
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 5, MAY 2020 2669

Explicit and Efficient WOM Codes of Finite Length
Yeow Meng Chee , Senior Member, IEEE, Han Mao Kiah , Alexander Vardy, Fellow, IEEE,

and Eitan Yaakobi , Senior Member, IEEE

Abstract— Write-once memory (WOM) is a storage device
consisting of binary cells that can only increase their levels.
A t -write WOM code is a coding scheme that makes it possible
to write t times to a WOM without decreasing the levels of any
of the cells. The sum-rate of a WOM code is the ratio between
the total number of bits written to the memory during the t
writes and the number of cells. It is known that the maximum
possible sum-rate of a t-write WOM code is log(t + 1). This is
also an achievable upper bound, both by information-theoretic
arguments and through explicit constructions. While existing
constructions of WOM codes are targeted at the sum-rate,
we consider here two more figures of merit. The first one is the
complexity of the encoding and decoding maps. The second fig-
ure of merit is the convergence rate, defined as the minimum
code length n(δ) required to reach a point that is δ-close to
the capacity region. One of our main results in this paper is a
capacity-achieving construction of two-write WOM codes which
has polynomial encoding/decoding complexity while the block
length n(δ) required to be δ-close to capacity is significantly
smaller than existing constructions. Using these two-write WOM
codes, we then obtain three-write WOM codes that approach
a sum-rate of 1.809 at relatively short block lengths. We also
provide several explicit constructions of finite length three-write
WOM codes; in particular, we achieve a sum-rate of 1.716 by
using only 93 cells. Finally, we modify our two-write WOM
codes to construct �-error WOM codes of high rates and small
probability of failure.

Index Terms— Binary write-once memory (WOM) codes,
spreads, cooling codes, flash memories, �-error WOM codes.

I. INTRODUCTION

WRITE-ONCE memory (WOM) is a storage medium
consisting of cells that can only increase their level.

Manuscript received October 21, 2018; revised August 4, 2019; accepted
September 30, 2019. Date of publication October 9, 2019; date of current
version April 21, 2020. Y. M. Chee and H. M. Kiah were supported by the
Singapore Ministry of Education Research under Grant MOE2015-T2-2-086.
A. Vardy was supported by the National Science Foundation under Grant CCF-
1405119 and Grant CCF-1719139. E. Yaakobi was supported by the Israel
Science Foundation (ISF) under Grant 1624/14. This article was presented in
part at the 2017 IEEE International Symposium on Information Theory.

Y. M. Chee was with the School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371. He is now with the
Department of Industrial Systems Engineering and Management, National
University of Singapore, Singapore 117576 (e-mail: pvocym@nus.edu.sg).

H. M. Kiah is with the School of Physical and Mathematical Sci-
ences, Nanyang Technological University, Singapore 637371 (e-mail:
hmkiah@ntu.edu.sg).

A. Vardy was with the School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371. He is now with the
Department of Electrical and Computer Engineering, University of California
San Diego, La Jolla, CA 92093 USA (e-mail: avardy@ucsd.edu).

E. Yaakobi is with the Department of Computer Science,
Technion–Israel Institute of Technology, Haifa 32000, Israel (e-mail:
yaakobi@cs.technion.ac.il).

Communicated by A. Jiang, Associate Editor for Coding Theory.
Color versions of one or more of the figures in this article are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2019.2946483

WOM codes were first introduced by Rivest and Shamir [28]
in 1982, and were motivated by storage media such as punch
cards and optical disks. These media comprise storage ele-
ments, called cells, which have an asymmetric programming
attribute. In the binary version, it is only allowed to irre-
versibly program each cell from level zero to level one. If a
cell can accommodate more than two levels then, on each
programming operation, it is only possible to increase the
cell’s level. A WOM code is a coding scheme that allows to
store multiple messages in a WOM, while making sure that
all cells will only increase their level on each write. One
famous example of a WOM code was presented by Rivest
and Shamir in [28]. This WOM code stores two bits twice
using only three cells; other constructions of WOM codes
were also presented in [28]. Several more families of WOM
codes were studied later in the 1980s and 1990s — see for
example [8], [16], [24].

In the past decade, WOM codes have attracted tremendous
interest due to their applicability in flash memories [2], [12],
[20], [30], [31], [35]–[38]. Flash memory may be regarded
as an example of a WOM; its cells are charged with elec-
trons and usually have multiple levels [3]. Increasing a cell
level is fast and easy. However, in order to decrease its level,
the entire containing block of cells has to be erased first.
This not only affects the writing speed of the flash memory
but also significantly reduces its lifetime [3]. Thus reducing
the number of block erasures in flash memories is crucial
in order to improve their lifetime. Implementation of WOM
codes in flash memories was recently demonstrated in sev-
eral works [22], [26], [40]. Another recent paper discusses
the benefits of WOM coding for improving the memory
lifetime [39].

Assume that a WOM, consisting of n binary cells,
is required to accommodate t message writes. For i =
1, 2, . . . , t , let Mi denote the number of possible mes-
sages during the i -th write. The rate of the i -th write is
defined as Ri = log Mi/n, and the sum-rate of the WOM
code is R = �t

i=1 Ri . The capacity region of the WOM
is the set of all achievable rate tuples (R1,R2, . . . ,Rt).
For the binary case, the capacity region was determined
in [15], [18], and [28]. It was also proved in these refer-
ences that the maximum achievable sum-rate for a binary
WOM code with t writes is log(t + 1). These results
were generalized in [15] for non-binary WOMs: the max-
imum sum-rate for a WOM with q-ary cells is known to
be log

�t+q−1
t

�
.

The main goal in designing a WOM code is to achieve,
through explicit code constructions, all the rate-tuples in
the capacity region and, in particular, a high sum-rate.

0018-9448 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:18:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7823-8068
https://orcid.org/0000-0001-5611-0848
https://orcid.org/0000-0002-9851-5234

2670 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 5, MAY 2020

For the two-write case, such constructions were studied
in [31] and [37]. For multiple writes, capacity-achieving
constructions were introduced in [30]. There are two more
figures of merit that are important when evaluating WOM
code constructions, which we investigate in this work. The
first one is the complexity of the encoding and decoding
maps of the WOM code as a function of the code length n.
The second one, called the convergence rate, is the minimum
code length n(δ) required in order to achieve a rate-tuple
that is δ-close to a point in the capacity region. We also con-
sider capacity-achieving constructions for the �-error case.
For �-error WOM codes, successive writes are not guaran-
teed in the worst-case, but only with high probability [2],
[12], [20], [35]. For such codes, in addition to the first two
measures, we study another figure of merit: the failure decay
rate, which is the rate at which the probability of a write
failure tends to zero.

Prior to this work, known capacity-achieving constructions
for two-write zero-error WOM codes featured either fast con-
vergence rate (that is, approaching the capacity region at
relatively short code lengths) or low complexity, but not both.
Specifically, the construction from [37] has fast convergence
rate, but suffers from high complexity. On the other hand,
the construction of [31] has the opposite attributes: it requires
exponential block length in order to achieve a point that is
δ-close to capacity. One of our main results in this paper is
an explicit construction of two-write WOM codes with fast
convergence rate as well as low complexity of encoding and
decoding. Moreover, our construction makes it possible to
design WOM codes of extremely short block length; such
codes are attractive due to their very efficient encoding and
decoding procedures [4]. In this regard, the best previously
known construction of two-write WOM codes [37] had a
sum-rate of 1.4928, using 33 binary cells. Herein, we improve
this to a sum-rate of 1.509, using 40 cells.

For three-write WOM codes, the upper bound on the
sum-rate is log(3 + 1) = 2. The best known sum-rate of a
fully explicit construction [37] is 1.61. The work of [37] also
presents a somewhat less explicit construction, based upon the
existence of certain ternary matrices, whose sum-rate is 1.66.
In [31], the latter result was improved to a sum-rate of 1.809.
Yet another improvement was presented in [38], achieving
a sum-rate of 1.885. As mentioned earlier, the construc-
tion of [30] is capacity-achieving for any number of writes,
thus in particular for three writes. However, the block length
required in order to get close capacity is extremely large —
significantly larger than the block length resulting from the
constructions of [31], [37], [38]. Using our two-write WOM
codes, we modify the construction of [31] to obtain three-write
WOM codes that approach the same sum-rate of 1.809, but
much faster than in [31]. We also propose a number of con-
structions of three-write WOM codes of finite length. Using
one of these constructions, we achieve a sum-rate of 1.716
with only 93 cells. For the �-error case, we present three-write
WOM codes that approach a sum-rate of 1.936 and have a
faster failure decay rate than any previous construction.

The rest of this paper is organized as follows. In Section II,
we review the basic theory of WOM codes and define the

figures of merit (complexity and convergence rate) that
we use in evaluating WOM code constructions. Section III
is devoted to two-write WOM codes. We first review the
current state-of-the-art, then present our construction of
two-write WOM codes with polynomial complexity and fast
convergence rate. In Sections IV and V, we present construc-
tions of explicit three-write WOM codes, for the zero-error
case and the �-error case, respectively. Lastly, Section VI
concludes the paper and lists several open problems.

