8, 12}

5

3 {21, 18,∞0}{13, 24,∞1}{22, 15,∞2}{29, 2, ∞3}{17, 10, 23}{1, 9, 7}{0, 28, 6}
{26, 5, 12}{4, 20, 8}{16, 11, 25}{19, 14, 3}

27

t = 6 1 {27, 7,∞0}{35, 18,∞1}{26, 10,∞2}{14, 17, ∞3}{20, 9, 29}{34, 4, 11}{16, 6, 5}
{32, 31, 2}{8, 12, 21}{33, 22, 3}{28, 25, 19}{13, 23, 15}{1, 24, 30}

0

2 {17, 26,∞0}{14, 1,∞1}{3, 25,∞2}{27, 28, ∞3}{12, 10, 2}{5, 11, 7}{22, 6, 9}
{16, 30, 31}{32, 29, 15}{35, 20, 34}{33, 18, 23}{0, 8, 19}{24, 13, 21}

4

3 {4, 12,∞0}{22, 15,∞1}{6, 17,∞2}{31, 0, ∞3}{29, 10, 13}{20, 5, 18}{7, 3, 35}
{28, 26, 33}{24, 8, 9}{19, 34, 2}{16, 25, 11}{21, 23, 30}{1, 32, 27}

14

t = 7 1 {29, 40,∞0}{36, 38,∞1}{25, 22, ∞2}{19, 12, ∞3}{0, 37, 18}{34, 1, 10}{39, 7, 17}
{16, 32, 13}{5, 35, 8}{15, 23, 41}{11, 4, 6}{2, 31, 14}{33, 9, 26}{20, 28, 21}{27, 24, 30}

3

2 {33, 14,∞0}{39, 41,∞1}{27, 32, ∞2}{3, 16,∞3}{24, 17, 4}{5, 36, 10}{25, 21, 19}
{28, 13, 11}{40, 8, 30}{1, 9, 0}{20, 22, 2}{7, 23, 29}{35, 18, 6}{26, 15, 31}{37, 38, 12}

34

3 {7, 18,∞0}{10, 25, ∞1}{36, 17,∞2}{8, 11,∞3}{22, 41, 26}{13, 2, 37}{14, 5, 6}
{27, 39, 12}{38, 0, 32}{23, 31, 19}{1, 21, 30}{28, 16, 24}{34, 15, 40}{20, 33, 29}{4, 9, 3}

35

For each 1 ≤ i ≤ 3 and 1 ≤ s ≤ t − 1, the maximum PPC Pi+3s is obtained from Pi

by adding 6s under Z6t . Let P3t+1 = {{0, 2t, 4t} + i : 0 ≤ i ≤ 2t − 1} ∪ {{∞1,∞2,∞3}}.
The complement of each maximum PPC contains only one point, and P3i−2 ∪ P3i−1 ∪ P3i ,
1 ≤ i ≤ t , form the t blocks of the last non-maximum PPC P3t+2. ��
Proposition 4.7 There exists a strong HTP(n) for all n ≡ 4 mod 6.

Proof When n ≤ 46, a strong HTP(n) exists by Example 3.3 and Lemma 4.6. When n ≥ 52,
write n = 6t + 4 and consider the following cases.

For t = 2s: Let (X, G, B) be a 3-frame of type 12s , which exists by Proposition 2.4, with
X = Z12 × Is , G = {Z12 × {i} : 1 ≤ i ≤ s} and B being partitioned into PPCs Pi ,
1 ≤ i ≤ 6s. Assume that for each 1 ≤ i ≤ s, Pj , 6i − 5 ≤ j ≤ 6i , are the six PPCs
missing the points in the group Z12 × {i}. Let Y = {∞0,∞1,∞2,∞3}. For each
1 ≤ i ≤ s, construct a strong HTP(16) on (Z12 ×{i})∪Y , with seven maximum PPCs
Pi

j , 1 ≤ j ≤ 7, and a non-maximum PPC Pi
8 , such that {∞1,∞2,∞3} is a block in

Pi
7 and Pi

7 = {∞0}. Let P ′
j+6(i−1) = Pj+6(i−1) ∪ Pi

j for 1 ≤ i ≤ s and 1 ≤ j ≤ 6.

