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Abstract: We construct several new large sets of ¢-designs that are invariant under Frobenius
groups, and discuss their consequences. These large sets give rise to further new large sets by
means of known recursive constructions including an infinite family of large sets of 3 — (v, 4, )
designs. © 1998 John Wiley & Sons, Inc. J Combin Designs 6: 293-308, 1998
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1. INTRODUCTION

The study of large sets of ¢-designs constitutes an important part of combinatorial design
theory. Teirlink’s remarkable proof of the existence of ¢-designs for all ¢ involves con-
structing large sets of ¢-designs [37, 38]. Large sets of ¢-designs also have applications in
cryptography [33]. Relatively recent work in the construction of large sets of ¢-designs and
related structures includes [1, 2,6, 8, 14,17, 19, 20,25, 34,41]. A survey on the existence
of large sets of ¢-designs can be found in [23].

If X is a finite set, Sy denotes the symmetric group on the symbols of X, ()k( ) the
collection of all k-subsets of X, and 2% the power set of X.

IfyeSy,x€ X,Be (¥),BC2¥ andB C 22X,wedenoteby 27, BY,BY,and BY
the images under vy of z, B, 5, and B, respectively.

A t-design, or more specifically a t-(v, k, \) design, is a pair (X, B), where | X | = v and
B C (£),sothat forevery T € (%), |{B € B|T C B}| = A. The elements of B are called
blocks. Elementary counting arguments show that a ¢-(v, k, A) design is also an s-(v, k, i)
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design for all 5,0 < s < ¢, where

ey

Since p must be an integer, (1) yields the following well-known necessary divisibility
conditions for the existence of a t-(v, k, \) design:

AU72) =0(mod(¥7%)), 0<s<t. )

For any given t, k, and v, we denote by \*(¢, k, v) the smallest positive X that satisfies the
divisibility conditions (2).

A large set of t-(v, k, \) designs is a partition of the complete k-uniform hypergraph
(X, (%)) into t-(v, k, A) designs, and is denoted by LS[N](¢, k, v), where N = (%~%) /X is
the number of parts in the partition. A large set of t-(v, k, \* (¢, k, v)) designs is also known
as a (t, k, v)-decomposition.

When the underlying point set X is apparent, we identify an LS[N](¢, k, v) with its
collection of constituent designs B = {B;}Y,. If z € X, by taking the N derived designs
Bgm) through point 2, one obtains an LS[N](t — 1,k — 1,v — 1), denoted by B(*), with
underlying set X \ {x},

A permutation v € Sx is said to be an automorphism of a large set B = {B;},, if
BY = B, that is, if B] € B for each design B; € B. The set of all automorphism of a large
set B is, of course, a subgroup of Sx denoted by AutB. If G is a subgroup of AutB we say
that G is an automorphism group of B or that B is G-invariant. If G is an automorphism
group of B, the collection of all elements v € G for which BZ = B; forall B; € B,is a
normal subgroup G of GG. Note that if v € H < G for some automorphism group G
of B, then + is an automorphism of each constituent design B; € B,1 < ¢ < N. In this
case we say that B is a large set of H-invariant t-designs.

The purpose of this article is to construct some large sets of ¢-designs whose existence
was previously not known. A few of these large sets are used to obtain further new large
sets. One of these also gives rise to a new infinite family of large sets of 3-designs. Our
approach is primarily computational and employs group actions to curb the complexity of
searches. We begin in the next section with a construction for an LS[6](3, 6, 13) which
many have missed.

2. KNOWN RECURSIVE CONSTRUCTIONS

Several recursive constructions for large sets of ¢-designs are known. The following result
is implicit in the work of Khosrovshahi and Ajoodani-Namini [17], and can be derived also
from earlier results of Tran [39] or Magliveras and Plambeck [26]. We supply a proof here
for the sake of completeness.

Theorem 2.1.  Ifthere existan LS[M| (¢, k,v) and an LS[N](t, k+1, v), then there exists
an LS[ged(M, N)|(t,k + 1,v+ 1).

Proof.  First observe that the existence of an LS[M](¢, k,v) implies the existence of
an LS[D](t, k,v) for any D dividing M. Hence, if there is an LS[M](¢, k,v) and an
LS[N](t, k + 1,v), then we have an LS[D](t, k + 1,v), where D = ged(M, N).
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Let {(X,A;)}2, and {(X,B;)}2, be an LS[D](t, k,v) and an LS[D](¢,k + 1,v),
respectively. Let

Y =XU{cc}, and

Cl:BZU{AU{OOHAE.Al}, 1<i<D,
where co ¢ X. Itis easy to show that each (Y,C;) isat-(v+ 1,k + 1, (Z:iﬂ)/D) design
such that C; N C; = () for all i # j. Hence, {(Y,C;)}2, isan LS[D](t,k + 1,0+ 1). O

It has been known to the first author for a long time that Theorem 2.1 can be used to
construct an LS[6](3, 6, 13), which is also a (3, 6, 13)-decomposition. This fact seems not
to be known. The existence of an LS[6](3, 6, 13) is quoted as being in doubt in [20] and
also in the recent survey of Kreher [23].