II. DEFINITIONS AND BASIC PROPERTIES

In this work, we assume that the memory consists of n
binary cells, where initially all of them are in the zero state.
On each write it is only possible to increase the level of each
cell to level one. A vector x = (x1, . . . , xn) ∈ {0, 1}n will
be called a cell-state vector. For two cell-state vectors x and
y, we say that x � y if xi � yi for all 1 � i � n. For a
positive integer n, we use the notation [n] to define the set of
integers {1, . . . , n}. If x represents a bit value then its comple-
ment is x = 1 − x , and for a binary vector x = (x1, . . . , xn),
x = (x1, . . . , xn). For any map f : A → B , Im(f) is the
image of the map f . The binary entropy function is defined
for every probability 0 < p < 1 as h(p) = −p log(p) −
(1 − p) log(1 − p).

We follow the formal definition of WOM codes from [38].
Definition 1. An [n, t; M1, . . . ,Mt] t-write WOM code is a
coding scheme comprising of n binary cells and is defined
by t pairs of encoding and decoding maps (Ei ,Di), for 1 �
i � t . The encoding map Ei is defined by

Ei : [Mi] × Im(Ei−1) → {0, 1}n,

where, by definition, Im(E0) = {(0, . . . , 0)}, such that
Ei (m, c) � c for all (m, c) ∈ [Mi] × Im(Ei−1). Similarly,
the decoding map Di is defined by

Di : Im(Ei) → [Mi],
such that for all (m, c) ∈ [Mi]× Im(Ei−1), Di (Ei (m, c)) = m.
The rate on the i -th write is defined by Ri = log Mi

n , and the
sum-rate is Rsum = �t

i=1 Ri .

In [15] and [18], the capacity region of a binary t-write
WOM was found to be

Ct =
�
(R1, . . . ,Rt)|R1 � h(p1),R2 � (1 − p1)h(p2), . . . ,

Rt−1 �
� t−2�

i=1

(1 − pi)
�

h(pt−1),Rt �
t−1�
i=1

(1 − pi),

where 0 � p1, . . . , pt−1 � 1/2
	
, (1)

and log(t + 1) was proved to be the maximum sum-rate.
Even though it is known that all rate tuples in the capacity
region are achievable, the problem of finding efficient code
construction remains a challenge. Following [37], we assume
that the write number on each write is known since this side
information does not affect the achievability of rate tuples in
the capacity region.

We evaluate the efficiency of a construction according to
the following two figures of merit.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:18:15 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: EXPLICIT AND EFFICIENT WOM CODES OF FINITE LENGTH 2671

(I) Encoding / decoding complexity: the complexity is
defined to be the complexity of the encoding and
decoding maps as a function of code length n.

(II) Convergence rate: the minimum code length n(δ) in order
to be δ-close to a rate tuple (R1, . . . ,Rt) in the capacity
region.

More rigorously, the second figure of merit states that
the convergence rate of a family of WOM codes to a
rate tuple (R1, . . . ,Rt) ∈ Ct is n(δ) if the construction
yields a WOM code of length n(δ) with rate tuple at least
(R1 − δ, . . . ,Rt − δ). Since we are mostly interested in
whether n(δ) is polynomial or exponential in 1/δ, we say
that a construction approaches a rate tuple (R1, . . . ,Rt) ∈ Ct

with polynomial or exponential rate if n(δ) is polynomial
or exponential in 1/δ, respectively. Similarly we say that a
construction approaches a sum-rate Rsum with polynomial or
exponential rate. In addition, if n(δ) = O((1/δ) log(1/δ)),
we say that the rate tuples converge at an almost-linear rate.

We also consider the �-error case of WOM codes where
successive writes are not guaranteed in the worst case.

Definition 2. An [n, t; M1, . . . ,Mt ; �1, �2, . . . , �t] t-write
�-error WOM code is a coding scheme comprising of n
binary cells and is defined by t pairs of encoding and decod-
ing maps (Ei ,Di), for 1 � i � t . The encoding map Ei is
defined by

Ei : [Mi] × Im(Ei−1) → {0, 1}n ∪ {fail},
where, by definition, Im(E0) = {(0, . . . , 0)}, such that for all
(m, c) ∈ [Mi] × Im(Ei−1) either Ei (m, c) � c or Ei (m, c) =
fail. Similarly, the decoding map Di is defined by

Di : Im(Ei) ∪ {fail} → [Mi],
such that for all (m, c) ∈ [Mi]× Im(Ei−1), Di (Ei (m, c)) = m
whenever Ei (m, c) �= fail. Furthermore, we require that

|{(m, c) ∈ [Mi] × Im(Ei−1) : Ei (m, c) = fail}|
� �i Mi |Im(Ei−1)| for i ∈ [t].

When �i = 0 for all i ∈ [t], Definition 2 reduces
to Definition 1. Given a construction that yields a fam-
ily of t-write �-error WOM codes {Cn}, where Cn is
an [n, t; M1(n), . . . , Mt (n); �1(n), �2(n), . . . , �t (n)]
t-write �-error WOM code, we then require that �i (n)
converges to zero for all i ∈ [t]. As before, we set
R�i = limn→∞(log Mi (n))/n for i ∈ [t] and R�sum = �t

i=1 R�i .
Surprisingly, Wolf et al. [34] proved that the capacity

region of a binary t-write �-error WOM code coincides with
the capacity region of a binary t-write WOM code. In other
words, (R�1,R

�
2, . . . ,R

�
t) ∈ Ct where Ct is defined in (1).

Therefore, we evaluate our constructions of �-error
WOM codes using the previous two figures of merit:
(I) encoding/decoding complexity and (II) convergence rate.
Additionally, we also evaluate how fast the failure probabil-
ity converges to zero. Specifically, we consider the following
figure of merit.

(III) Failure decay rate: set �(n) = maxi∈[t] �i (n) and we are
interested in the rate that �(n) converges to zero.

Finally, motivated by a reviewer, we study the possibility
of increasing sum-rates when we allow the failure probabil-
ity to converge to a small positive constant ��. Unfortunately,
the answer is negative. Specifically, we prove the following
theorem.

Theorem 1. Let �� < 1/(t − 1) for t � 2. Suppose that {Cn :
Cn is an [n, t; M1(n), . . . ,Mt (n); �1(n), �2(n), . . . , �t (n)]
t-write �-error WOM code} is a family of WOM codes where
lim supn→∞ maxi∈[t] �i (n) � ��. Then R�sum � log2(t + 1).

In other words, even if we allow the failure probability
to decay to positive �� < 1/(t − 1), the maximum sum-rate
remains bounded above by log2(t + 1) (the sum-rate cor-
responding to the zero-error case). We defer the proof of
Theorem 1 to Section V-C.

III. CAPACITY-ACHIEVING TWO-WRITE WOM CODES

We present an explicit construction of two-write WOM
codes. As opposed to existing constructions, we prove that
this construction has both polynomial encoding/decoding
complexity and almost-linear convergence rate.

A. Background and State of the Art Results

The capacity region of a two-write WOM is given by

C2 =

(R1,R2)|R1 � h(p),R2 � (1 − p), 0 � p � 1/2

�
,

and the maximum sum-rate is log 3 ≈ 1.58. On the other
hand, the best sum-rate reported in the literature for a
finite-length code (in fact, only 33 cells) is 1.4928 [37]. There
are three explicit constructions which achieve the capacity
C2 of two-write WOM. The first one to accomplish this task
was presented in [37]. Shortly after, Shpilka [31] presented
another capacity-achieving construction for two writes and a
general construction for t writes in [30]. There are several
other works which achieve the �-error capacity of two-write
WOM. Here, �-error implies that the second write does not
succeed in the worst case but only with high probability.
These constructions are based on polar codes [2], LDPC
codes [12], [20], or random matrices [35].

All the aforementioned constructions use a very simi-
lar principle. For a given probability 0 < p < 1/2, if the
WOM has n cells, then on the first write at most pn cells
are programmed (but not necessarily all such patterns).
Thus, it is possible to store roughly nh(p) bits and the rate
approaches h(p). The challenge on the second write is to
store roughly (1 − p)n more bits on the remaining (1 − p)n
cells.

The construction in [37] accomplishes this task by restrict-
ing the cell-state vectors that can be programmed on the first
write, such that any pattern of n(1 − p) bits can be stored
on the second write. This approach significantly simplifies the
encoding and decoding on the second write however it incurs
an extremely high complexity on the first write since not all
vectors of weight at most pn can be programmed. While the
convergence rate of this construction is polynomial its com-
plexity is, in general, exponential since it may require a lookup
table for the first write encoding and decoding.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:18:15 UTC from IEEE Xplore. Restrictions apply.

2672 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 5, MAY 2020

On the other hand, in [31] (almost) any pattern of at most
pn cells can be programmed and the second write uses a set
of “average” MDS codes which are derived from a Wozen-
craft ensemble [19], [23]. This collection of codes guarantees
the success of encoding roughly (1 − p)n bits on the second
write. The encoding and decoding complexities of this con-
struction are polynomial with the code length n. However in
order to achieve high sum-rate, the block length has to be
extremely large, and in particular the convergence rate of this
construction is exponential.

The constructions from [37] and [31] introduce a trade-
off between the complexity and convergence rate. While
the first one suffers from high complexity but achieves
polynomial convergence rate, the second one has opposite
attributes, i.e., low complexity but exponential convergence
rate. However, we show that there is no such a tradeoff by
presenting a construction which achieves these two goals
simultaneously.

