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All graphical t-designs with 2 G t < k G 4 are determined. 

1. Introduction 

A t-wise balanced design T = (X, 93) with parameters t-(v, K, A) is a system 93 
of subsets of size k E K (called blocks) from a set X of cardinality u such that each 
t-subset of X is contained in precisely A blocks of 3. We assume that the blocks in 
93 are not repeated. If K = {k}, we call T a t-design of type t-(v, k, A). 

Let 9, denote the full symmetric group on the p-element set Y. Then 9, acts 
in a natural way on the (5) edges of the complete graph KP = (Y, ‘8). A t-wise 
balanced design T = (8, 93) for which 9, is also an automorphism group is said to 
be graphical. It should be clear that if B E 3, then B is a subgraph of K,,, and all 
subgraphs of KP that are isomorphic to B are also in 9. 

Chouinard, Kramer, and Kreher in [l] determined all graphical t-wise balanced 
designs with the restriction k E (1, 2). All parameter situations for which there 
exists a graphical t-(15, k, A) design with 2 6 t < k s 7 were also determined by 
Kramer and Mesner [2]. In this note, we take a different direction and enumerate 
all graphical t-designs with the restriction 2 S t -=c k s 4, but allowing arbitrary u’s 
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and k’s We note that it suffices to consider 0 < A. c ]b(l I:)] since the 
complement of a t-(v, k, A) design is a t-(v, k, (:I:) - A) design. 

2. The enumeration 

Let N, denote the number of isomorphism classes of t-edge subgraphs of K,. 
We define a graphical extension matrix Gtk to be an N, X Nk matrix with rows 
indexed by the isomorphism classes hr), . . . , h# of t-edge subgraphs and 
columns indexed by the isomorphism classes hik’, . . . , h$J of k-edge subgraphs 
of KP such that the (i, j)th entry of Gtk is the number of ways hi”’ can be extended 
to a htk’. We remark that the Grk matrix is exactly the same as the A,, matrix as 
defined in [2] with Sp, acting on the t-subsets and k-subsets of 8. The following 
lemma is a special case of a more general result of Kramer and Mesner [2]. 

Lemma 1. There exists a graphical t-(v, k, A) design if and only if there is a 
(0, l)-vector U satisfying 

G,u=)3J, 

where J is the N,-dimensional vector of all 1’s. 

There has been much effort and success in the design of efficient and effective 
heuristics for solving matrix equations such as GrkU = U when p is specified (see, 
for example, [4]). H owever, we have not come across any algorithm for the case 
when p is an unknown to be determined. Here, we propose to solve this problem 
by borrowing tools from symbolic computations. Solving GtkU = iv is equivalent 
to finding subsets C of columns of Grk whose row sum is uniform and equals A. To 
do this, we generate subsets of columns and solve the N, simultaneous 
diophantine equations involved. This task can be carried out with symbolic 
manipulation packages like MACSYMA or MAPLE. We can also restrict our 
search to (Cl c [Nk/2] since the complement of a design is also a design. Based 
on this observation, we conducted an exhaustive search for all graphical 

2-((n), 3, A), 2-((S), 4, A), and 3-((q), 4, A) designs which are presented in 
subsequent sections. The enumeration process using MAPLE took no more than 
a few minutes of CPU time on a VAXll-780 machine. 

3. Data and results 

In Fig. 1 is a list of the isomorphism classes of k-edge subgraphs of K,, for 
2 =Z k s 4. For simplicity of representation, we choose not to include isolated 
vertices in our figures. We also give in Fig. 2 the graphical extension matrices 
Gz3, Gz4, and G34 associated with the appropriate isomorphism classes. We have 
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Fig. 1. Isomorphism classes of k-edge subgraphs, for 2 <k < 4. 
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0 2@-3) ( Pi3 1 1 p-3 

G,, = 
( p-4 2 1 4 4(p-4) 0 0 

G4 = 

(";") 5(p-3) (";') 8(pi3) p-3 3(pj3j 6(pj3) 6(pi3j 3(p;3) 3(pJ3j 

2(p-4) 4 0 8(p-4) 2 4(pi4) 16(Pi4) 12@-4) 8!pi4j 15(pj4j 

Gs = 

0 0 0 0 0 0 12 0 0 6@-6) (pi")' 

0 2 0 2(p-4) 1 0 ( p-4 1 
2 

2(p-4) 0 0 0 

1 0 0 2 0 p-5 2@-5) 4 2(p-5) (';') 0 

:p;3) 3(p-3) 0 0 0 0 0 0 0 0 0 

, 0 3 p-4 3(p-4) 0 ( "24 j 0 0 0 0 0 I 

Fig. 2. Graphical extension matrices, G,, for 2 s t < k s 4. 

assumed that p 2 6 in the GZk matrices, and p 2 8 in the G34 matrix. The graphical 
extension matrices for smaller values of p can be obtained by deleting the rows 
and columns corresponding to isomorphism classes of graphs that are on more 
than p vertices. 

