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Abstract— The class of geometric orthogonal codes (GOCs)
was introduced by Doty and Winslow (2016) for more robust
macrobonding in DNA origami. They observed that GOCs are
closely related to optical orthogonal codes (OOCs). It is possible
for GOCs to have size greater than OOCs of corresponding
parameters due to slightly more relaxed constraints on cor-
relations. However, the existence of GOCs exceeding the size
of optimal OOCs of corresponding parameters has never been
demonstrated. This paper gives the first infinite family of GOCs
of size greater than optimal OOCs.

Index Terms— Base stacking, bonds, DNA nanotechnology,
geometric orthogonal codes, optical orthogonal codes, optical
orthogonal signature pattern codes.

I. INTRODUCTION

NUCLEIC acids play an important role in the self
assembly of nanostructures owing the specificity of

the Watson-Crick base pairing. Rothemund [2] showed how
a long strand of (scaffold) DNA can be folded into a
specific shape (DNA origami) with the help of a care-
fully designed set of short “staple” DNAs that bind to
intended sites on the scaffold DNA, forcing the scaf-
fold DNA to fold in desired ways. Beyond base pair-
ing, base stacking between base pairs is another dominant
cause of DNA binding. Woo and Rothemund [3] showed that
by careful placement of blunt ends in the DNA origami
of Rothemund, we can force a set of DNA origamis
to bind through base stacking to form intended arrange-
ments. This geometric placement of blunt ends within
a DNA origami forms a macrobond. Gerling et al. [4]
extended the work of Woo and Rothemund [3] by studying
the self-assembly of three-dimensional (3D) DNA origami.
Doty and Winslow [5] then provided a theoretical founda-
tion for the work of [3] and [4] by introducing the class
of geometric orthogonal codes (GOCs). Doty and Winslow
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described how the class of codes can be used to design sets
of macrobonds in 3D DNA origami so as to reduce unde-
sirable bonding arising from misalignment and mismatches.
We provide a short description of this connection in Fig. 1
and refer the interested readers to Doty and Winslow [5] for
a detailed and excellent discussion. GOCs of large size are
desirable because they give rise to large number of binding
interactions, thereby increasing the number of structures that
can potentially be formed.

Doty and Winslow also observed that GOCs are closely
related to optical orthogonal codes (OOCs) introduced by
Chung et al. [6]. Although it is possible for GOCs to have size
larger than OOCs of corresponding parameters, this has never
been demonstrated. The main contribution of this paper is the
first construction of GOCs that is better than optimal OOCs.
We also improve an upper bound of Doty and Winslow [5] on
the size of GOCs.

II. PRELIMINARIES

For integers a ≤ b, [a, b] denotes the set {a, a + 1, . . . , b}.
For an integer n ≥ 2, [n] denotes the set [0, n − 1]. Given
M ⊆ [n]2 and v ∈ Z

2, the translation of M by v is defined
to be M + v = {m + v : m ∈ M}. We also refer to M + v as
an aperiodic translate of M . The aperiodic auto-correlation
of M is defined as maxv∈Z2\{(0,0)} |M ∩ (M + v)|. For two
subsets M, M � ⊆ [n]2, the aperiodic cross-correlation of M
and M � is defined as maxv∈Z2 |M ∩ (M � + v)|.

Let w ∈ [2, n2] and let λ ∈ [1, w − 1]. A family M =
{M1, M2, . . . , Mm } of size-w subsets (or w-subsets for short)
of [n]2 is an (n, w, λ)-geometric orthogonal code (GOC) if

(i) the aperiodic auto-correlation of M is ≤ λ, for all
M ∈ M, and

(ii) the aperiodic cross-correlation of M and M � is ≤ λ, for
all M, M � ∈ M with M �= M �.

The parameter w is called the macrobond strength
(or weight) of M, while λ is its mismatch strength
limit. The values for macrobond strength w and mismatch
strength limit λ are dependent on experimental conditions
(e.g., temperature, concentrations) and their ratio is varied
(see Doty and Winslow [5] for a discussion). Hence, we con-
struct GOCs for a range of parameters of λ and w in this
paper.

We note further that every M ⊆ [n]2 may be identified
with an n × n (0, 1)-matrix (mi, j )0≤i, j≤n−1, where mi, j = 1
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Fig. 1. (a) By carefully arranging blunt ends at the sides of DNA origamis, a set of DNA origamis may self-assemble into an intended arrangement. We can
use binary sequences to encode the arrangements of blunt ends. (b) and (c) Misalignments of the intended pair, “D” and “N.” We observe that we may
reduce the probability of misalignment by choosing a sequence with low aperiodic auto-correlation. (d) and (e) A mismatch or binding of an unintended
pair, “D” and “A.” Again, the probability of mismatch is reduced by choosing sequences with low aperiodic cross-correlation.

if (i, j) ∈ M and mi, j = 0 otherwise. Hence, M represents
the set of positions where the blunt ends are placed.

Let M(n, w, λ) denote the largest possible size of an
(n, w, λ)-GOC. A code with the largest size is said to be
optimal. Doty and Winslow [5] derived the following upper
bound for M(n, w, λ).

Theorem 1 [5]: Let

UGOC(n, w, λ)

� 1
( w
λ+1

)

⎡

⎣
(

n2 − 1

λ

)
+

n−1∑

x0=1

n−1∑

y0=1

(
n2 − x0 − y0 − 1

λ − 1

)
⎤

⎦

= (1 + o(1))
(λ + 1)2n2λ

w(w − 1)(w − 2) · · · (w − λ)
. (1)

Then M(n, w, λ) ≤ UGOC(n, w, λ).
In the above theorem, for two functions f and g, we write

f = o(g) to mean that limn→∞ f (n)/g(n) = 0. As we are
interested in the asymptotic behaviour of the upper bounds,
we also adopt other Bachmann-Landau notations. We write
f = O(g) if lim supn→∞

| f (n)|
g(n) < C for some positive con-

stant C . We write f = �(g) if g = O( f ), and we write
f = �(g) if f = O(g) and f (n) = �(g).

Let N be a positive integer, let 1 ≤ λ ≤ w ≤ N and let
ZN denote the integers modulo N . Given a subset C ⊆ ZN

and an element v ∈ ZN , the translation of C by v is defined
to be C + v = {c + v : c ∈ C}. The periodic auto-
correlation of C is defined as maxv∈ZN \{0} |C ∩ (C + v)|. For

two subsets C, C � ⊆ ZN , the periodic cross-correlation of C
and C � is defined as maxv∈ZN |C ∩ (C � + v)|. A collection
C = {C1, C2, . . . , Cm} of w-subsets of ZN is an (N, w, λ)-
optical orthogonal code (OOC) if the following conditions
are satisfied:

(i) the periodic auto-correlation of C is ≤ λ, for all C ∈ C,
and

(ii) the periodic cross-correlation of C and C � is ≤ λ, for all
C, C � ∈ C with C �= C �.

Note that, for translations in the definition of OOCs, addi-
tion is performed over the cyclic group ZN , instead of over
the integers as in the definition of GOCs.

Chung et al. [6] showed that the size of an (N, w, λ)-OOC
is bounded above by UOOC(N, w, λ), where

UOOC(N, w, λ) � (N − 1)(N − 2) · · · (N − λ)

w(w − 1)(w − 2) · · · (w − λ)
. (2)

Observe that an (n2, w, λ)-OOC is an (n, w, λ)-GOC, by
regarding each one-dimensional (1D) codeword of length n2

as the concatenation of the n rows of a two-dimensional (2D)
codeword. Comparing (1) and (2), with N = n2, we note that
the size of an (n, w, λ)-GOC could possibly exceed the upper
bound UOOC(n2, w, λ). However, no such classes of GOCs
are known. While Doty and Winslow [5] constructed a class
of (p, p, λ)-GOCs of size pλ−1 − pλ−2, for all primes p,
and have compared this code size with some known lower
bounds for OOCs, this code size does not beat the bound
UOOC(p2, p, λ) = pλ−1 + O(pλ−2).
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A. Our Contributions

The main contributions of this paper are:
• For suitably large w, an upper bound for M(n, w, λ),

which is asymptotically equal to (2), with N = n2

(Section III).
• For t ≤ p and p − �p/t� ≤ λ ≤ p, a class of

(p, p, λ)-GOCs of size t pλ−1−t , which exceeds the OOC
upper bound pλ−1 + O(pλ−2) (Section IV-A).

