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Abstract: Let �(t, k) denote the set of pairs (v, λ) for which there exists a graphical t-(v, k, λ)
design. Most results on graphical designs have gone to show the finiteness of �(t, k) when t and
k satisfy certain conditions. The exact determination of �(t, k) for specified t and k is a hard
problem and only �(2, 3), �(2, 4), �(3, 4), �(4, 5), and �(5, 6) have been determined. In this
article, we determine completely the sets �(2, 5) and �(3, 5). As a result, we find more than
270,000 inequivalent graphical designs, and more than 8,000 new parameter sets for which there
exists a graphical design. Prior to this, graphical designs are known for only 574 parameter sets.
© 2007 Wiley Periodicals, Inc. J Combin Designs 16: 70–85, 2008
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1. INTRODUCTION

For a finite set X and a nonnegative integer t, the set of all t-subsets of X is denoted
(
X
t

)
.

A k-uniform set system is a pair (X,B), where X is a finite set of elements called points
and B ⊆ (

X
k

)
. Elements of B are called blocks. The order of (X,B) is the number of points,

|X|. A design with parameters t-(v, k, λ) is a k-uniform set system (X,B) of order v such
that every T ∈ (

X
t

)
is contained in exactly λ blocks of B. To avoid triviality, we impose the

following restrictions on a t-(v, k, λ) design (X,B):

1. t ≥ 2,

© 2007 Wiley Periodicals, Inc.
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2. t < k,
3. B �= Ø, and B �= (

X
k

)
.

For two designs, (X,A) and (Y,B), an isomorphism of (X,A) onto (Y,B) is a bijection
σ : X → Y such that σ(A) = B. An automorphism of a design is an isomorphism of the
design onto itself. The set of all automorphisms of a designD forms a group under functional
composition. This group is called the automorphism group ofD and is denoted by Aut(D).
A subgroup H ≤ Aut(D) is a group of automorphisms of D.

Let V be a set of cardinality n and consider the induced action of the symmetric group
Sn = Sym(V ) on the set X = (

V
2

)
. This defines an embedding of Sn into S(n

2) = Sym(X)

with image group S[2]
n . By canonical extension, S[2]

n also acts on
(
X
k

)
. A t-(v, k, λ) design

(X,B) is graphical if it has a group of automorphisms that is permutation isomorphic to
S[2]

n with v = (
n
2

)
. In particular, B is then a union of orbits of S[2]

n on
(
X
k

)
.

The term “graphical design” is motivated by the following alternative perspective.
Considering the complete graph Kn with vertex set V, we may view X as the edge set
of Kn, in which case the orbits of S[2]

n on
(
X
k

)
are in a one-to-one correspondence with the

isomorphism classes of spanning k-edge subgraphs of Kn. Thus, we may view the block setB
of a graphical design as a set of spanning k-edge subgraphs of Kn, closed under isomorphism
of graphs, such that every t-edge subgraph of Kn is a subgraph of λ graphs inB. Although the
definition of a graphical design does not explicitly assume this graphical structure, a required
group of automorphisms induces the structure (in a canonical manner for n �= 4) because
one of the orbits of S[2]

n corresponds to the line graph of Kn, from which one can recover
the sets of edges having a vertex in common when n �= 4. Two graphical designs (X,A)
and (Y,B), with individualized required groups of automorphisms, H and K, respectively,
are equivalent if there exists an isomorphism σ of (X,A) onto (Y,B) such that σHσ−1 = K.

The first example of a graphical design has been attributed to R. M. Wilson by Kramer
and Mesner [12]:

Example 1.1. A graphical 3-(10, 4, 1) design is obtained by taking as blocks all spanning
4-edge subgraphs of K5 isomorphic to one of the following graphs:

However, Betten et al. [1] have reported that already in 1970, M.H. Klin has described
graphical designs when he determined the overgroups of S[2]

n . But Klin’s result was
unpublished, except for a short note that appeared in a less well-known journal [10]. Further
examples of graphical designs were given by Driessen [9]. The first systematic approach
to determining the existence of graphical designs was undertaken by Chouinard et al. [8],
who determined all graphical t-(v, k, λ) designs with λ = 1 and λ = 2. These results led
Chouinard [6] to make the following conjecture, which remains open.

Conjecture 1.2 (Chouinard). For any fixed λ, there exist only finitely many graphical
t-(v, k, λ) designs.

