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Expander graphs are relevant to theoretical computer science in addition to the
construction of high-performance switching networks. In communication network
applications, a high degree of symmetry in the underlying topology is often advant-
ageous, as it may reduce the complexity of designing and analyzing switching and
routing algorithms. We give explicit constructions of expander graphs that are highly
symmetric. In particular, we construct in"nite families of Ramanujan graphs with
large guarantees on the orders of their automorphism groups. Although nonlinear,
our expander graphs are within a constant factor of the size of the smallest graphs
exhibiting the same expansion properties. This work generalizes and extends in
several directions a previous explicit construction of expander graphs based on "nite
projective spaces due to Alon. � 2002 Elsevier Science (USA)
1. INTRODUCTION

Informally, a graph is an expander if every subset of vertices has a surpris-
ingly large neighborhood. Expanders are used in the construction of tele-
phone networks [9], nonblocking networks [13], superconcentrators [26],
virtual circuits [12], sorting and selection algorithms [2, 4], and graphs that
are hard to pebble [20, 24], as well as in obtaining lower bounds [31, 32], in
294
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the establishment of time}space trade-o!s [1, 17, 30], and in reducing the
amount of randomness required in probabilistic computations [16, 27]. Ex-
panders have also found applications in the design of linear-time encodable}
decodable error-correcting codes with high rates [28].
It is not too di$cult to prove the existence of expanders using probabilistic

methods. However, for applications, an explicit construction of an expander
is desirable. Naively, one could construct expanders by sampling a graph at
random and then checking the sampled graph to see if it is an expander.
However, the problem of verifying if a given graph is an expander has been
shown to be co NP-complete [10].
Another drawback with the method of random sampling is that the

generated graph is likely to have a low degree of symmetry (we measure the
symmetry of a graph here by the order of its full automorphism group), since
almost all graphs have no nontrivial automorphism groups (see [11]). For
applications especially in the design of telecommunication networks, it is
often desirable to have expanders with high symmetry. In this paper, we study
the problem of explicitly constructing expanders with large automorphism
groups. Our constructions employ algebraic and geometric techniques.

2. PRELIMINARIES

Given a graph �"(<, E) and SL<, the neighborhood of S is the set
N(S)"�v ��u, v�3E for some u3S�. Let �"(<, E) be a k-regular bipartite
graph with bipartition<"I�� O such that � is balanced; that is, �I�"�O�"n.
The vertices in I and O are called inputs and outputs, respectively. The
expansion property basically means that every subset of inputs must have
many outputs in its neighborhood. The de"nition for expander graphs is as
follows: � is said to have expansion c if c is the largest value so that for every
subset S-I,

(1) �N(S) �5�1#c �1!

�S�
n �� �S�.

The expansion of � is denoted expan(�). A bipartite graph with n inputs and
n outputs that is k-regular is called an (n, k, c)-expander if it has expansion c.
Expansions of graphs are closely related to the eigenvalues of certain

associated matrices. Given a graph �"(<, E), we can de"ne a �<���<�
matrix A with rows and columns indexed by vertices in < such that

A
��
"�

1

0

if �i, j�3E;

otherwise.
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The matrix A is called the A-matrix of �. If, in addition, � is a balanced
bipartite graph, we can associate another �<�/2��<�/2 matrix B whose rows
are indexed by inputs and columns indexed by outputs such that

B
��
"�

1

0

if �i, j�3E;

otherwise.

This matrix B is called the B-matrix of �. Observe that if B is de"ned, we
have

(2) A"�
0

B�

B

0�.
The eigenvalues of A are denoted �

�
,2, �

��
, where �

�
525�

��
. The

eigenvalues of the matrix BB� are denoted �
�
,2 , �

�
, where �

�
525�

�
.

We refer to these eigenvalues as eigenvalues of �. Note that since BB� is
positive semide"nite, the eigenvalues �

�
are all nonnegative. From (2), one can

also conclude that �
�
is an eigenvalue of BB� if and only if $��

�
are both

eigenvalues of A.
A Ramanujan graph [21] is a k-regular graph whose eigenvalue �

�
satis"es

�
�
42�k!1.