• A recursive construction for GOCs, which can increase n
while keeping w and λ fixed (Section IV-B). We also
show that, if the input codes are close to optimal, so
are the output codes. Examples of GOCs with size
exceeding (2) are obtained.

• For λ = 1, an upper bound for M(n, w, 1), which
shows the upper bound UGOC(n, w, 1) = 4n(n−1)

w(w−1) can-
not be attained when w ≥ 6 (Section V-A). Some
optimal (n, w, 1)-GOCs with w ≤ 5 which achieve
UGOC(n, w, 1) = 4n(n−1)

w(w−1) (Section V-B). We also deter-
mine the exact value of M(n, 3, 1) for n �∈ {19, 21, 24}
in Section V-C.

The techniques used are from combinatorial design theory.

III. AN ASYMPTOTIC UPPER BOUND

In this section, we use a method of Erdõs et al. [7] to obtain
an asymptotic upper bound on the size of (n, w, λ)-GOC when
w is large. For a = (a1, a2) ∈ Z

2 and positive integer R,
let Wa,R be an R × R window starting at a, that is, Wa,R =
[a1, a1+R−1]×[a2, a2+R−1]. For S ⊆ [n]2, the observation
of S through the window Wa,R is

Wa,R(S) = {v − a : v ∈ S ∩ Wa,R}.
Note that every observation, by definition, lies within [R]2.
The major difference of the proof technique used here with that
for (1) in [5] is that we consider the local aperiodic correlations
within [R]2, rather than the aperiodic correlations within [n]2,
see Fig. 2.

Theorem 2: Let w and λ be functions in n. If w = �(λ4 nc)
for some positive constant c, then

M(n, w, λ) ≤ (1 + o(1))
n2λ

wλ+1 .

Therefore,

lim
n→∞ M(n, w(n), λ(n))/UOOC(n2, w(n), λ(n)) ≤ 1.

Proof: Let M = {M1, M2, . . . , Mm} be an (n, w, λ)-GOC.
The number of R × R windows with nonempty intersection
with [n]2 is (n+R−1)2, so the number of observations of mac-
robonds in M through these windows is N = m(n + R − 1)2.
Note that there may be repetitions. But since M is a GOC,
that only happens for observations with weight less than λ+1.
As each element of [n]2 is observed through R2 windows, the
average number of elements per observation, over these N
observations, is A = R2mw/N .

On the other hand, suppose the i th observation is of size wi .
Then it has precisely

( wi
λ+1

)
subsets of size λ + 1. Therefore,

there are in total
∑N

i=1

( wi
λ+1

)
subsets of size exactly λ + 1,

induced by these N observations.

Fig. 2. The codeword {(0, 0), (1, 2), (2, 4), (3, 4), (4, 2)} has aperiodic
auto-correlation two. We list all the 4 × 4 windows with the weight of
the observation at least three. All the 3-subsets induced on these windows
are pairwise distinct. For example, in the window W(0,1),4 the 3-subset is
{(1, 1), (2, 3), (3, 3)}, while in W(0,2),4 the 3-subset is {(1, 0), (2, 2), (3, 2)}.
We have two observations of weight four and four observations of weight
three. In total, there are twelve distinct 3-subsets of [4]2, and this number is

indeed at most
(42

3
)
.

Now, since M is an (n, w, λ)-GOC, we have |Wa,R(Mi ) ∩
Wb,R(M j )| ≤ λ for any two distinct observations Wa,R(Mi )
and Wb,R(M j ), with a �= b or i �= j . Therefore, all the
(λ + 1)-subsets, induced from the observations, are pairwise
distinct. The number of possible (λ + 1)-subsets in an R × R
window is

( R2

λ+1

)
. Since all observations lie within the R × R

window [R]2, we have

N∑

i=1

(
wi

λ + 1

)
≤

(
R2

λ + 1

)
.

Note that A =
∑N

i=1 wi
N . It follows from the convexity of the

function
( x
λ+1

)
in variable x and Jensen’s inequality that

(
A

λ + 1

)
≤ 1

N

N∑

i=1

(
wi

λ + 1

)
≤ 1

N

(
R2

λ + 1

)
.

In other words, N A(A − 1) · · · (A − λ) ≤ R2λ+2, or,
mw(A − 1) · · · (A − λ) ≤ R2λ.

Choose R = n1−c/4. Since w = �(λ4 nc), we have A =
R2w/(n + R − 1)2 = �(λ4nc/2). It follows that for n large
enough, we have

(A − 1)(A − 2) · · · (A − λ) ≥ Aλ − λ2 Aλ−1.

Hence, mw(Aλ − λ2 Aλ−1) ≤ R2λ, and

m ≤ R2λ

wAλ
+ mλ2

A
= (n + R − 1)2λ

wλ+1 + mλ2

A
,

= n2λ

wλ+1 + o

(
n2λ

wλ+1

)
+ mλ2

A

= n2λ

wλ+1 + o

(
n2λ

wλ+1

)
.
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The last equation holds as m = O(λ2n2λ/wλ+1) and so
mλ2/A = o(n2λ/wλ+1). �

It follows that both OOCs and GOCs share the same
asymptotic upper bound when w = �(λ4nc), for any constant
c > 0.

IV. CONSTRUCTIONS OF GOCs USING CYCLIC GOCs

We revisit another class of low-correlation codes that had
been studied in the context of optical code-division multiple
access (CDMA) networks. These codes form an important
ingredient in the constructions of the two families GOCs in
later two subsections.

Let M be a family of w-subsets of Zm × Zn . For M ∈ M,
the periodic auto-correlation of M is given by the value
maxv∈(Zm×Zn )\{(0,0)} |M ∩ (M + v)|. For distinct M, M � ∈ M,
the periodic cross-correlation of M and M � is defined as
maxv∈Zm×Zn |M ∩ (M � + v)|. (Note that the translations are
computed over the group Zm × Zn .) Such a family M is
called an (m, n, w, λ)-optical orthogonal signature pattern
code (OOSPC) if, for M, M � ∈ M with M �= M �, we have:

(i) the periodic auto-correlation of M is ≤ λ, and
(ii) the periodic cross-correlation of M and M � is ≤ λ.

Optical orthogonal signature pattern codes were studied in
the context of optical CDMA networks [8]–[12] . When m
and n are relatively prime, using Chinese remainder theorem,
it is easy to see that an (m, n, w, λ)-OOSPC is equivalent to
an (mn, w, λ)-OOC [12]. Moreno et al. [13] presented three
constructions for OOSPCs to obtain the corresponding OOCs.
When m and n are not relatively prime, Yang and Kwong [12]
gave three constructions for OOSPCs with periodic cross-
correlation 1; some infinite classes of (m, n, w, λ)-OOSPCs
with w ∈ {3, 4} and λ ∈ {1, 2} have been obtained
in [14]–[18]. Recently, inspired by the algebraic constructions
for 2D OOCs based on polynomials and rational functions over
finite fields [19] and the recursive construction for 1D OOC
based on r -simple matrices [20], Ji et al. [21] presented
direct and recursive constructions for OOSPCs with arbitrary
periodic correlations.