Partial progress on this conjecture has been obtained by Chouinard [7].
Computers were brought to bear in the early nineties, which resulted in further progress

in the construction of graphical t-(v, k, λ) designs. Kreher et al. [13] used the LLL algorithm
to construct many examples of graphical t-(v, k, λ) designs. Chee [2,3] used symbolic
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72 CHEE AND KASKI

computational methods to find all graphical 2-(v, 3, λ), 2-(v, 4, λ), 3-(v, 4, λ), and 4-(v, 5, λ)
designs. Further sporadic examples were also obtained by Kramer [11] and Chee [4]. In the
late nineties, more graphical t-(v, k, λ) designs were discovered by Betten et al. [1] using
an improved implementation of the LLL algorithm. This is the state-of-the-art. Despite that
more than 20 years have passed since the introduction of graphical designs, only a small finite
number of them are known. Let �(t, k, v) denote the set of λ ≤ 1

2

(
v−t
k−t

)
for which a graphical

t-(v, k, λ) design exists, and let �(t, k) = {(v, λ) : λ ∈ �(t, k, v)}. The reason for restricting
λ ≤ 1

2

(
v−t
k−t

)
is to avoid duplication by complementation, since if (X,B) is a (graphical)

t-(v, k, λ) design, then its complement, (X,
(
X
k

) \ B), is a (graphical) t-(v, k,
(
v−t
k−t

) − λ)
design. The parameters of all graphical designs known are given in Appendix A, where
Table I presents those sets �(t, k) which we have complete knowledge of, and Table III lists
known elements of some �(t, k) which we have yet to completely determine. The authority
for these tables are [1–4,11,13] (cf. [5]). In total, there are only 574 parameter sets for
which we know there exist graphical designs. Indeed, results in the literature are either on
construction of sporadic examples, on nonexistence, or on the finiteness of the number of
graphical designs with certain parameters.

The purpose of this article is to improve this state of knowledge by determining
completely the sets �(2, 5) and �(3, 5). With this result, the sets �(t, k) are now completely
known for 2 ≤ t < k ≤ 5. As a by-product, we give more than 8,000 new parameter sets for
which there exists a graphical design, substantially improving on the number of graphical
designs known thus far. Our results also correct some minor errors in [1].

2. KRAMER–MESNER MATRICES AND OUTLINE OF APPROACH

Suppose we wish to construct a t-(v, k, λ) design (X,B) with a group of automorphisms �.
Then B is a union of orbits of � on

(
X
k

)
. LetO(t)

1 ,O(t)
2 , . . . ,O(t)

N(t) andO(k)
1 ,O(k)

2 , . . . ,O(k)
N(k)

be the orbits of � on
(
X
t

)
and on

(
X
k

)
, respectively. Define an N(t) × N(k) integer matrix

Wt,k(X|�) by the rule that the (i, j)-entry is |{K ∈ O(k)
j : K ⊇ T }|, where T ∈ O(t)

i can
be chosen arbitrarily. Such Wt,k(X|�) matrices are called Kramer–Mesner matrices, after
Kramer and Mesner [12] who observed the following.

Theorem 2.1 (Kramer and Mesner). There exists a t-(v, k, λ) design with a group of
automorphisms � if and only if there exists a {0, 1}-vector u such that

Wt,k(X|�)u = λ(1, . . . , 1)T. (1)

Based on Theorem 2.1, our approach to determining �(2, 5) and �(3, 5) is to find all
solutions to the equation Wt,k(X|S[2]

n )u = λ(1, . . . , 1)T for (t, k) = (2, 5) and (t, k) = (3, 5).
More precisely, we perform the following steps:

(i) determine a bound n0 so that no graphical t-(v, k, λ) design exists for n ≥ n0; and
(ii) enumerate all graphical t-(

(
n
2

)
, k, λ) designs for n < n0 by determining all solutions

to Wt,k(X|S[2]
n )u = λ(1, . . . , 1)T.

The first step is accomplished via a combinatorial analysis and the second step is
accomplished via computation. It is not hard to see that distinct {0, 1}-vectors u satisfying
(1) give inequivalent graphical designs.
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ENUMERATION OF GRAPHICAL DESIGNS 73

FIGURE 1. Transpose of the Kramer–Mesner matrix W2,5(X|S[2]
n ).