An automorphism of a bipartite graph �"(<,E ) is a bijection 	: <P<,
mapping inputs to inputs and outputs to outputs, such that �u, v�3E if and
only if �	 (u), 	(v)�3E. The set of all automorphisms of � forms a group under
functional composition. We call this group the full automorphism group of
� and denote it by Aut(�). Any subgroup of Aut(�) is simply called an
automorphism group of �.

3. PREVIOUS AND PRESENT WORK

Explicit constructions for expanders have been given by Margulis [22],
Gabber and Galil [14], Tanner [29], and Alon [4]. Tanner [29] was the "rst
to show the relation of eigenvalues with the expansion property. In particu-
lar, he obtained the following result.

LEMMA 3.1 (Tanner). ¸et �"(I�� O, E) be a k-regular balanced bipartite
graph, then for any SLI, we have

(3) �N(S) �5
k��S�

(k�!�
�
) �S�/ �I�#�

�

.
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COROLLARY 3.1 expan(�)51!�
�
/k�.

Proof. From (1) and (3), we derive

expan(�)5 inf
04
41

f (
),

where

f (
)"
1

1!
 �
k�

(k�!�
�
)
#�

�

!1�.
Simple calculus shows that expan(�)5lim���

f (
)"1!�
�
/k�. �

Lemma 3.1 and its corollary are useful for deriving expansion properties.
In fact, most of the work on expanders after Gabber and Galil [14] hinges on
bounding �

�
. The observation that the smaller �

�
is, the better expansion we

can derive led to the consideration of Ramanujan graphs. The importance of

the upper bound 2�k!1 lies in the following lower bound of Alon and
Boppana (see [3]). Let (�

���
)
�51 be a family of k-regular graphs on n vertices.

Then

lim inf
���

�
�
(�

���
)52�k!1.

Hence the Ramanujan graphs make good expanders. The construction of
Ramanujan graphs by Lubotzky et al. [21] and independently by Margulis
[23] is one of the major developments in constructive methods.
While it is desirable to have expanders with large automorphism groups

for applications to networks, the automorphism groups of expanders have
not been widely studied, except for a result of Klawe [18] and another of
Alon and Roichman [5].
The expanders that Alon constructed in [4] are point}hyperplane inci-

dence graphs of the "nite projective spaces PG(t, q), q"p� a prime power,
and hence has the group P�¸(t#1, �

�
) of order eq ( 	
�

�
) �	
�

���
(q�!1) as the

full automorphism group (see [6]). In this paper, we generalize the construc-
tion of Alon [4] based on "nite projective spaces in several directions. In
particular, we construct Ramanujan graphs with large guarantees on the
order of their automorphism groups. Among all graphs with the same
expansion properties, our graphs have the optimal number of edges (up to
a constant factor).

4. THE CONSTRUCTION

Let �
�
be the "nite "eld with q elements, and denote by �*

�
the group of all

nonzero elements in �
�
. De"ne S

	
to be the set of all nonzero (t#1)-tuples
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(a
�
,2 , a

	
) of elements of �

�
:

S
	
"� 	
�

�
��(0,2 , 0)�.

The "nite projective space PG(t, q) may be de"ned to be an incidence
structureS"(P,H, I) such that bothP andH are the sets of equivalence
classes of elements of S

	
under the equivalence relation given by

(a
�
,2 , a

	
)&(b

�
,2, b

	
)

if and only if there exists r3�*
�
such that a

�
"rb

�
for all i3�0,2 , t�.

We denote a point P3P by (a
�
:2: a

	
) if (a

�
,2, a

	
) lies in the equivalence

class P, and we denote a hyperplane H3H by [x
�
:2: x

	
] if (x

�
,2, x

	
) lies

in the equivalence class H. The incidence relation I is de"ned as follows:
(P,H)3I if and only if

(4)
	
�
���

a
�
x
�
"0

Let  be a positive integer. Let P�"�P���� �14i4, P3P�,
H�"�H� � �� �14j4,H3H�, andI�"�(P���

� ,H
� � �
� ) �14i4, 14j4, and

(P,H)3I�. We call S�"(P� , H� , I�) the -blowup of S. Let P3P and
H3H. The set �P���� �14i4� is called the ,ber of P, and the set
�H� � �� �14j4� is the ,ber of H. We de"ne �� :S� PS to be the map such
that �� (P���� )"P for any P���� 3P� , and �� (H� � �� )"H for any H� � �� 3H� .
Let I� and O� be sets of vertices corresponding to the elements of P� and

H�, respectively. In I� , we denote the elements by (a
�
:2: a

	
) ���� , and in O�,

we denote the elements by [x
�
:2:x

	
]� � �� .