In this paper, we restrict ourselves to the case where m = n.
Each codeword may then be visualized as a square array. When
a translation is applied to such a codeword, entries in the
codeword that move off one edge of the array reappear in the
array from the opposite edge (due to the modulo n operation),
unlike in the case of a GOC, where the symbols simply move
out of the array. Therefore, identifying Z

2
n with [n]2 as sets in

the obvious way, it is easy to see the periodic auto-correlation
(resp. periodic cross-correlation) in the OOSPC definition
is always no less than the aperiodic auto-correlation (resp.
aperiodic cross-correlation) in the GOC definition. It follows
that an (n, n, w, λ)-OOSPC is also an (n, w, λ)-GOC. For
these reasons, we shall refer to an (n, n, w, λ)-OOSPC as
an (n, w, λ)-cyclic geometric orthogonal code (CGOC). These
codes are used in Section IV-A to construct GOCs whose size
exceeds (2), with N = n2.

Although an (n2, w, λ)-OOC is an (n, w, λ)-GOC and the
translations in both OOCs and CGOCs are done modulo n,
there are differences in their properties. Consider, for example,

Fig. 3. (a) The 1D codeword (011100000) is marked in orange, all its
possible translations are marked in blue and the overlaps are marked in
grey. (b) The corresponding 2D codeword and all its possible translations.
The overlaps are marked in grey.

the codeword (011100000) in Fig. 3. As a 1D codeword
of length nine, it has periodic auto-correlation two. How-
ever, when interpreted as the corresponding 2D codeword⎛

⎝
0 1 1
1 0 0
0 0 0

⎞

⎠, its periodic auto-correlation is one.

Let C(n, w, λ) denote the largest possible size of an
(n, w, λ)-CGOC. Since CGOCs may be regarded as binary
constant weight codes (by identifying subsets of Z

2
n with

n × n (0, 1)-matrices), by using the Johnson bound [22] for
constant weight codes, we have the following upper bound on
C(n, w, λ).

Theorem 3 (Johnson-Type Bound): Let

UCGOC(n, w, λ) � (n2 − 1)(n2 − 2) · · · (n2 − λ)

w(w − 1)(w − 2) · · · (w − λ)
.

Then C(n, w, λ) ≤ UCGOC(n, w, λ).
Although UCGOC(n, w, λ) = UOOC(n2, w, λ), CGOCs have

the potential to yield GOCs whose size exceeds (2), since the
periodic correlation in the CGOC definition may be larger than
the aperiodic correlation in GOC definition and there is room
to add more codewords.The following two results on CGOCs
are used later in Corollary 8 and Theorem 11, respectively to
give infinite classes of GOCs.

Theorem 4 [21]:Let p ≥ 3 be a prime and λ an integer
with 2 ≤ λ ≤ p, then there is a (p, p, λ)-CGOC of size
pλ−1 − 1.

Theorem 5 [21]: Let C be an (n, w, λ)-CGOC with w > λ.
Let N be a positive integer such that the minimal prime factor
of N is not less that w−1, then there is an (nN, w, λ)-CGOC
of size N2λ|C|.

A. Direct Construction of GOCs From CGOCs

Recall that an (n, w, λ)-CGOC is also an (n, w, λ)-GOC.
The following result therefore follows immediately from
Theorem 4.

Corollary 6: Let p ≥ 3 be a prime and λ an integer with
2 ≤ λ ≤ p. Then there is a (p, p, λ)-GOC of size pλ−1 − 1.
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When λ = O
(

p1/4−�
)

for some � > 0, the condition
in Theorem 2 is satisfied. In other words, M(p, p, λ) ≤
pλ−1+o(pλ−1), so the codes in Corollary 6 are asymptotically
optimal. However, when λ = �(p1/4), the condition in
Theorem 2 does not hold. Indeed, for some values of λ
satisfying λ = �(p), we construct, in this section, some GOCs
with sizes t pλ−1 − O(1), where t may be chosen to be greater
than one.

In what follows, we canonically identify the elements in [n]
with those in Zn . Given M ⊆ [n]2 and v = (va, vb) ∈ [n]2,
let the translation of M by v modulo n be M + v (mod n) �
{(ma+va mod n, mb+vb mod n) : (ma, mb) ∈ M}. As before,
we refer to M + v (mod n) as a periodic translate of M .

Suppose that M is an (n, w, λ)-CGOC and M is a codeword
belonging to M. Then all periodic translates of M are excluded
from M as the periodic correlation of M and its periodic
translate M � is always w. However, the aperiodic cross-
correlation of M and M � may be smaller than w and our
strategy is to augment M with such periodic translates to
obtain a GOC of larger size.

We focus our strategy on a certain class of CGOCs.
In particular, suppose that M is a w-subset of [n]2 such that
|M∩({i}×Zn)| ≤ 1 for each i ∈ Zn . In other words, regarding
M as an n × n (0, 1)-matrix, there is at most one 1 in each
row of M .

Let 1 ≤ t ≤ w and set γ = �w/t�. We partition the
rows of M into t + 1 contiguous parts [v j−1, v j − 1] for
j = 1, . . . , t +1 (here, v0 = 0 and vt+1 = n) such that each of
the first t parts contains exactly γ 1’s. In other words, the size
M ∩ ([v j−1, v j − 1] × [n]) is exactly γ .

We then define the following t matrices tr(M, i) =
M − (vi , 0) (mod n) for i ∈ [1, t]. Observe that tr(M, i)
is a periodic translate of M . Furthermore, for i ∈ [1, t],
the aperiodic translate M+(n−vi , 0) has exactly iγ 1’s in [n]2,
i.e.

∣
∣[n]2 ∩ (M + (n − vi , 0))

∣
∣ = iγ .

Example 7: Let n = w = 7 and consider a code-
word M = {(0, 0), (1, 1), (2, 2), (3, 4), (4, 1), (5, 5), (6, 6)}
depicted in Fig, 4. Then the periodic auto-correlation of M is
four.

Consider t = 2 and so, γ = 3. Hence, the rows are
partitioned to the three parts [0, 2], [3, 5], and [6, 6].

Then the two periodic translates we are interested in are:

tr(M, 1) = {(4, 0), (5, 1), (6, 2), (0, 4), (1, 1), (2, 5), (3, 6)},
tr(M, 2) = {(1, 0), (2, 1), (3, 2), (4, 4), (5, 1), (6, 5), (0, 6)}.

By construction, tr(M, 1) and tr(M, 2) each has aperiodic
auto-correlation four. Furthermore, it is easy to check that
tr(M, 1) and tr(M, 2) have aperiodic cross-correlation four,
even though their periodic cross-correlation is seven.

With this definition of tr(M, i), we provide our first con-
struction of GOCs using CGOCs.

Construction 1: Suppose that there exists an (n, w, λ)-
CGOC M such that, for each M ∈ M and each i ∈ Zn,
we have |M ∩ ({i} × Zn)| ≤ 1. For any positive integer t with
t ≤ w, let

F = {tr(M, i) : M ∈ M, i ∈ [1, t]}.
If w − �w/t� ≤ λ, then F is an (n, w, λ)-GOC of size t|M|.

Fig. 4. The codewords M, tr(M, 1), and tr(M, 2) in Example 7.

Proof: Since M is an (n, w, λ)-CGOC, it is easy to check
that {tr(M, i) : M ∈ M} is also an (n, w, λ)-CGOC for
i ∈ [1, t]. It then remains to show that the aperiodic cross-
correlation of tr(M, i) and tr(M �, j) with i �= j is at most λ.

Let vi and v �
j be the integers such that tr(M, i) = M−(vi , 0)

(mod n) and tr(M �, j) = M � − (v �
j , 0) (mod n). When

M �= M �, then for all u ∈ Z
2, we have that

|tr(M, i) ∩ (tr(M �, j) + u)|
= |(M − (vi , 0) (mod n)) ∩ (M � − (v �

j , 0) + (mod n)) + u|
≤ |(M − (vi , 0) (mod n)) ∩ (M � − (v �

j , 0) + u (mod n))|
= |M ∩ (M � + (vi − v �

j , 0) + u (mod n))|
≤ λ.