Corollary 2.1.  There exists a (3, 6, 13)-decomposition.

Proof. The existence of an LS[6](3, 5, 12) and an LS[42](3, 6, 12) has been established in
[20]. Now apply Theorem 2.1 to obtain an LS[6](3, 6, 13). |

We summarize here the known results for recursive constructions of large sets of ¢-designs.

Theorem 2.2 (Teirlinck [38]).  For every natural number t let \(t) = lem{(},) : m =
1,2, th A (1) = lem{1,2,...,t + 1}, and £(t) = [[i_; A(i) - X*(d). Then, for all
N >0, there is an LS[N|(t,t + 1,t + N - £(¢)).

Theorem 2.3 (Khosrovshahi and Ajoodani-Namini [17]).  If there are LS[N]|(t,t +
1,v) and LS[N](t,t + 1, w), then there is also an LS[N](t,t + 1,v + w — t).

Theorem 2.4 (Qiu-rong Wu [41]).  If there exist large sets LS[N|(t, k,v), LS[N](¢, k,
w), LS[N](k — 2,k — 1,v — 1), LS[N](k — 2,k — 1,w — 1), then there exists a large set
LS[N](t, k,v+w —k+1).

Corollary 2.2.  [f there exist large sets LS[N|(t, k,v), and LS[N](k — 2,k — 1,v — 1),
then there exist large sets LS[N|(¢, k,v + m(v — k + 1)), for all m > 0.

An interesting recent construction by Ajoodani-Namini [1] produces a new large set of
(t 4+ 1)-designs, from a large set of ¢-designs.

Theorem 2.5 (Ajoodani-Namini [1]).  If there exists an LS[N|(¢t,m,v—1),and mN <
k < (m+ 1)N, then a LS[N](t + 1, k, Nv) also exists.

3. THE ALGORITHM

Let G be a group acting on X. Hence, G also acts on () by canonical extension, for
0 <r < |X|. Recall that a t-(v, k, A) design (X, B) is said to be G-invariant if BY € B
forall B€ Bandy € G. Let T, Tz, ..., T, and K1, Ka, . . ., K,; be the orbits of (%) and
(%) under the action of G, respectively. The Kramer—Mesner matrix is the T x k matrix
A(G|X) whose (i, 7)th entry is the quantity

H{E € K5|T € K},
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where T' € 7; is any arbitrarily chosen fixed representative. A well-known observation
of Kramer and Mesner [22] states that there exists a G-invariant ¢-(v, k, A) design (X, B)
if and only if there exists a vector u € {0, 1}" satisfying the equation A(G|X)u = JAj,
where j is the 7-dimensional vector of all ones. Our focus is on constructing not just one
G-invariant t-design, but a large set of ¢-designs, each of which is G-invariant. We call
such a combinatorial structure a large set of G-invariant t-designs.

Suppose U is the x x n matrix whose columns are all the vectors u satisfying A(G|X)u =
Aj. It is not hard to see that there exists a large set of G-invariant ¢-(v, k, A) designs if and
only if there exists a vector w € {0, 1} such that Uw = j.

Our discussion above suggests the following two-stage algorithm for constructing large
sets of G-invariant ¢-designs:

Stage 1: Determine all solutions to A(G|X)u = Aj;
Stage 2: Determine whether there exists a solution to Uw = j.

We implemented a simple backtracking algorithm that finds all {0, 1}-vectors x satisfying
a general matrix equation Ax = b. This implementation is employed in both stages of the
above algorithm. As is typical for computational methods in combinatorial design theory,
the ability to construct large sets of ¢-designs using our algorithm lies in the art of choosing
an appropriate group G. If G is too small, then it may be infeasible to find all solutions in
stage one of the algorithm. On the other hand, if G is too large, then we may not find any
solution in stage two or even stage one of the algorithm.

In the next section, we demonstrate the success of our algorithm in constructing some
new large sets of ¢-designs, by choosing G to be appropriate Frobenius groups.

4. LARGE SETS OF ¢-DESIGNS INVARIANT UNDER
FROBENIUS GROUPS

In this section, the set X of a t-(v, k, \) design (X, B) is taken to be a finite field GF'(v) =
{0,1,...,v—1}. Foreach large set LS[N](¢, k, v), we exhibit the N ¢-designs comprising
it. A t-design is given by a set of starter blocks, which when developed by the group G,
give the blocks for the ¢-design.

