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Coding in a new metric space, called the Enomoto–Katona space, has recently been

considered in connection with the study of implication structures of functional dependencies

and their generalizations in relational databases. The central problem is the determination

of C(n, k, d), the size of an optimal code of length n, weight k, and distance d in the

Enomoto–Katona space. The value of C(n, k, d) was known only for some congruence

classes of n when (k, d) ∈ {(2, 3), (3, 5)}. In this paper, we obtain new infinite families of

optimal codes in the Enomoto–Katona space and verify a conjecture of Brightwell and

Katona in certain instances. In particular, C(n, k, 2k − 1) is determined for all sufficiently

large n satisfying either n ≡ 1 mod k and n(n − 1) ≡ 0 mod 2k2, or n ≡ 0 mod k. We also

give complete solutions for k = 2 and determine C(n, 3, 5) for certain congruence classes of

n with finite exceptions.

2010 Mathematics subject classification: Primary 05C35

Secondary 05C15, 57M25

1. Introduction

The problem we consider is motivated by implication structures of functional dependencies

in relational databases.

Let A be a set of n attributes. Each attribute x ∈ A is associated with a set Ωx, called its

domain. A relation is a finite set R of n-tuples (called data items) such that R ⊆ ×x∈AΩx.

A relation R of m data items may be visualized as an m × n array (called a table), with

† This work was done while H. M. Kiah was a graduate student at the Division of Mathematical Sciences,

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore.
‡ Research of the authors is supported in part by the Singapore National Research Foundation under research

grant NRF-CRP2-2007-03. X. Zhang is also supported in part by NSFC under grant 11301503.
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columns indexed by A, such that each row corresponds to a data item. Denote this table

by R(A). Formally, if R = {(di,x)x∈A : 1 � i � m}, then the cell in R(A) with row index i and

column index x has entry di,x. A relational database is a set of tables, where tables may be

defined over different attribute sets. The relational database, introduced by Codd [10], was

the first database with a rigorous mathematical foundation, and remains the predominant

choice for data storage and management today.

For a given table R(A) and X ⊆ A, the X-value of a data item d = (dx)x∈A in R(A) is

the |X|-tuple d |X= (dx)x∈X . Let X ⊆ A and y ∈ A for a given table R(A). We say that y

(functionally) depends1 on X, written as X → y, if no two rows of R(A) agree in X but

differ in y. In other words, if the X-value of a data item is known, then its {y}-value can be

determined with certainty. Identifying functional dependencies is important in relational

database design [3–5, 19].

Demetrovics, Katona and Sali [12] generalized functional dependencies as follows.

Definition. Let X ⊆ A and y ∈ A for a given table R(A). Then, for positive integers p � q,

we say that y (p, q)-depends on X, written as X
(p,q)
−→ y, if there do not exist q + 1 data

items (rows) d1, d2, . . . , dq+1 of R(A) such that

(i) |{di |{x}: 1 � i � q + 1}| � p for each x ∈ X, and

(ii) |{di |{y}: 1 � i � q + 1}| = q + 1.

Our usual concept of functional dependency is equivalent to (1, 1)-dependency. When

functional dependencies are not known, (p, q)-dependencies identified in a relational

database can still be exploited to improve storage efficiency [11–13, 16].

Let p � q be positive integers. For a table R(A), define the operation J
(p,q)
R(A) : 2A → 2A

such that for X ⊆ A we have

J
(p,q)
R(A)(X) = {y ∈ A : X

(p,q)
−→ y}.

We call J
(p,q)
R(A) the (p, q)-implication structure of R(A), since it specifies the subsets of

attributes that are implied by some (p, q)-dependency of R(A). A function J : 2A → 2A is

said to be (p, q)-representable if there exists a table R(A) such that J(p,q)
R(A) = J .

The function J
(1,1)
R(A) is a closure operator on A. Armstrong [3] showed that the converse

is also true: any closure operator J : 2A → 2A is (1, 1)-representable. This is, however, not

true for general p and q [12]. When a function J is (p, q)-representable, there is interest in

determining the table R(A) with the least number of rows such that J(p,q)
R(A) = J [11, 13, 16].