The last inequality holds due to the periodic cross-correlation
property of M as CGOC. Similarly, when M = M � and
u �≡ (v j − vi , 0) (mod n), similar calculations yield that
the aperiodic cross-correlation of tr(M, i) and tr(M, j) is at
most λ.

It remains to consider the case M = M � and u ≡ (v j −vi , 0)
(mod n). Denote M� = M∩([v�−1, v�−1]×[n]) for � ∈ [1, t].
Then the collection {M1, M2, . . . , Mt+1} forms a partition of
M with |M�| = γ for � �= t +1 and |Mt+1| ≤ γ . Furthermore,

tr(M, i) = M − (vi , 0) (mod n)

=
(

i⋃

�=1

M� + (n − vi , 0))

)

∪
(

t+1⋃

�=i+1

M� − (vi , 0)

)

.

Hence, for tr(M, i) and tr(M, j) with i < j , and
u = (v j − vi , 0) + (pn, qn) with p, q ∈ Z, we have the
following cases.

(i) When (p, q) = (0, 0), we have

tr(M, j) + u

=
⎛

⎝
j⋃

�=1

M� + (n − vi , 0))

⎞

⎠ ∪
⎛

⎝
t+1⋃

�= j+1

M� − (vi , 0)

⎞

⎠,

and so,

|tr(M, i) ∩ (tr(M, j) + u)|

=
i∑

�=1

|M�| +
t+1∑

�= j+1

|M�|=w − ( j − i)γ ≤w − γ ≤λ.

(ii) When (p, q) = (−1, 0), we have

tr(M, j) + u

=
⎛

⎝
j⋃

�=1

M�+(−vi , 0))

⎞

⎠∪
⎛

⎝
t+1⋃

�= j+1

M�+(−n − vi , 0)

⎞

⎠,
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TABLE I

COMPARISON OF LC (n, λ, t) WITH THE LOWER
BOUND L1(n, λ) IN [5, TABLE 1]

and so,

|tr(M, i) ∩ (tr(M, j) + u)|

=
j∑

�=i+1

|M�| ≤ ( j − i)γ ≤ (t − 1)γ ≤ w − γ ≤ λ.

(iii) When (p, q) /∈ {(0, 0), (−1, 0)}, then (tr(M, j) + u) ∩
[n]2 = ∅ and then |tr(M, i) ∩ (tr(M, j) + u)| = 0.

Therefore, the cross-correlation of tr(M, i) and tr(M �, j) is
always at most λ. �

It can be verified that the CGOCs in Theorem 4 satisfy the
condition of Construction 1. We may therefore apply Con-
struction 1 to obtain the following class of (p, p, λ)-GOCs,
whose size exceeds the OOC upper bound pλ−1 + O(pλ−2).

Corollary 8: Let p ≥ 3 be a prime. Let λ and t be two
positive integers with t ≤ p and p − �p/t� ≤ λ ≤ p. Then
there is a (p, p, λ)-GOC of size tpλ−1 − t .

Let LC (n, λ, t) = tnλ−1 − t and we compare LC(n, λ, t)
with the lower bound of [5, Table 1].

To end this subsection, we discuss the complexity of
Construction 1. As mentioned above, given a codeword M in
a CGOC M satisfying the conditions of the construction, we
form t matrices tr(M, 1), tr(M, 2), . . . , tr(M, t) by partition-
ing the rows of M into t +1 parts and shifting them cyclically.
Therefore, we can construct these t matrices in time O(tn).

It remains to determine the complexity of constructing the
CGOC M. To so, we specialize our analysis on Doty and
Winslow’s construction for CGOCs [5]. They consider the
polynomials f (x) = aλxλ +aλ−1xλ−1 +· · ·+a1x +a0, where
the coefficients ai ∈ Fp for i ∈ [0, λ] obey aλ−1 = a0 = 0
and aλ �= 0. The codewords are given by M f = {(x, f (x) :
x ∈ Fp)}. It is easy to check that each codeword has exactly
one 1 in each row and Doty and Winslow showed that these
codewords form a (p, p, λ)-CGOC of size pλ−1 − pλ−2.
We may therefore apply Construction 1 with this CGOC and
obtain a (p, p, λ)-GOC of size t pλ−1 − t pλ−2. Since to form
each codeword in the CGOC requires O(λp) time and there
are O(pλ−1) codewords, Doty and Winslow’s CGOC may
be constructed in O(λpλ) time and the GOC resulting from
Construction 1 may be constructed in O((λ + t)pλ).

B. Recursive Construction of GOCs

In this section, we introduce a recursive approach to con-
struct (n, w, λ)-GOCs of large size. We have the following
interpretation for GOCs.

Proposition 9: Let M = {M1, M2, . . . , Mm } be a family of
w-subsets of [n]2. M is an (n, w, λ)-GOC if and only if

(i) for each Mi ∈ M, any nonzero v ∈ Z
2 can be represented

as a difference m−m� with m, m� ∈ Mi at most λ times,
and

(ii) for each pair of Mi , M j ∈ M with i �= j , any v ∈ Z
2

can be represented as a difference m − m� with m ∈ Mi

and m� ∈ M j at most λ times.

In addition to CGOCs, permutation codes constitute another
key ingredient in our method.

Let Sn be the set of permutations on the set {1, 2 . . . , n}.
Write a permutation πππ ∈ Sn in the form πππ = (π1, π2, . . . , πn).
The Hamming distance between two permutations σσσ =
(σ1, σ2, . . . , σn) and πππ = (π1, π2, . . . , πn) in Sn is defined
to be dH (σσσ ,πππ) = |{i : σi �= πi }|.

For 1 ≤ d ≤ n, we say that ∅ �= C ⊆ Sn is an
(n, d)-permutation code if dH (σσσ ,πππ) ≥ d for every two
distinct permutations σσσ,πππ ∈ C. Let the largest possible size of
an (n, d)-permutation code be denoted by P(n, d). Bounds on
P(n, d) and the exact values of P(n, d) under some specific
parameters have been studied in [23]. In particular, we have
P(n, d) ≤ n!/(d − 1)!.

We now present a recursive construction for GOCs.
Construction 2: Let A = {A1, A2, . . . , Am1} be an

(n1, w, λ)-CGOC, let C = {C1, C2, . . . , Cm2 } be an
(n2, w, λ)-GOC, and let P = {πππ1,πππ2, . . . ,πππm0} be a
(w,w − λ)-permutation code.

For each Ai = {(ai1, bi1), (ai2, bi2), . . . , (aiw, biw)} ∈ A,
C j = {(c j1, d j1), (c j2, d j2), . . . , (c jw, d jw)} ∈ C and πππk ∈ P,
construct a new codeword Fi jk as follows:

Fi jk = {(ai� + n1 c jπππk(�), bi� + n1 d jπππk (�)) : 1 ≤ � ≤ w}.
Let

F = {Fijk : 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, 1 ≤ k ≤ m0}.
Then F is an (n1n2, w, λ)-GOC of size m0 m1 m2.

Proof: We first show that the aperiodic auto-correlation
of any Fijk is ≤ λ. Since the periodic auto-correlation of A as
CGOC is ≤ λ, any (x, y) ∈ Z

2
n1

\{(0, 0)} can be represented as

(aiα − aiβ (mod n1), biα − biβ (mod n1))

with 1 ≤ α, β ≤ w and α �= β at most λ ways. Now, for any
codeword Fijk ∈ F, any difference

(aiα + n1 c jπππk(α) − aiβ − n1 c jπππk(β), biα

+n1 d jπππk (α) − biβ − n1 d jπππk(β))

can occur at most λ times, as this difference is congruent to
(aiα−aiβ, biα −biβ) modulo n1, which occurs at most λ times.
So F has low aperiodic auto-correlation.

