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Optimal Partitioned Cyclic Difference Packings for
Frequency Hopping and Code Synchronization

Yeow Meng Chee, Senior Member, IEEE, Alan C. H. Ling, and Jianxing Yin

Abstract—Optimal partitioned cyclic difference packings
(PCDPs) are shown to give rise to optimal frequency-hopping
sequences and optimal comma-free codes. New constructions
for PCDPs, based on almost difference sets and cyclic difference
matrices, are given. These produce new infinite families of optimal
PCDPs (and hence optimal frequency-hopping sequences and
optimal comma-free codes). The existence problem for optimal
PCDPs in ��, with � base blocks of size three, is also solved for
all � �� �� �� ���� �	
.

Index Terms—Almost difference sets, code synchronization,
comma-free codes, cyclic difference matrices, frequency-hopping
sequence (FHS), partitioned difference packings.

I. INTRODUCTION

F REQUENCY-hopping spread spectrum (FHSS) [1] is
an important communication technique to combat eaves-

dropping, Rayleigh fading, reduce interleaving depth and
associated delay, and enable efficient frequency reuse, giving
rise to robust security and reliability. As such, FHSS is widely
used in military radios, CDMA and GSM networks, radars and
sonars, and Bluetooth communications.

In FHSS, an ordered list of frequencies, called a frequency-
hopping (FH) sequence, is allocated to each transmitter-receiver
pair. Interference can occur when two distinct transmitters use
the same frequency simultaneously. In evaluating the goodness
of FH sequence design, the Hamming correlation function is used
as an important measure. Fuji-Hara et al. [2] introduced a new
classofcombinatorialdesignsandshowedthattheyareequivalent
to FH sequences optimal with respect to Hamming correlation.
We call these combinatorial designs partitioned cyclic difference
packings (PCDPs) in this paper.

PCDPsariseinanothercontext. Inconsideringtheconstruction
of comma-free codes for synchronization over erroneous chan-
nels, Levenshtein [3] introduced difference system of sets (DSS)
andshowedhowDSScanbeused toconstruct comma-free codes.
We establish connections between PCDP and DSS (and hence
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comma-free codes), especially PCDPs that give rise to DSS and
comma-free codes optimal with respect to redundancy.

As general results, we give new constructions of PCDPs via
almost difference sets and cyclic difference matrices. This gives
new infinite families of optimal PCDPs. The existence problem
for optimal PCDPs in , with base blocks of size three, is
also solved for all .

II. MATHEMATICAL PRELIMINARIES

For a positive integer , the set is denoted ,
and denotes the ring . The set is denoted

. The set of (nonzero) quadratic residues in is denoted
and the set of quadratic nonresidues of is denoted .

For succinctness, we write for an element .
Given a collection

of subsets (called base blocks) of , define the difference func-
tion such that

For positive integers , , and multiset of positive integers
, a cyclic difference packing (CDP), or more precisely an

-CDP, is a collection of subsets of such that:
i) ;

ii) .
If, in addition, partitions , then is a PCDP, or more pre-
cisely an -PCDP. For succinctness, we normally write
the multiset in exponential notation: denotes
the multiset containing occurrences of , . The notion
of PCDP is first introduced by Fuji-Hara et al. [2] in their inves-
tigation of frequency-hopping sequences, where it is referred to
as “a partition type difference packing”.

It is not hard to verify that the following are equivalent defi-
nitions of a PCDP:

i) is an -PCDP if and only if partitions ,
and for any fixed , the equation has at
most solutions .

ii) For a set , let

Then is an -PCDP if and only if partitions
, and the multiset

contains each element of at most times.
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In the particular case where an -PCDP satisfies
for all , it is known as a partitioned cyclic dif-

ference family (PCDF), or more precisely an -PCDF.
Given two positive integers and , it is obvious that

any partition of is an -PCDP for some . Fur-
thermore, we have

(1)

since the multiset contains elements.
The problem here we are concerned with is the construction of
an -PCDP of base blocks with its index as small as
possible. Given and , the minimum for which there
exists an -PCDP of base blocks is denoted .
An -PCDP of base blocks is optimal if .