Betten et al. [1] have computed the matrices W2,5(X|S[2]
n ) and W3,5(X|S[2]

n ). These
take the forms given in Figures 1 and 2, where nk denotes the falling factorial

n(n − 1) · · · (n − k + 1). Observe that the matrices have constant row sum
((n

2)−t

k−t

)
. A list

of orbit representatives indexing the rows and columns of W2,5(X|S[2]
n ) and W3,5(X|S[2]

n )
is given in Appendix B.

3. UPPER BOUNDS FOR EXISTENCE

Our subsequent proofs of the nonexistence of graphical designs for n large enough in the
cases (t, k) = (2, 5) and (t, k) = (3, 5) are quantitative versions of the proof of a finiteness
theorem of Betten et al. [1].

The orbit of a graph G under the action of S[2]
n is denoted by Orb(G).
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74 CHEE AND KASKI

FIGURE 2. Transpose of the Kramer–Mesner matrix W3,5(X|S[2]
n ).

A. Upper Bound for Existence of Graphical 2-(v, 5, λ) Designs

We prove in this section that no graphical 2-(
(
n
2

)
, 5, λ) design exists if n ≥ 538.

Let (X,B) be a graphical 2-(
(
n
2

)
, 5, λ) design, where n ≥ 538. We may assume without

loss of generality that B ⊇ Orb(G(5)
26 ), since otherwise we can consider the complement of

the design. Let µi denote the sum of all entries of degree i (as a polynomial in n) in row two
of W2,5(X|S[2]

n ). Then we have µ6 = (n − 4)6/48, µ5 = 3(n − 4)5/4, µ4 = 55(n − 4)4/6,
µ3 = 275(n − 4)3/6, and µ2 = 89(n − 4)2. Define the integers λ6 = µ6 and λi = λi+1 +
µi for i = 2, 3, 4, 5. By considering the number of blocks in Orb(G(5)

26 ) containing G
(2)
2 , we

see that

λ ≥ λ6. (2)
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ENUMERATION OF GRAPHICAL DESIGNS 75

Lemma 3.1. B ⊇ Orb(G(5)
20 ).

Proof. Suppose that B �⊇ Orb(G(5)
20 ). Then by considering the number of blocks in B

containing G
(2)
1 , we have

λ ≤
((

n
2

) − 2

3

)
− 1

48
(n − 3)6 .

The above inequality, together with inequality (2), implies

λ6 ≤
((

n
2

) − 2

3

)
− 1

48
(n − 3)6 ,

giving

n6 − 69n5 + 1085n4 − 8435n3 + 36642n2 − 84664n + 80832 ≤ 0,

which is impossible for n ≥ 51. �

So B ⊇ ⋃
i∈{20,26} Orb(G(5)

i ) and by considering the number of blocks in B containing

G
(2)
2 , we now have

λ ≥ λ5. (3)

Lemma 3.2. B ⊇ ⋃
i∈{13,21,22} Orb(G(5)

i ).

Proof. Suppose thatB contains at most two of the orbits Orb(G(5)
i ), i ∈ {13, 21, 22}. Then

by considering the number of blocks in B containing G
(2)
1 , we have

λ ≤
((

n
2

) − 2

3

)
− 1

8
(n − 3)5 .

The above inequality, together with inequality (3), implies

λ5 ≤
((

n
2

) − 2

3

)
− 1

8
(n − 3)5 ,

giving

3n5 − 295n4 + 4475n3 − 28541n2 + 85198n − 98184 ≤ 0,

which is impossible for n ≥ 82. �

So B ⊇ ⋃
i∈{13,20,21,22,26} Orb(G(5)

i ) and by considering the number of blocks in B

containing G
(2)
2 , we now have

λ ≥ λ4. (4)
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76 CHEE AND KASKI

Lemma 3.3. B ⊇ ⋃
i∈{7,8,11,16,18,24} Orb(G(5)

i ).

Proof. Suppose that B contains at most five of the orbits Orb(G(5)
i ), i ∈

{7, 8, 11, 16, 18, 24}. Then by considering the number of blocks in B containing G
(2)
1 ,

we have

λ ≤
((

n
2

) − 2

3

)
− 1

8
(n − 3)4 .