To check the aperiodic cross-correlation property, we need
to verify two cases.

(i) First we check the aperiodic cross-correlation between
Fijk and Fi � j �k� with i �= i �. This means that these two
codewords are constructed based on different codewords
in A.
Since the periodic cross-correlation of A as CGOC
is ≤ λ, any element (x, y) in Z

2
n1

can be represented as

(aiα − ai �β (mod n1), biα − bi �β (mod n1))
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with 1 ≤ α, β ≤ w at most λ ways. Then any difference

(aiα + n1 c jπππk(α) − ai �β − n1 c j �πππk� (β),

biα + n1 d jπππk(α) − bi �β − n1 d j �πππk� (β))

can occur at most λ times, as this difference is congruent
to (aiα − ai �β, biα − bi �β) modulo n1.

(ii) Now, we check the aperiodic cross-correlation between
Fijk and Fij �k� . Consider the differences

(aiα + n1 c jπππk(α) − aiβ − n1 c j �πππk� (β),

biα + n1 d jπππk(α) − biβ − n1 d j �πππk� (β)),

with 1 ≤ α, β ≤ w. All of these differences fall into two
disjoint sets according to whether α = β or not.

a) If α �= β, the difference cannot be congruent to (0, 0)
modulo n1. With the same argument as in the proof of
the low aperiodic auto-correlation, we can show such
difference cannot occur more than λ times.

b) If α = β, the difference is equal to

n1(c jπππk(α) − c j �πππ k� (α), d jπππk (α) − d j �πππk� (α)).

When j �= j �, such difference cannot occur more
than λ times due to the aperiodic cross-correlation
of C. When j = j � and k �= k �, there are at most
λ pairs (πππk(α),πππ k� (α)) with πππk(α) = πππk� (α) as α
ranges from 1 to w. Thus the zero difference (0, 0)
appears at most λ times. The case of the nonzero
difference follows from the aperiodic auto-correlation
property of C.

Then we complete the proof. �
Example 10: Suppose A = {(0, 1), (0, 2), (1, 0)} is a code-

word of a (3, 3, 1)-CGOC and C = {(0, 1), (1, 0), (1, 1)} is a
codeword of a (3, 3, 1)-GOC. We construct a codeword F1 as

F1 = {0 + 3 · 0, 1 + 3 · 1), (0 + 3 · 1, 2 + 3 · 0),

(1 + 3 · 1, 0 + 3 · 1)}
= {(0, 4), (3, 2), (4, 3)}.

Then we switch the last two elements (1, 0) and (1, 1) in C
and construct another codeword F2 as

F1 = {0 + 3 · 0, 1 + 3 · 1), (0 + 3 · 1, 2 + 3 · 1),

(1 + 3 · 1, 0 + 3 · 0)}
= {(0, 4), (3, 5), (4, 0)}.

The family {F1, F2} is a (9, 3, 1)-GOC of size two.
In Construction 2, suppose that

m1 = α
n2λ

1

w(w − 1) · · · (w − λ)
,

m2 = β
n2λ

2

w(w − 1) · · · (w − λ)
, and

m0 = γw(w − 1) · · · (w − λ),

where α, γ ≤ 1 and β ≤ (λ + 1)2. Then
we can obtain an (n1n2, w, λ)-GOC of size
αβγ (n1n2)

2λ/w(w − 1) · · · (w − λ). Recall that

UGOC(n1n2, w, λ)

= (λ + 1)2 (n1n2)
2λ

w(w − 1) · · · (w − λ)
+ o

(
(n1n2)

2λ
)
.

TABLE II

COMPARISON OF THE COEFFICIENT c WITH U∗
G OC AND U∗

O OC

Hence, if α and γ are close to 1 and β is close to (λ + 1)2,
the size of the resultant code is close to this upper bound.
In other words, if the ingredients A,C, and P in Construction 2
are “close to optimal”, then the new GOC F obtained is also
“close to optimal.”

When w ≤ 6 and λ < w, Chu et al. [23] showed that a
(w,w − λ)-permutation code of size w(w − 1) · · · (w − λ)
exists. Therefore, we have the following result on the size of
codes resulting from Construction 2 for w ≤ 6.

Theorem 11: Let w ∈ {3, 4, 5, 6} and let N be a pos-
itive integer whose minimal prime factor is not less than
w − 1. Suppose that there exists an (n1, w, λ)-CGOC of size
m1 and an (n2, w, λ)-GOC of size m2. Then there exists
an (n1n2 N, w, λ)-GOC of size cN2λ, where c = m1m2w
(w − 1) · · · (w − λ).

Proof: Applying Theorem 5 to the (n1, w, λ)-CGOC gives
an (n1 N, w, λ)-CGOC of size m1 N2λ. Applying Construc-
tion 2 with this CGOC, together with the (n2, w, λ)-GOC and
the (w,w − λ)-permutation code from [23], then yields an
(n1n2 N, w, λ)-GOC with the desired size. �

We obtain some lower bounds on the sizes of (n1, w, λ)-
CGOCs and (n2, w, λ)-GOCs for w ≤ 6 by computer
search. Then, by applying Theorem 11, we obtain some
(n1n2 N, w, λ)-GOCs of size cN2λ, with c listed in Table II.
Recall that

UGOC(n1n2 N, w, λ) = (λ + 1)2(n1n2)
2λ

w(w−1) · · · (w−λ)
N2λ+o(N2λ),

UOOC((n1n2 N)2, w, λ) = (n1n2)
2λ

w(w−1) · · · (w−λ)
N2λ+o(N2λ).

In Table II, the coefficients (of N2λ)

U∗
GOC(n1n2, w, λ) = (λ + 1)2(n1n2)

2λ

w(w − 1) · · · (w − λ)
and

U∗
OOC((n1n2)

2, w, λ) = (n1n2)
2λ

w(w − 1) · · · (w − λ)
,

are also listed (abbreviated as simply U∗
OOC and U∗

GOC) for
comparison with c. We note that c is significantly greater than
the corresponding U∗

OOC in all these cases. These are again
examples of GOCs with size exceeding the OOC upper bound.
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V. GOCs WITH APERIODIC CORRELATION ONE

In this section, we focus on the case λ = 1. We first present
an improved upper bound on the size of the (n, w, 1)-GOC,
which shows that Doty and Winslow’s bound UGOC(n, w, 1) =
4n(n−1)
w(w−1) cannot be attained when w ≥ 6. Then we con-
structed several infinite classes of optimal (n, 3, 1)-GOCs and
(n, 4, 1)-GOCs, the sizes of which meet Doty and Winslow’s
bound UGOC(n, w, 1). In the end, we further determine the
maximum size of the (n, 3, 1)-GOC for almost all positive
integers n.

A. An Upper Bound for GOCs With λ = 1

We first present an upper bound for GOCs with λ = 1,
which improves Doty and Winslow’s bound UGOC(n, w, 1) =
4n(n−1)
w(w−1) . The technique comes from Kløve’s work [24] on

difference triangle sets.
Let M = {M1, M2, . . . , Mm } be a family of w-subsets

of [n]2. For each Mi , the list of differences from Mi is defined
to be the multiset �Mi = {(aik − ai j , bik − bi j ) : 1 ≤ j �=
k ≤ w} for 1 ≤ i ≤ m, while the list of differences from
M is defined to be the multiset union �M = ∪m

i=1�Mi .
Let Dn = [−(n − 1), n − 1]2\{(0, 0)}. We have the following
characterization for GOCs with λ = 1, the proof of which is
straightforward and we omit here.

Proposition 12: M is an (n, w, 1)-GOC if and only if the
set �M contains each element of Dn at most once.

Next, we provide an upper bound on the size of GOCs for
the case λ = 1. Specialisation of the upper bounds leads to
Corollaries 14 and 15.