Finally, let P ′
6s+1 = ∪s

i=1 Pi
7 and P ′

6s+2 = ∪s
i=1 Pi

8 . Then (X ∪Y,∪6s+2
i=1 P ′

i ) is a strong
HTP(n).
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For t = 2s + 1: Let (X, G, B) be a 3-frame of type 12s61, which exists by Proposition 2.4,
with X = (Z12 × Is)∪(Z6 ×{s+1}), G = {Z12 ×{i} : 1 ≤ i ≤ s}∪{Z6 ×{s+1}} and
B being partitioned into PPCs of 4s −2 blocks Pi , 1 ≤ i ≤ 6s, and PPCs of 4s blocks
Pi , 6s + 1 ≤ i ≤ 6s + 3. Assume that for each 1 ≤ i ≤ s, Pj , 6i − 5 ≤ j ≤ 6i , are
PPCs missing the points in the group Z12 ×{i}, and Pj , 6s+1 ≤ j ≤ 6s+3, are PPCs
missing the points in the group Z6 × {s + 1}. Let Y = {∞0,∞1,∞2,∞3}. For each
1 ≤ i ≤ s, construct a strong HTP(16) on (Z12 ×{i})∪Y , with seven maximum PPCs
Pi

j , 1 ≤ j ≤ 7, and a non-maximum PPC Pi
8 , such that {∞1,∞2,∞3} is a block

in Pi
7 and Pi

7 = {∞0}. Finally, construct a strong HTP(10) on (Z6 × {s + 1}) ∪ Y ,
with four maximum PPCs Ps+1

j , 1 ≤ j ≤ 4, and a non-maximum PPC Ps+1
5 =

{{∞1,∞2,∞3}}. Let P ′
j+6(i−1) = Pj+6(i−1) ∪ Pi

j for 1 ≤ i ≤ s and 1 ≤ j ≤ 6,

P ′
6s+ j = P6s+ j ∪Ps+1

j for 1 ≤ j ≤ 3, P ′
6s+4 = (∪s

i=1(Pi
7\{{∞1,∞2,∞3}}))∪Ps+1

4

and P ′
6s+5 = (∪s

i=1 Pi
8) ∪ Ps+1

5 . Then (X ∪ Y,∪6s+5
i=1 P ′

i ) is a strong HTP(n). ��
4.5 The case n ≡ 5 mod 6

Example 4.8 A strong HTP(23) can be constructed on the point set Z18∪{∞0,∞1,∞2,∞3,

∞4} as follows. The maximum PPCs P1, P4, P7 and the corresponding sets Pi are given by

P1 = {{0, 1, ∞0}, {16, 8,∞1}, {4, 5, ∞2}, {11, 13, ∞3}, {7, 12, ∞4}, {14, 17, 3}, {15, 2, 6}},
P1 = {9, 10};
P4 = {{14, 11, ∞0}, {7, 3, ∞1}, {9, 12, ∞2}, {6, 8, ∞3}, {10, 15, ∞4}, {4, 17, 0}, {5, 13, 16}},
P4 = {1, 2};
P7 = {{3, 4, ∞0}, {0, 5, ∞1}, {8, 13, ∞2}, {16, 9, ∞3}, {11, 2, ∞4}, {12, 10, 1}, {7, 14, 15}},
P7 = {6, 17}.
For each i ∈ {2, 3, 5, 6, 8, 9}, the maximum PPC Pi is obtained from Pi−1 by adding 6
under Z18, and Pi is obtained the same way. Let P10 = {{14, 10, 13} + 6i, {17, 9, 6} + 6i :
i = 0, 1, 2} ∪ {{∞0,∞1,∞2}} and P11 = {{8, 10, 0} + 6i, {1, 3, 5} + 6i : i = 0, 1, 2} ∪
{{∞0,∞3,∞4}}. Finally, P12 = {{0, 6, 12} + i : i = 0, 1, . . . , 5} is the last non-maximum
PPC.