A. An LS[111(2, 5, 13)

Let G be the Frobenius group generated by the following two permutations:
z+ x4+ 1(mod 13), and z +— 3z(mod 13).

Alarge set of G-invariant 2-(13, 5, 15) designs constructed using the algorithm we described
in Section 3 is given in Table I.

B. An LS[111(2, 6, 13)

Let GG be the Frobenius group generated by the following two permutations:
x+— x4+ 1(mod 13), and z +— 3z(mod 13).

A large set of G-invariant 2-(13, 6, 30) designs constructed using our algorithm is given in
Table II.
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TABLE L. LS[11](2, 5, 13) invariant under F3,

Design 1 {0,1,5,6,8} {0.1,2,5,8} {0,1,4,5,6}
Design 2 {0.1,2,5,6} {0.1,4,5,7} {0.1,3,6,8}
Design 3 {0,1,3,4,5} {0,1,2,5,7} {0,1,5,6,7}
Design 4 {0,1,4,5,8} {0,1,3,5,8} {0,1,5,7,8}
Design 5 {0,1,5.8,10} {0.1,5,8,9} {0.1,5,7,9}
Design 6 {0,1,3,5,9} {0,1,2,7,8} {0,1,4,5,9}
Design 7 {0,1,2,5,9} {0,1,5,6,9} {0,1,5,7,12}
Design 8 {0,1,3,5,10} {0,1,2,5.10} {0.1,3,8,10}
Design 9 {0,1,5,7,10} {0,1,3,6,10} {0.1,5.6,11}
Design 10 {0,1,5,8,11} {0,1,2,5,11} {0,1,5.6,12}
Design 11 {0,1,3,5,12} {0,1,3,6,12} {0.1,5.8,12}

Since an element g of order 3 in G fixes exactly one point, there are 6-subsets of X =
GF(13) fixed by g. Consequently, there are G-orbits of length 13 in (< ). More precisely,
there are exactly 6 such short orbits of 6-sets. Design 11 in the above table consists of all
6 orbits of length 13 together with an additional 2 orbits of length 39. This accounts for 8
starters in the case of Design 11. All other designs in the displayed LS[11](2, 6, 13) consist
of exactly 4 long orbits of 6-sets.

C. A (3, 4, 17)-Decomposition
Let G be the Frobenius group generated by the following two permutations:
x+— x4+ 1(mod 17), and x+— 4z(mod 17).

A large set of G-invariant 3-(17, 4, 2) designs constructed using our algorithm is given in
Table III.

It is clear that there are 4-subsets of X = GF(17) fixed by an element g of order 4 in
G. These 4-sets are clearly also fixed by the involution g2. A careful consideration of the
involutions in G shows that there are 4-subsets of X fixed by an involution which are not
fixed by any element of order 4. In particular, there are exactly 28 G-orbits of 4-sets of size

TABLE II. LS[11](2, 6,13) invariant underF?3

Designl  {0,1,2,3,5.6}  {0,1,3,5,6,8}  {0.1,2,5,8,11}  {0,1,4,5.6,11}
Design2  {0,1,2,3,5,7}  {0,1,2,5,6,10}  {0,1,4,5,8,11}  {0,1,5,6,7,12}
Design3  {0,1,2,3,4,5}  {0,1,4,5,6,8}  {0.1,3,6,8,10}  {0,1,3,5,8,11}
Design4  {0,1,4,5,6,9}  {0,1,2,5,7,10}  {0.1,5.6,8,11}  {0,1,5,8,9,11}
Design5  {0,1,3,4,5,8}  {0,1,2,5.8,9}  {0,1,5,6,7,11}  {0,1,4,5,6,12}
Design6  {0,1,2,3,5.8%  {0,1,3,4,5,6}  {0.1,5.6,8,9}  {0,1,3,5,8,10}
Design7  {0,1,5,6,7,8}  {0,1,2,4,5,6}  {0.1,5.6,8,10}  {0,1,2,5.6,11}
Design8  {0,1,3,4,5,7}  {0,1,2,5,7,8}  {0,1,2,5,8,10}  {0,1,2,5,6,12}
Design9  {0,1,3,5.6,7}  {0,1,3,4,5,9}  {0,1,4,5,7,9}  {0,1,2,5,7,9}
Design 10 {0,1,2,5,6,8}  {0,1,5,7,8,9}  {0.1,2,5,8,12}  {0,1,5.6,9,12}
Design 11 {0,1,4,5,6,7}  {0,1,2,4,5,8}  {0,1,3,5,7,8}  {0,1,3,4,5,10}
{0.1,3,6,8,12}  {0,1,3,5,8,12}  {0,1,2,5,9,12}  {0,1,5,7,10,12}
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TABLE III. LS[7](3,4, 17) invariant under F'},