Theorem 13: For all 1 ≤ t ≤ w − 1, we have

M(n, w, 1) ≤ 2(t + 1)n(n − 1) − (w − t − 1)

t
(
(w − t+1

2 )2 + ( t+1
2 )2

) .

Proof: Let M = {M1, M2, . . . , Mm } be an (n, w, 1)-
GOC. We can rearrange the elements in each Mi in ascend-
ing order. That is, we may assume Mi = {(ai1, bi1),
(ai2, bi2), . . . , (aiw, biw)} for all i , where ai j ≤ aik if 1 ≤
j < k ≤ w, and bi j < bik if ai j = aik . Let

αis =
w∑

j=s+1

(
(2n − 1)(ai j − ai, j−s) + (bi j − bi, j−s)

)
.

The terms (2n − 1)(ai j − ai, j−s) + (bi j − bi, j−s) in the sum
above are positive and no more than 2n(n −1), and according
to Proposition 12 they should be pairwise distinct. Rearrange
these terms, we get αis = αi,w−s . Hence for 1 ≤ t ≤ w − 1,
we have

m∑

i=1

t∑

s=1

αis =
m∑

i=1

t∑

s=1

αi,w−s .

Note that each αis is a sum of w − s terms. The left hand
side of the equality above is a sum of mt (w − t+1

2 ) terms, all
positive, while the right hand side is a sum of mt t+1

2 terms,

TABLE III

NEW UPPER BOUNDS FOR (n, w, 1)-GOCs WITH 6 ≤ w ≤ 15

all integers no greater than 2n(n − 1). Hence

m∑

i=1

t∑

s=1

αis ≥ 1 + 2 + 3 + · · · + mt

(
w − t + 1

2

)

= mt

2

(
w − t + 1

2

) (
1 + mt

(
w − t + 1

2

))
,

m∑

i=1

t∑

s=1

αi,w−s ≤ 2n(n − 1) − (2n(n − 1) − 1) − · · ·

−
(

2n(n − 1) − mt
t + 1

2
+ 1

)

= mt (t + 1)

4

(
4n(n − 1) − mt

(t + 1)

2
+ 1

)
.

Combining these two inequalities, we get the upper bound
on m. �

If we choose t = w−1, Theorem 13 gives the upper bound
UGOC(n, w, 1) = 4n(n−1)

w(w−1) . If we choose t + 1 = √
w, then

(w2 − w(t + 1)) t
t+1 ≥ w2 − 2w

√
w and we get the following

bound.
Corollary 14:

M(n, w, 1) ≤ 2n(n − 1)

w2 − 2w
√

w +
√

w(
√

w−1)
2

.

When w ≥ 16, we have
(w

2

)
< w2 − 2w

√
w +

√
w(

√
w−1)

2
and the bound above is better than (1). When 6 ≤ w ≤ 15,
Table III lists the best choice for t in Theorem 13 and shows
that we can still get better bound than (1).

The argument above proves the following fact.
Corollary 15: When w ≥ 6, MG OC (n, w, 1) < 4n(n−1)

w(w−1) .

B. Constructions for Optimal GOCs With λ = 1

Corollary 15 shows that Doty and Winslow’s upper bound
UGOC(n, w, 1) = 4n(n−1)

w(w−1) cannot be achieved for w ≥ 6.
Now, we show that this upper bound can be met for w ≤ 5
by presenting several classes of optimal (n, w, 1)-GOCs. Our
constructions are based on some combinatorial structures,
which we now introduce.

Let v be a positive integer. Let B = {B1, B2, . . . , Bm},
where Bi = (bi1, bi2, . . . , bik), be a family of ordered
k-tuple of [v] called blocks. The list of directed differences
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from Bi is defined to be the multiset �Bi = {bik − bi j :
1 ≤ j < k ≤ w} for 1 ≤ i ≤ m, while the list of
directed differences from B is defined to be the multiset union
�B = ∪m

i=1�Bi . If �B = [1, (v − 1)/2], then B is called a
perfect difference family, or briefly, a (v, k, 1)-PDF. Note that,
if B = {B1, B2, . . . , Bm} is a (v, k, 1)-PDF, we must have
m = (v − 1)/(k(k − 1)).

Perfect difference families were first introduced by
Bermond et al. [25] in connection with a problem of spacing
movable antennas in radioastronomy, and have also been
used to construct optical orthogonal codes [26] and radar
arrays [27]. Bermond et al. [25] proved that perfect difference
families cannot exist for k ≥ 6. For k ≤ 5, the existence results
are summarised as follows.

Theorem 16 (Colbourn and Dinitz [28], Ge et al. [29]):
When k ≥ 6, a (v, k, 1)-PDF does not exist. There exists a
(v, k, 1)-PDF for

1) k = 3, v ≡ 1, 7 (mod 24);
2) k = 4, v = 12t + 1, t ≤ 1000 and t �= 2, 3;
3) k = 5, v = 20t + 1 with t = 6, 8, 10.

In our construction we employ a class of related com-
binatorial objects, the existence of which is equivalent to
that of perfect difference families. An (n, k, 1)-strictly perfect
difference family (SPDF) is a family B of ordered k-tuple of
[n] such that �B = [1, n − 1].

Lemma 17: An (n, k, 1)-SPDF exists if and only if a
(2n − 1, k, 1)-PDF exists.

Proof: According to the definition, every (n, k, 1)-SPDF
is also a (2n−1, k, 1)-PDF. Now, we show the sufficiency. Let
B = {B1, B2, . . . , Bm} be a (2n − 1, k, 1)-PDF, then �B =
[1, n −1]. For each block Bi = (bi1, bi2, . . . , bik) of this PDF,
let B �

i = (0, bi2 − bi1, . . . , bik − bi1), then B �
i ⊆ {0} ∪ �B =

[n] and �B �
i = �Bi . Hence B� = {B �

1, B �
2, . . . , B �

m} is an
(n, k, 1)-SPDF. �

Another ingredient needed for our construction is the
class of strictly perfect difference matrices (SPDMs).
An SPDM(k, n) is a k × (2n − 1) matrix with entries from
[n] such that, for all 1 ≤ s < t ≤ k, the list of differences
Dst = {dsj − dt j : 1 ≤ j ≤ 2n − 1} = [−(n − 1), n − 1].

Example 18: The following examples of SPDM(3, n) with
n ∈ {2, 3, 7, 9} are useful for our code construction.

1. An SPDM(3, 2) :
⎛

⎝
0 1 1
1 0 1
1 1 0

⎞

⎠

2. An SPDM(3, 3) :
⎛

⎝
0 0 1 2 2
2 1 0 0 2
1 2 0 2 0

⎞

⎠

3. An SPDM(3, 7) :
⎛

⎝
6 6 5 0 2 0 4 6 0 0 1 2 5
2 6 2 2 1 6 5 0 3 5 5 0 0
1 0 3 0 6 3 1 2 6 5 0 4 6

⎞

⎠

4. An SPDM(3, 9) :
⎛

⎝
8 1 8 8 8 4 0 0 8 7 1 2 1 0 0 0 8
6 6 1 2 3 0 8 1 5 6 5 8 1 2 3 7 0
2 4 4 6 3 8 0 2 0 0 2 1 8 8 5 6 5

⎞

⎠

Construction 3: Suppose that there exist an (n, w, 1)-SPDF
and an SPDM(w, n). Then an (n, w, 1)-GOC of size 4n(n−1)

w(w−1)
exists.

Proof: Let B = {B1, B2, . . . , B2(n−1)/w(w−1)} be an
(n, w, 1)-SPDF and D = (di j ) be an SPDM(w, n). For each
block Bi of B and each column j of D, construct a set
Mij = {(bik, dkj ) : 1 ≤ k ≤ w}. Denote the family of these
sets as M. In addition, we also construct a set M �

i = {(0, bik) :
1 ≤ k ≤ w} for each Bi of B and denote the family of these
sets as M�.