Proposition 4.9 There exists a strong HTP(n) for all n ≡ 5 mod 6, except when n = 11,
and possibly when n ∈ {29, 35, 41, 47, 59}.
Proof An exhaustive computer search shows that an HTP(11) does not exist. When n ∈
{17, 23}, a strong HTP(n) has been constructed in Examples 3.4 and 4.8. When n ≥ 53, n �=
59, write n = 6t + 5 and consider the following cases.

For t = 2s: Let (X, G, B) be a 3-frame of type 12s , which exists by Proposition 2.4, with
X = Z12 × Is, G = {Z12 × {i} : 1 ≤ i ≤ s} and B being partitioned into PPCs
Pi , 1 ≤ i ≤ 6s. Assume that for each 1 ≤ i ≤ s, Pj , 6i − 5 ≤ j ≤ 6i , are the six
PPCs missing the points in the group Z12×{i}. Let Y = {∞0,∞1,∞2,∞3,∞4}. For
each 1 ≤ i ≤ s, construct a strong HTP(17) on (Z12 ×{i})∪Y , with eight maximum
PPCs Pi

j , 1 ≤ j ≤ 8, and a non-maximum PPC Pi
9 , such that {∞0,∞1,∞2} ∈

Pi
7 , Pi

7 = {∞3,∞4}, {∞0,∞3,∞4} ∈ Pi
8 and Pi

8 = {∞1,∞2}. Let P ′
j+6(i−1) =

Pj+6(i−1) ∪ Pi
j for 1 ≤ i ≤ s and 1 ≤ j ≤ 6, P ′

6s+ j = ∪s
i=1 Pi

6+ j for 1 ≤ j ≤ 3.

Then (X ∪ Y,∪6s+3
i=1 P ′

i ) is a strong HTP(n).
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For t = 2(s + 1) + 1: Let (X, G, B) be a 3-frame of type 12s181, which exists by Propo-
sition 2.4, with X = (Z12 × Is) ∪ (Z18 × {s + 1}), G = {Z12 × {i} : 1 ≤ i ≤
s} ∪ {Z18 × {s + 1}} and B being partitioned into PPCs of 4s + 2 blocks Pi ,
1 ≤ i ≤ 6s, and PPCs of 4s blocks Pi , 6s + 1 ≤ i ≤ 6s + 9. Assume that for each
1 ≤ i ≤ s, Pj , 6i − 5 ≤ j ≤ 6i , are PPCs missing the points in the group Z12 × {i},
and Pj for 6s + 1 ≤ j ≤ 6s + 9 are PPCs missing points in the group Z18 × {s + 1}.
Let Y = {∞0,∞1,∞2,∞3,∞4}. For each 1 ≤ i ≤ s, construct a strong HTP(17)

on (Z12 × {i}) ∪ Y , with eight maximum PPCs Pi
j , 1 ≤ j ≤ 8, and a non-maximum

PPC Pi
9 , such that {∞0,∞1,∞2} ∈ Pi

7 , Pi
7 = {∞3,∞4}, {∞0,∞3,∞4} ∈ Pi

8

and Pi
8 = {∞1,∞2}. Finally, construct a strong HTP(23) on (Z18 × {s + 1}) ∪ Y ,

with eleven maximum PPCs Ps+1
j , 1 ≤ j ≤ 11 and a non-maximum PPC Ps+1

12

such that {∞0,∞1,∞2} ∈ Ps+1
10 , Ps+1

10 = {∞3,∞4}, {∞0,∞3,∞4} ∈ Ps+1
11

and Ps+1
11 = {∞1,∞2}. Let P ′

j+6(i−1) = Pj+6(i−1) ∪ Pi
j for 1 ≤ i ≤ s and

1 ≤ j ≤ 6, P ′
6s+ j = P6s+ j ∪ Ps+1

j for 1 ≤ j ≤ 9, P ′
6s+ j = (∪s

i=1 Pi
j−3) ∪ Ps+1

j for

10 ≤ j ≤ 11 and P ′
6s+12 = (∪s

i=0 Pi
9) ∪ Cs+1

12 . Then (X ∪ Y,∪6s+12
i=1 P ′

i ) is a strong
HTP(n). ��

4.6 Summary

Propositions 4.1, 4.5, 4.7, 4.9 and Corollary 4.3 combine to give the following result on the
existence of strong Hanani triple systems.