From (1), it is clear that

(2)

The right side of (2) cannot be determined uniquely by the pa-
rameters and . To see when it attains the minimum for fixed

and , we write with .
It is well known that under the constraint , the
sum is minimized if and only if for any

. Hence, for an -PCDP ,
the sum attains the minimum if and only if con-
tains exactly base blocks of size and base blocks
of size . Consequently, we have

(3)

The last equality in (3) follows from the fact that
, since and .

It now follows from (2) and (3) that for any positive integers
and with

(4)

We remark that for given positive integers and , there
may exist many optimal -PCDPs attaining the bound
in (4). We also note that the lower bound on the function
in (4) is not always attainable.

The construction of optimal PCDPs have been studied
by a number of authors. For more detailed information on
PCDPs and known results, the reader is referred to [2] and
[4] and references therein. In this paper, we make further
investigation into optimal PCDPs. The paper is organized as

follows. In Section III, we present the relationship among
PCDPs, frequency-hopping sequences, and comma-free codes.
Sections IV–VI are devoted to constructions of PCDPs, by
which a number of new infinite classes of optimal PCDPs are
produced. The existence of (optimal) -PCDPs is
also determined for all . As a conse-
quence, new infinite families of optimal frequency-hopping
sequences and comma-free codes are obtained.

III. APPLICATIONSOF PCDP

PCDPs are closely related to frequency-hopping sequences
and comma-free codes. We develop their relationship in this sec-
tion.

A. PCDPs and Frequency-Hopping Sequences

Let be a set of available frequencies,
called a frequency library. As usual, denotes the set of all
sequences of length over . An element of is called a
frequency-hopping sequence (FH sequence). Given two FH se-
quences and ,
define their Hamming correlation to be

if
otherwise

and all operations among position indices are performed in .
Further, define

An FH sequence is called optimal if
for all . Here we assume that all transmitters use the
same FH sequence, starting from different time slots. An FH
sequence with is called an -FH
sequence.

FHSS and direct-sequence spread spectrum are two main
spread coding technologies. In modern radar and communica-
tion systems, FHSS techniques have become very popular. FH
sequences are used to specify which frequency will be used for
transmission at any given time. Fuji-Hara et al. [2] investigated
frequency-hopping multiple access (FHMA) systems with a
single optimal FH sequence using a combinatorial approach.
They established the correspondence between frequency-hop-
ping sequences and PCDPs. To be more precise, they labeled a
frequency library of size by and demonstrated that the
set of position indices of an -FH sequence gives
an -PCDP where , and vise versa. We
state this correspondence in the following theorem using our
notations.

Theorem 3.1 (Fuji-Hara et al. [2]): There exists an optimal
-FH sequence over the set of frequencies

if and only if there exists an optimal -PCDP of base
blocks.

Theorem 3.1 reveals that in order to construct optimal FH
sequences, one needs only to construct optimal PCDPs. This
serves as the motivation behind our consideration of PCDPs.
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B. PCDPs and Comma-Free Codes

Consider the process of transmitting data over a channel,
where the data being sent is a stream of symbols from an
alphabet of size . The data stream consists of consecutive
messages, each being a sequence of consecutive symbols

The synchronization problem that arises at the receiving end is
the task of correctly partitioning the data stream into messages
of length , as opposed to incorrectly conceiving a sequence of

symbols that is the concatenation of the end of one message
with the beginning of another message as a single message:

One way to resolve the synchronization problem uses
comma-free codes. A code is a set , with its ele-
ments called codewords. is termed a comma-free code if the
concatenation

of any two not necessarily distinct codewords
and is never a codeword. More generally, asso-
ciated with a code , one can define its comma-free index

as

where denotes the Hamming distance function. If
, then is a comma-free code, and hence we can

distinguish a codeword from a concatenation of two codewords
even in the case when up to errors have occurred
[5], [6].