It is easy to check that �(M ∪ M�) = Dn . Thus M ∪ M� is
the desired (n, w, 1)-GOC. �

This construction shows that SPDFs and SPDMs can be
used to construct optimal GOCs. We show further that SPDMs
can also be constructed from SPDFs.

An orthogonal array OA(m, n) is an m × n2 array A,
with entries from a set X of n elements, such that, when
restricted to any two rows of A, every ordered pair of elements
from X occurs in exactly one column of the restricted array.
An orthogonal array A is idempotent if it contains the n distinct
m × 1 vectors {(x, x, . . . , x)T : x ∈ X} as columns.

Example 19: For a prime power q, let Fq be the field of
order q. Let A be a q ×q2 array, with rows labeled by x ∈ Fq

and columns by (i, j) ∈ F
2
q , whose entry in row x and column

(i, j) is i x + j . It is easy to check that A is an idempotent
OA(q, q).

Construction 4: Suppose that there exist both an (n, k, 1)-
SPDF and an idempotent OA(w, k). Then an SPDM(w, n)
exists.

Proof: Let B = {B1, B2, . . . , Bm} be an (n, k, 1)-
SPDF. From the hypothesis on the existence of an idempotent
OA(w, k), we know that for each Bi ∈ B, there exists an
idempotent orthogonal array Oi with w rows and k2 columns
over the k elements of Bi . Remove the idempotent part of Oi

to obtain a small ‘incomplete’ orthogonal array O �
i with n rows

and k(k − 1) columns for each block. Concatenating all these
small ‘incomplete’ orthogonal arrays O �

i together with the
all-zero column 0 = (0, 0, . . . , 0)T , we obtain a large orthog-
onal array

A = (0 O �
1 O �

2 · · · O �
m).

Note that all the differences from any two rows of each
small ‘incomplete’ orthogonal array O �

i are exactly those
directed differences from the corresponding block and the neg-
atives of these directed differences. Hence, all the differences
from any two rows of the large array A are exactly the set
[−(n − 1), n − 1]. Thus A is the required SPDM(w, n). �

The existence of an (n, w, 1)-SPDF implies that w ≤ 5 [25].
By Example 19, an idempotent OA(w,w) exists for
2 ≤ w ≤ 5. Construction 4 yields an SPDM(w, n). Then,
by applying Construction 3, an optimal (n, w, 1)-GOC whose
size attains Doty and Winslow’s bound is obtained.
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TABLE IV

SOME (h, 3)-REGULAR (n, 3, 1)-SPDPs

Proposition 20: Suppose that there exists an (n, w, 1)-

SPDF. Then an optimal (n, w, 1)-GOC of size 4n(n−1)
w(w−1) exists.

As a consequence of Theorem 16, Lemma 17 and Proposi-
tion 20, we have the following result.

Corollary 21: M(n, w, 1) = 4n(n−1)
w(w−1) when

(i) w = 3, n ≡ 1, 4 (mod 12); or
(ii) w = 4, n ≡ 1 (mod 6), n ≤ 6001 and n �= 13, 19; or

(iii) w = 5, n = 61, 81 or 101.

C. Determining the Exact Value of M(n, 3, 1)

In this subsection, we determine the exact value of
M(n, 3, 1). The case n ≡ 1, 4 (mod 12) is already settled in
Corollary 21. The case n ≡ 2, 5 (mod 12) and the remaining
case n ≡ 0, 3, 6, 7, 8, 9, 10, 11 (mod 12) are tackled later in
Lemma 24 and Lemma 27, after we improve the upper bound
2n(n − 1)/3 and generalize Construction 3.

We first show that the upper bound 2n(n − 1)/3 cannot be
attained when n ≡ 3, 6, 7, 10 (mod 12).

Lemma 22: Let n ≡ 3, 6, 7, 10 (mod 12). Then

M(n, 3, 1) ≤ 2n(n − 1)

3
− 1.

Proof: Let M = {M1, M2, . . . , Mm } be an (n, 3, 1)-
GOC. We consider all the differences (δ, γ ) ∈ �M with
δ > 0, or δ = 0 and γ > 0. Assume that Mi =
{(ai1, bi1), (ai2, bi2), (ai3, bi3)} with ai j ≤ aik for 1 ≤ j <
k ≤ 3, and bi j < bik if ai j = bik . Then the interesting
differences in �Mi are (ai2−ai1, bi2−bi1), (ai3−ai1, bi3−bi1)
and (ai3 − ai2, bi3 − bi2). The sum of the first coordinates of
these differences in �M is

∑m
i=1 2ai3 − 2ai1, which is even.

If the size of code m = 2n(n−1)
3 , according to Proposition 12,

we have �M = Dn . Thus the sum of the first coordinates
of the interesting differences is

∑n−1
δ=1 δ(2n − 1) = (2n − 1)

n(n − 1)/2, which is odd when n ≡ 3, 6, 7, 10 (mod 12).
A contradiction. Then the conclusion holds. �

We now generalize Construction 3 by means of SPDFs and
SPDMs with ‘holes’. We first introduce several notions for its
description.

Let B = {B1, B2, . . . , Bm} be a collection of ordered
k-subsets of [v]. If the list of directed differences �B covers
each element of the set [1, v − 1]\L exactly once, for some

L ⊆ [v], then we call B a (v, k, 1)-strictly perfect difference
packing, or (v, K , 1)-SPDP, with leave L. Furthermore, if L =
{0, r, 2r, . . . , (h−1)r} for some positive integers r and h, then
we call B (h, r)-regular. Obviously, when L = ∅, B is in fact
a (v, k, 1)-SPDF.

Example 23: The families of blocks listed in Table IV
are examples of (h, 3)-regular (n, 3, 1)-SPDPs with
(n, h) ∈ {(15, 3), (22, 7), (31, 7), (34, 7), (43, 7), (33, 9),
(36, 9), (45, 9), (48, 9), (57, 9)}.

Let D = (Dij ) be a k×2(n−h) matrix with entries from [n].
D is called an incomplete strictly perfect difference matrix with
a regular hole H = {−(h − 1)r, . . . ,−r, 0, r, . . . , (h − 1)r},
denoted briefly by ISPDM(k, n; h, r), if for all 1 ≤ s < t ≤ k,
the list of differences Dst = {dsj − dt j : 1 ≤ j ≤ 2(n − h)} =
[−(n − 1), n − 1]\H . The following construction for ISPDMs
is an analogue of Construction 4.

Construction 5: Suppose that there exist an (h, r)-regular
(n, k, 1)-SPDP and an idempotent OA(w, k). Then an
ISPDM(w, n; h, r) exists.

Construction 6: Suppose that the followings exist:

(i) an (h, r)-regular (n, w, 1)-SPDP;
(ii) an ISPDM(w, n; h, r);

(iii) an SPDM(w, h);

Then there exists an (n, w, 1)-GOC of size 4(n−h)(n+h−1)
w(w−1) .

Furthermore, if an (h, w, 1)-GOC of size 4h(h−1)
w(w−1) − δ exists,

then there exists an (n, w, 1)-GOC of size 4n(n−1)
w(w−1) − δ.

Proof: Let B = {B1, B2, . . . , Bm} be an (h, r)-regular
(n, w, 1)-SPDP, where m = 2(n−h)

w(w−1) . Let D = (di j ) and
D� = (d �

is) be an ISPDM(w, n; h, r) and an SPDM(w, h),
respectively. We construct the codewords as follows:

(i) for each block Bi = (bi1, bi2, . . . , bik) of B and each
column j of D, construct a set Mij = {(bik , dkj ) : 1 ≤
k ≤ w}, and denote the family of these sets as M;

(ii) for each block Bi = (bi1, bi2, . . . , bik) of B and each
column s of D�, construct two sets Nis = {(bik , rdks) :
1 ≤ k ≤ w} and N∗

is = {(rdks , bik) : 1 ≤ k ≤ w}, and
denote the family of these sets as N.