DEFINITION 4.1. ��(t, q)"(I��� O�, E ) is the balanced bipartite graph such
that for a"(a

�
:2: a

	
) ���� 3I� and x"[x

�
:2:x

	
]� � �� 3O�, we have �a, x�3E if

and only if (4) is satis"ed.

We adopt the convention that if  is not speci"ed, then  is taken to be one.
The graphs �(t, q) are the point}hyperplane incidence graphs of the "nite
projective spaces PG(t, q) and hence are isomorphic to the expanders con-
structed by Alon in [4].
Let I� and O� be sets of vertices corresponding to the elements of S

	
. In I�,

we denote the elements by (a
�
,2 , a

	
), and in O�, we denote the elements

by [x
�
,2 , x

	
]. (Note that I� and O� are essentially punctured a$ne

spaces.)

DEFINITION 4.2. ��(t, q)"(I ��O�, E ) is the balanced bipartite graph such
that for a"(a

�
,2 , a

	
)3I � and x"[x

�
,2, x

	
]3O�, we have �a, x�3E if
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and only if

(5)
	
�
���

a
�
x
�
"1.

We remark that the de"nitions of inputs and outputs in ��(t, q) and ��(t, q)
satisfy the principle of duality.

5. COMBINATORIAL PROPERTIES

In this section, we give some combinatorial properties of the graphs �� (t, q)
and �� (t, q) de"ned in the previous section.

5.1. Number and Degree of Vertices

PROPOSITION 5.1. �I� �"�O��" (q	
�!1)/(q!1) and the degree of each
vertex in �� (t, q) is  (q	!1)/(q!1).

Proof. Obvious from de"nition. �

To compute the degree of vertices in ��(t, q) we require the following
lemma.

LEMMA 5.1. ¸et a
�
,2, a

	
3�

�
. ¹he equation

	
�
���

a
�
x
�
"1

has q	 solutions (x
�
,2, x

	
)3� 	
�

�
except when a

�
"2"a

	
"0, in which

case no solutions exist.

Proof. It is obvious that no solutions exist when a
�
"2"a

	
"0. Sup-

pose that not all a
�
1s are zero. We may assume without loss of generality that

a
	
O0. Then we get

x
	
"a	�

	 �1!

		�
�
���

a
�
x
��.

Since there are no restrictions on the choices of x
�
,2, x

		�
, it follows that

there are q	 solutions. �

COROLLARY 5.1. ¹he degree of each vertex in ��(t, q) is q	 .
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5.2. Strong Neighborhood Properties

In this section, we determine the number of outputs that are adjacent to
both of two given inputs in our graphs ��(t, q) and ��(t, q).

PROPOSITION 5.2. ¸et a"(a
�
:2: a

	
) ���� and b"(b

�
:2: b

	
) � � �
�

be any two
inputs in ��(t, q). ¹hen the number of outputs adjacent to both a and b is

(�		�
�	�

), if �� (a)"��(b) ;

(� 		�	�
�	�

), if �� (a)O��(b) .

Proof. If a and b lie in the same "ber, then an output x"[x
�
:2:x

	
] ���� is

adjacent to (a
�
:2: a

	
) ���� if and only if it is adjacent to (b

�
:2: b

	
) � � �� . Therefore,

the number of outputs adjacent to both a and b is the number of outputs
adjacent to any one of them. This number is given by Proposition 5.1.
If a and b lie in di!erent "bers, then �� (a) and ��(b) are distinct inputs

in �(t, q). The number of outputs adjacent to both ��(a) and �� (b) in �(t, q)
is (q		�!1)/(q!1), so the number of outputs adjacent to both a and b in
��(t, q) is (q		�!1)/(q!1). �

PROPOSITION 5.3. ¸et a"(a
�
,2 , a

	
) and b"(b

�
,2, b

	
) be two distinct

inputs of ��(t, q). Assume that a
�
O0. ¹hen the number of outputs

x"[x
�
,2 , x

	
] adjacent to both a and b is

0,

q		�,

if a
�
b
�
!a

�
b
�
"0 for all i3�0, 1,2 , t�;

otherwise.