Consideration of this problem, particularly for fixed k, the function Jk
n : 2A → 2A that

takes the form

Jk
n (X) =

{
X if |X| < k,

A otherwise,

led to coding-theoretic problems in a new metric space, called the Enomoto–Katona

space [14].

1 By definition, if y ∈ X, then X → y trivially.
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1.1. The Enomoto–Katona space

If X is a finite set, the set of all k-subsets of X is denoted by
(
X
k

)
. Let n and k be positive

integers such that 2k � n and let X be an n-set. Consider the set

E(X, k) =

{
{A,B} ⊆

(
X

k

)
: A ∩ B = ∅

}

of all unordered pairs of disjoint k-subsets of X. Elements of E(X, k) are called set-pairs.

The function dE : E(X, k) × E(X, k) → {0, 1, . . . , 2k} given by

dE ({A,B}, {S, T }) = min{|A \ S | + |B \ T |, |A \ T | + |B \ S |}

is a metric of E(X, k), and the finite metric space (E(X, k), dE ) is called the Enomoto–Katona

space.

An Enomoto–Katona code (or EK code for short), is a set C ⊆ E(X, k). More specifically,

C is an EK code of length n, weight k, and distance d, or (n, k, d) EK code, if dE (u, v) � d

for all distinct u, v ∈ C.

The following example gives a construction of a table from an EK code (see [13, 20]).

Example. Consider the (19, 3, 5) EK code C = {ci : i ∈ Z19}, where X = Z19 with

ci = {{i, i + 1, i + 4}, {i + 3, i + 8, i + 14}} for i ∈ Z19.

Let A be a set of nineteen attributes, given by C. We construct a table R(A) with nineteen

rows indexed by X, whose implication structure J
(1,2)
R(A) is precisely J2

19. Each set-pair {A,B}
constructs a column in the following manner: place 1 at rows indexed by elements of

A, place 2 at rows by elements of B and place distinct integers greater than 2 in the

remaining rows. Therefore, the table R(A) is as shown in Table 1.

The maximum size of an (n, k, d) EK code is denoted by C(n, k, d). An (n, k, d) EK code

of size C(n, k, d) is said to be optimal. The central problem is to determine C(n, k, d).

1.2. Problem status

Trivially, C(n, k, 1) =
(
n
k

)(
n−k
k

)
/2 and C(n, k, 2k) = �n/2k	, so we assume 2 � d � 2k − 1

for the rest of this paper.

General upper and lower bounds on the size of codes in the Enomoto–Katona space

have been obtained by Brightwell and Katona [7]. In particular, they showed for 1 � d �
2k � n that

C(n, k, d) �
∏n

i=n−2k+d i

2
(∏k

i=
(d+1)/2� i
)(∏k

i=�(d+1)/2	 i
) . (1.1)

Brightwell and Katona [7] also showed that C(n, k, d) = Θ(n2k−d+1) for fixed k and d.

Furthermore, for fixed k and d they conjectured that the bound (1.1) is attained for

infinite values of n. Bollobás, Füredi, Kantor, Katona and Leader [6] (see also [20])

subsequently established that the upper bound in (1.1) is asymptotically tight.
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Table 1. The table R(A).