The above inequality, together with inequality (4), implies

λ4 ≤
((

n
2

) − 2

3

)
− 1

8
(n − 3)4 ,

giving

3n4 − 1154n3 + 14721n2 − 64450n + 95256 ≤ 0,

which is impossible for n ≥ 372. �

So B ⊇ ⋃
i∈{7,8,11,13,16,18,20,21,22,24,26} Orb(G(5)

i ) and by considering the number of

blocks in B containing G
(2)
2 , we now have

λ ≥ λ3. (5)

Lemma 3.4. B ⊇ ⋃
i∈{2,6,9,10,12,17,19,23,25} Orb(G(5)

i ).

Proof. Suppose that B contains at most eight of the orbits Orb(G(5)
i ), i ∈

{2, 6, 9, 10, 12, 17, 19, 23, 25}. Then by considering the number of blocks in B containing
G

(2)
1 , we have

λ ≤
((

n
2

) − 2

3

)
− 1

6
(n − 3)3 .

The above inequality, together with inequality (5), implies

λ3 ≤
((

n
2

) − 2

3

)
− 1

6
(n − 3)3 ,

giving

n3 − 546n2 + 4541n − 9516 ≤ 0,

which is impossible for n ≥ 538. �

 15206610, 2008, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcd.20137 by N

ational U
niversity O

f Singapore N
us L

ibraries T
echnical Services, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ENUMERATION OF GRAPHICAL DESIGNS 77

So B ⊇ ⋃
i∈{2,6,7,8,9,10,11,12,13,16,17,18,19,20,21,22,23,24,25,26} Orb(G(5)

i ) and by consider-

ing the number of blocks in B containing G
(2)
2 , we now have

λ ≥ λ2. (6)

Lemma 3.5. B ⊇ ⋃
i∈{3,4,5,14,15} Orb(G(5)

i ).

Proof. Suppose that B contains at most four of the orbits Orb(G(5)
i ), i ∈ {3, 4, 5, 14, 15}.

Then by considering the number of blocks in B containing G
(2)
1 , we have

λ ≤
((

n
2

) − 2

3

)
− (n − 3)2 .

The above inequality, together with inequality (6), implies

λ2 ≤
((

n
2

) − 2

3

)
− (n − 3)2 ,

giving

n2 − 59n + 216 ≤ 0,

which is impossible for n ≥ 56. �

So B ⊇ ⋃
i∈{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26} Orb(G(5)

i )=(
X
5

)\
Orb(G(5)

1 ). IfB �⊇ Orb(G(5)
1 ), then (X,B) cannot be a 2-(

(
n
2

)
, 5, λ) design unless 4(n − 3) =

4, which is impossible for n ≥ 5. So B ⊇ Orb(G(5)
1 ) and hence B = (

X
k

)
, which is excluded

from the definition of a design to avoid triviality.
We summarize the above results as:

Theorem 3.6. No graphical 2-(
(
n
2

)
, 5, λ) design exists if n ≥ 538.

B. Upper Bound for Existence of Graphical 3-(v, 5, λ) Designs

We prove in this section that no graphical 3-(
(
n
2

)
, 5, λ) design exists if n ≥ 34.

Let (X,B) be a graphical 3-(
(
n
2

)
, 5, λ) design, where n ≥ 34. We may assume without

loss of generality that B ⊇ Orb(G(5)
7 ), since otherwise we can consider the complement of

the design. By considering the number of blocks in Orb(G(5)
7 ) containing G

(3)
1 , we see that

λ ≥ 1

8
(n − 3)4 . (7)

Lemma 3.7. B ⊇ ⋃
i∈{20,21,22,26} Orb(G(5)

i ).
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78 CHEE AND KASKI

Proof. Suppose that B �⊇ Orb(G(5)
20 ). Then by considering the number of blocks in B

containing G
(3)
2 , we have

λ ≤
((

n
2

) − 3

2

)
− 1

8
(n − 5)4 .

The above inequality, together with inequality (7), implies

1

8
(n − 3)4 ≤

((
n
2

) − 3

2

)
− 1

8
(n − 5)4 ,

giving

(n − 4)(n3 − 38n2 + 231n − 498) ≤ 0,

which is impossible for n ≥ 32.
To show that B ⊇ Orb(G(5)

i ) for i ∈ {21, 22, 26}, mimic the proof above. �

It follows that B ⊇ ⋃
i∈{7,20,21,22,26} Orb(G(5)

i ). Let A = (
X
5

) \ B and consider the 3-

(
(
n
2

)
, 5, λ′) design (X,A). By considering the number of blocks in A containing G

(3)
5 , we

see that

λ′ ≤ 12(n − 6)2 + 84(n − 6) + 66. (8)

Lemma 3.8. A �⊇ Orb(G(5)
i ) for i ∈ {2, 6, 11, 13, 16, 18, 24}.