Codes with prescribed comma-free index can be constructed
by using difference systems of sets (DSS), a combinatorial
structure introduced by Levenshtein [3] (see also [6], [7]). An

-DSS is a collection of
disjoint subsets of such that the multiset

contains each element of at least times, where
. Application of DSS to code synchronization requires

that the redundancy

be as small as possible. Levenshtein [3] proved that

(5)

For more detailed information on comma-free codes, the reader
is referred to [6], [7] and the references therein. Here, we are
interested in the link between PCDP and DSS, which is stated
in the following theorem.

Theorem 3.2: Let and be
positive integers and . If an

-PCDP exists, then so does an
-DSS of minimum redundancy ,

where .
Proof: Let be an

-PCDP. By definition of a PCDP, we have

Let us define such that

It follows that

for any . Furthermore

Hence, is an -DSS for and
with redundancy . We now prove this redundancy
to be minimum. Since and , the right
side of the inequality (5) equals

This implies

since .

Theorem 3.2 shows that the DSS derived from a PCDP of
minimum index has minimum redundancy, and hence produces
optimal comma-free codes with respect to the bound (5). This
serves to provide another motivation behind the study of PCDPs.

IV. CONSTRUCTIONS FROM ALMOST DIFFERENCE SETS

An almost difference set in an additive group of order ,
or an -ADS in short, is a -subset of such that
the multiset contains nonzero
elements of , each exactly times, and each of the remaining

nonzero elements exactly times. This is equivalent
to saying that

takes on the value exactly times and the value exactly
times, when ranges over all the nonzero elements
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of . An obvious necessary condition for the existence of a
-ADS is

In the extreme case where , an -ADS is
an difference set in the usual sense (see [8]). It should
be apparent to the reader that an -ADS in is an

-CDP.
In this section, we construct new optimal PCDPs from almost

difference sets. We begin with the following result.

Proposition 4.1: Let be a positive integer and let
be a -subset of . Let . If one of and is an

-ADS in , then so is the other.
Proof: We need only prove that

for any . In fact, since is a partition of , and
, we have

Hence,

This equality does not depend on the choice of .

As an immediate consequence of Proposition 4.1, we have the
following corollary.

Corollary 4.1: Let , . Then
cannot attain the lower bound in (4), that is,

.
Proof: By assumption, with ,

and . Since , is odd. On the other hand,
for any -PCDP , we have

by Proposition 4.1. So, must be even. Hence, an
-PCDP cannot exist, which implies

.

Now we turn to constructions.
Proposition 4.2: Let . If there exists an

-ADS in , then there exists an op-
timal -PCDP.

Proof: Let be the given -ADS in , where
and . Let . Then

is a partition of and as in the proof of Proposition
4.1, we have

Hence, for any , takes on the value
exactly times and takes on the value ex-
actly times. Therefore, is an

-PCDP. Its optimality follows immediately
from (4).

Proposition 4.3: Let . If there exists an
-ADS in , then there exists

an optimal -PCDP.
Proof: Employing the same technique as in the proof of

Proposition 4.2, we form an -PCDP. The
fact that its index attains the minimum follows from Corollary
4.1.

Almost difference sets in Abelian groups have been well
studied in terms of sequences with optimal autocorrelation [9],
[10] and are known to exist for certain parameters and
. Before stating the known results on almost difference sets in

, some terminologies from finite fields are needed. Let be
a prime power. The finite field of elements is denoted . Let

be a primitive element of . For dividing , define
, where is the unique multiplicative

subgroup of spanned by . For , define

These constants are known as cyclotomic numbers of
order . The number is the number of solutions to the
equation , where and . The
following results are known.

Proposition 4.4 (Lempel et al. [9]): Let be an odd prime
power and let . Then:

i) is a -ADS in
, provided ;

ii) is a -ADS in
provided .

Proposition 4.5 (Ding et al. [11]): Let be
an odd prime. It is known that for some and
with . Set . Let
be three pairwise distinct integers, and

Then is an -ADS in
, being isomorphic to when:
i) and

; or
ii) and

.
Combining the results of Propositions 4.2–4.5 gives us new

optimal PCDPs as follows.