Proof. The number of outputs x adjacent to both a and b is the number
of solutions to the simultaneous equations

(6)
	
�
���

a
�
x
�
"1 and

	
�
���

b
�
x
�
"1.

For simplicity of notation, and without loss of generality, we may and do
assume a

�
O0 (i.e., k"0) in the following. Eliminating x

�
from (6), we get

(7)
	
�
���

(a
�
b
�
!a

�
b
�
)x

�
"a

�
!b

�
.

We distinguish the cases a
�
"b

�
and a

�
Ob

�
.

When a
�
"b

�
, one of a

�
b
�
!a

�
b
�
, i3�1,2, t�, must be nonzero. There-

fore, the number of (x
�
,2 , x

	
) satisfying (7) is q		�. From (6), the value of
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x
�
is uniquely determined by the t-tuple (x

�
,2 , x

	
). Hence, the number of

nonzero (x
�
,2 , x

	
) is q		�.

When a
�
Ob

�
, then by Lemma 5.1, the number of (x

�
,2 , x

	
) is 0 if

a
�
b
�
!a

�
b
�
"0 for all i3�0, 1,2, t� and q		� otherwise.

Since x
�
is uniquely determined by (x

�
,2 , x

	
), the number of nonzero

(x
�
,2 , x

	
) found is as required. �

PROPOSITION 5.4. Given any input a of �� (t, q), there exist t distinct outputs
x
�
,2 , x

	
adjacent to a such that there are exactly  inputs, each of which is

adjacent to all of x
�
,2 , x

	
.

Proof. If su$ces to show that in �(t, q), the outputs�� (x�) ,2, ��(x	) have
exactly one input (that is, ��(a)) adjacent to all of them. Since �(t, q) is the
point}hyperplane incidence graph of the projective space PG(t, q), the
existence and uniqueness of such an input are guaranteed. �

6. COMPUTING EIGENVALUES

In this section, we compute the eigenvalues �
�
,2, �

�
of the B-matrices of

��(t, q) and ��(t, q).

THEOREM 6.1. ¸et B be the B-matrix of �� (t, q). ¹hen the eigenvalues of
BB� are:

Eigenvalue Multiplicity

� (��	�
�	�

)� 1

�q		� q (��	�
�	�

)

0 (!1) (��
�	�
�	�

)

Proof. Label the inputs of ��(t, q) by a
�
,2, a

�
, n" (q	
�!1)/(q!1).

Then it is easy to see that (BB�)
��

is the number of outputs adjacent
to both a

�
and a

�
. This number is given by Proposition 5.2. Let I be the �

matrix

 2 

� � �

 2 

.

Arranging the inputs in such a way that for each i"1,2 , (q	
�!1)/(q!1),
the inputs a

��	��#1,2, a
�� belong to the same "ber under ��, it follows
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that

BB�"

D
��

2 D
�� �

	
�	�
�	�

� � �

D
�	
�	�
�	� ��

2 D �	
�	�
�	�

� �
	
�	�
�	�

,

where

D
��
"�

(��	�
�	�

)I if i"j ;

(��	�	�
�	�

) I if iOj.

In other words,

BB�"M �I,

where M is the B-matrix of �(t, q). Now, the eigenvalues of M and the
corresponding multiplicities are well known. They are:

Eigenvalue Multiplicity

(��	�
�	�

)� 1

q		� q (��	�
�	�

)

It is an easy exercise in linear algebra to see the eigenvalues of I and their
corresponding multiplicities are:

Eigenvalue Multiplicity

� 1

0 (!1)

The eigenvalues of M �I are all the possible products ��, where � is an
eigenvalue of M and � is an eigenvalue of I, counted with multiplicities.
Theorem 6.1 follows. �

COROLLARY 6.1. For 44, �� (t, q) is a Ramanujan graph for all prime
powers q.

COROLLARY 6.2. ��(t, q) is an (n, k, c)-expander, where n"(q	
�!1)/
(q!1), k"(q	!1)/(q!1), and c51!1/q		�.