B. The Construction

We are now ready to present our construction of two-write
WOM codes. In fact, the encoding map for our two-write
codes has a certain specific property (that was described in
connection with [31] in the preceding subsection) that will
be useful for the construction of three-write WOM codes, to
be presented in Sections IV and V. We now formally state
this property.

Definition 3. An [n, 2; M1,M2] two-write WOM code is said
to be of type A if M1 = �τ

i=0

�n
i

�
and the encoding map

E1 on the first write is a bijection from [M1] to J+(n, τ).
Here, J+(n, τ) denotes the set {x ∈ {0, 1}n : wt(x) � τ }.
In other words, after the first write, any pattern of at most τ
cells can be programmed, and we denote such a WOM code
as an [n, 2; τ,M1,M2]A WOM code.

Remark 1. The encoding map E1 : [M1] → J+(n, w) and
its corresponding decoding map can be implemented effi-
ciently, for example using the enumerative coding scheme of
Cover [9]. Hence, in the analysis of our two-write WOMs,
it remains to determine the complexities of the encoding and
decoding maps on the second write.

In [5], the authors introduced in high performance intercon-
nects, and provided constructions of cooling codes that are
optimal in terms of redundancy. We summarize these results
here, but first we demonstrate the connection between cooling
codes and two-write WOM codes of type A.

Definition 4. An (n, τ) cooling code C of size M is
defined as a collection of codesets {C1,C2, . . . ,CM }, where
C1,C2, . . . ,CM are disjoint subsets of {0, 1}n satisfying the
following property: for any set S ⊆ [n] of size at most τ
and for all i ∈ [M], there exists a codeword x ∈ Ci with
supp(x) ∩ S = ∅.

The following proposition shows that two-write WOM
codes of type A and cooling codes are equivalent.

Proposition 1. An [n, 2; τ,M1,M2]A WOM code of type A
exists if and only if an (n, τ)-cooling code of size M2 exists.

Proof: Suppose an (n, τ)-cooling code of size M2 exists.
To construct an [n, 2; τ,M1,M2]A two-write WOM code of
type A, we describe the encoding and decoding maps for
the second write.

Let m ∈ [M2] be the message to be written on the second
write, and we consider the codeset Cm in the cooling code C.
Let S be the set of indices of the programmed cells on the
first write. Since |S| � τ , there exists a word x ∈ Ci with
supp(x)∩ S = ∅ by the definition of cooling codes. The pro-
grammed cell-state vector is then c = x. Note that since for
all i ∈ S, xi = 0, we get that ci = 1, as required.

Given a codeword c, we compute x = c. Since the codesets
C1,C2, . . . ,CM2 are disjoint, we identify the unique codeset
that the nonzero vector x belongs to and hence decode the
value of m. This completes the decoding.

Conversely, suppose an [n, 2; τ,M1,M2]A WOM code
exists. We construct an (n, τ) cooling code of size M2 by
defining the codesets C1,C2, . . . ,CM2 . Let m ∈ [M2] be
the message for the second write. We set Cm � {x : x =
E2(m, c), for some c ∈ Im(E1)}.

We demonstrate that C1,C2, . . . ,CM2 form an (n, τ) cool-
ing code. Since D2(x) = m for all m ∈ [M2] and x ∈ Cm , we
have that Cm ∩ Cm� = ∅ for m �= m�. Next, consider S ⊂ [n]
with |S| � τ and m ∈ [M2]. We set the state-vector c to be
the vector whose support is given by S, and so, c ∈ Im(E1).
For a type A code, let x = E2(m, c) and we have x ∈ Cm .
Since x � c, we have supp(x) ⊇ supp(c) = S. In other words,
supp(x) ∩ S = ∅, as required. �

The authors of [5] provided a number of constructions of
cooling codes that in turn yield two-write WOM codes of type
A via Proposition 1. A crucial construction is based on the
notion of spreads in projective geometry and a specific exam-
ple for this construction was first developed by Dumer for
codes with stuck-at cells [11]. This structure is defined for-
mally as follows.

Definition 5. A collection V1, V2, . . . , VM of τ -dimensional
subspaces of F

n
2 is said to be a τ -partial spread of F

n
2 of size

M if Vi ∩Vj = {0} for all i �= j . In addition, if
�M

i=1 Vi = F
n
2,

then the collection is said to be a τ -spread of F
n
2.

Spreads were widely studied in the literature and it is well
known that τ -spreads of F

n
2 exist if and only if τ divides

n (see [1], [13], [29], [32]). In this case, it holds that
M = (2n − 1)/(2τ − 1) > 2n−τ . The case where n is not a
multiple of τ was studied in [14] and it was shown that a
τ -partial spread of F

n
2 of size 2n−τ exists, where τ � n/2.

Furthermore, it was demonstrated in [5] that a (τ + 1)-partial
spread of F

n
2 of size M implies the existence of an (n, τ) cool-

ing code of size M +1. In particular, when τ+1|n, the authors
modified Dumer’s encoding/ decoding method [11] to encode /
decode a cooling code of size 2n−(τ+1). We extend the method
to the case where τ + 1 does not necessarily divide n and
modify the method to the case where n/2 − 1 � τ � 0.687n.
We defer the proof of Proposition 2 to Appendix A.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:18:15 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: EXPLICIT AND EFFICIENT WOM CODES OF FINITE LENGTH 2673

Proposition 2.

(i) Let τ + 1 � n/2. There exists an (n, τ) cooling code
of size 2n−(τ+1) with encoding / decoding complexity
O(n3).

(ii) Let τ � 0.687n. Set r =
log(2n + 1)� and α = τ/n.
There exists nα (dependent of α only) such that for all
n � nα , an (n, τ) cooling code of size 2n−(τ+r) exists
with encoding / decoding complexity O(n3).

(iii) Let τ = �0.59n�. Set r =
log(2n + 1)�. For all
n � 7430, an (n, τ) cooling code Cn of size 2n−(τ+r)

exists with encoding / decoding complexity O(n3). Fur-
thermore, Cn can be constructed in time polynomial
in n.

Following Propositions 1 and 2, we obtain a family of
capacity-achieving two-write WOM codes that achieves
our two figures of merit: low complexity and almost-linear
convergence rate.

Theorem 2 (Construction 1). Let 0 � p � 1/2. For all n,
there exists a two-write WOM code C of length n such that
the following hold.

(i) C has encoding / decoding complexity O(n3).
(ii) Furthermore, if n � �(6/δ) log(3/δ)� − 1, its rate-tuple

is δ-close to (h(p), 1 − p).

Proof: Choose τ =
np�. Apply Propositions 1 and 2 to
obtain a two-write WOM code C with rates

R1(n) = log
��τ

i=0

�n
i

��
n

, and R2(n) = n − (τ + 1)

n
.

According to [27, Lemma 4.8], we use the inequality

τ

i=0

�
n

i

�
� 1

n + 1
2nh(τn),

and conclude that

R1(n) �
log

�
1

n+1 2nh(τ/n)
�

n

= h
�τ

n

�
− log (n + 1)

n
� h(p)− log (n + 1)

n
. (2)

Set n0 � �(6/δ) log(3/δ)� − 1. Since log(n0 + 1) �
log

�
(6/δ) log(3/δ)

� = log(3/δ) + 1 + log log(3/δ), and
n0 � (6/δ) log(3/δ)− 2 � (3/δ) log(3/δ), we have that

log(n0 + 1)

n0
� log(3/δ)+ 1 + log log(3/δ)

(3/δ) log(3/δ)
� 3

3/δ
= δ.

In other words, we have that log(n0 + 1) � δn0. Since the
function (1/x) log(x + 1) is monotone decreasing on x > 0,
we have that log(n + 1) � δn for n � n0. Therefore, R1(n) �
h(p)− δ follows from (2).

On the other hand, since n � �(6/δ) log(3/δ)� − 1 � 2/δ,
we have that

R2 = n − (τ + 1)

n
� 1 − np + 2

n
= 1 − p − 2

n
� 1 − p − δ.

Therefore, the rate tuples converge to (h(p), 1 − p) in rate
almost linear in 1/δ. �

The codes we derived from Proposition 1 are not only
capacity-achieving. The construction also provides two-write
WOM codes with explicit sum-rates for finite values of n.

Let S(n, τ) denote the maximum size of an τ -partial
spread of F

n
2. The following theorem summarizes the results

on two-write WOM codes that can be obtained by applying
Proposition 1 to the cooling codes constructed in [5].

Theorem 3. Let τ � n. There exists an [n, 2; τ,M1,M2]A

WOM code of type A under the following conditions.

(i) If τ ∈ {1, n − 1, n}, then M2 = 2n−τ .
(ii) For all τ � n, we have that M2 = n − τ + 1.

(iii) If τ + 1 � n/2, then M2 = S(n, τ + 1)+ 1.
(iv) Suppose r , s, and d are integers satisfying: τ + r �

(n + s)/2; a binary linear [n, s, d] code exists; and
an binary linear [n − t, r, d] code does not exist. Then
M2 = S(n − s, τ + r − s)+ 1.

Hence, to obtain lower bounds for M2, we require cer-
tain knowledge of S(n, τ). Recently, the values of S(n, τ)
has been almost completely determined. We summarize the
current knowledge of the best known estimates for S(n, τ).