Theorem 4.10 There exists a strong HTP(n) for every positive integer n except when n ∈
{6, 7, 11, 12, 13} and possibly when n ∈ {14, 29, 35, 41, 47, 59}.

5 Existence of Hanani triple packings

For completeness, we determine the existence of Hanani triple packings in this section. Since
a strong Hanani triple packing is also a Hanani triple packing, it follows from Theorem 4.10
that we need only to consider n ∈ {14, 29, 35, 41, 47, 59}. It turns out that Hanani triple
packings for these remaining orders all exist.

Lemma 5.1 There exists an HTP(29).

Proof An HTP(29) is constructed on Z24 ∪ {∞0, . . . ,∞4} with 14 maximum PPCs Pi , 1 ≤
i ≤ 14 and one non-maximum PPC P15. The PPCs Pi , 1 ≤ i ≤ 4, and P15 are given by

P1 = {{∞0, 2, 3}, {∞1, 4, 5}, {∞2, 6, 7}, {∞3, 8, 9}, {∞4, 10, 12},
{11, 13, 14}, {15, 16, 19}, {17, 20, 22}, {18, 21, 23}};

P2 = {{∞0, 0, 4}, {∞1, 1, 7}, {∞2, 5, 8}, {∞3, 6, 10}, {∞4, 9, 11},
{12, 15, 20}, {13, 17, 21}, {14, 19, 23}, {16, 18, 22}};

P3 = {{∞0, 1, 13}, {∞1, 10, 22}, {∞2, 11, 18}, {∞3, 12, 23},
{∞4, 15, 21}, {0, 7, 19}, {2, 9, 16}, {3, 14, 20}, {6, 8, 17}};

P4 = {{∞0, 15, 22}, {∞1, 3, 16}, {∞2, 1, 20}, {∞3, 5, 19},
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{∞4, 0, 14}, {2, 11, 12}, {4, 10, 21}, {8, 13, 23}, {9, 17, 18}};
P15 = {{{0, 8, 20}, {1, 11, 19}, {2, 15, 18}, {3, 12, 21},

{4, 14, 17}, {5, 10, 16}, {6, 13, 22}, {7, 9, 23}}.
For 5 ≤ i ≤ 12, Pi is obtained from Pi−4 by adding 8 under Z24. Finally, let P13 = {B + 8 :
B ∈ P15} ∪ {{∞0,∞1,∞2}} and P14 = {B + 16 : B ∈ P15} ∪ {{∞0,∞3,∞4}}. ��
Lemma 5.2 There exists an HTP(41).

Proof An HTP(41) is constructed on Z36 ∪ {∞0, . . . ,∞4} with 20 maximum PPCs Pi , 1 ≤
i ≤ 20 and one non-maximum PPC P21. The PPCs Pi , 1 ≤ i ≤ 2, are given by

P1 = {{∞0, 2, 3}, {∞1, 4, 5}, {∞2, 6, 8}, {∞3, 7, 9}, {∞4, 10, 13},
{11, 12, 14}, {15, 19, 24}, {16, 20, 23}, {17, 27, 33}, {18, 29, 31},
{21, 25, 32}, {22, 28, 34}, {26, 30, 35}};

P2 = {{∞0, 1, 16}, {∞1, 7, 18}, {0, 5, 24}, {6, 23, 35}, {∞2, 13, 31},
{∞3, 4, 22}, {∞4, 15, 32}, {8, 19, 34}, {9, 14, 33}, {10, 17, 26},
{11, 21, 27}{12, 25, 28}, {20, 29, 30}}.