It is actually easy to see that the analysis of expansion properties carried
out by Alon [4] on the graph �(t, q) based on Lemma 3.1 implies the same
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expansion properties for our graphs ��(t, q). To see this, we note that the
number of vertices in ��(t, q) and the degree of each vertex in ��(t, q) are
precisely  times the corresponding values in �(t, q). Furthermore, the second
largest eigenvalue of the B-matrix of ��(t, q) is � times the second largest
eigenvalue of the B-matrix of � (t, q). Hence,  vanishes when the various
parameters of �� (t, q) are substituted into the inequality in Lemma 3.1. The
result below now follows from Theorem 2.3 in [4].

THEOREM 6.2. For every subset S of inputs in ��(t, q) we have

�N(S) �5n!

n�
�
	

�S�
,

where n" (q	
�!1)/(q!1) is the number of inputs in �� (t, q) .

We now determine the eigenvalues of ��(t, q).

THEOREM 6.3. ¸et B be the B-matrix of �� (t, q). ¹hen the eigenvalues of
BB� are:

Eigenvalue Multiplicity

q�	 1

q	 (q!2) (�	
�	�
�	�

)

q		� q(��	�
�	�

)

Proof. Label the inputs of ��(t, q) by a
�
,2 , a

�
, n"q	
�!1. Then

(BB�)
��
is the number of outputs adjacent to both a

�
and a

�
. It follows from

Corollary 5.1 and Proposition 5.3 that this number is given by

(i) q	, if a
�
"a

�
;

(ii) 0, if a
�
Oa

�
and �

�	�
(a

�
)"�

�	�
(a

�
);

(iii) q		�, otherwise.

Given a
�
, the number of a

�
satisfying (ii) is q!2 and the number of a

�
satisfy-

ing (iii) is q	
�!q. We label the inputs in such a way that for each
i"1,2, (q	
�!1)/(q!1), the inputs a

��	����	��
�
,2, a

� ��	��
satisfy (i) or

(ii) pairwise. Then

BB�"

D
��

2 D
�� �

	
�	�
�	�

� � �

D
�	
�	�
�	� ��

2 D
�	
�	�
�	�

� �
	
�	�
�	�

,
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where each D
��
is a (q!1)�(q!1) matrix such that

D
��
"�

q	 0 2 0

0 q	 2 0

� � � �

0 0 2 q	

"q	I, if i"j;

q		� 2 q		�

� � �

q		� 2 q		�

, if iOj.

Now we consider the eigenvalues and eigenvectors of BB�.
The vectors v

�
"[1,2 , 1]	 is clearly an eigenvector with eigenvalue

q	#(q(q	!1)/(q!1)) (q!1)q		�"q�	. So the eigenspace of q�	 has dimen-
sion at least one.
For i"2,2 , (q	
�!1)/(q!1), let v

�
"(v

��
)
�
be the vector whose entries

are

v
��
"�

1, for 14j4q!1;

!1, for (i!1) (q!1)#14j4i(q!1);

0, otherwise.

These are clearly eigenvectors with eigenvalues q	#(q!1) (!q		�)"q		�.
It is equally clear that v

�
,2 , v

�q	
�	��/(q!1) are linearly independent. So the
eigenspace of q		� has dimension at least q(q	!1)/(q!1).
For each i"1,2, (q	
�!1)/(q!1) and each j"2,2, q!1, let

w
��
"(w

���
)
�
be the vector whose entries are

w
���

"�
1, if k"(i!1) (q!1)#1;

!1, if k"(i!1) (q!1)#j;

0, otherwise.

Clearly, all these vectors are linearly independent, and they are all eigenvec-
tors with eigenvalue q	. Consequently, the eigenspace of q	 has dimension at
least (q	
�!1) (q!2)/(q!1).
Since 1#q (q	!1)/(q!1)#(q	
�!1) (q!2)/(q!1)"q	
�!1, it fol-

lows that the inequalities involving the dimensions of the eigenspaces above
are actually all equalities. This completes the proof. �

COROLLARY 6.3. ��(t, q) is a Ramanujan graph for all prime powers q.
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COROLLARY 6.4. ��(t, q) is an (n, k, c)-expander,where n"q	
�!1, k"q	,
and c51!1/q	.

THEOREM 6.4. For every subset S of inputs in ��(t, q), we have

�N(S ) �5n!

n�	
��
�	
��

�S�
,

where n"q	
�!1 is the number of inputs in ��(t, q).