Theorem 4.1: There exist:
i) an optimal -PCDP for any

prime power ;
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ii) an optimal -PCDP if or
where is a prime power and

is a prime.

V. CONSTRUCTIONS FROM CYCLIC DIFFERENCE MATRICES

Consider a matrix , , , whose
entries are taken from an additive group of order . If for any
two distinct row indices , the differences ,

, comprise all the elements of , then the matrix is said
to be an difference matrix (DM), or an -DM
over .

Our constructions require a difference matrix over the cyclic
group of order , that is . In this case, the difference ma-
trix is called cyclic and is denoted by -CDM. A cyclic
DM is normalized if all entries in its first row and first column
are zero. The property of a cyclic DM is preserved even if we
add an element of to all entries in any row or column of
the matrix. Hence, without loss of generality, one can always
assume that a cyclic DM is normalized. If we delete the first
row from a normalized -CDM, then we obtain a derived

-CDM, each of whose rows forms a permutation on
. We adopt the terminology used in [2] and call the derived

-CDM homogeneous. In a homogeneous cyclic DM,
every row forms a permutation on the elements of and the
entries in the first column are all zero. From the point of view of
existence, a -CDM is obviously equivalent to a homoge-
neous -CDM, and we use the terms -CDM
and homogeneous -CDM interchangeably.

Difference matrices have attracted considerable attention in
design theory, since they can often be used as building blocks
for other combinatorial objects. The multiplication table of
constitutes a normalized -DM. When is a prime, it
is a normalized -CDM. Hence, a homogeneous

-CDM exists for any prime . Deleting rows
from this cyclic DM produces a homogeneous -CDM.
We record this fact below.

Proposition 5.1: Let be a prime and an integer satisfying
. Then there exists a homogeneous -CDM.

The following product construction for cyclic DMs is known
(see, for example, [12] and [13]).

Proposition 5.2: If a homogeneous -CDM and a ho-
mogeneous -CDM both exist, then so does a homoge-
neous -CDM.

Propositions 5.1 and 5.2 now give the following existence
result.

Proposition 5.3: Let be an integer whose prime factors
are at least the prime . Then for any integer satisfying

, a homogeneous -CDM exists.
We also need the following result.

Proposition 5.4 (Ge [12]): Let be an odd integer
with . Then there exists a homogeneous

-CDM.
Now we develop our constructions to obtain optimal PCDPs

from cyclic DMs.

Theorem 5.1: Let and be two positive integers. If a
homogeneous -CDM exists, then so does an optimal

-PCDP.
Proof: Let , , , be a homoge-

neous -CDM over . From we construct another
matrix whose entries are taken from by replacing

every entry of with , , . Write
for the -subset of consisting of the elements on the

-th column of , . Write

Then the properties of a homogeneous -CDM guar-
antee the following conclusions:

• partitions .
• Let be the

unique additive subgroup of order in . Then, for any
nonzero element , we have

if
otherwise.

Therefore, is an -PCDP, and it is optimal, since
its index meets the bound in (4).

Applying Theorem 5.1 and Proposition 5.3, we obtain the
following new infinite family of optimal PCDPs.

Theorem 5.2: Let be an integer whose prime factors
are not less than prime . Then for any integer satisfying

, an optimal -PCDP exists.

Example 5.1: In Theorem 5.1, take , , and
consider the homogeneous -CDM

Replace each entry of with , , ,
to obtain the 3 7 matrix over

Finally, take the columns of as base blocks over

It is readily checked that is an optimal
-PCDP, as desired.

The following result is a variant of Theorem 5.1.

Proposition 5.5: Let be an odd prime. Then an optimal
-PCDP exists, where and

.
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Proof: By Proposition 5.1, there exists ,
, , which is a homogeneous -CDM over

. As in the proof of Theorem 5.1, we construct a
matrix whose entries are taken from by replacing every
entry of with , , . Then we
write for the -subset of consisting of the elements
on the -th column of for . Then

is a cyclic difference packing. Observe that the rows of are
indexed by the elements of . Hence, is a partition of

. On the other hand, we have

if
otherwise.