For 3 ≤ i ≤ 18, Pi is obtained from Pi−2 by adding 4 under Z36. Let D =
{{0, 15, 28}, {1, 14, 29}, {6, 20, 34}, {7, 21, 35}}. Then P21 = {B + 12i : B ∈ D, i =
0, 1, 2}, P19 = {B + 4 : B ∈ P21} ∪ {{∞0,∞1,∞2}} and P20 = {B + 8 : B ∈
P21} ∪ {{∞0,∞3,∞4}}. ��
Lemma 5.3 There exists an HTP(n) for n ∈ {35, 47, 59}.
Proof Let n = 6t + 5, t ∈ {5, 7, 9}. An HTP(n) is constructed on Z6t ∪ {∞0, . . . ,∞4} with
3t + 2 maximum PPCs Pi , 1 ≤ i ≤ 3t + 2 and one non-maximum PPC P3t+3. For each
n, P1 is given as follows:

n = 35 : {{∞0, 2, 5}, {∞1, 3, 6}, {∞2, 4, 13}, {∞3, 7, 20}, {∞4, 16, 21}, {8, 18, 24},
{9, 15, 25}, {10, 17, 29}, {11, 19, 28}, {12, 23, 27}, {14, 22, 26}};

n = 47 : {{∞0, 2, 5}, {∞1, 3, 6}, {∞2, 4, 9}, {∞3, 7, 16}, {∞4, 8, 17},
{10, 21, 34}, {11, 27, 38}, {12, 24, 37}, {13, 28, 32}, {14, 31, 35},
{15, 23, 33}, {18, 26, 40}, {19, 25, 39}, {20, 30, 36}, {22, 29, 41}};

n = 59 : {{∞0, 9, 32}, {∞1, 8, 37}, {∞2, 35, 16}, {∞3, 36, 19}, {42, 2, 6},
{∞4, 31, 40}, {44, 53, 50}, {38, 30, 51}, {29, 21, 33}, {17, 3, 46},
{52, 25, 20}, {12, 28, 45}, {24, 14, 48}, {43, 49, 27}, {0, 15, 26},
{41, 18, 5}, {22, 10, 7}, {4, 39, 11}, {23, 13, 47}}.

For 2 ≤ i ≤ 3t , Pi is obtained from P1 by adding 2(i − 1) under Z3t . Let D =
{{0, 1, 2}, {3, 5, 10}}. Then P3t+3 = {B +6i : B ∈ D, i = 0, 1, . . . , t −1}, P3t+1 = {B +2 :
B ∈ P3t+3} ∪ {{∞0,∞1,∞2}} and P3t+2 = {B + 4 : B ∈ P3t+3} ∪ {{∞0,∞3,∞4}}. ��
Theorem 5.4 There exists an HTP(n) for all positive integers n, except when n ∈
{6, 7, 11, 12, 13}.
Proof Theorem 4.10 and Lemmas 5.1–5.3 settle all n �= 14. For n = 14, a 3-frame of type
27, which exists by Proposition 2.4, is an HTP(14). ��
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6 Determination of Aq(n, 5, 3)

Theorem 4.10, together with Proposition 3.5, determines Aq(n, 5, 3) for all q ≥ 2 when
n �∈ {6, 7, 11, 12, 13, 14, 29, 35, 41, 47, 59}. The purpose of this section is to determine
Aq(n, 5, 3) for all the remaining values of n. By Corollary 2.8, we need only consider the
case when 2 ≤ q ≤ ⌊ n−1

2

⌋
.

Lemma 6.1 Aq(n, 5, 3) =
⌊

(q−1)n
3

⌋
for n ∈ {6, 7, 11, 12, 13, 14} and 2 ≤ q ≤ ⌊ n−1

2

⌋
.