Design1 {0,2,5,8} {0,2,3,4} {0,2,3,7} {0,1,6,7} {0,2,6,8} {0,1,7,10}
Design2 {0,2,5.6} {0.2.4,5} {0.1,2,8} {0.2,3,9} {0.3,6,9} {0,1,6,12}
Design3 {0,2.3,5} {0,1,2,5} {0,1,7.8} {0,2,6,9} {0,2,3,11} {0,1,7,12}
Design4 {0,1,2,6} {0,2,5,7} {0,2,4,10} {0,2,5,12} {0,2,3,13} {0,2,3,16}
Design5 {0,1,2,9} {0.1,4,11} {0,2,5,13} {0.2,8,11} {0.1,4,14} {0,2,5,16}
Design6 {0,1,2,3} {0,1,4,7} {0,2,3,10} {0,1,4,10} {0,2,8,10} {0,2.5,15}
{0,2,5,14}
Design7 {0,1,4,5} {0.2,3,6} {0.2,4,6} {0.1,2,7} {0.2,5.11} {0,2.5.9}
{0,1,7,11}

68, 12 orbits of size 34, and 4 of size 17. Each of designs 1 to 5 is composed of 4 orbits of
size 68 and 2 orbits of size 34. Each of the remaining two designs is composed of 4 orbits
of size 68, one orbit of size 34 and 2 orbits of size 17. This explains the variation in the
number of design starters of the LS[7](3, 4, 17).

5. SOME CONSEQUENCES

In this section we examine some of the consequences of the existence of large sets established
in the previous section, and the recursive constructions presented in Section 2. In particular
application of Theorem 2.1 and Corollary 2.2.

The LS[11](2, 5, 13) constructed in Section 4.A together with the LS[55](2, 4, 13)
constructed by Leo Chouinard [9] gives rise to an LS[11](2, 5, 14) via Theorem 2.1. This
large set is in fact a (2, 5, 14)-decomposition, whose existence was not known previously.
Using the LS[11](2, 5, 14) just obtained and the LS[11](2, 4, 14) from [19], we further
construct an LS[11](2, 5, 15) with A = 26 by means again of Theorem 2.1.

The existence of a (2, 6, 13)-decomposition is still in doubt. The number of designs
in a (2, 6, 13)-decomposition is 66. Therefore, short of proving the existence of a (2, 6,
13)-decomposition, the best LS[N](2, 6, 13) one can hope to construct is for N = 6 or
N = 11. An LS[6](2, 6, 13) can be obtained by applying Theorem 2.1 to LS[6](2, 5, 12)
and LS[42](2, 6, 12), which are known to exist (see [20]). We constructed an LS[11](2, 6,
13) in Section 4.B.

The (3, 4, 17)-decomposition constructed in Section 4.C, and its derivation, an LS[7](2,
3, 16), give rise to a new infinite family of LS[7](3, 4, 14m + 3) for all m > 1, through
Theorem 2.2. Taking m = 2 in this family, we obtain an LS[7](3, 4, 31), which is a (3, 4,
31)-decomposition whose existence was previously not known [23].

The results of this article can be summarized as follows.

Theorem 5.1.  The following previously unknown large sets of t-designs exist:
(1) LS[11](2,5,v), for v = 13,14 and 15;
(2) LS[11](2, 6, 13);
(3) LS[6](3, 6, 13); and
(4) LS[7](3, 4, 14m+ 3), for allm > 1.
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6. CONCLUSIONS

We have constructed a few new large sets of ¢-designs invariant under certain Frobenius
groups. These large sets spawn further new large sets by means of known recursive con-
structions presented in Section 2, and include a new infinite family of large sets of 3 —
(v,4, \) designs. We survey the impact of these constructions by presenting an updated
and expanded version of the existence table for large sets of ¢-designs in the Appendix.
The table includes possible parameter cases for arbitrary A in contrast to older tables which
involved large sets with minimum X only.

APPENDIX

TABLE AI. Table of Large Sets: v < 18

Parameters

LS[N](t, k,v) A Existence Remarks

LS[2](2, 3,6) 2 yes Bhattacharya [3]

LS[2](2,3, 10) 4 yes LS[4](2, 3, 10) exists & 2|4
LS[2](2,3, 14) 6 yes Hanani [15]

LS[2](2, 3, 18) 8 yes LS[8](2, 3, 18) exists & 2|8
LS[2](2,4,10) 14 yes LS[14](2, 4, 10) exists & 2|14
LS[2](2,4,11) 18 yes LS[6](2, 4, 11) exists & 2|6
LS[2](2, 4, 18) 60 yes LS[10](2, 4, 18) exists & 2|10
LS[2](2,5,10) 28 yes LS[14](2, 5, 10) exists & 2|14
LS[2](2,5,11) 42 yes LS[42](2,5, 11) exists & 2|42
LS[2](2,5,12) 60 yes LS[6](2, 5, 12) exists & 2|6
LS[2](2,5,18) 280 ?