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19

0 1 3 3 3 3 2 3 3 3 3 3 2 3 3 3 1 2 3 1

1 1 1 4 4 4 3 2 4 4 4 4 3 2 4 4 3 1 2 3

2 3 1 1 5 5 4 4 2 5 5 5 4 4 2 5 4 3 1 2

3 2 4 1 1 6 5 5 5 2 6 6 5 5 5 2 5 4 4 1

4 1 2 5 1 1 6 6 6 6 2 7 6 6 6 6 2 5 5 4

5 4 1 2 6 1 1 7 7 7 7 2 7 7 7 7 6 2 6 5

6 5 5 1 2 7 1 1 8 8 8 8 2 8 8 8 7 6 2 6

7 6 6 6 1 2 7 1 1 9 9 9 8 2 9 9 8 7 7 2

8 2 7 7 7 1 2 8 1 1 10 10 9 9 2 10 9 8 8 7

9 7 2 8 8 8 1 2 9 1 1 11 10 10 10 2 10 9 9 8

10 8 8 2 9 9 8 1 2 10 1 1 11 11 11 11 2 10 10 9

11 9 9 9 2 10 9 9 1 2 11 1 1 12 12 12 11 2 11 10

12 10 10 10 10 2 10 10 10 1 2 12 1 1 13 13 12 11 2 11

13 11 11 11 11 11 2 11 11 11 1 2 12 1 1 14 13 12 12 2

14 2 12 12 12 12 11 2 12 12 12 1 2 13 1 1 14 13 13 12

15 12 2 13 13 13 12 12 2 13 13 13 1 2 14 1 1 14 14 13

16 13 13 2 14 14 13 13 13 2 14 14 13 1 2 15 1 1 15 14

17 14 14 14 2 15 14 14 14 14 2 15 14 14 1 2 15 1 1 15

18 15 15 15 15 2 15 15 15 15 15 2 15 15 15 1 2 15 1 1

Theorem 1.1 (Bollobás et al. [6]).

lim
n→∞

C(n, k, d)

n2k−d+1
=

1

2
(∏k

i=
(d+1)/2� i
)(∏k

i=�(d+1)/2	 i
) .

The best known upper bound is due to Quistorff [18].

Theorem 1.2 (Quistorff bound [18]). Suppose k − d + 1 � e � min{k, 2k − d}. Then

C(n, k, d) �
⌊ (

n
e

)
2
(
k
e

)⌊(
n−e

2k−d−e+1

)
(

k
2k−d−e+1

)⌋⌋
.

Only the following exact values of C(n, k, d) are known, and this verifies the conjecture

of Brightwell and Katona for (k, d) ∈ {(2, 3), (3, 5)}.

Theorem 1.3 (Bollobás et al. [6]).

C(n, 2, 3) =
n(n − 1)

8
, if n ≡ 1 or 9 mod 72 and

C(n, 3, 5) =
n(n − 1)

18
, if n ≡ 1 or 19 mod 342.
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1.3. Contributions

Our contributions in this paper are as follows.

Theorem 1.4. Let n � 2k.

(i) For any fixed k � 2, we have

C(n, k, 2k − 1) =

⌊
n

2k

⌊
n − 1

k

⌋⌋

for all sufficiently large n satisfying

(a) n ≡ 1 mod k and n(n − 1) ≡ 0 mod 2k2, or

(b) n ≡ 0 mod k.

(ii) When k = 2,

C(n, 2, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⌊
n(n − 1)

4

⌊
n − 2

2

⌋⌋
if d = 2,

⌊
n

4

⌊
n − 1

2

⌋⌋
− 1 if d = 3, n = 6 or n ≡ 5, 7 mod 8,

⌊
n

4

⌊
n − 1

2

⌋⌋
if d = 3, n = 6 and n ≡ 5, 7 mod 8.

(iii) When k = 3,

C(n, 3, 5) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2 if n = 10,

n(n − 1)

18
if n ≡ 1 mod 9, n � 19, except possibly n ∈ {64, 100, 136},

n(n − 3)

18
if n ≡ 0 mod 3, n � 1029.

Remark. (i) Asymptotic results similar to Theorem 1.4(i) were known only when k ∈
{2, 3}. In particular, Theorem 1.4(i) verifies the conjecture of Brightwell and Katona for

all (k, d) = (k, 2k − 1).

(ii) We determine the exact value of C(n, 2, d) completely. Previously, the value of C(n, 2, 2)

was unknown and C(n, 2, 3) was determined only when n ≡ 1 or 9 mod 72.

(iii) The exact value of C(n, 3, 5) is determined for n belonging to a set of density 4/9.

Previously, the exact value of C(n, 3, 5) was known only for n ≡ 1 or 19 mod 342, a set of

density 1/171.

These results are obtained by constructing EK codes (or their equivalent combinatorial

objects) whose sizes meet the Quistorff bound. This paper was presented in part at the

2013 IEEE International Symposium on Information Theory [9].
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2. EK packings and designs

Our approach is based on combinatorial design theory. In this section, we introduce

necessary concepts and establish connections to EK codes.

Throughout the rest of this paper, X denotes a set of size n. For a positive integer

m, [m] denotes the set of integers {1, 2, . . . , m}, while Z�m denotes the set of integers at

least m and Zm denotes the integers modulo m. The set of all ordered k-tuples of X with

distinct components is denoted by
(
X
k

)
. We use angled brackets 〈 and 〉 for multisets. We

sometimes use the exponential notation to describe multisets so that a multiset where an

element gi appears si times, i ∈ [t], is denoted by gs11 g
s2
2 · · · gstt .