Proof. We know n"q	
�!1, k"q	 and �
�
"q	. Let 
"�S�/n. By

Lemma 3.1, we have

�N(S) �5

q	n


q	#1!


"n!

(1!
) (q	
�!1)


q	#1!


5n!�
1!



 � q

"n!

n�	
��
�	
��(1#1/n)�
�	
��

�S�
!

�S� (n#1)�
�	
��

�S�

5n!

n�	
��
�	
��

�S�
. �

7. AUTOMORPHISM GROUPS

In the previous section, we showed that for 44, the graphs �� (t, q) and
��(t, q) are Ramanujan graphs with good expansions. We now show that
these graphs are highly symmetric as well. First, we determine the order of the
full automorphism group of �� (t, q).

LEMMA 7.1. Every automorphism 
 of ��(t, q) induces an automorphism 
N
of �(t, q).

Proof. Let 
 be an automorphism of ��(t, q). It su$ces to show that if

 sends an input a of ��(t, q) to a�, then the whole "ber of a under �� is sent
to the "ber of a� under ��. (By duality, the analogous result holds when
the inputs are replaced by outputs of ��(t, q).)
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By Proposition 5.4, a given input a of ��(t, q) has at least t distinct outputs
x
�
,2 , x

	
adjacent to a such that there are exactly  inputs which make up the

"ber containing a under ��, each of which is adjacent to all x
�
,2 , x

	
.

Consequently, the images 
(x
�
) ,2 , 
(x

	
) are outputs in ��(t, q) adjacent

to a�"
(a), and 
(x
�
) ,2, 
(x

	
) have precisely  inputs, each adjacent to all

of them, that constitute the "ber under �� containing a�. Hence, the "ber of
a under �� is sent by 
 to the "ber of a� under ��. �.

THEOREM 7.1. ¹here is a group K of order (!)�� (where n"(q	
�!1)/
(q!1)) such that the sequence

1PKPAut(�� (t, q)) �PAut(�(t, q))P1

is exact, where �(
)"
N . In particular, the order of

Aut(��(t, q)) is ( !)�� � P�¸(t#1, �
�
) �.

Proof. Let � be an automorphism of �(t, q). For an input a of �(t, q),
let a�"�(a). For an output x of �(t, q), let x�"�(x). Suppose further that the
"ber of a (respectively, x) under �� (in ��(t, q)) is �a

�
,2, a�� (respectively,

�x
�
,2 , x��), and similarly for a� and x�.
Let 
 be a map from ��(t, q) to itself de"ned as follows: 
 is a bijection from

�a
�
,2 , a�� to �a�

�
,2 , a��� for all inputs a of �(t, q); 
 is a bijection from

�x
�
,2 , x�� to �x�

�
,2, x��� for all outputs x of �(t, q). If a

�
and x

�
are adjacent,

then a and x are adjacent in �(t, q), so a� and x� are adjacent and hence 
 (a
�
)

and 
(x
�
) are incident. Hence, 
 de"ne an automorphism of ��(t, q) and 
� "�.

This proves the surjectivity of �.
It remains to show that K ���

" ker� is of order (!)��. For this, we note that

3K implies that for an input a of �� (t, q) (respectively, an output x of ��(t, q)),

(a) (respectively, 
(x)) is in the "ber under �� containing a (respectively, x).
Therefore, the automorphism 
 "xes each "ber but can freely permute all the
inputs (respectively, outputs) in each "ber. Conversely, if 
 is a map that
simply permutes all the inputs (respectively, ouputs) in each "ber, then

 clearly gives rise to an automorphism of ��(t, q) and 
� is the identity
automorphism of � (t, q). The number of such automorphisms 
 is clearly
(!)��. �

For ��(t, q), we are not able to determine the precise order of its full
automorphism group. However, we can determine a rather large automor-
phism group of ��(t, q).

LEMMA 7.2. Elements of G¸(t#1, �
�
) induce automorphisms of ��(t, q).