LS[2](2,6,12) 105 yes LS[42](2, 6, 12) exists & 2|42
LS[2](2, 6, 13) 165 yes LS[6](2, 6, 13) exists & 2|6
LS[2](2,6, 18) 910 ?

LS[2](2,7,14) 396 yes LS[12](2,7, 14) exists & 2|12
LS[2](2,7,18) 2184 yes LS[8](2,7, 18) exists & 2|8
LS[2](2, 8, 18) 4004 ?

LS[2](2,9,18) 5720 yes LS[10](2, 9, 18) exists & 2|10
LS[2](3,4,11) 4 yes derivation of LS[4](4, 5, 12)
LS[2](3,5,11) 14 ?

LS[2](3,5,12) 18 yes LS[6](3, 5, 12) exists & 2|6
LS[2](3,6, 12) 42 yes LS[42](3, 6, 12) exists & 2|42
LS[2](3,6,13) 60 yes LS[6](3, 6, 13) exists & 2|6
LS[2](3,7,14) 165 ?

LS[2](4,5,12) 4 yes Denniston [13]
LS[2](4,6,12) 14

LS[2](4,6,13) 18

LS[2](4,7,14) 60 ]

LS[2](5, 6, 13) 4 yes derivation of LS[4](6,7, 14)
LS[2](5,7,14) 18 ?

LS[2](6,7, 14) 4 yes Kreher and Radziszowski [24]

LS[3](2,3,11) 3 yes Teirlinck [36]
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TABLE Al. (Continued)

Parameters

LS[N](t, k,v) A Existence Remarks
LS[3](2,4,11) 12 yes LS[6](2, 4, 11) exists & 3|6
LS[3](2,4,12) 15 yes LS[15](2, 4, 12) exists & 3|15
LS[3](2,5,11) 28 yes LS[42](2,5, 11) exists & 3|42
LS[3](2,5,12) 40 yes LS[6](2, 5, 12) exists & 3|6
LS[3](2,5,13) 55 ?

LS[3](2,6,12) 70 yes LS[42](2, 6, 12) exists & 3|42
LS[3](2,6, 13) 110 yes LS[6](2, 6, 13) exists & 3|6
LS[3](2,6, 14) 165 ?

LS[3](2,7, 14) 264 yes LS[12](2,7, 14) exists & 3|12
LS[3](2,7,15) 429 ?

LS[3](2, 8, 16) 1001 ?

LS[3](3,4,12) 3 yes Teirlinck [36]

LS[3](3,5,12) 12 yes LS[6](3, 5, 12) exists & 3|6
LS[3](3,5,13) 15 yes Chee, Colbourn, Furino, Kreher [6]
LS[3](3, 6, 12) 28 yes LS[42](3, 6, 12) exists & 3|42
LS[3](3,6,13) 40 yes LS[6](3, 6, 13) exists & 3|6
LS[3](3,6, 14) 55 ?

LS[3](3,7, 14) 110 ?

LS[3](3,7,15) 165 ?

LS[3](3, 8, 16) 429 ?

LS[3]4,5,13) 3 yes Kramer, Magliveras, and O’Brien [19]
LS[3](4,6,13) 12 ?

LS[3]4, 6, 14) 15 yes Chee, Colbourn, Furino, Kreher [6]
LS[3]4,7,14) 40 ?

LS[3](4,7,15) 55 ?

LS[3]4,8, 16) 165 ?

LS[3](5,6, 14) 3 ?

LS[3](5,7, 14) 12 ?

LS[3](5,7, 15) 15 ?

LS[3](5, 8, 16) 55 ?

LS[3](6,7, 15) 3 ?

LS[3](6, 8, 16) 15 ?

LS[3](7, 8, 16) 3 ?

LS[4](2, 3, 10) 2 yes Teirlinck [35]

LS[4](2, 3, 18) 4 yes LS[81(2, 3, 18) exists & 4(8
LS[4](2,4,18) 30 ?

LS[4](2,5,18) 140 ?

LS[4](2,6, 18) 455 ?

LS[4](2,7,14) 198 yes LS[12](2,7, 18) exists & 4|12
LS[4](2,7,18) 1092 yes LS[8]1(2, 7, 18) exists & 4|8
LS[5]1(2,3,7) 1 no Cayley [5]

LS[5](2,3,12) 2 yes Schreiber [30]

LS[5](2,3,17) 3 ?