A set system is a pair S = (X,A), where X is a finite set of points and A ⊆ 2X . Elements

of A are called blocks. The order of S is the number of points in X, and the size of S is

the number of blocks in A. Let K ⊆ Z�0. The set system (X,A) is said to be K-uniform

if |A| ∈ K for all A ∈ A.

Let 2 � t < 2k and 0 � e � �t/2	. We say that the tuple

(x1, x2, . . . , xt) ∈
(
X

t

)

is (e, t)-contained in a set-pair {A,B} ∈ E(X, k) if we have either

{x1, x2, . . . , xe} ⊆ A and {xe+1, xe+2, . . . , xt} ⊆ B,

or

{x1, x2, . . . , xe} ⊆ B and {xe+1, xe+2, . . . , xt} ⊆ A.

Let C ⊆ E(X, k). Then (X, C) is an EK packing of strength t, or more precisely a t-(n, k)

EK packing,2 if, for every 0 � e � �t/2	, every t-tuple in
(
X
t

)
is (e, t)-contained in at most

one set-pair in C. A t-(n, k) EK design is a t-(n, k) EK packing satisfying the condition

that for e = �t/2	, every t-tuple in
(
X
t

)
is (e, t)-contained in exactly one set-pair in C. It is

easy to see that if (X, C) is a t-(n, k) EK design, then

|C| =
n(n − 1) · · · (n − t + 1)

2k(k − 1) · · · (k − �t/2	 + 1)k(k − 1) · · · (k − 
t/2� + 1)

=

n!

(n − t)!

2
k!

(k − �t/2	)!
k!

(k − 
t/2�)!

=

(
n

t

)(
t

�t/2	

)

2

(
k

�t/2	

)(
k


t/2�

) .

EK packings of strength t are equivalent to EK codes of distance 2k − t + 1, while EK

designs of strength t give rise to optimal EK codes of distance 2k − t + 1.

Proposition 2.1. Let C ⊆ E(X, k). Then (X, C) is a t-(n, k) EK packing if and only if C is

an (n, k, 2k − t + 1) EK code. Furthermore, if (X, C) is a t-(n, k) EK design, then C is an

optimal (n, k, 2k − t + 1) EK code.

2 Note that C ⊆ E(X, k), while A ⊆ 2X .
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Proof. Suppose (X, C) is a t-(n, k) EK packing and {A,B}, {S, T } ∈ C. Then we claim

that dE ({A,B}, {S, T }) � 2k − t + 1. Suppose otherwise. Then without loss of generality,

|A \ S | + |B \ T | � 2k − t and there exists a non-negative e � �t/2	, I ∈
(
X
e

)
, J ∈

(
X
t−e

)
such that I ⊆ A ∩ S and J ⊆ B ∩ T . If I = {x1, x2, . . . , xe} and J = {xe+1, xe+2, . . . , xt}, we

see that (x1, x2, . . . , xt) is (e, t)-contained in {A,B} and {S, T }, contradicting the fact that

(X, C) is a t-(n, k) EK packing.

Conversely, suppose C is an (n, k, 2k − t + 1) EK code. If (X, C) is not a t-(n, k) EK

packing, then there exists a non-negative e � �t/2	, (x1, x2, . . . , xt) ∈
(
X
t

)
, and {A,B},

{S, T } ∈ C such that (x1, x2, . . . , xt) is (e, t)-contained in {A,B} and {S, T }. Without

loss of generality, suppose {x1, x2, . . . , xe} ⊆ A ∩ S and {xe+1, xe+2, . . . , xt} ⊆ B ∩ T . Hence,

|A \ S | + |B \ T | � 2k − (e + t − e) = 2k − t, and consequently dE ({A,B}, {S, T }) � 2k −
t, contradicting the fact that C is an (n, k, 2k − t + 1) EK code.

Finally, when (X, C) is a t-(n, k) EK design, C is an optimal (n, k, 2k − t + 1) EK code,

since |C| meets the Quistorff bound with e = �t/2	.