In the following subsections, we present all the graphical t-((Q, k, A) designs 
for 2 s t < k 6 4. A t-design with block size k having blocks from the isomorphism 
classes h @) II TV.., hf’ is represented by the set {i1, . . . , i,}. 

3.1. Graphical 2-designs with block size 3 

The only graphical 2-((p), 3, A) designs are those listed in Table 1. 

Table I 

Graphical 2-( @), 3, A) Designs 
‘_ (($, A) Representation ((3, A) Representation 

(W4) 121 (15J) {L4) 
(266) {L3,5) (2W’) 11921 

_ (5%25) {1,2,%5) 

3.2. Graphical 2-designs with block size 4 

The only graphical 2-((s), 4, A) designs are those listed in Table 2. 

3.3. Graphical 3-designs with block size 4 

The only graphical 3-((s), 4, A) design is the 3-(10,4,1) design and has 
representation { 1,3,5}. 
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Table 2 

(G)?W 
(1W 
(1’383) 
ww) 
(l&24) 
(153) 
PLW 
(2L36) 

(2L45) 

(2~51) 

(21357) 

(21863) 

(21869) 

(2L75) 

(21,61) 

(28,5) 

(28PJ) 

(28,95) 
(28,120) 

(28,135) 

(36,15) 
(36,111) 

(36,135) 

(36,210) 

(36,240) 

(36,276) 

(45,105) 

(45,357) 

(45,420) 

(55,336) 

(78,630) 

(78,135O) 

(91,143O) 

(105,132O) 

(105,165O) 

(105,1782) 

(105,198O) 

(105,2112) 

(105,2442) 

(153,4935) 

(253,14535) 

Graphical 2-( c 

Representation 

{L3)! (51 
(41 
{1,3,4,5) 

{1,2,7), {1,3,4,5,8,91 

{L3,4,7), {2,8,9), {3,4,6,7) 

1:; 

{2,3,5,9,10) 

{1,2,3,%9,10) 

{2,3,5,6,9,10) 

{1,2,3,5,6,9,10),{4,9,10) 

(1,4,9,10) 

{4,6,9,10) 

(1,4,6,9,10), {2,3,5,6,9,10) 

15,111 

{1,3,6,9) 

{4,10,11) 

{1,2,3,8,10),{6,8,9) 

{1,2,3,6,7,11) 

{3,11) 

(1,2,5,9,11) 

{3,6,9,11) 

{1,3,6,7) 
{1,4,6,10) 

(2,3,4,5,9,10) 

(6,111 

{1,3,6,7,11),(3,7,8,11} 

{1,3,4,6,10),~3,4,8,10),(6,7,9) 

17) 
{6,8,11) 

{7,8,9,11) 

(4,7,11) 

(1,3,4,6,11} 

{3,4,8,9,11) 

{3,6,8,9,11) 

{1,3,4,7,11) 

{1,3,6,7,11) 

{3,7,8,9,11} 

{4,6,7,11) 

(101 

(10$3) 

(15,6) 

(15830) 

(2136) 

(2L18) 

(2~42) 

(21,48) 

(2~54) 

(21960) 

(2L66) 

(2~72) 

(21,78) 

(2lP4) 

(28955) 

(28,85) 
(28,110) 

(28,125) 

(28,150) 

(36190) 
(36,120) 

(36,165) 

(36,231) 

(36,255) 

(45363) 
(45,252) 

(45,378) 

(55,168) 

(55,504) 

(78,108O) 

(91,836) 

(91,1496) 

(105,1326) 

(105,1656) 

(105,1788) 

(105,1986) 

(105,2118) 

(105,2448) 

(153,502s) 

1, A) De-signs 

L 

4. Concluding remarks 

In this note, we have demonstrated success in enumerating graphical f-designs 
for small values of f and k by a method that involves the use of symbolic 
computational tools. The major difficulty we face in attempting this method for 
higher values of t and k is that the number of subsets of the columns we have to 
consider in each case increases explosively. The polynomial entries of the 
graphical extension matrices also grow in complexity with t and k, and massive 
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amount of computing time will have to be invested to solve the simultaneous 
diophantine equations that arise. 

It is also shown in this paper that for k E (3, 4}, there is only a finite number of 
graphical t-(v, k, A) designs. In relation to this, we mention the following 
conjecture of Chouinard [3]. 

Conjecture 1. For any fixed il, there exist only finitely many graphical t-wise 
balanced designs. 

This conjecture has been verified for 3, E { 1, 2) in [ 11, but remains open for all 
other A’s. A proof (or disproof) of this conjecture will be interesting. 

References 

[l] L.G. Chouinard II, E.S. Kramer and D.L. Kreher, Graphical t-wise balanced designs, Discrete 

Math. 46 (1983) 227-240. 

[2] E.S. Kramer and D.M. Mesner, t-Designs on hypergraphs, Discrete Math. 15 (1976) 263-296. 

[3] E.S. Kramer, private communications, 1989. 

[4] D.L. Kreher and S.P. Radziszowski, Finding simple r-designs by basis reduction, Congr. Numer. 

55 (1986) 235-244. 