LS[5](2,4,8) 3 yes Sharry and Street [31]
LS[5](2,4,12) 9 yes LS[15](2, 4, 12) exists & 5|15
LS[5](2, 4, 13) 11 yes LS[55](2, 4, 13) exists & 5|55
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TABLE Al. (Continued)

Parameters

LS[N](t, k,v) A Existence Remarks
LS[5](2,4,17) 21 ?

LS[5](2,4,18) 24 yes LS[10](2, 4, 18) exists & 5|10
LS[5](2,8,17) 1001 ?

LS[5](2,9, 18) 2288 yes LS[10](2,9, 18) exists & 5|10
LS[5](3,4,8) 1 no LS[5](2, 3, 7) does not exist
LS[5](3,4,13) 2 yes Kramer, Magliveras, and O’Brien [19]
LS[5](3, 4, 18) 3 ?

LS[5](3,9, 18) 1001 ?

LS[6](2,4,11) 6 yes Chee, Colbourn, Furino, Kreher [6]
LS[6](2,5,11) 14 yes LS[42](2, 5, 11) exists & 6|42
LS[6](2,5,12) 20 yes LS[6](3,5, 12) as 2-designs
LS[6](2,6,12) 35 yes LS[42](2, 6, 12) exists & 6|42
LS[6](2,6,13) 55 yes Chee, Magliveras—this article
LS[6](2,7,14) 132 yes LS[12](2,7, 14) exists & 6|12
LS[6](3,5,12) 6 yes Kramer, Magliveras, and Stinson [20]
LS[6](3, 6, 12) 14 yes LS[42](3, 6, 12) exists & 6|42
LS[6](3, 6, 13) 20 yes Chee, Magliveras—this article
LS[6](3,7, 14) 55 ?

LS[6](4,6,13) 6 ?

LS[6](4,7,14) 20 ?

LS[6](5,7, 14) 6 ?

LS[7]1(2,3,9) 1 yes Kirkman [18]

LS[7](2, 3, 16) 2 ?

LS[7](2,4,9) 3 yes Kramer, Magliveras, and Stinson [20]
LS[7]1(2, 4, 10) 4 yes LS[14](2, 4, 10) exists & 7|14
LS[7](2, 4, 16) 13 ?

LS[7]1(2,4,17) 15 ?

LS[7]1(2,5,10) 8 yes LS[14](2, 5, 10) exists & 7|14
LS[7](2,5,11) 12 yes LS[42](2,5, 11) exists & 7|42
LS[7]1(2,5,16) 52 ?

LS[7]1(2,5,17) 65 ?

LS[7]1(2, 5, 18) 80 ?

LS[7]1(2,6,12) 30 yes LS[14](2, 6, 12) exists & 7|42
LS[7]1(2, 6, 16) 143 ?

LS[7]1(2,6,17) 195 ?

LS[7](2,6, 18) 260 ?

LS[7](3, 4, 10) 1 no Kramer and Mesner [21]
LS[7](3,4,17) 2 yes Chee, Magliveras—this article
LS[7](3, 5, 10) 3 yes extension of LS[7](2,4,9)
LS[7]1(3,5,11) 4 ?

LS[7]1(3,5,17) 13 ?

LS[7](3,5,18) 15 ?

LS[7](3,6,12) 12 yes LS[42](3, 6, 12) exists & 7|42
LS[7]1(3,6,17) 52 ?

LS[7](3, 6, 18) 65 ?

LS[7]4,5,11) 1 no LS[7](3, 4, 10) does not exist

LS[714,5,18) 2 ?
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TABLE Al. (Continued)

Parameters

LS[N](t, k,v) A Existence Remarks
LS[7](4,6,12) 4 ?

LS[7](4, 6, 18) 13 ?

LS[7](5,6,12) 1 no LS[7](3, 4, 10) does not exist
LS[8](2, 3, 18) 2 ?

LS[8](2,7,18) 546 ?

LS[10](2, 4, 18) 12 ?

LS[10](2,9, 18) 1144 ?

LS[11](2,3,13) 1 yes Denniston [12]
LS[11](2,4,13) 5 yes LS[55](2, 4, 13) exists & 11|55
LS[11](2,4, 14) 6 yes Kramer, Magliveras, and O’Brien [19]
LS[11](2,5,13) 15 yes Chee, Magliveras—this article
LS[11](2,5,14) 20 yes Chee, Magliveras—this article
LS[11](2,5,15) 26 yes Chee, Magliveras—this article
LS[11](2,6,13) 30 yes Chee, Magliveras—this article
LS[11](2, 6, 14) 45 ?

LS[11](2,6,15) 65 ?

LS[11](2, 6, 16) 91 ?

LS[11](2,7, 14) 72 ?

LS[11](2,7,15) 117 ?

LS[11](2,7,16) 182 ?

LS[11](2,7,17) 273 ?