In view of Proposition 2.1, our strategy in constructing optimal EK codes (and hence

determining C(n, k, d)) is to construct equivalent EK packings and designs of sizes meeting

the Quistorff bound. However, to construct the corresponding combinatorial objects is

technical and complex. Here we outline the general strategy.

Section 3 determines C(n, k, 2k − 1) for sufficiently large n when k is fixed. We used a

method developed by Lamken and Wilson [17] to construct the necessary EK packings

and designs. Sections 4 to 6 then address C(n, k, d) for specific values of k and d. To do

so, we introduce some auxiliary designs and develop a set of recursive constructions in

Section 4 to build EK designs from smaller ones. In Section 5, direct methods are used

to construct a large enough set of small designs on which the recursions can work to

generate all larger designs.

Next we introduce EK group divisible designs and their connections to EK codes.

2.1. EK group divisible designs

Let G = {G1, G2, . . . , Gs} be a partition of an n-set X and C ⊆ E(X, k). Then (X,G, C)

is an EK group divisible design (or EKGDD for short) if, for all (x, y) ∈
(
X
2

)
such that

{x, y} ⊆ Gi for all i ∈ [s], we have

(i) (x, y) is (1, 2)-contained in exactly one set-pair {A,B} and

(ii) (x, y) is (0, 2)-contained in at most one set-pair {A,B}.
In addition, |Gi ∩ (A ∪ B)| � 1 for all i ∈ [s] and {A,B} ∈ C. Such an EKGDD is more

precisely called a (T , k) EKGDD, where T = 〈|Gi| : i ∈ [s]〉.
A 2-(n, k) EK design can be regarded as a (1n, k) EKGDD, where each group contains

just a single point. Furthermore, a (g1g2 · · · gs, k) EKGDD can be regarded as a 2-(∑s
i=1 gi, k

)
EK packing, and therefore also as a

(∑s
i=1 gi, k, 2k − 1

)
EK code. In addition,

as the following shows, certain classes of EKGDDs give optimal EK codes.

Proposition 2.2. If there exists a (ks, k) EKGDD (X,G, C), then C is an optimal (ks, k, 2k −
1) EK code.
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Proof. Observe that C is a (ks, k, 2k − 1) EK code since (X, C) is a 2-(ks, k) EK packing.

There are (ks) · (ks − k) ordered pairs (x, y) ∈
(
X
2

)
where {x, y} does not belong to any

group. In addition, we have 2k2 ordered pairs in
(
X
2

)
that are (1, 2)-contained in each

set-pair. Hence, the code C is of size s(s − 1)/2, which meets the Quistorff bound.

3. C(n, k, 2k − 1) for sufficiently large n

We show that a 2-(n, k) EK design and a (kn, k) EKGDD exist when n belongs to

certain congruence classes, provided n is sufficiently large. Our proof is an application of

decompositions of edge-coloured directed graphs (digraphs).

An edge-coloured directed graph is a triple G = (V ,C, E), where V is a finite set of

vertices, C is a finite set of colours and E is a subset of
(
V
2

)
× C . Members of E are

called edges. The complete edge-coloured digraph on n vertices with r colours, denoted by

K (r)
n , is the edge-coloured digraph (V ,C, E), where |V | = n, |C| = r, and E =

(
V
2

)
× C . An

edge-coloured digraph (V ,C, E) is simple if there is at most one directed edge between

any two ordered distinct vertices. In other words, for any ordered pair (x, y) ∈
(
V
2

)
, the set

{((x, y), c) ∈ E : c ∈ C} has at most one element. In particular, the complete edge-coloured

digraph is not simple when r > 1.

A family F of edge-coloured subgraphs of an edge-coloured digraph K is a decom-

position of K if every edge of K belongs to exactly one member of F . Given a family

G of edge-coloured digraphs, a decomposition F of K is a G-decomposition of K if each

edge-coloured digraph in F is isomorphic to some digraph G ∈ G.

Lamken and Wilson [17] studied the existence of G-decompositions of K (r)
n and showed

that for fixed G and r, a G-decomposition exists for sufficiently large n under certain

conditions. To state the theorem, we require the following concepts.

Suppose G is a family of edge-coloured digraphs which share the same r-colour set C .