Proposition 3 ([21], [25]). Let τ � n/2. Let r be the integer
such that r ≡ n mod τ and 0 � r < τ . Then

S(n, τ) =

⎧⎪⎪⎨
⎪⎪⎩

2n − 2τ+r

2τ − 1
+ 1, if τ > 2r − 1,

2n − 32

7
+ 2, if τ = 3 and r = 2.

For all values n and τ , we have S(n, τ) � (2τ − 2τ+r)/
(2τ − 1)+ 1.

Using Proposition 3, we compute the best possible sum-rates
and fixed rates1 that arise from Theorem 3 for lengths up
to 40. We benchmark our results with an online table created
by Dobbelaere [10]. The comparisons are given in Table I and
we observe that Theorem 3 yields the best known rates in
some cases.

We also remark that the two-write WOM codes in [10] are
obtained from a computer search aided by a scoring heuris-
tic. It is unclear whether the search extends to larger lengths.
In contrast, our construction applies for all lengths and con-
verges to capacity. For lengths up to 100, we plot the sum-rates
in Figure 1 and observe that we are 0.04-close to optimal when
n = 100.

Observe that when τ � n/2, Proposition 3 states that
S(n, τ) � 2n−τ . Applying Theorem 3(iii), we obtain the fol-
lowing corollary that provides two-write WOM codes whose
rates are explicitly given for all values of n.

Corollary 1. Let τ + 1 � n/2. There exists an [n, 2; M1,M2]
two-write WOM, where

M1 =
τ

i=0

�
n

i

�
, M2 = 2n−τ−1.

1An [n, t; M1,M2, . . . ,Mt] t-write WOM code has fixed rates if M1 =
M2 = · · · = Mt .

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:18:15 UTC from IEEE Xplore. Restrictions apply.

2674 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 5, MAY 2020

TABLE I

TWO-WRITE WOM: COMPARISON WITH PREVIOUS KNOWN CONSTRUCTIONS

IV. THREE-WRITE WOM CODES

In this section, we present a few constructions of
three-write WOM codes and focus on obtaining codes with
high sum-rates. Suppose a family of three-write WOM codes
approaches sum-rate Rsum. As before, we consider the mini-
mum code length n(δ) in order to be δ-close to Rsum and are
interested in families of three-write WOM codes with n(δ)
which is polynomial in 1/δ. In addition, we also examine
constructions of three-write WOM codes with high sum-rates
for finite blocklengths.

Definition 6. An [n, 2; M1,M2] two-write WOM code is said
to be of type B if the encoding map E2 on the second write
is an injection from [M2] to J+(n, ω). In other words, after
the second write, at most ω cells are programmed, and we
denote such a WOM code as an [n, 2;ω,M1,M2]B WOM
code.

Suppose that there exists an [n, 2;ω,M1,M2]B WOM code.
Then after the second write, at most ω cells are programmed.
As observed in previous works [31], [38], if we have an
[n, 2;ω,M �

1,M �
2]A WOM code of type A, we may encode

another M �
2 messages on the third write. Formally, we have

the following construction of three-write WOM codes.

Proposition 4. Let ω � n. If there exists an [n, 2;ω,M1,M2]B

WOM code and an [n, 2;ω,M �
1,M �

2]A WOM code, then there
exists an [n, 3; M1,M2,M �

2] three-write WOM code.

Shpilka [31] modified the Rivest-Shamir two-write WOM
code [28] to construct an [n, 2, ω; M1,M2]B WOM code.

Theorem 4. [31] Let m and � be integers such that � � 4m.
Set n = 12m +5 and ω =
8m − 5�/4 + 5�. Then there exists
an [n, 2;ω,M1,M2]B WOM code with

M1 =
4m

i=�

�
4m

i

�
34m−i , and M2 = 44m.

Setting � = �1.768m�, Shpilka applied Proposition 4
to construct a family of three-write WOM codes whose
sum-rates approach 1.809. However, on the third write,
Shpilka applies a two-write WOM code derived from a
Wozencraft ensemble. Hence, the sum-rate of the three-write
WOM codes approaches 1.809 with exponential rate. A sim-
ple modification to this scheme is to apply the two-write
WOM code from Theorem 2. Since at most ω cells are pro-
grammed after the second write and if we set ω + 1 � n/2,
or
8m − 5�/4� � 6m + 1, we are able to apply Theorem 2

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:18:15 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: EXPLICIT AND EFFICIENT WOM CODES OF FINITE LENGTH 2675

Fig. 1. Rates of known constructions for lengths at most 100.

to encode 2n−(ω+1) messages. Since the two-write WOM
code has almost-linear convergence rate, the sum-rate of
the modified three-write WOM code approaches 1.809 with
almost-linear rate. We summarize this discussion in the
following theorem.

Theorem 5 (Construction 2). Let m and � be integers such
that � � 4m and
8m − 5�/4� � 6m+1. Set n = 12m+5 and
ω =
8m − 5�/4 + 5�. There exists an [n, 3; M1,M2,M3]
three-write WOM, where

M1 =
4m

i=�

�
4m

i

�
34m−i , M2 = 44m, M3 = 212m−(ω+1).

Moreover, the encoding / decoding complexity is polynomial
O(n3) and if we set � = �1.768m�, these codes approach
sum-rate 1.809 with almost-linear rate.

While Construction 1 yields a family of WOM codes whose
sum-rates approach 1.809 with polynomial rate, at lengths less
than 100, the sum-rates are relatively low. For example, for
n = 89 cells, Construction 1 yields a three-write WOM code
with sum-rate 1.673.

The next two constructions yield three-write WOM codes of
short lengths with higher sum-rates. Our second construction
modifies known two-write WOM codes by expurgating certain
messages on the second write so that the resulting two-write
WOM codes are of type B.

Specifically, given an [n, 2; M1,M2] two-write WOM
code C, we consider the set of messages [M2] on the second
write. For an integer ω < n, we say that a message m ∈ [M2]
is ω-bad if there exists a cell-state vector c in Im(E1) such
that the codeword E(m, c) has weight strictly larger than ω.
Define B(C, ω) to be the set of all ω-bad words, in other
words, B(C, ω) = {m ∈ [M2] : m is ω-bad}.

Now, if we only write the message in [M2] \ B(C, ω) on
the second write, the number of programmed cells is at most ω.
Therefore, we obtain an [n, 2;ω,M1,M2−|B(C, ω)|]B WOM
code. We summarise the discussion in the following theorem.

Theorem 6 (Construction 3). If an [n, 2; M1,M2] two-write
WOM code C exists, then an [n, 2;ω,M1,M2 − |B(C, ω)|]B

WOM code exists. Suppose further that there exists an
[n, 2;ω,M �

1,M3]A WOM code, where M �
1 = M2 − |B(C, ω)|.

Then there exists an [n, 3; M1,M2,M3] three-write WOM
code.

Unfortunately, determining the size of the set B(C, ω) is
computationally difficult. Nevertheless, since the number of
ω-bad messages is at most the number of binary vectors with
weight at least ω + 1, we have that

B(C, ω) �
n

i=ω+1

�
n

i

�
.

Corollary 2 (Construction 3a). If an [n, 2; M1,M2] two-write
WOM code exists, then an [n, 2;ω,M1,M2 − �n

i=ω+1

�n
i

�]B

WOM code exists. Suppose further that there exists an
[n, 2;ω,M �

1,M3]A WOM code. Then there exists an
[n, 3; M1,M2,M3] three-write WOM code.

The next corollary is immediate from Theorem 3.

Corollary 3 (Construction 3b). Let τ and ω be integers such
that τ + 1 � n/2, and

�n
i=ω+1

�n
i

�
< S(n, τ + 1)+ 1. Then

there exists an [n, 2, ω; M1,M2]B two-write WOM of type B,
where

M1 =
τ

i=0

�
n

i

�
, and M2 = 1 + S(n, τ + 1)−

n

i=ω+1

�
n

i

�
.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:18:15 UTC from IEEE Xplore. Restrictions apply.

2676 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 5, MAY 2020

Suppose further that an [n, 2;ω,M �
1,M3]A WOM code exists.

Then there exists an [n, 3; M1,M2,M3] three-write WOM
code.

Our third construction extends a construction of two-write
WOM codes which was introduced in [37]. Let C be a lin-
ear [n, k]-code with parity check matrix H . For any binary
word c, the (n − k) × n matrix H(c) is defined as follows.
The i th column of H(c) is set to be the i th column of H if
ci = 1 and otherwise it is set to be the zeroes column.

Let t and w be integers. We define W (t, w; H) to be a
set of binary words so that the following hold for each x ∈
W (t, w; H).

(H1) The weight of x is at most t .
(H2) There exists a word c with weight at most w such that

the columns of H(c) sum to zero, and (3)

rank H(c) = n − k, (4)

supp(c) ∩ supp(x) = ∅. (5)

Theorem 7 (Construction 4). Let C be a linear [n, k]-code
with parity check matrix H . Let t and w be integers such that
the set W (t, w; H) in nonempty and set ω = t +�w/2�. Then
there exists an [n, 2;ω,M1,M2]B WOM code of type B, where

M1 = |W (t, w; H)| and M2 = 2n−k .

Suppose further that an [n, 2;ω,M �
1,M3]A WOM code exists.

Then there exists an [n, 3; M1,M2,M3] three-write WOM
code.

Proof: We outline the encoding and decoding maps of the
two writes.

First write. We encode one of the M1 messages by program-
ming a vector x ∈ W (t, w; H).