Proof. Suppose that A ⊇ Orb(G(5)
2 ). Then by considering the number of blocks in

Orb(G(5)
2 ) containing G

(3)
1 , we have

λ′ ≥ 3

2
(n − 3)3 .

The above inequality, together with inequality (8), implies

3

2
(n − 3)3 ≤ 12(n − 6)2 + 84(n − 6) + 66,

giving

n3 − 20n2 + 95n − 120 ≤ 0,

which is impossible for n ≥ 14.
To show that A �⊇ Orb(G(5)

i ) for i ∈ {6, 11, 13, 16, 18, 24}, mimic the proof above. �

It follows that B ⊇ ⋃
i∈{2,6,7,11,13,16,18,20,21,22,24,26} Orb(G(5)

i ). By considering the

number of blocks in A containing G
(3)
5 , we now have

λ′ ≤ 54. (9)
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ENUMERATION OF GRAPHICAL DESIGNS 79

Lemma 3.9. A �⊇ Orb(G(5)
i ) for i ∈ {1, 3, 4, 5, 8, 9, 10, 12, 14, 15, 17, 19, 23, 25}.

Proof. Suppose that A ⊇ Orb(G(5)
1 ). Then by considering the number of blocks in

Orb(G(5)
1 ) containing G

(3)
1 , we have

λ′ ≥ 3(n − 3).

The above inequality, together with inequality (9), implies

3(n − 3) ≤ 54,

which is impossible for n ≥ 22.
To show that A �⊇ Orb(G(5)

i ) for i ∈ {3, 4, 5, 8, 9, 10, 12, 14, 15, 17, 19, 23, 25}, mimic
the proof above. �

We can now conclude that B ⊇ (
X
5

)
, which is excluded from the definition of a design to

avoid triviality. We summarize the above results as:

Theorem 3.10. No graphical 3-(
(
n
2

)
, 5, λ) design exists if n ≥ 34.

4. COMPUTATION FOR EXISTENCE

The symbolic computation approach of Chee [2] can, in theory, be used to find all graphical
t-(v, k, λ) designs for given t and k, without the need to establish upper bounds for existence,
such as in the previous section. However, in practice, the method becomes infeasible
when k becomes large. Already for k = 5 we would have to solve up to 33 million
systems of simultaneous Diophantine equations of degree up to six. Fortunately, using
the upper bounds from the previous section, a straightforward exhaustive search suffices.
In both of the cases (t, k) = (2, 5) and (t, k) = (3, 5), there are 26 possible orbits of 5-edge
graphs, implying that we can easily enumerate all the 226 =67,108,864 candidate designs,
represented as {0, 1}-vectors u, and filter out those candidates that do not constitute a solution
to the system

Wt,5(X|S[2]
n )u = λ(1, . . . , 1)	, λ ≤ 1

2

((
n
2

) − t

5 − t

)
.

In particular, this system needs to be considered in the two cases t = 2 and t = 3 for all
n ≤ 537 and n ≤ 39, respectively. Both authors of this article independently carried out this
computation with the following identical results.

A. Existence of Graphical 2-(v, 5, λ) Designs

Our computations show that there are no graphical 2-(
(
n
2

)
, 5, λ) designs for 40 ≤ n ≤ 537.

For n ≤ 39, the number of inequivalent graphical 2-(
(
n
2

)
, 5, λ) designs is fairly large, and

for reasons of space, it is infeasible to give a complete listing within this article. A complete
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80 CHEE AND KASKI

catalogue of the designs can be found on the first author’s website at

〈http://www1.spms.ntu.edu.sg/˜ymchee/graphical.htm〉.

We record this result as:

Theorem 4.1. There are 8,619 elements in �(2, 5) and there exist 271,360 inequivalent
graphical 2-(

(
n
2

)
, 5, λ) designs. No graphical 2-(

(
n
2

)
, 5, λ) design exists if n ≥ 40.

B. Existence of Graphical 3-(v, 5, λ) Designs

Our computations show that there are no graphical 3-(
(
n
2

)
, 5, λ) designs for 10 ≤ n ≤ 33.