LS[11](2,8, 16) 273 ?

LS[11](2,8,17) 455 ?

LS[11](2,8, 18) 728 ?

LS[11](2,9, 18) 1040 ?

LS[11](3,4, 14) 1 ?

LS[11](@3,5, 14) 5 ?

LS[11](3,5,15) 6 ?

LS[11]@3,6, 14) 15 ?

LS[11](3, 6, 15) 20 ?

LS[11](3,6, 16) 26 ?

LS[11](3,7,14) 30 ?

LS[11](3,7,15) 45 ?

LS[11](3,7,16) 65 ?

LS[11](3,7,17) 91 ?

LS[11](3, 8, 16) 117 ?

LS[11](3,8,17) 182 ?

LS[11]@3,8, 18) 273 ?

LS[11](3,9, 18) 455 ?

LS[11]4,5,15) 1 no* Mendelsohn and Hung [27]
LS[11]4,6, 15) 5 ?

LS[11]4, 6, 16) 6 ?

LS[11]4,7,15) 15 ?

LS[11]4,7,16) 20 ?
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TABLE Al. (Continued)

Parameters
LS[N](t, k,v) A Existence Remarks
LS[11](4,7,17) 26 ?
LS[11](4,8,16) 45 ?
LS[11](4,8,17) 65 ?
LS[11](4,8, 18) 91 ?
LS[11](4,9, 18) 182 ?
LS[11](5, 6, 16) 1 no LS[11](4, 5, 15) does not exist
LS[11](5,7, 16) 5 ?
LS[11](5,7,17) 6 ?
LS[11](5, 8, 16) 15 ?
LS[11](5,8,17) 20 ?
LS[11](5,8, 18) 26 ?
LS[11](5,9, 18) 65 ?
LS[11](6,7,17) 1 no LS[11](5, 6, 16) does not exist
LS[11](6,8,17) 5 ?
LS[11](6, 8, 18) 6 ?
LS[11](6,9, 18) 20 ?
LS[11](7, 8, 18) 1 no LS[11](6, 7, 17) does not exist
LS[11](7,9, 18) 5 ?
LS[12](2,7, 14) 66 ?
LS[13](2,3,15) 1 yes Denniston [12]
LS[13](2, 4, 15) 6 ?
LS[13](2,4, 16) 7 ?
LS[13](2,5, 15) 22 ?
LS[13](2,5, 16) 28 ?
LS[13](2,5,17) 35 ?
LS[13](2, 6, 15) 55 ?
LS[13](2, 6, 16) 77 ?
LS[13](2,6,17) 105 ?
LS[13](2, 6, 18) 140 ?
LS[13](2,7, 15) 99 ?
LS[13](2,7, 16) 154 ?
LS[13](2,7,17) 231 ?
LS[13](2,7, 18) 336 ?
LS[13](2, 8, 16) 231 ?
LS[13](2,8,17) 385 ?
LS[13](2, 8, 18) 616 ?
LS[13](2,9, 18) 880 ?
LS[13](3,4, 16) 1 ?
LS[13](3,5, 16) 6 ?
LS[13](3,5,17) 7 ?
LS[13](3, 6, 16) 22 ?
LS[13](3,6,17) 28 ?
LS[13](3, 6, 18) 35 ?
LS[13](3,7, 16) 55 ?
LS[13](3,7,17) 77 ?
9

LS[13](3,7,18) 105
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TABLE Al. (Continued)

Parameters
LS[N](t, k,v)

Existence

Remarks

LS[13](3, 8, 16)
LS[13](3,8, 17)
LS[13](3,8, 18)
LS[13](3,9, 18)
LS[13](4,5,17)
LS[13](4,6,17)
LS[13](4, 6, 18)
LS[13](4,7,17)
LS[13](4,7,17)
LS[13](4, 8, 17)
LS[13](4,8, 18)
LS[13](4,9, 18)
LS[13](5, 6, 18)
LS[13](5,7, 18)
LS[13](5, 8, 18)
LS[13](5, 9, 18)

LS[14](2, 4, 10)
LS[14](2, 5, 10)
LS[14](2,5, 11)
LS[14](2, 5, 18)
LS[14](2, 6, 12)
LS[14](2, 6, 18)
LS[14]3,5, 11)
LS[14](3, 6, 12)
LS[14](4, 6, 12)

LS[15](2, 4, 12)
LS[20](2,4, 18)

LS[21](2,5,11)
LS[21](2, 6, 12)
LS[21](3, 6, 12)

LS[22](2, 6, 13)
LS[22]1(2,7, 14)
LS[22](2,8, 18)
LS[22](2,9, 18)
LS[22](3,7, 14)