Second write. We pick a binary vector m of length n − k.
Making use of the check matrix H , we encode m using a
word of weight of at most ω. We provide a formal description
of this encoding map below.

Suppose that x is written on the first write and m is the mes-
sage to be written on the second write. Set m� � H xT + m.
By the definition of W (t, w; H), there exists a word c that sat-
isfies (3), (4) and (5). Since rank H(c) = n−k, there exists v1
such that H(c)vT

1 = m�. Set v2 � c+v1 and since the columns
of H(c) sum to zero, we also have that H(c)vT

2 = m�.
Since v1 + v2 = c and the weight of c is at most w, one of
v1 and v2 has weight at most �w/2�. Let v be the vector and on
the second write, we program v+x. Since supp(v) ⊆ supp(c),
we have that v + x � x. Also, since x has weight at most t ,
we check that v + x has weight at most ω = �w/2� + t as
desired.

We present the decoding map of the second write. Given
a codeword u = v + x, we recover the message vector
m by multiplying the check matrix H . In other words,
m = HuT . �

Example 1.
(i) Let n = 31 and k = 17. We consider the best known[31, 17]-linear code [17] with parity check matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1
0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0
0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1
0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We set t = 10 and w = 15, and so, ω = 10 +
�15/2� = 17. Then a computer search yields the size
of W (t, w; H) to be 61644301. Hence, we have an
[31, 2; 17,M1,M2]B WOM code

M1 ≈ 225.877 and M2 = 214.

Setting n = 31, τ = 17 with r = 1, s = 5, d = 16,
Theorem 3(iv) yields an [31, 2; 17,

�17
i=0

�31
i

�
, 213]A

WOM code (see also [5, Table I]). Hence, we obtain an
[31, 3; 225.877, 214, 213] three-write WOM code whose
sum-rate is 1.706.

(ii) Set n = 93. By concatenating three copies of the
[31, 2; 17, 225.877, 214]B WOM code constructed
in (i), we obtain an [93, 2; 51, 277.632, 242]B WOM
code. Similar to (i), we set n = 93, τ = 51 with
r = 2, s = 13, d = 38 in Theorem 3(iv) and obtain
an [93, 2; 51,

�51
i=0

�93
i

�
, 240]A WOM code. Hence,

we obtain an [93, 3; 277.632, 242, 240] three-write WOM
code whose sum-rate is 1.716. This yields the best
known sum-rate for three-write WOM codes whose
blocklength is at most 100.

To conclude this section, we determine the maxi-
mum sum-rates resulting from Constructions 1, 2a, 2b
and 3 for blocklengths up to 50. For Construction 3,
we consider the best known linear codes of lengths up
to 34 [17]. For each parity check matrix H , we set
w = min{wt(c) : c satisfying (3) and (4)} and then compute
the size of W (t, w; H) for values of t . The best sum-rate for
a fixed value of n is then reported. As before, we benchmark
our results with the online table created by Dobbelaere [10]
and the comparisons are given in Table II.

V. �-ERROR THREE-WRITE WOM CODES

In this section, we present constructions of three-write
�-error WOM codes. In addition to polynomial encoding /
decoding complexity and almost-linear convergence rate, we
also demonstrate that the failure decay rate is faster as com-
pared to certain existing constructions. At the end of this
section, we demonstrate Theorem 1.

A. Background and State of the Art Results

The first class of �-error WOM codes was constructed
in [15] and [18] to demonstrate the achievability of the

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:18:15 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: EXPLICIT AND EFFICIENT WOM CODES OF FINITE LENGTH 2677

TABLE II

THREE-WRITE WOM: COMPARISON WITH PREVIOUS KNOWN CONSTRUCTIONS

capacity region. However, the encoding is random and there-
fore, the coding scheme has no efficient encoding / decoding
methods.

Recently, a number of capacity-achieving �-error WOM
codes with polynomial encoding / decoding methods were
proposed. Burshtein and Strugatski [2] used polar codes to
construct efficient capacity-achieving �-error WOM codes.
They showed that these multi-write WOM codes have poly-
nomial convergence rate and that the probability of failure
for each write is at most 2−√

n . Later, Gad et al. [12]
and Kumar et al. [20] used LDPC techniques to con-
struct efficient capacity-achieving �-error two-write WOM
codes. However, no estimates on the failure decay and
the convergence rates were given. Finally, as mentioned
earlier, the zero-error WOM codes in [30] achieve capac-
ity with low complexity encoding / decoding algorithms.

However, the sum-rates approach capacity in rate exponential
in 1/δ.

In the next subsection, we construct efficient �-error
three-write WOM codes whose sum-rates converge with an
almost-linear rate and whose failure probability is at most
2−λn+o(n) for some positive constant λ. In other words,
we achieve all three figures of merit. However, in contrast
with Burshtein and Strugatsky’s construction, even though the
failure decay rate is fast, we are unable to achieve full capac-
ity or the maximum sum-rate 2. Instead, we obtain WOM
codes with sum-rate approaching 1.936.

B. Construction

We borrow ideas from the zero-error case for three-write
WOM codes to construct our three-write �-error WOM codes.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:18:15 UTC from IEEE Xplore. Restrictions apply.

2678 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 5, MAY 2020

In particular, we use the WOM codes of type A given in
Definition 3.

Proposition 5. Suppose that there exists an [n, 2; τ,M1,M2]A

WOM code and [n, 2; τ �,M �
1,M �

2]A WOM code. Set
f = �n−τ

i=τ �+1

�n−τ
i

�
. If f < M2, then there exists an

[n, 3; M1,M2,M �
2; 0, f/M2, 0] three-write �-error WOM

code.

Proof: Let C be an [n, 2; τ,M1,M2]A WOM code
with encoding maps E1,E2 and corresponding decoding
maps D1,D2. Similarly, let C� be an [n, 2; τ �,M �

1,M �
2]A

WOM code with encoding / decoding maps E�
1,E

�
2,D

�
1,D

�
2.

Using these maps, we provide the encoding / decoding maps
E�i ,D

�
i , i ∈ [3] for our three-write �-error WOM code.

First write. Set E�1 = E1 and D�
1 = D1. Hence, after the first

write, at most τ cells are programmed and the probability of
failure is zero.

Second write. Let c ∈ Im(E�1) and so, wt(c) � τ . Set c� such
that wt(c�) = τ and supp(c�) ⊇ supp(c). For m ∈ [M2], set

E�2(m, c) =
{

E2(m, c�), if wt(E2(m, c�)) � τ �,
fail, otherwise.

, D�
2 = D2.

In other words, we only program the cells on the second write
if the codeword written has weight at most τ �. Otherwise,
we declare a failure. Therefore, on the second write, at most
τ � cells are programmed.

Next, we estimate the failure probability. Suppose that the
cell-state vector is c ∈ Im(E�1) after the first write and let
c� be the word of weight τ with supp(c�) ⊇ supp(c). Con-
sider the set Fc = {m ∈ [M2] : E�2(m, c�) = fail}. Since
m ∈ Fc implies that E2(m, c�) has weight at least τ � + 1 and
E2(m, c�) �= E2(m�, c�) for m �= m�, we have that the size of
Fc is upper bounded by the set of words with weight at least
τ � + 1 whose support contain supp(c�). In other words,

|Fc| �
n−τ∑

i=τ �+1

(
n − τ

i

)
= f.

Therefore,

|{(m, c) ∈ [M2] × Im(E�1) : E�2(m, c) = fail}|
=

∑
c∈I m(E�1)

|Fc| � f |Im(E�1)| = (f/M2)M2|Im(E�1)|,

as required.

Third write. Set E�3 = E�
2 and D�

3 = D�
2. Since after the sec-

ond write, at most τ � cells are programmed, the encoding map
E�3 = E�

2 always succeeds and so, the probability of failure is
zero. �

As before, we use the efficient cooling codes given in Propo-
sition 2 to seed Proposition 5.

Theorem 8. Choose p, κ > 0 such that p < 1/2 and
(1 + p)/2 + κ � 0.687. Set τ1 =
pn� and τ2 =

((1 + p)/2 + κ) n�. Then an [n, 3; M1,M2,M3; �1, �2, �3]
three-write �-error WOM code Cn exists with

M1 =
τ1

i=0

�
n

i

�
, M2 = 2n−(τ1+1), M3 = 2n−(τ2+1),

and �1 = �3 = 0, �2 = 2−λn+o(n) for some λ (dependent
on p and κ only). Furthermore, Cn has encoding / decod-
ing complexity O(n3) and the rate tuple approaches

�
h(p),

(1 − p), (1 − p)/2 − κ
�

at almost-linear rate.

Proof: Proposition 1 with Propositions 2(i) and (ii) pro-
vide an [n, 2; τ1,

�τ1
i=0

�n
i

�
, 2n−(τ1+1)]A WOM code and an

[n, 2; τ2,
�τ2

i=0

�n
i

�
, 2n−(τ2+1)]A WOM code. Applying Propo-

sition 5 yields an [n, 3; M1,M2,M3; 0, �2, 0] three-write
�-error WOM code Cn .

Observe that the probability of failure on the second write
is at most�n−τ1

i=τ2+1

�n−τ1
i

�
M2

� 2(n−τ1)h(τ2/(n−τ1))

2n−(τ1+1)

� 2(n−τ1)(h(τ2/(n−τ1))−1)

� 2−((1−p)n−1)(1−h(τ2/(n−τ1))).