For n ≤ 9, a complete listing of all inequivalent graphical 3-(
(
n
2

)
, 5, λ) designs found is

presented below.
All elements of �(3, 5) and inequivalent solutions

(v, λ) {0, 1}-vectors uT giving Number of
inequivalent solutions inequivalent solutions

(15, 30) 10010100110000001000001000 1
(21, 3) 00000010000000100000000010 1
(21, 30) 00001100001001000000001100 1
(21, 33) 00001110001001100000001110 1
(21,39) 00010010100000010000000010 3

01000011010000101000000000
01000011010001100100000000

(21, 48) 10010000001100100010000010 2
10100000000100100110000010

(21, 69) 00011110101001010000001110 5
00101110100000011000001110
00101110100001010100001110
00101111000101010010001110
01001111011001101000001100

(21, 75) 01010011110000011000000000 2
01010011110001010100000000

(28, 30) 00000100000011000000001110 1
(28, 150) 00110101010100010110001000 4

00110101011000011010001000
11001010100111100100110110
11001010101011101000110110

(36, 180) 00101010011001000101001000 1
(36, 198) 11000000011001110010001110 1
(36, 258) 10101111000110111011000110 3

10110100011100100110100010
10110100101010101010100010

We record this result as:

Theorem 4.2. There are 13 elements in �(3, 5) and there exist 26 inequivalent graphical
3-(

(
n
2

)
, 5, λ) designs. No graphical 3-(

(
n
2

)
, 5, λ) design exists if n ≥ 10.
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ENUMERATION OF GRAPHICAL DESIGNS 81

5. CONCLUSION

In this article, we determined completely the sets �(2, 5) and �(3, 5), and found more than
270,000 inequivalent graphical designs, and more than 8,000 new parameter sets for which
there exists a graphical design.

We remark that our computation revealed two minor errors in [1]; in fact,

(i) there is only one graphical 2-(21, 5, λ) design for λ = 52 and λ = 84; and
(ii) there exist only two inequivalent (and hence at most two nonisomorphic) graphical

3-(21, 5, 75) designs.

A natural question is whether the techniques in this article could be developed further to
determine �(t, k) for higher k, in particular for k = 6. The method for establishing upper
bounds for existence is certainly applicable, but the main hurdle is the search for solutions
to Wt,k(X|S[2]

n )u = λ(1, . . . , 1)T. There are 68 nonisomorphic 6-edge graphs, so the naı̈ve
search space has size 268. More sophisticated search techniques must be employed in this
case.

APPENDIX A

All Known Graphical t-Designs

TABLE I. Complete Knowledge of �(t, k)

t k All elements of �(t, k) |�(t, k)|

2 3 (10, 4) (15, 1) (28, 6) (28, 10) (55, 25) 5

2 4 (10, 2) (10, 4) (10, 8) (10, 10) (10, 12) 79
(15, 6) (15, 24) (15, 30) (15, 36) (21, 6)
(21, 12) (21, 18) (21, 36) (21, 42) (21, 45)
(21, 48) (21, 51) (21, 54) (21, 57) (21, 60)
(21, 63) (21, 66) (21, 69) (21, 72) (21, 75)
(21, 78) (21, 81) (21, 84) (28, 5) (28, 55)
(28, 80) (28, 85) (28, 95) (29, 110) (28, 120)
(28, 125) (28, 135) (28, 150) (36, 15) (36, 90)
(36, 111) (36, 120) (36, 135) (36, 165) (36, 210)
(36, 231) (36, 240) (36, 255) (36, 276) (45, 63)
(45, 105) (45, 252) (45, 357) (45, 378) (45, 420)
(55, 168) (55, 336) (55, 504) (78, 630) (78, 1080)
(78, 1350) (91, 836) (91, 1430) (91, 1496) (105, 1320)
(105, 1326) (105, 1650) (105, 1656) (105, 1782) (105, 1788)
(105, 1980) (105, 1986) (105, 2112) (105, 2118) (105, 2442)
(105, 2448) (153, 4935) (153, 5025) (253, 14535)