It is readily checked that all the differences in �(M ∪ N)
are pairwise distinct and

�(M ∪ N) = Dn\(r Dh),
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TABLE V

CODEWORDS OF SMALL GOC(n,3, 1)

where r Dh = {(rδ, rγ ) : (δ, γ ) ∈ Dh}. So M ∪ N is an

(n, w, 1)-GOC of size 4(n−h)(n+h−1)
w(w−1) .

If we have an (h, w, 1)-GOC F, then for each F =
{(ai , bi ) : 1 ≤ i ≤ w} ∈ F, construct a set F � = {(rai , rbi ) :
1 ≤ i ≤ w}. Denote the family of F � as F�. Then �F� contains
each elements of r Dh at most once. Thus M ∪ N ∪ F� is the
desired code. �

Lemma 24: Let n ≡ 2, 5 (mod 12). Then M(n, 3, 1) =
� 2n(n−1)

3 �.
Proof: For n = 2, the optimal code consists of one

codeword, and we can choose any 3-subset of {0, 1}2 as its
codeword.

For n ≡ 2, 5 (mod 12) and n ≥ 5, according to Theorem 16
and Lemma 17, there exists an (n − 1, 3, 1)-SPDF, whose

list of directed differences is {1, 2, . . . , n − 2}. We can also
regard it as a (2, n − 1)-regular (n, 3, 1)-SPDP with leave
{0, n − 1}. Apply Construction 5 with this SPDP and an
idempotent OA(3, 3) to obtain an ISPDM(3, n; 2, n−1). Then
apply Construction 6 with the (2, n−1)-regular (n, 3, 1)-SPDP,
the ISPDM(3, n; 2, n − 1), the (2, 3, 1)-GOC constructed
above, and an SPDM(3, 2) from Example 18. This yields an
(n, 3, 1)-GOC of size 2n(n−1)−1

3 , as desired. �
In order to provide more ingredient (n, 3, 1)-SPDPs for

Construction 6, we need the following notations.
A Langford sequence of order n and defect d , n > d ,

is a partition of [1, 2n] into a collection of ordered pairs
(ai , bi ) such that {bi − ai : 1 ≤ i ≤ n} = [d, d + n − 1].
A hooked Langford sequence of order n and defect d is
a partition of [1, 2n + 1]\{2n} into a collection of ordered
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TABLE VI

THE REQUISITE (h, r)-REGULAR (n, 3, 1)-SPDPs IN LEMMA 27

pairs (ai , bi ) such that {bi − ai : 1 ≤ i ≤ n} = [d, d + n − 1].
The existence problem of Langford sequences and hooked
Langford sequences has been settled in [30].

Theorem 25 (Simpson [30]):
1) A Langford sequence of order n and defect d

exists if and only if (i) n ≥ 2d − 1, and
(ii) n ≡ 0, 1 (mod 4) for d is odd, or n ≡ 0, 3 (mod 4)
for d is even.

2) A hooked Langford sequence of order n and defect d
exists if and only if (i) n(n − 2d + 1) + 2 ≥ 0, and (ii)
n ≡ 2, 3 (mod 4) for d is odd, or n ≡ 1, 2 (mod 4) for
d is even.

Lemma 26: There exist (h, r)-regular (n, 3, 1)-SPDPs for:
(i) n = 12t + 3, t ≥ 2, h = 3 and r = 1;

(ii) n = 12t + 6, t ≥ 1, h = 3 and r = 1;
(iii) n = 12t + 7, t ≥ 4, h = 7 and r = 1;
(iv) n = 12t + 10, t ≥ 3, h = 7 and r = 1;
(v) n = 12t + 9, t ≥ 5, h = 9 and r = 1;

(vi) n = 12t + 12, t ≥ 4, h = 9 and r = 1;
(vii) n = 12t + 8, t ≥ 0, h = 2 and r = n − 2;

(viii) n = 12t + 11, t ≥ 0, h = 2 and r = n − 2.
Proof: For (i), n = 12t + 3 and t ≥ 2, there exists a

Langford sequence of order 4t and defect 3 by Theorem 25.
Then we have a collection of ordered pairs (ai , bi ) with
∪4t

i=1{ai , bi } = [1, 8t] and {bi − ai : 1 ≤ i ≤ 4t} = [3, 4t + 2].
For each 1 ≤ i ≤ 4t , construct a block

Bi = (0, ai + 4t + 2, bi + 4t + 2).

Then Bi ⊆ [12t + 3] and

∪4t
i=1�Bi =∪4t

i=1{ai +4t+2, bi +4t+2, bi −ai}=[3, 12t+2].
Thus the family of B1, B2, . . . , B4t is the desired (3, 1)-regular
(12t + 3, 3, 1)-SPDP.

For (i i)–(vi), we can proceed similarly. According to
Theorem 25, there exists a Langford sequence of order m
and defect h with m = n−h

3 . Then we have a collection
of ordered pairs (ai , bi ) with ∪m

i=1{ai , bi } = [1, 2m] and
{bi − ai : 1 ≤ i ≤ m} = [h, h + m − 1]. For each 1 ≤ i ≤ m,
construct a block

Bi = (0, ai + m + h − 1, bi + m + h − 1).

Then Bi ⊆ [3m + h] and

∪m
i=1�Bi = ∪m

i=1{ai + m + h − 1, bi + m + h − 1, bi − ai }
= [h, 3m + h − 1].

Thus the family of B1, B2, . . . , Bm is the desired (h, 1)-regular
(3m + h, 3, 1)-SPDP.

For (vi i) and (vi i i), n = 12t + 8 or 12t + 11, there exists
a hooked Langford sequence of order m and defect 1 with

m = n−2
3 by Theorem 25. Then we have a collection of

ordered pairs (ai , bi ) with ∪m
i=1{ai , bi } = [1, 2m + 1]\{2m}

and {bi − ai : 1 ≤ i ≤ m} = [1, m]. For each 1 ≤ i ≤ m,
construct a block

Bi = (0, ai + m, bi + m).

Then Bi ⊆ [3m + 2] and

∪m
i=1�Bi =∪m

i=1{ai + m, bi + m, bi −ai }=[1, 3m + 1]\{3m}.
Thus the family of B1, B2, . . . , Bm is the desired (2, 3m)-
regular (3m + 2, 3, 1)-SPDP. �

Lemma 27: M(n, 3, 1) = � 2n(n−1)
3 � for n ≡ 0, 8, 9, 11

(mod 12) and n �= 21 or 24; M(n, 3, 1) = 2n(n−1)
3 − 1 for

n ≡ 3, 6, 7, 10 (mod 12) and n �= 19.
Proof: For n ∈ {3, 6, 7, 9, 10, 12}, the optimal codes are

listed in Table V.
For the remaining values of n, we start with an (h, r)-regular

(n, 3, 1)-SPDP coming from Example 23 or Lemma 26 (the
values of h and r are listed in Table VI). Apply Construction 5
with this SPDP and an idempotent OA(3, 3) from Example 19
to obtain an ISPDM(3, n; h, r). Then we apply Construction 6
with the (h, r)-regular (n, 3, 1)-SPDP, the ISPDM(3, n; h, r)
constructed above, the SPDM(3, h) from Example 18, and
the (h, 3, 1)-GOC from Table V. This yields the desired
(n, 3, 1)-GOC. �

Combining Corollary 21 and Lemmas 24 and 27, we have
the following result.

Theorem 28: Let n be a positive integer and n �∈
{19, 21, 24}. Then we have

M(n, 3, 1)

=
{

� 2n(n−1)
3 �, if n ≡ 0, 1, 2, 4, 5, 8, 9, 11 (mod 12);

2n(n−1)
3 − 1, if n ≡ 3, 6, 7, 10 (mod 12).
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