LS[26](2, 6, 18)
LS[26](2,7, 18)
LS[26](2,8, 18)
LS[26](2,9, 18)
LS[28](2, 5, 18)
LS[28](2, 6, 18)
LS[33](2,5, 13)
LS[33](2,6, 13)
LS[33](2, 6, 14)

99
154
231
385

22
28
55
77
154

364
520
15

70
168
308
440

20
65

10
15

yes
yes
yes

yes

no*

no*

yes

yes
yes
yes

2

Kramer, Magliveras, and Stinson [20]
Kramer, Magliveras, and Stinson [20]
LS[42](2, 5, 11) exists & 14|42
LS[42](2, 6, 12) exists & 14[42
Oberschelp [29] and Dehon [11]

LS[14](3, 5, 11) does not exist

Kramer, Magliveras, and Stinson [20]

LS[42](2, 5, 11) exists & 21|42
LS[42](2, 6, 12) exists & 21|42
LS[42](3, 6, 12) exists & 21|42

See [19]
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TABLE Al. (Continued)

Parameters

LS[N](t, k,v) A Existence Remarks
LS[33](2,7, 14) 24 ?

LS[33](2,7,15) 39 ?

LS[33](2, 8, 16) 91 ?

LS[33](3, 6, 14) 5 ?

LS[33](3,7, 14) 10 ?

LS[33](3,7,15) 15 ?

LS[33](3,8, 16) 39 ?

LS[33](4,7,15) 5 ?

LS[33](4,8, 16) 15 ?

LS[33](5, 8, 16) 5 ?

LS[35](2,4,17) 3 ?

LS[39](2,7,15) 33

LS[39](2, 8, 16) 77

LS[39](3, 8, 16) 33

LS[42](2,5,11) 2 yes Kramer, Magliveras, and Stinson [20]
LS[42](2, 6, 12) 5 yes LS[42](3, 6, 12) as 2-designs
LS[42](3,6,12) 2 yes extension of LS[42](2,5,11)
LS[44](2,7, 14) 18 ?

LS[52](2, 6, 18) 35

LS[52](2,7,18) 84

LS[55](2,4, 13) 1 yes Chouinard [9]
LS[55](2,8,17) 91

LS[55](2,9, 18) 208

LS[55](3,9, 18) 91

LS[65](2,8,17) 77

LS[65](2,9, 18) 176

LS[65](3,9, 18) 77

LS[66](2, 6, 13) 5

LS[66](2,7, 14) 12

LS[66](3,7, 14) 5

LS[77](2, 6, 16) 13 ?

LS[91](2,4, 16) 1 ?

LS[91](2, 5, 16) 4 ?

LS[91](2,5,17) 5 ?

LS[91](2, 6, 16) 11 ?

LS[91](2,6,17) 15 ?

LS[91](2, 6, 18) 20 ?

LS[91]@33,5,17) 1 ?

LS[91](3,6,17) 4 ?

LS[91](3, 6, 18) 5 ?

LS[91](4, 6, 18) 1 ?

LS[104](2,7,18) 42 ?
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TABLE Al. (Continued)

Parameters

LS[N](t, k,v) A Existence Remarks
LS[110](2,9, 18) 104 ?
LS[130](2,9, 18) 88 2
LS[132](2,7, 14) 6 2
LS[143](2, 5, 15) 2 ?
LS[143](2, 6, 15) 5 ?
LS[143](2, 6, 16) 7 ?
LS[143](2,7, 15) 9 ?
LS[143](2,7, 16) 14 ?
LS[143](2,7,17) 21 ?
LS[143](2, 8, 16) 21 2
LS[143](2,8,17) 35 ?
LS[143](2, 8, 18) 56 ?
LS[143](2,9, 18) 80 2
LS[143](3, 6, 16) 2 ?
LS[143](3,7, 16) 5 2
LS[143](3,7,17) 7 2
LS[143](3, 8, 16) 9 ?
LS[143](3,8, 17) 14 2
LS[143](3,8, 18) 21 ?
LS[143](3,9, 18) 35 ?
LS[143]4,7,17) 2 2
LS[143](4,8,17) 5 ?
LS[143](4, 8, 18) 7 2
LS[143]4,9, 18) 14 2
LS[143](5, 8, 18) 2 2
LS[143](5,9, 18) 5 ?
LS[182](2, 6, 18) 10 ?
LS[286](2, 8, 18) 28 2
LS[286](2,9, 18) 40 ?
LS[364](2, 6, 18) 5 2
LS[429](2,7, 15) 3 ?
LS[429](2, 8, 16) 7 ?
LS[429](3, 8, 16) 3

LS[715](2,8,17) 7

LS[715](2,9, 18) 16

LS[715](3,9, 18) 7

LS[1001](2, 6, 16) 1 ?
LS[1430](2,9, 18) 8 ?
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