3 4 (10, 1) 1

4 5 — 0

5 6 — 0
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82 CHEE AND KASKI

TABLE II. Partial Knowledge of �(t, k)

t k Known elements of �(t, k) |�(t, k)| ≥

2 5 (10, 16) (10, 20) (21, 7) (21, 12) (21, 19) 98
(21, 22) (21, 34) (21, 35) (21, 47) (21, 50)
(21, 52) (21, 55) (21, 57) (21, 60) (21, 62)
(21, 64) (21, 67) (21, 69) (21, 70) (21, 72)
(21, 77) (21, 79) (21, 82) (21, 84) (21, 89)
(21, 94) (21, 95) (21, 100) (21, 120) (28, 60)
(28, 100) (28, 140) (28, 160) (28, 200) (28, 240)
(28, 260) (28, 300) (28, 340) (28, 360) (36, 60)
(36, 80) (36, 140) (36, 164) (36, 180) (36, 224)
(36, 240) (36, 244) (36, 480) (36, 720)
(15, λ) : 16 ≤ λ ≤ 142, λ ≡ 0, 2, 4, or 6 (mod 10), λ �= 20, 50

2 6 (21, 13) (21, 30) (21, 38) (21, 45) (21, 48) 78
(21, 50) (21, 51) (21, 55) (21, 58) (21, 60)
(21, 61) (21, 63) (21, 68) (21, 70) (28, 25)
(28, 40) (28, 50) (28, 65) (28, 70) (28, 80)
(28, 90) (28, 100) (36, 20) (36, 45) (36, 120)
(36, 240) (36, 540) (36, 720) (36, 1080) (36, 2160)
(36, 4320)

(15, λ) : 10 ≤ λ ≤ 355, λ ≡ 0 or 10 (mod 15)

2 7 (15, 3) (15, 24) (15, 27) (15, 30) (15, 33) (224)
(15, 36) (15, 39) (21, 42) (21, 63) (21, 78)
(21, 84) (21, 105) (28, 16) (28, 140) (28, 156)
(28, 182) (28, 198) (36, 210) (36, 246) (36, 336)
(36, 372) (36, 420) (36, 456) (36, 462) (36, 546)
(15, λ) : 48 ≤ λ ≤ 642, λ ≡ 0 (mod 3)

2 8 (21, 84) (21, 168) (21, 336) (21, 672) (28, 70) 6
(28, 210)

2 9 (21, 12) (21, 54) (21, 72) (21, 108) (21, 216) 15
(21, 432) (21, 864) (28, 40) (28, 160) (28, 320)
(28, 480) (28, 640) (28, 960) (28, 1920) (28, 3840)

3 5 (15, 30) (21, 3) (21, 30) (21, 33) (21, 39) 12
(21, 48) (21, 69) (21, 75) (28, 30) (28, 150)
(36, 180) (36, 270)

3 6 (15, 100) (21, 68) (21, 100) (21, 108) (21, 128) 22
(21, 136) (21, 140) (21, 148) (21, 156) (21, 160)
(21, 168) (21, 176) (21, 180) (21, 188) (21, 196)
(21, 200) (28, 80) (28, 120) (28, 180) (28, 220)
(28, 240) (28, 260)

3 7 (15, 60) (15, 75) (15, 90) (15, 135) (15, 150) 18
(15, 165) (15, 180) (15, 225) (15, 240) (21, 105)
(21, 120) (21, 210) (21, 225) (21, 315) (28, 210)
(28, 225) (28, 240) (28, 275)

(Continued )
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ENUMERATION OF GRAPHICAL DESIGNS 83

TABLE II. (Continued)

t k Known elements of �(t, k) |�(t, k)| ≥

3 8 (21, 168) (21, 252) (21, 336) (21, 420) (28, 168) 7
(28, 378) (28, 672)

3 9 (28, 280) 1

4 6 (28, 132) 1

4 7 (15, 60) 1

5 7 (28, 93) (36, 165) 2

5 8 (28, 756) (28, 791) (28, 840) (28, 875) 4

APPENDIX B

Orbit Representatives

A list of orbit representatives for t-edge graphs, for t = 2, t = 3, and t = 5, is given below.
Note that isolated vertices are not shown in our drawings. The orbit representative indexing
row i of Wt,5(X|S[2]

n ) is the graph G
(t)
i , t ∈ {2, 3}, and the orbit representative indexing

column j of Wt,5(X|S[2]
n ) is the graph G

(5)
j .

TABLE III. Orbit Representatives of 2-Edge Graphs

TABLE IV. Orbit Representatives of 3-Edge Graphs
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84 CHEE AND KASKI

TABLE V. Orbit Representatives of 5-Edge Graphs
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