Proof For n = 6, A2(6, 5, 3) = 2 is trivial. For n = 7, A2(7, 5, 3) = 2 is trivial.
A3(7, 5, 3) = 4, since C3 = {1110000, 2000110, 0020021, 0200202} is an optimal (7, 5, 3)3

code.
For n = 11, take an (11, 3)-packing over Z11 whose blocks are partitioned into the

following four maximum PPCs and {{2, 5, 9}, {4, 2, 10}}.
P1 = {{1, 8, 0}, {3, 6, 9}, {5, 7, 10}}, P1 = {2, 4};
P2 = {{1, 6, 7}, {3, 8, 10}, {4, 9, 0}}, P2 = {5, 2};
P3 = {{1, 4, 5}, {2, 6, 8}, {3, 7, 0}}, P3 = {9, 10};
P4 = {{1, 2, 3}, {4, 7, 8}, {5, 6, 0}}.

For n = 12, take a (12, 3)-packing over Z12, whose blocks are partitioned into four PCs
Pi = {{B + 6 j} : B ∈ P ′

i , j = 0, 1}, 1 ≤ i ≤ 4, where P ′
i s are given by

P ′
1 = {{0, 8, 7}, {9, 10, 11}};

P ′
2 = {{0, 1, 9}, {4, 8, 11}};

P ′
3 = {{5, 7, 9}, {6, 8, 10}};

P ′
4 = {{1, 5, 8}, {0, 3, 10}}.

For n = 13, take a (13, 3)-packing over Z13, whose blocks are partitioned into five
maximum PPCs Pi , 1 ≤ i ≤ 5 and a non-maximum PPC P6 = {{0, 1, 2}}.

P1 = {{5, 8, 9}, {1, 3, 6}, {2, 4, 7}, {12, 11, 10}}, P1 = {0};
P2 = {{0, 3, 7}, {4, 12, 8}, {11, 6, 5}, {2, 9, 10}}, P2 = {1};
P3 = {{3, 9, 12}, {1, 5, 7}, {8, 10, 6}, {11, 4, 0}}, P3 = {2};
P4 = {{12, 6, 7}, {2, 8, 3}, {10, 0, 5}, {9, 1, 11}};
P5 = {{9, 0, 6}, {11, 7, 8}, {5, 2, 12}, {1, 4, 10}}.

For n = 14, take a (14, 3)-packing over Z14 whose blocks are partitioned into the following
five maximum PPCs and a non-maximum PPC P6 = {{0, 4, 8}, {6, 10, 2}}.

P1 = {{4, 11, 12}, {10, 5, 13}, {2, 9, 7}, {3, 8, 1}}, P1 = {0, 6};
P2 = {{0, 9, 12}, {1, 2, 13}, {5, 3, 6}, {11, 7, 8}}, P2 = {4, 10};
P3 = {{1, 6, 12}, {0, 7, 13}, {4, 5, 9}, {3, 11, 10}}, P3 = {8, 2};
P4 = {{10, 8, 12}, {3, 4, 13}, {6, 11, 9}, {0, 5, 2}}, P4 = {1, 7};
P5 = {{2, 3, 12}, {8, 9, 13}, {0, 1, 10}, {4, 6, 7}}, P5 = {5, 11}.

We can check that the PPCs of (n, 3)-packings for n ∈ {11, 12, 13, 14} satisfy the two
properties of strong Hanani triple packings. Thus, we can use methods similar to that in the
proof of Proposition 3.5 to construct optimal (n, 5, 3)q -codes for 2 ≤ q ≤ ⌊ n−1

2

⌋
. ��

123



400 Y. M. Chee et al.

Lemma 6.2 Aq(n, 5, 3) =
⌊

(q−1)n
3

⌋
for all n ≡ 5 mod 6, n ≥ 17 and q = ⌊ n−1

2

⌋
.