For the desired PCDP, let and
. It turns out that

is a -PCDP. Its optimality is straightfor-
ward to verify.

Example 5.2: In Proposition 5.5, take (and hence
and ), and consider the homogeneous (5, 4, 1)-CDM

Its corresponding 4 5 matrix over is given by

Then an optimal -PCDP is formed by the fol-
lowing base blocks over :

Based on Proposition 5.5, we can establish the following new
infinite series of optimal PCDPs.

Theorem 5.3: Let be an odd prime and . Then an op-
timal -PCDP exists, where
and .

Proof: The proof is by induction on . If , the conclu-
sion holds by Proposition 5.5. Now suppose that the assertion is
true when . Consider the case . From Propo-
sition 5.2, we know that a homogeneous -CDM
exists. Employing the same technique as in the proof of Propo-
sition 5.5, from this CDM we can form a collection

of -subsets of in such a way that
• partitions ;
• for any

if
otherwise.

Since is isomorphic to , by our induction hypothesis
we can construct an optimal PCDP of index in ,

which has exactly base blocks of size and one
base block of size . It can be checked that is an optimal

-PCDP.

VI. THE EXISTENCE OF -PCDPS

In this section, the existence of -PCDP is settled
for all . PCDPs with such parameters are
optimal. Our proof technique requires a generalization of cyclic
difference matrices.

Let be a cyclic group of order containing a subgroup
of order . A matrix , ,

, with entries from is said to be a holey DM if
for any two distinct row indices and of , , the
differences , , comprise all the element
of . For convenience, we refer to such a matrix as an

-HDM over , or simply an -HDM
when and are clear from the context. is the hole of the
holey DM.

The property of a holey DM is preserved even if we add any
element of to any column of the matrix. Hence, without loss
of generality, one can always assume that the all entries in the
first row of an holey DM are zero. If we delete the first row
from such a holey DM, then we obtain an -HDM,
where the entries of a row consist of all the elements of ,
and we term the derived -HDM homogeneous.
Because of this equivalence, we use the terms -HDM
and homogeneous -HDM interchangeably.

We introduce one more object which is crucial to the con-
struction for PCDPs in this section. Let be a cyclic group
of order . A partial DM of order (denoted ) is a

matrix with entries from such that the
entries in each row of are distinct, and for any two distinct
row indices , the differences , ,
contains each element of at most once. In addition, if the three
sets of missing elements , , and the
multiset of differences
contain each element of at most three times, we called the
partial DM extendible.

Example 6.1: An extendible PDM(8) over

The three sets of missing elements are {0, 1, 5}, {0, 2, 7}, and
{4, 3, 6}.

The following proposition gives the connection between ex-
tendible partial DMs and -PCDPs.
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Proposition 6.1: Suppose there exists an extendible
. Then there exists a -PCDP.

Proof: For each column of the , we
construct a base block of the PCDP. If

is the set of missing element in row , , we
construct a base block of the
PCDP. This gives a total of base blocks. It is easy to check
that the conditions of an extendible partial DM ensure that the
base blocks form a PCDP.

The usefulness of holey DMs stems from the fact that they
can be used to produce large extendible partial DMs by “filling
in” the hole of a holey DM with a smaller extendible partial DM.

Proposition 6.2 (Filling in Hole): Suppose there exist a
homogeneous -HDM and an extendible .
Then there exists an extendible .

Proof: Multiple each entry of the extendible by
and add the columns of the resulting matrix to the homo-

geneous -HDM to obtain an extendible .

In view of Proposition 6.1, we employ a combination
of construction techniques for extendible and

-PCDP. The technique is recursive and so
we begin with some required small ingredients in the next
subsection.

A. Small Ingredients

Lemma 6.1: There exists a -PCDP for

Proof: When , take as base blocks {0, 1, 5}, {3, 4,
8}, and {6, 7, 2}.