Consider an edge-coloured digraph G = (V ,C, E) ∈ G. Let ((u, v), c) ∈ E denote a directed

edge from u to v, coloured by c. For any vertex u and colour c, define the indegree and

outdegree of u with respect to c and G as follows:

inc(u, G) := |{v : ((v, u), c) ∈ E}|,
outc(u, G) := |{v : ((u, v), c) ∈ E}|.

Then for vertex u, we define the degree vector of u in G, denoted by δ(u, G), to be the vector

of length 2r, such that δ(u, G) = (inc(u, G), outc(u, G))c∈C . Define A+(G) to be the set of

all finite non-negative integral linear combinations of vectors in {δ(u, G) : G ∈ G, u ∈ V },
that is,

A+(G) :=

{∑
G∈G

∑
u∈V

μu,Gδ(u, G) : μu,G ∈ Z�0

}
.

Define A(G) to be the set of all positive integers t such that (t, t, . . . , t) ∈ A+(G). If A(G) is

non-empty, we define α(G) to be the greatest common divisor of A(G).

On the other hand, for each G ∈ G, let mc(G) be the number of edges with colour c

in G and we define the edge vector of G, denoted by ε(G), to be the vector of length r,



390 Y. M. Chee, H. M. Kiah, H. Zhang and X. Zhang

such that ε(G) = (mc(G))c∈C . Similarly, define B+(G) to be the set of all finite non-negative

integral linear combinations of vectors in {ε(G) : G ∈ G}. Here,

B+(G) :=

{∑
G∈G

μGε(G) : μG ∈ Z�0

}
.

Define B(G) to be the set of all positive integers t such that (t, t, . . . , t) ∈ B+(G). If B(G) is

non-empty, we say that G is admissible, and define β(G) to be the greatest common divisor

of B(G).

Finally, we state the following theorem due to Lamken and Wilson [17].

Theorem 3.1 (Lamken and Wilson [17, Theorem 1.2]). Let G be an admissible family of

simple edge-coloured digraphs defined on a common set of r colours. Then there exists a

constant n0 such that a G-decomposition of K (r)
n exists for all n � n0 satisfying both

n − 1 ≡ 0 mod α(G) and n(n − 1) ≡ 0 mod β(G).

In the rest of this section, we construct families G of r-edge-coloured digraphs so that

a G-decomposition of K (r)
n yields an EK design or an EKGDD.

3.1. C(n, k, 2k − 1) when n ≡ 1 mod k and n(n − 1) ≡ 0 mod 2k2

Fix k � 2 and define the edge-coloured digraph Gk = (Vk, Ck, Ek), where

Vk = {ij : i ∈ [k], j ∈ [2]},
Ck = {◦, •} and

Ek = {((ir, js), ◦) : i, j ∈ [k], (r, s) ∈ {(1, 2), (2, 1)}}

∪
{

((ir, jr), •) : (i, j) ∈
(

[k]

2

)
, r ∈ [2]

}
.

In addition, define e• :=1 �� �� 2, that is, the graph consisting of an edge coloured by •.

Then, define Gk := {Gk, e•}.

Example. The edge-coloured graph G2 is given by

11��

�� ��
��
��

��

����
��

��
��

�� �� 21��

�� ��
��
��

��

		 ��
��

��
��

12
�� �� 22

where �� �� denotes two directed edges of colour • (one in each direction), and �� ���	�	�	

denotes two directed edges of colour ◦ (one in each direction). Hence G2 consists of G2

and e•.

Proposition 3.2. If a Gk-decomposition of K (2)
n exists, then a 2-(n, k) EK design exists.
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Proof. Let F be a Gk-decomposition of K (2)
n . For a subgraph G ∈ F that is isomorphic

to Gk , consider the graph isomorphism φG : Gk → G. Define

AG = {φG(i1) : i ∈ [k]} and BG = {φG(i2) : i ∈ [k]}.

Let X be the vertex set of K (2)
n and

C = {{AG, BG} : G ∈ F and G isomorphic to Gk}.

We claim that (X, C) is a 2-(n, k) EK design. Counting the number of edges coloured by ◦,

we have |C| = n(n − 1)/2k2. Hence, it suffices to check that for e ∈ {0, 1}, each (x, y) ∈
(
X
2

)
is (e, 2)-contained in at most one set-pair in C.