Proof Let n = 6t + 5, where t ≥ 2. Take a 3-GDD (X, G, B) of type 32t 51 [19, The-
orem 4.2], where X = Z3t ∪ {∞0, . . . ,∞4} and {∞0, . . . ,∞4} is the long group. Then

B ∪{{∞0,∞1,∞2}} is an (n, 3)-packing of size 6t2 +7t +1 =
⌊

(q−1)n
3

⌋
. Then the optimal

codes can be obtained using the same technique in the proof of Proposition 2.7, since each
point occurs at most 3t + 1 times in the packing. ��

Lemma 6.3 Aq(n, 5, 3) =
⌊

(q−1)n
3

⌋
for n ∈ {29, 35, 47} and 2 ≤ q ≤ ⌊ n−1

2

⌋
.

Proof Let n = 6t + 5, where t ∈ {4, 5, 7}. We construct an (n, 3)-packing over Z6t ∪
{∞0, . . . ,∞4}, where the block set consists of 3t maximum PPCs Pi , 1 ≤ i ≤ 3t , and a
non-maximum PPC P3t+1 = {{0, 2t, 4t} + i : i = 0, 1, . . . , 2t − 1}.

For each n ∈ {29, 35, 47}, the first maximum PPC P1 which misses {0, 1} is listed below.
For each 1 ≤ i ≤ t − 1, P3i+1 is obtained from P1 by adding 2i under Z6t . For all other
maximum PPCs, Pi+1 is obtained from Pi by adding 2t under Z6t . For each 2 ≤ i ≤ 3t , Pi

is obtained the same way.

29 : {{2, 4, 7}, {3, 5, 6}, {8, 17,∞0}, {9, 15, 19}, {10, 16, 20}, {11, 22,∞1},
{12, 23,∞2}, {13, 18,∞3}, {14, 21,∞4}}.

35 : {{2, 4, 7}, {8, 12, 19}, {9, 20,∞0}, {10, 23, 27}, {11, 26,∞1}, {3, 5, 6},
{13, 18,∞2}, {14, 22, 28}, {15, 21, 29}, {16, 25,∞3}, {17, 24,∞4}}.

47 : {{2, 4, 7}, {8, 12, 18}, {9, 13, 19}, {10, 17, 32}, {24, 39,∞0}, {3, 5, 6},
{14, 33,∞2}, {15, 26, 34}, {16, 28, 37}, {20, 31, 38}, {11, 27, 36},
{21, 29, 41}, {22, 35,∞3}, {23, 40,∞4}, {25, 30,∞1}}.

We can check that the PPCs of (n, 3)-packings for n ∈ {29, 35, 47} satisfy the two
properties of strong Hanani triple packings. Thus, we can use methods similar to that in the
proof of Proposition 3.5 to construct optimal (n, 5, 3)q -codes for 2 ≤ q ≤ 3t + 1. When
q = 3t + 2, the optimal codes are from Proposition 6.2. ��

Lemma 6.4 Aq(41, 5, 3) =
⌊

41(q−1)
3

⌋
for all integers q, 2 ≤ q ≤ 20.

Proof We construct a (41, 3)-packing on Z36 ∪ {∞0, . . . ,∞4}, where the block set consists
of 18 maximum PPCs Pi , 1 ≤ i ≤ 18, and a non-maximum PPC P19 = {{0, 12, 24} + i :
i = 0, 1, . . . , 11}. The maximum PPCs P1, P10 missing {0, 1} and {2, 3} are listed below.

For each i ∈ {1, 2}, j ∈ {1, 10}, P3i+ j is obtained from Pj by adding 4i under Z36. For
each i ∈ {0, 1, . . . , 5}, j ∈ {2, 3}, P3i+ j is obtained from P3i+ j−1 by adding 12 under Z36.
For each i ∈ I18\{1, 10}, Pi is obtained the same way.