When , take as base blocks {0, 1, 2}, {3, 4, 6}, {5, 7,
10}, {8, 11, 16}, {9, 17, 22}, {12, 18, 24}, {13, 20, 26}, {14,
21, 25}, and {15, 19, 23}.

Lemma 6.2: There exists an extendible for
.

Proof: An extendible PDM(12) is listed below:

The three sets of elements missing from each row are {0, 1, 3},
{0, 2, 7}, and {0, 3, 10}.

For , we start with the
-HDM constructed in [14]. First, remove the row of

all zeros from each holey DM. Then remove two columns as
prescribed below:

• for : remove columns and
;

• for : remove columns and
;

• for : remove columns and
;

• for : remove columns and
;

• for : remove columns and .
Finally, add the column . The resulting ma-
trices have columns and the sets of missing elements each
row are:

• for : {0, 1, 15}, {0, 2, 14}, and {0, 3, 13}.
• for : {0, 1, 17}, {0, 2, 16}, and {0, 3, 15}.
• for : {0, 1, 23}, {0, 2, 22}, and {0, 3, 21}.
• for : {0, 1, 31}, {0, 2, 30}, and {0, 3, 29}.
• for : {0, 1, 2}, {0, 10, 12}, and {0, 2, 5}.

Lemma 6.3: There exists an ex-
tendible for all , where

.
Proof: For , an -HMD

exists with [14]. Fill in the hole with an
extendible (which exists by Example 6.1 or Lemma
6.2) to obtain an extendible .

For , take the -HDM constructed in [13],
remove the two columns , , and add the
column to obtain a PDM(36).

For , an -HMD exists with
[13]. Fill in the hole with an extendible

(which exists by Lemma 6.2) to obtain an extendible .

B. Recursive Constructions

1) Recursive Constructions for Difference Matrices:

Proposition 6.3 (Inflation, Yin [13]): Suppose there exist an
-HDM and an -CDM. Then there exists a

-HDM.
In Proposition 6.3, the -HDM is said to be inflated

by the -CDM to produce the -HDM.

Theorem 6.1 (Chang and Miao [14]): If there exists an
-HDM, then there exists a -HDM

and a -HDM.
2) Recursive Constructions for PCDP:

Proposition 6.4: Suppose there exist a -PCDP
and a homogeneous -CDM. Then there exists a

-PCDP.
Proof: For each base block in the

-PCDP, we construct base blocks
, where

is a column of the homogeneous -CDM. It is easy to
check that the resulting collection of base blocks is a PCDP.

Proposition 6.5: Suppose there exists a -HDM.
Then there exists an -PCDP.

Proof: Suppose there exists a -HDM,
and hence a homogeneous -HDM. For each
column of the matrix, we construct a base block

. Then add the six base blocks {0,
1, 2}, , ,

, ,
. This results in an -PCDP.
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C. General Existence of Difference Matrices

Proposition 6.6: If is prime and ,
then there exists an extendible .

Proof: We employ the construction of Dinitz and Stinson
[15] for a -HDM over . Choose any

such that (this is where is
required). Now let be as defined in (6), as shown at the
bottom of the page. The columns in form a
homogeneous -HDM over . Remove the
columns , , and add the
column . It is easy to check that this results in an
extendible . The sets of elements missing from the
first row to the last row are , , and

, respectively. Finally, we note that
, and hence , which is cyclic.

Proposition 6.7: If is a prime power, then
there exists an extendible .

Proof: We employ the construction of Dinitz and Stinson
[15] for a -HDM over . Let be a primitive
root in and let . Let , and define

. Note that

Now let as defined in (7), as shown at the bottom of the
page. Remove from the columns and add
the column . The sets of elements missing from the
first row to the last row are , , and

, respectively. Finally, we note that
, and hence , which is cyclic.

Theorem 6.2 (Yin [13]): Let be a product of the
form , where , . Then there ex-
ists a -HDM if one of the following conditions is
satisfied:

i) and or (0, 1);
ii) and ;

iii) and .

D. Piecing Together

The easier case when is odd is first addressed.
1) The Case :

Proposition 6.8: If is odd, then there exists a
-PCDP.