Suppose otherwise. Then there exist (x, y) ∈
(
X
2

)
, G,H ∈ F and e ∈ {0, 1} such that (x, y)

is (e, 2)-contained in {AG, BG} and {AH, BH}.
If e = 0, then assume that {x, y} ⊂ AG ∩ AH . So, the edge ((x, y), •) belongs to both G

and H , contradicting the fact that F is a Gk-decomposition of K (2)
n .

If e = 1, then assume that x ∈ AG ∩ AH and y ∈ BG ∩ BH . Hence, the edge ((x, y), ◦)

belongs to G and H , contradicting the fact that F is a Gk-decomposition of K (2)
n .

Finally, we compute α(Gk) and β(Gk). Observe that

δ(11, Gk) + δ(1, e•) = (k, k, k − 1, k − 1) + (0, 0, 1, 1) = (k, k, k, k), and

ε(Gk) + kε(e•) = (2k2, 2k(k − 1)) + k(0, 2) = (2k2, 2k2).

Then A(Gk) = {kt : t ∈ Z�1} and B(Gk) = {2k2t : t ∈ Z�1}. Hence,

α(Gk) = k and β(Gk) = 2k2.

The following is then immediate from Propositions 2.1 and 3.2, and Theorem 3.1.

Theorem 3.3. Fix k � 2. Then

C(n, k, 2k − 1) =
n(n − 1)

2k2

for all sufficiently large n satisfying n ≡ 1 mod k and n(n − 1) ≡ 0 mod 2k2.

3.2. C(n, k, 2k − 1) when n ≡ 0 mod k

Fix k � 2 and define the edge-coloured digraph Hk = (Vk, Ck, Ek), where

Vk = {ij : i ∈ [k], j ∈ [2]},

Ck =
(
[k] × [k] × {◦}

)
∪

((
[k]

2

)
× {•}

)
and

Ek = {((ir, js), (i, j, ◦)) : i, j ∈ [k], (r, s) ∈ {(1, 2), (2, 1)}}

∪
{

((ir, jr), (i, j, •)) : (i, j) ∈
(

[k]

2

)
, r ∈ [2]

}
.

Then, define Hk := {Hk}.
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11

(1,1,◦)

(1,2,◦)

(1,2,•)
21

(2,2,◦)

(2,1,◦)

(2,1,•)

12

(1,1,◦)

(1,2,◦)

(1,2,•)
22

(2,2,◦)

(2,1,◦)

(2,1,•)

Figure 1. An auxiliary edge-colored digraph H2. An {H2}-decomposition of K
(6)
n implies the existence of a

(2n, 2) EKGDD.

Example. The family H2 comprises only the digraph H2, given in Figure 1.

Proposition 3.4. If an Hk-decomposition of K (2k2−k)
n exists, then a (kn, k) EKGDD exists.

Proof. Let F be an Hk-decomposition of K (2k2−k)
n . Suppose V is the vertex set of K (2k2−k)

n

and we define the point set X to be {vi : v ∈ V , i ∈ [k]}.
Then, for a subgraph H ∈ F , let φH : Hk → H be a graph isomorphism and let

AH = {φH (i1)i : i ∈ [k]}, BH = {φH (i2)i : i ∈ [k]}.

Then define

G = {{vi : i ∈ [k]} : v ∈ V },
C = {{AH, BH} : H ∈ F},

and we claim that (X,G, C) is a (kn, k) EKGDD. Suppose otherwise. Since |C| = n(n − 1)/2,

it suffices to consider the following two cases.

(i) Suppose a group in G intersect a set-pair in C at least two points. In other words, there

exist v ∈ V and H ∈ F such that |{vi : i ∈ [k]} ∩ (AH ∪ BH )| � 2. This contradicts the

fact that H is isomorphic to Hk .

(ii) Suppose there exist (x, y) ∈
(
V
2

)
, G,H ∈ F and e ∈ {0, 1} such that (xi, yj) is (e, 2)-

contained in {AG, BG} and {AH, BH}.
If e = 0, then assume that {xi, yj} ⊂ AG ∩ AH . Hence, the edge ((x, y), (i, j, •)) belongs

to both G and H , contradicting the fact that F is an Hk-decomposition.