On the other hand,

1 − τ2

n − τ1
= n − τ1 − τ2

n − τ1
� n − pn − ((1 + p)/2 + κ)n

n − pn + 1

=
�

1

2
− κ

1 − p

�
(1 − o(1)) .

Therefore, the probability of failure is at most 2−λn+o(n) when
we choose

λ = (1 − p)

�
1 − h

�
1

2
− κ

1 − p

��
.

Next, Cn has encoding / decoding complexity O(n3) as the
type-A WOM codes have encoding / decoding complexities
O(n3). Finally, we have that the rates

log
�τ1

i=0

�n
i

�
n

→ h(p),

log 2n−(τ1+1)

n
→ (1 − p),

log 2n−(τ2+1)

n
→ 1 − p

2
− κ,

as n → ∞. Similar to the proof of Theorem 2, we can demon-
strate that the rate tuple converges at almost-linear rate. �

Theorem 8 provides a family of �-error WOM codes whose
sum-rates approach h(p) + 3(1 − p)/2 − κ . This sum-rate
achieves a maximum of 1.936 − κ when p is chosen to be
(2

√
2−1)/7 ≈ 0.261. However, the encoding / decoding maps

for the third write may not be constructible in polynomial time
(see Appendix A-C for a discussion).

Nevertheless, we can modify the method in Proposi-
tion 2(ii) to construct cooling codes, or equivalently, type-A
WOM codes, in polynomial time. However, this alters the
range of values for p that is applicable in Theorem 8. In par-
ticular, to maximize the sum-rate for this new range, we can
only set p = 0.18 and the corresponding sum-rate is 1.910.
We summarize the discussion in the following corollary.

Corollary 4. Fix κ > 0.

(i) There exists a family of three-write �-error codes with
encoding / decoding complexity O(n3) whose sum-rates
approach 1.936 − κ at almost-linear rate.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:18:15 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: EXPLICIT AND EFFICIENT WOM CODES OF FINITE LENGTH 2679

(ii) There exists a family of three-write �-error codes Cn with
encoding / decoding complexity O(n3) whose sum-rates
approach 1.910 − κ at almost-linear rate. Furthermore,
Cn can be constructed in polynomial time.

C. Proof of Theorem 1

We end this section by providing a complete proof of The-
orem 1. To this end, we demonstrate the following lemma.

Lemma 1. Let {Cn} be a family of WOM codes such that each
Cn is an [n, t; M1(n), . . . ,Mt (n); �1(n), �2(n), . . . , �t (n)]
t-write �-error WOM code and R�sum > log2(t + 1). Then
limn→∞

�
i∈[t] �i (n) � 1.

Proof: Let log2(t +1) < R� < R�sum. Then for sufficiently
large n, we have that

�
i∈[t] Mi (n) � 2nR�

.
We mimic the proof of Wolf et al. [34]. For each t-tuple of

messages m = (m)ti=1 ∈ [M1(n)] × [M2(n)] × · · · × [Mt (n)],
we recursively define C(m) = (c1, c2, . . . , ct), where

ci =
{

Ei (mi , ci−1), if ci−1 �= fail,
fail, if ci−1 = fail.

We say that C(m) is good if ci �= fail for all i ∈ [t]. Other-
wise, we say that C(m) is bad. We claim that the fraction of
bad C(m)’s approaches one as n grows. Equivalently, we show
that the fraction of good C(m)’s approaches zero.

When C(m) is good, we can arrange the t binary vectors
of length n in a t × n-matrix. Furthermore, since all t writes
are successful, all n columns belong to the following set of
cardinality t + 1:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
1
1

⎤
⎥⎥⎥⎥⎥⎦
, · · · ,

⎡
⎢⎢⎢⎢⎢⎣

0
1
...
1
1

⎤
⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣

1
1
...
1
1

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.

In other words, the number of good C(m)’s is at most (t +1)n.
Hence, the fraction of good C(m)’s is at most

(t + 1)n�
i∈[t] Mi (n)

�
�

t + 1

2R�

�n

.

Since log2(t + 1) < R�, this fraction of good C(m)’s tends to
zero as n grows.

Finally, using the union bound, we have that
�

i∈[t] �i (n)
is at least the fraction of bad C(m)’s and hence, the theorem
follows. �

We complete the proof of Theorem 1.
Proof: [Proof of Theorem 1] First, observe that �1(n) = 0

is zero for all n. Hence, we have that limn→∞
�

i∈[t] �i (n) �
limn→∞

�t
i=2 �i (n) � (t − 1)�� < 1. Lemma 1 then implies

that R�sum � log2(t + 1). �

VI. CONCLUSIONS AND OPEN PROBLEMS

We studied explicit WOM codes with low encoding /
decoding complexity and polynomial convergence rate. In the
two-write case, we provided a capacity-achieving construc-
tion which has polynomial complexity and almost-linear

convergence rate. Unfortunately, our method was unable
to provide capacity-achieving codes for the case of more
than two writes. Nevertheless, for three writes, we con-
structed zero-error WOM codes that improved the best known
sum-rates of explicit WOM codes and �-error WOM codes
with high sum-rates and faster failure decay rates.

While the results in the paper provide a significant con-
tribution in the area of WOM codes, there are still several
interesting problems which are left open.

• Finding better explicit constructions for the three-write
case and capacity-achieving construction with polyno-
mial complexity and polynomial convergence rate. This
is challenging and stimulating for the case of more than
three writes, where less is known.

• Recently, in order to combat the limited-endurance and
overshooting problems in multilevel cell (MLC) flash
memories, a new subclass of non-binary WOM codes,
called write �-step-up memories (W�M) codes, was pro-
posed and studied. In this subclass, each cell has q � 2
levels and each write can only increase a cell level by at
most � < q . Techniques that rely on cooling codes (see
Proposition 2) were used to construct explicit high-rate
W�M codes. Specifically, in [7], the authors provided an
explicit construction of three-write ternary W�M codes
with � = 1 and sum-rates approaching 2.77. Interested
readers are refered to [7] for the detailed constructions.

APPENDIX A
EFFICIENT ENCODING AND DECODING

FOR COOLING CODES

We provide a detailed proof for Proposition 2.

A. When τ + 1 � n/2

Suppose that τ + 1 � n/2. The case for τ + 1|n is detailed
in [5] and [11]. Here, we generalize the previous encoding
and decoding methods to all pairs of τ + 1 and n satisfying
τ + 1 � n/2.

Given τ + 1 � n/2, set r ≡ n (mod τ + 1) with 0 � r <
τ + 1 and s = �n/(τ + 1)�. Hence, n = s(τ + 1) + r and
s � 2.

Here, we identify our messages in [2n−(τ+1)] with binary
strings of length n − (τ + 1) = (s − 1)(τ + 1) + r . We also
identify binary strings of length τ + 1 and τ + 1 + r with field
elements in F2τ+1 and F2τ+1+r , respectively.

So, for a message m of length (s − 1)(τ + 1)+ r , we par-
tition it into (s − 2) blocks of length τ + 1 and one block
of length τ + 1 + r . We identify m with the (s − 1)-tuple
(m1,m2, . . . ,ms−1) ∈ F

s−2
2τ+1 × F2τ+1+r . In other words, mi ∈

F2τ+1 for i ∈ [s − 2] and ms−1 ∈ F2τ+1+r . Finally, we define
the codeset Cm as follow:
Cm =

�
c(β,m) = (βm1,βm2, . . . ,βms−2,βms−1,β) :

β ∈ F
τ+1
2 \ {0}

}
,

where βms−1 is obtained by padding β with r zeroes and then
regarding β as a field element in F

τ+1+r
2 .

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:18:15 UTC from IEEE Xplore. Restrictions apply.

2680 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 5, MAY 2020

Set C =
{
Cm : m ∈ F

n−(τ+1)
2

}
and we demonstrate that C

is an (n, τ) cooling code by providing the encoding / decoding
algorithms.

Encoding. Given S ⊆ [n] with |S| � τ , our encoding task is
to compute β ∈ F2τ+1 \ {0} such that supp(c(β,m))∩ S = ∅.

To find β, we consider the map ψ : F2τ+1 → F
|S|
2 such that

ψ(β) = c(β,m)|S , where w|S is the projection of w to the
coordinate set S. Since ψ(β + β �) = ψ(β)+ ψ(β �), ψ is an
F2-linear map. Furthermore, since |S| < τ + 1, the kernel of
ψ is nontrivial and our encoding task is reduced to finding
a nonzero element β in the kernel. As τ + 1 = O(n) and
|S| = O(n), an element β can be computed in O(n3) time.

Decoding. Given a codeword c ∈ F
n
2, we partition c into

(c1, c2, . . . , cs−1, cs) such that the length of ci is τ + 1
for i ∈ [s] \ {s − 1} and the length of cs−1 is τ + 1 + r .
To recover the message m ∈ F

n−(τ+1)
2 , we set β = cs and

compute mi = β−1ci for i = [s − 1]. Note that for i = s − 1,
we regard as β as an element in F2τ+1+r .

Therefore, C is an (n, τ) cooling code of size 2n−(τ+1).
Encoding and decoding for the code C has complexity O(n3).