Proof. Let 
 be an element of G¸(t#1, �
�
). An input a of ��(t, q) may be

written as �
a
�
�
a
	
� with a

�
,2, a

	
3�

�
. Let 
� (a)"
 �

a
�
�
a
	
�. An output x of ��(t, q)
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may be written as [x
�
,2, x

	
] with x

�
,2 , x

	
3�

�
. Let 
� (x) be the output

given by [x
�
,2, x

	
]
	�. Then 
 induces a bijection 
� on the set of all inputs

as well as the set of all outputs of ��(t, q). Furthermore, if a and x are incident,
that is,

(8) [x
�
,2 , x

	
]

a
�
�
a
	

"

	
�
���

a
�
x
�
"1,

then

[x
�
,2, x

	
] 
	�


a
�
�
a
	

"

	
�
���

a
�
x
�
"1,

implying that 
� (a) and 
� (x) are adjacent. �

LEMMA 7.3. ¸et a"�
a
�
�
a
	
� be an input of ��(t, q) and let x"[x

�
,2 , x

	
] be

an output of ��(t, q). ¸et � be an automorphism of �
�
that sends f3�

�
to f �3�

�
.

¹hen � induces an automorphism �N of ��(t, q) given by

�� (a)"
a�
�
�
a�
	

�� (x)"[x�
�
,2 , x�

	
].

Proof. It is clear that 
� is a bijection on the set of inputs as well as the set
of outputs of ��(t, q). If a and x are adjacent, applying � to (8) shows that

	
�
���

a�
�
x�
�
"1;

that is, 
� (a) and 
� (x) are adjacent. �

LEMMA 7.4. ¸et 
N and �M be automorphisms of ��(t, q) induced by 
,
�3G¸(t#1,�

�
). ¸et �N and �N be automorphisms of ��(t, q) induced by �,

�3Aut�
�
. If �N 
N "�N �� , then 
N "�� and �N "�N .

Proof. If �� 
� "�� �� , then �� 	��� "�� 
� 	�. Clearly, �� 	��� "xes each vector in
the standard basis of �	
�

�
. Hence, �� 
� 	� is the identity automorphism, as the

only element of G¸(t#1, �
�
) "xing each vector in the standard basis of

� 	
�
�

is the identity. Hence, 
� "�� and �� "�� . �
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THEOREM 7.2. Aut(��(t, q)) contains a subgroup G that satis,es the exact
sequence

1PG¸(t#1, �
�
)PGPAut�

�
P1.

In particular, G has order

�Aut�
�
� ) q(	
�

�
)
	
�
�
���

(q�!1).

Proof. Let G be the set

G"��N 
N ��3Aut�
�
, 
3G¸(t#1,�

�
)�.

If 
"(

��
)3G¸(t#1,�

�
), then for �3Aut�

�
, 
� �� "�� 
� �, where 
�"(
�	�

��
).

Hence, G is a subgroup of Aut (��(t, q)) since, given �� 
� , �� �� 3G, we have

(�� 
� )(�� �� )	�"�� 
� �� 	��� 	�"��	�(
�	�)�3G.

Let 	 : GPAut �
�
be the map 	(�� 
� )"�� . Then 	 is clearly a well-de"ned,

surjective group homomorphism whose kernel is G¸(t#1, �
�
). �

8. SOME REMARKS ON DENSITY

One of the main interests in expanders is to construct low-density expan-
ders, or expanders with few edges. The graphs �� (t, q) and ��(t, q) we construc-
ted are expanders with (�
	#o(1))n�	�
	 and (1#o(1))n�	�
�	
�� edges,
respectively, where n is the number of inputs. As pointed out by Alon [4], the
well-known results on the problem of Zarankiewicz [15] can be used to prove
the following result.

PROPOSITION 8.1 (Alon). If �"(I�� O, E) is a balanced bipartite graph
with �I�"�O�"n such that for all SLI we have

�N(S) �5n!

n�
�
	

�S�

then �E�5�(n�	�
	 ).

This result, together with Theorems 6.2 and 6.4, implies that for  a "xed
constant, our graphs �� (t, q) and ��(t, q) are all highly expanding graphs with
the optimal number of edges (up to a constant factor). The case "1 was
obtained by Alon [4].
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9. CONCLUSION

Generalizing the work of Alon, we have given explicit constructions of two
in"nite families of highly expanding graphs, ��(t, q) and ��(t, q). These graphs
are Ramanujan graphs for 44 and are shown to have large automorphism
groups. It is also shown that these graphs contain the fewest possible number
of edges (up to a constant factor) among all graphs with the same expansion
properties.
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