Proof: If , then the result follows from The-
orem 5.1. If , then apply Proposition 6.4 with

and . The existence of the
ingredients is provided by Proposition 5.1 and Lemma 6.1. If

, then the result follows from Theorem 5.1 since
there exists a homogeneous -CDM [13].

2) The Case :

Proposition 6.9: If and , then
there exists a -PCDP.

Proof: Write , where ,
. Inflate a -HDM (which exists by Theorem

6.2) by a -CDM (which exists by Proposition 5.1) to
get an -HDM. Fill in the hole with an extendible

from Proposition 6.6 or Proposition 6.7 to obtain an
extendible . The result now follows from Proposition
6.1.

Proposition 6.10: Let . Then there
exists a -PCDP.

Proof: By Theorem 6.2, there exists an -HDM,
and therefore a homogeneous -HDM. For
each column of the matrix, we construct a base
block on . Since ,

. Add four blocks ,
, , and . It

is easy to check that it gives the desired result.

Proposition 6.11: Let . Then there exists a
-PCDP.

Proof: Write , where and
. We consider three cases:

: When and , apply Proposition 6.5
to a (6, 4, 1; 6)-HDM (which exists trivially) to obtain an

-PCDP.
When and , the result is obtained
by applying Proposition 6.1 to the extendible s
obtained from Lemma 6.2 and Lemma 6.3.
When and , take a -HDM,
apply Theorem 6.1 to obtain a -HDM.
Fill in the hole with an extendible (which
exists by the induction hypothesis) to obtain an extendible

. Now apply Proposition 6.1.
When and , there exists a -HDM
by Theorem 6.2. Now apply Proposition 6.5.
When and , let be a prime factor of
(note that ). Theorem 6.2 implies the existence of an

-HDM. Inflate this -HDM by a

(6)

(7)
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-CDM (which exists by Proposition 5.1) to obtain
an -HDM. Fill in the hole with an extendible

from Proposition 6.6 or Proposition 6.7 to ob-
tain an extendible . Now apply Proposition 6.1.

: When and , an extendible
exists by Lemma 6.2 and Lemma 6.3.
When and , apply Theorem 6.1 with an
(8, 4, 1; 2)-HDM (which exists by Theorem 6.2) to ob-
tain a (576 , 4, 1; 96)-HDM. Fill in the hole with an ex-
tendible PDM(96) from Lemma 6.3 to obtain an extendible
PDM(576) and apply Proposition 6.1.
When and , apply Theorem 6.1 to a

-HDM (which exists by Theorem 6.2) to
obtain a -HDM. Fill in the hole with an
extendible (which exists by the induction
hypothesis) to obtain an extendible . Now apply
Proposition 6.1.
When , let be a prime factor of (note
that ). Theorem 6.2 implies the existence of
a -HDM. Inflate this holey DM by a

-CDM (which exists by Proposition 5.1) to obtain
a -HDM. Fill in the hole with an extendible

(which exists by Proposition 6.6 or Proposition
6.7) to obtain an extendible . Now apply Propo-
sition 6.1.

: Theorem 6.2 implies the existence of an
-HDM, for some . Inflate this
-HDM by a (27, 4, 1)-CDM (which exists

by Proposition 5.4) to obtain an -HDM. Fill
in the hole with an extendible (which exists
by Example 6.1 or Lemma 6.3) to obtain an extendible

. The result now follows from Proposition 6.1.

3) Summary:

Theorem 6.3: There exists a -PCDP for all
, except when .

Proof: Propositions 6.8, 6.9, 6.10, and 6.11 give a
-PCDP for all , . It

is easy to check that a -PCDP cannot exist.

VII. CONCLUDING REMARKS

In this paper, a number of new infinite families of optimal
PCDPs are presented. The PCDPs obtained can be used directly
to produce frequency-hopping sequences optimal with respect
to Hamming correlation and comma-free codes optimal with
respect to redundancy. They are also of independent interest in
combinatorial design theory.
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