B. When τ � 0.687n

Let τ � 0.687n and set α = τ/n and r =
log(2n + 1)�.
In [5], the authors provided a construction of an (n, τ) cool-
ing code of size 2n−(τ+r) and hinted the existence of efficient
encoding and decoding methods. Here, we modify the meth-
ods in the previous subsection and provide a pair of explicit
encoding and decoding algorithms.

We set d =
(n − τ)/2� and choose s =
(1 − h(d/n))n� =

(1 − h((1 − α)/2))n�. By the Gilbert-Varshamov bound
(see [27]), there exists an [n, s, d]-linear code K. Rewrite F

n
2

as a direct sum of K� ⊕ K and let � : F
n−s
2 → K� be an

F2-linear bijection from F
n−s
2 to K�.

Furthermore, given α, r and s, we can choose n to be suf-
ficiently large such that

(τ + r)− s � n − (τ + r). (6)

We state the following lemma and defer its technical proof to
the end of this appendix.

Lemma 2. Let α = τ/n � 0.65, r =
log(2n + 1)� and
s =
(1 − h((1 − α)/2))n�. Then there exists nα such that (6)
holds for all n � nα .

As we before, we identify messages in [2n−(τ+r)] with field
elements in F2n−(τ+r) . Let m ∈ F2n−(τ+r) and β ∈ F2(τ+r)−s .
Lemma 2 then implies that (τ + r)− s � n − (τ + r). Hence,
we are able to pad β with zeroes and regard β as an element
in F2n−(τ+r) . Set c(β,m) = (βm,β) ∈ F

n−s
2 and we define the

codeset

Cm = {
�(c(β,m))+ k : β ∈ F2(τ+r)−s \ {0}, k ∈ K

}
.

We further set C = {
Cm : m ∈ F2n−(τ+r)

}
. As before, we

demonstrate that C is an (n, τ) cooling code by providing the
encoding / decoding algorithms.

Encoding. Given S ⊆ [n] with |S| = τ , our encoding
task is to find a nonzero β ∈ F2(τ+r)−s and k ∈ K such that

supp (�(c(β,m))+ k)∩S = ∅. As in the previous subsection,
we consider an F2-linear map φ : F2(τ+r)−s ×K → F

|S|
2 . where

φ(β, k) is the projection of the binary word �(c(β,m))+ k
onto the coordinate set S. Notice that φ is a linear map from
a vector space of dimension (τ + r − s)+ s = τ + r to a sub-
space of dimension τ . Hence, the kernel of φ has dimension
at least r .

We find a subspace N of this kernel with dimension r and
consider the space Im(N) = {�(c(β,m))+ k ∈ F

n
2 : (β, k) ∈

N}. Since r =
log(2n + 1)�, the size of Im(N) is at least
2n+1 and all words in Im(N) have zeroes at S. Shortening the
words at these τ coordinates, we obtain a linear code of length
n −τ and size at least 2n +1. By Plotkin bound [27], we have
that there exists a word x ∈ Im(N) with weight at most d −1.
In other words, x /∈ K and hence, x = �(c(β,m)) + k for
some nonzero element β .

The linear space N can be computed in O(n3) time. Since
|N| = 2r � 4n + 2, finding a word x of weight at most d − 1
can be done in O(n) time. Hence, the encoding complexity
is O(n3).

Decoding. Given some codeword x ∈ F
n
2, we write x = k�+k

with k� ∈ K� and k ∈ K. Applying �−1, we obtain c ∈ F
n−s
2

and write c = (c1, c2). To recover the message m ∈ F
n−(τ+r)
2 ,

we set β = c2 and compute m = β−1c1 in O(n3) time.

Finally, we provide the technical proof for Lemma 2.
Proof: [Proof of Lemma 2] First, observe that (τ+r)−s �

n − (τ + r) is equivalent to

1 + s

n
− 2τ

n
� 2r

n
. (7)

Since s =
(1 − h((1 − α)/2))n�, we have s/n � 1 − h
((1 − α)/2)). In other words,

1 + s

n
− 2τ

n
� 2 − h

�
1 − τ/n

2

�
− 2(τ/n) � hα. (8)

Since α � 0.687, we have that the value hα is strictly positive.
On the other hand, r =
log(2n + 1)� � 1 + log(2n + 1).

Since (2 +2 log(2n +1))/n converges to zero, we can find nα
such that (2 + 2 log(2n + 1))/n � hα for n � nα . Hence,

2r

n
� 2 + 2 log(2n + 1)

n
� hα for n � nα. (9)

Therefore, (8) and (9) imply (7). �

C. When τ = �0.59n� and Polynomial Time Construction

In the previous subsection, to construct an (n, τ) cooling
code for τ � n/2, we require a linear code K whose parame-
ters satisfy the GV bound. Unfortunately, no efficient method
to construct K is known. Hence, we borrow a construction
by Vlăduţ et al. [33] that constructs high-rate linear codes in
polynomial time.

Lemma 3 (Vlăduţ et al. [33, Corollary 2]). Set 0 � δ �
1/2. Suppose that there exists an [n0, 2m, d] linear code with
d/n � δ. Then there is an infinite family of [n,
αn�,
δn�]
linear codes with

α � 2m(2m − 2)

n0(2m − 1)
− 2mδ

d
.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:18:15 UTC from IEEE Xplore. Restrictions apply.

CHEE et al.: EXPLICIT AND EFFICIENT WOM CODES OF FINITE LENGTH 2681

For simplicity, we focus on the case where τ = �0.59n�
and our method can be generalized for τ � 0.59n. When
τ = �0.59n�, we apply Lemma 3 with an [24, 12, 8] binary
Golay code to construct the following family of linear codes.

Corollary 5. Let s =
0.184n� and d =
0.205n�. For infinite
values of n, an [n, s, d] linear code can be constructed in time
polynomial in n.

For the encoding / decoding method in the previous subsec-
tion to work, we require (6) or equivalently, (7) to hold. From
our choice of τ and s, we have that

1 + s

n
− 2τ

n
� 0.004. (10)

On the other hand,

2r

n
� 2 + 2 log(2n + 1)

n
� 0.004 for n � 7430. (11)

Therefore, (10) and (11) imply (7) and we apply the encoding /
decoding algorithms in the previous subsection for our cooling
codes.

REFERENCES

[1] T. Bu, “Partitions of a vector space,” Discrete Math., vol. 31, no. 1,
pp. 79–83, 1980.

[2] D. Burshtein and A. Strugatski, “Polar write once memory codes,” IEEE
Trans. Inf. Theory, vol. 59, no. 8, pp. 5088–5101, Aug. 2013.

[3] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Flash Memories.
Boston, MA, USA: Kluwer, 1999.

[4] Y. Cassuto and E. Yaakobi, “Short q-ary fixed-rate WOM codes for guar-
anteed rewrites and with hot/cold write differentiation,” IEEE Trans. Inf.
Theory, vol. 60, no. 7, pp. 3942–3958, Jul. 2014.

[5] Y. M. Chee, T. Etzion, H. M. Kiah, and A. Vardy, “Cooling codes:
Thermal-management coding for high-performance interconnects,” IEEE
Trans. Inf. Theory, vol. 64, no. 4, pp. 3062–3085, Apr. 2018.

[6] Y. M. Chee, H. M. Kiah, A. Vardy, and E. Yaakobi, “Explicit construc-
tions of finite-length WOM codes,” in Proc. IEEE Int. Symp. Inf. Theory,
Aachen, Germany, Jun. 2017, pp. 2870–2874.

[7] Y. M. Chee, H. M. Kiah, A. J. H. Vinck, V. V. Khu, and E. Yaakobi,
“Coding for write �-step-up memories,” in Proc. IEEE Int. Symp. Inf.
Theory, Apr. 2019, pp. 1597–1601.

[8] G. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for
write-once memories,” IEEE Trans. Inf. Theory, vol. IT-32, no. 5,
pp. 697–700, Sep. 1986.

[9] T. M. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory,
vol. IT-19, no. 1, pp. 73–77, Jan. 1973.

[10] B. Dobbelaere, A Heuristic Approach to Find Short Efficient WOM
Codes, document Draft Rev. 1.1, 2017. [Online]. Available: http://users.
telenet.be/bertdobbelaere/WOM/

[11] I. I. Dumer, “Asymptotically optimal codes correcting memory defects
of fixed multiplicity,” Problems Peredachi Inform., vol. 25, no. 4,
pp. 3–10, Oct. 1989.

[12] E. En Gad, W. Huang, Y. Li, and J. Bruck, “Rewriting flash memories
by message passing,” in Proc. IEEE Int. Symp. Inf. Theory, Hong Kong,
Jun. 2015, pp. 646–650.

[13] T. Etzion, “Perfect byte-correcting codes,” IEEE Trans. Inf. Theory,
vol. 44, no. 7, pp. 3140–3146, Nov. 1998.

[14] T. Etzion and A. Vardy, “Error-correcting codes in projective space,”
IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 1165–1173, Feb. 2011.

[15] F.-W. Fu and A. J. H. Vinck, “On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 308–313, Jan. 1999.

[16] P. Godlewski, “WOM-codes construits à partir des codes de Hamming,”
Discrete Math., vol. 65, no. 3, pp. 237–243, Jul. 1987.

[17] M. Grassl. Bounds on the Minimum Distance of Linear Codes and
Quantum Codes. Accessed: Dec. 27, 2016. [Online]. Available: http://
www.codetables.de

[18] C. Heegard, “On the capacity of permanent memory,” IEEE Trans. Inf.
Theory, vol. IT-31, no. 1, pp. 34–42, Jan. 1985.