P1 = {{∞0, 2, 4}, {∞1, 3, 5}, {∞2, 6, 9}, {∞3, 7, 8}, {∞4, 10, 15},
{11, 14, 18}, {12, 16, 19}, {13, 17, 20}, {21, 26, 35}, {22, 29, 30},
{23, 28, 33}, {24, 32, 34}, {25, 27, 31}};

P10 = {{∞0, 1, 11}, {∞1, 0, 14}, {∞2, 12, 35}, {∞3, 17, 34}, {∞4, 4, 21},
{5, 18, 28}, {6, 19, 27}, {7, 16, 25}, {8, 23, 29}, {9, 20, 31},
{10, 24, 30}, {13, 22, 33}, {15, 26, 32}}.
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We can check that the PPCs of this (41, 3)-packing satisfy the two properties of strong
Hanani triple packings. Thus we can use methods similar to that in the proof of Proposition 3.5
to construct optimal (41, 5, 3)q -codes for 2 ≤ q ≤ 19. When q = 20, the optimal code is
from Proposition 6.2. ��

Lemma 6.5 Aq(59, 5, 3) =
⌊

59(q−1)
3

⌋
for all integers q, 2 ≤ q ≤ 29.

Proof Take a 3-frame (X, G, B) of type 12461 from Lemma 2.4, where X = (Z12 × I4) ∪
(Z6 × {5}), G = {Z12 × {i} : 1 ≤ i ≤ 4} ∪ {Z6 × {5}} and B is partitioned into PPCs
of 14 blocks Pi , 1 ≤ i ≤ 24, and PPCs of 16 blocks Pi , 25 ≤ i ≤ 27. Assume that
for each 1 ≤ i ≤ 4, Pj , 6i − 5 ≤ j ≤ 6i , are PPCs missing the points in the group
Z12 × {i}, and Pj , 25 ≤ j ≤ 27 are PPCs missing the points in the group Z6 × {5}.
Let Y = {∞0,∞1,∞2,∞3,∞4}. For each 1 ≤ i ≤ 4, construct a strong HTP(17) on
(Z12×{i})∪Y , with eight maximum PPCs Pi

j , 1 ≤ j ≤ 8, and a non-maximum PPC Pi
9 , such

that {∞0,∞1,∞2} ∈ Pi
7 , Pi

7 = {∞3,∞4}, {∞0,∞3,∞4} ∈ Pi
8 and Pi

8 = {∞1,∞2}.
Let P ′

j+6(i−1) = Pj+6(i−1) ∪ Pi
j for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 6. Let P ′

25 = ∪s
i=1 Pi

9 ,

which is a non-maximum PPC. Then (X ∪Y,∪25
i=1 P ′

i ) is a (59, 3)-packing satisfying the two
properties of strong Hanani triple packings, from which we can get optimal (59, 5, 3)q -codes
for 2 ≤ q ≤ 25.

Now for 2 ≤ k ≤ 4, we construct an optimal k-ary code of length 11 over (Z6 ×{5})∪ Y ,
denoted by Dk . Add 24 to all the nonzero components to get a code Dk+24, such that the
nonzero elements come from {25, 26, 27}. For 26 ≤ q ≤ 28, Cq = C25∪(∪q−1

i=25C(Pi , i))∪Dq

is an optimal (59, 5, 3)q -code. For q = 29, the optimal code is from Proposition 6.2. ��

Combining Corollary 2.8, Proposition 3.5, Theorem 4.10 and the lemmas in this section,
we have the following result.

Theorem 6.6 Aq(n, 5, 3) = min
{⌊

(q−1)n
3

⌋
, D(n, 3)

}
, where

D(n, 3) =
{⌊ n

3

⌊ n−1
2

⌋⌋ − 1, if n ≡ 5 mod 6,⌊ n
3

⌊ n−1
2

⌋⌋
, otherwise.

7 Conclusion

This paper investigates constructions for optimal (n, 5, 3)q -codes for all integers n and q ≥ 2
via the study of Hanani triple packings, a generalization of the well known Hanani triple
systems. We establish the existence of strong Hanani triple packings, with a small finite
number of possible exceptions and determine Aq(n, 5, 3) for all n and q ≥ 2. Previously, the
exact value of Aq(n, 5, 3) is known only for q ∈ {2, 3}, and for general q with 3|(q − 1)n
and sufficiently large n.
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