[19] J. Justesen, “Class of constructive asymptotically good algebraic codes,”
IEEE Trans. Inf. Theory, vol. IT-18, no. 5, pp. 652–656, Sep. 1972.

[20] K. Santhosh, V. Avinash, N. Krishna, and P. Henry, “Spatially-coupled
codes for write-once memories,” in Proc. 53rd Annu. Allerton Conf.
Commun., Control Comput. (Allerton), Oct. 2015, pp. 125–131.

[21] S. Kurz, “Improved upper bounds for partial spreads,” Des., Codes Cryp-
togr., vol. 85, no. 1, pp. 97–106, Oct. 2017.

[22] F. Margaglia, G. Yadgar, E. Yaakobi, Y. Li, A. Schuster, and
A. Brinkmann, “The devil is in the details: Implementing flash page
reuse with WOM codes,” in Proc. USENIX FAST, Santa Clara, CA,
USA, Feb. 2016, pp. 1–16.

[23] J. L. Massey, “Threshold decoding,” Res. Lab. Electron., Massachusetts
Inst. Technol., Cambridge, MA, USA, Tech. Rep. 410, 1963.

[24] F. Merkx, “Womcodes constructed with projective geometries,” Traite-
ment Signal, vol. 1, no. 2, pp. 227–231, 1984.

[25] E. L. Năstase and P. A. Sissokho, “The maximum size of a partial spread
in a finite projective space,” J. Combinatorial Theory, A, vol. 152, no. 1,
pp. 353–362, Jul. 2017.

[26] S. Odeh and Y. Cassuto, “NAND flash architectures reducing write
amplification through multi-write codes,” in Proc. 30th Symp. Mass Stor-
age Syst. Technol. (MSST), May 2014, pp. 1–10.

[27] R. M. Roth, Introduction to Coding Theory. Cambridge, U.K.:
Cambridge Univ. Press, 2005.

[28] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,” Inf.
Control, vol. 55, nos. 1–3, pp. 1–19, Dec. 1982.

[29] M. Schwartz and T. Etzion, “Codes and anticodes in the Grassman
graph,” J. Combinatorial Theory, A, vol. 97, no. 1, pp. 27–42, 2002.

[30] A. Shpilka, “Capacity-achieving multiwrite WOM codes,” IEEE Trans.
Inf. Theory, vol. 60, no. 3, pp. 1481–1487, Mar. 2014.

[31] A. Shpilka, “New constructions of WOM codes using the Wozencraft
ensemble,” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4520–4529,
Jul. 2013.

[32] S. Thomas, “Designs over finite fields,” Geometriae Dedicata, vol. 21,
no. 2, pp. 237–242, 1987.

[33] S. G. Vlăduţ, G. L. Katsman, and M. A. Tsfasman, “Modular curves and
codes with polynomial construction complexity,” Problems Peredachi
Inform., vol. 20, no. 1, pp. 47–55, 1984.

[34] J. K. Wolf, A. D. Wyner, J. Ziv, and J. Korner, “Coding for a write-
once memory,” AT T Bell Labs. Tech. J., vol. 63, no. 6, pp. 1089–1112,
Aug. 1984.

[35] Y. Wu, “Low complexity codes for writing a write-once memory twice,”
in Proc. IEEE Int. Symp. Inf. Theory, Austin, TX, USA, Jun. 2010,
pp. 1928–1932.

[36] Y. Wu and A. Jiang, “Position modulation code for rewriting write-once
memories,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3692–3697,
Jun. 2011.

[37] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Codes
for write-once memories,” IEEE Trans. Inf. Theory, vol. 58, no. 9,
pp. 5985–5999, Sep. 2012.

[38] E. Yaakobi and A. Shpilka, “High sum-rate three-write and nonbinary
WOM codes,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 7006–7015,
Nov. 2014.

[39] E. Yaakobi, A. Yucovich, G. Maor, and G. Yadgar, “When do WOM
codes improve the erasure factor in flash memories?” in Proc. IEEE Int.
Symp. Inf. Theory, Hong Kong, Jun. 2015, pp. 2091–2095.

[40] G. Yadgar, E. Yaakobi, and A. Schuster, “Write once, get 50% free:
Saving SSD erase costs using WOM codes,” in Proc. USENIX FAST,
Santa Clara, CA, USA, Feb. 2015, pp. 257–271.

Yeow Meng Chee (SM’08) received the B.Math. degree in computer science
and combinatorics and optimization and the M.Math. and Ph.D. degrees in
computer science from the University of Waterloo, Waterloo, ON, Canada,
in 1988, 1989, and 1996, respectively.

Currently, he is Associate Vice President (Innovation and Enterprise), and
Professor in the Department of Industrial Systems Engineering and Man-
agement, at the National University of Singapore, Singapore. Prior to this,
he was Program Director of Interactive Digital Media R&D in the Media
Development Authority of Singapore, Postdoctoral Fellow at the University
of Waterloo and IBMs Zürich Research Laboratory, General Manager of the
Singapore Computer Emergency Response Team, Deputy Director of Strategic
Programs at the Infocomm Development Authority, Singapore, and Professor
at the Division of Mathematical Sciences, School of Physical and Mathemat-
ical Sciences, Nanyang Technological University, Singapore.

His research interest lies in the interplay between combinatorics and com-
puter science/engineering, particularly combinatorial design theory, coding
theory, extremal set systems, and electronic design automation.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:18:15 UTC from IEEE Xplore. Restrictions apply.

2682 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 5, MAY 2020

Han Mao Kiah received his Ph.D. degree in mathematics from Nanyang
Technological University (NTU), Singapore, in 2014. From 2014 to 2015,
he was a Postdoctoral Research Associate at the Coordinated Science Lab-
oratory, University of Illinois at Urbana–Champaign. From 2015 to 2018,
he was a Lecturer at the School of Physical and Mathematical Sciences
(SPMS), NTU, Singapore. Currently, he is an Assistant Professor at SPMS,
NTU, Singapore. His research interests include combinatorial design theory,
coding theory, and enumerative combinatorics.

Alexander Vardy (S’88–M’91–SM’94–F’99) was born in Moscow, U.S.S.R.,
in 1963. He earned his B.Sc. (summa cum laude) from the Technion, Israel,
in 1985, and Ph.D. from the Tel-Aviv University, Israel, in 1991. During 1985–
1990 he was with the Israeli Air Force, where he worked on electronic counter
measures systems and algorithms. During the years 1992 and 1993 he was a
Visiting Scientist at the IBM Almaden Research Center, in San Jose, CA. From
1993 to 1998, he was with the University of Illinois at Urbana-Champaign,
first as an Assistant Professor then as an Associate Professor. Since 1998,
he has been with the University of California San Diego (UCSD), where he
is the Jack Keil Wolf Endowed Chair Professor in the Department of Electrical
and Computer Engineering and the Department of Computer Science. While
on sabbatical from UCSD, he has held long-term visiting appointments with
CNRS, France, the EPFL, Switzerland, the Technion, Israel, and Nanyang
Technological University, Singapore.

His research interests include error-correcting codes, algebraic and iterative
decoding algorithms, lattices and sphere packings, coding for storage systems
and devices, cryptography and computational complexity theory, as well as
fun math problems.

He received an IBM Invention Achievement Award in 1993, and NSF
Research Initiation and CAREER awards in 1994 and 1995. In 1996, he was
appointed Fellow in the Center for Advanced Study at the University of
Illinois, and received the Xerox Award for faculty research. In the same
year, he became a Fellow of the David and Lucile Packard Foundation.
He received the IEEE Information Theory Society Paper Award (jointly with
Ralf Koetter) for the year 2004. In 2005, he received the Fulbright Senior
Scholar Fellowship, and the Best Paper Award at the IEEE Symposium on
Foundations of Computer Science (FOCS). In 2017, his work on polar codes
was recognized by the the IEEE Communications & Information Theory
Societies Joint Paper Award. During 1995–1998, he was an Associate Edi-
tor for Coding Theory and during 1998–2001, he was the Editor-in-Chief of
the IEEE TRANSACTIONS ON INFORMATION THEORY. From 2003 to 2009,
he was an Editor for the SIAM Journal on Discrete Mathematics. He is
currently serving on the Executive Editorial Board for the IEEE TRANSAC-
TIONS ON INFORMATION THEORY. He has been a member of the Board of
Governors of the IEEE Information Theory Society during 1998–2006, and
again during 2011–2017.

Eitan Yaakobi (S’07–M’12–SM’17) is an Associate Professor at the Com-
puter Science Department at the Technion Israel Institute of Technology.
He received the B.A. degrees in computer science and mathematics, and
the M.Sc. degree in computer science from the Technion — Israel Institute
of Technology, Haifa, Israel, in 2005 and 2007, respectively, and the Ph.D.
degree in electrical engineering from the University of California, San Diego,
in 2011. Between 2011-2013, he was a postdoctoral researcher in the depart-
ment of Electrical Engineering at the California Institute of Technology. His
research interests include information and coding theory with applications to
non-volatile memories, associative memories, data storage and retrieval, and
voting theory. He received the Marconi Society Young Scholar in 2009 and
the Intel Ph.D. Fellowship in 2010-2011.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:18:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