Similarly, if e = 1, then assume that xi ∈ AG ∩ AH and yj ∈ BG ∩ BH . Hence, the

edge ((x, y), (i, j, ◦)) belongs to both G and H , contradicting the fact that F is an

Hk-decomposition of K (2k2−k)
n .
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As before, we observe that∑
i∈[k]

δ(i1, Hk) = (1, 1, . . . , 1), and

ε(Hk) = (2, 2, . . . , 2).

Then A(Hk) = {t : t ∈ Z�1} and B(Hk) = {2t : t ∈ Z�1}. Hence,

α(Gk) = 1 and β(Gk) = 2.

From Propositions 2.2, 3.4, and Theorem 3.1, we have the following.

Theorem 3.5. Fix k � 2. Then

C(nk, k, 2k − 1) =
n(n − 1)

2

for all sufficiently large n.

Theorems 3.3 and 3.5 combine to give Theorem 1.4(i).

4. Recursive constructions

This section introduces certain auxiliary designs and gives the necessary recursive con-

structions so that we can build bigger EK designs and EKGDDs from small ones.

Proposition 4.1 (Filling in groups). If a (g1g2 · · · gs, k) EKGDD exists and a (1gi t, k) EKGDD

exists for every i ∈ [s], then a
(
1

∑ s
i=1 gi t, k

)
EKGDD exists.

Proof. Let (X, {G1, G2, . . . , Gs}, C) be a (g1g2 · · · gs, k) EKGDD and

H = {∞1,∞2, . . . ,∞t}.

For i ∈ [s], let (Gi ∪ H, {{x} : x ∈ Gi} ∪ {H}, Ci) be a (1gi t, k) EKGDD.

Consider

X∗ = X ∪ H,

G∗ = {{x} : x ∈ X} ∪ {H} and

C∗ = C ∪
( s⋃

i=1

Ci
)
.

Then (X∗,G∗, C∗) is a (1
∑ s

i=1 gi t, k) EKGDD.

When t = 1, we obtain an EK design.

Corollary 4.2. If a (g1g2 · · · gs, k) EKGDD exists and a 2-(1 + gi, k) EK design exists for

all i ∈ [s], then a 2-(1 +
∑s

i=1 gi, k) EK design exists.

A similar construction for EK packings holds.
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Proposition 4.3. Suppose a (g1g2 · · · gst, k) EKGDD exists. If a 2-(1 + gi, k) EK design

exists for i ∈ [s] and a 2-(1 + t, k) EK packing of size �(1 + t)/2k�t/k		 − 1 exists, then there

exists a 2-(N, k) EK packing of size �N/2k�(N − 1)/k		 − 1, where N = 1 + t +
∑s

i=1 gi. If

g1 = g2 = · · · = gs = 1 and there exists a 2-(t, k) EK packing of size �t/2k�(t − 1)/k		 − 1,

then there exists a 2-(N, k) EK packing of size �N/2k�(N − 1)/k		 − 1, where N = s + t.

For the above propositions to be useful, we require large classes of EKGDDs. In the

next two subsections, we discuss the recursive constructions for EKGDDs.

4.1. t-wise balanced designs, group divisible designs and transversal designs

Instead of defining new combinatorial objects, we introduce classical combinatorial objects

to aid in our recursive constructions. The existence results of the latter objects are well

known and we build on these results to construct our desired EK designs and EKGDDs.

Definition. A t-wise balanced design, or a t-BD(v, K), is a K-uniform set system (X,A)

of order v such that every t-subset of X is contained in exactly one block of A.

The following existence results hold for t-BDs [1, 15].

Theorem 4.4. Let BDt(K) denote the set of positive integers v such that there exists a

t-BD(v, K). Then we have

(i) BD2({4, 5, 6}) ⊇ Z�13 \ {14, 15, 18, 19, 23},
(ii) BD2({7, 8, 9}) ⊇ Z�343 and

(iii) BD3({4, 6}) ⊇ 2Z�2.

Definition. Let (X,A) be a set system and let G = {G1, G2, . . . , Gs} be a partition of X into

subsets, called groups. The triple (X,G,A) is a group divisible design (GDD) when every

2-subset of X not contained in a group appears in exactly one block, and |A ∩ G| � 1 for

all A ∈ A and G ∈ G.

We denote a GDD (X,G,A) by K-GDD if (X,A) is K-uniform. The type of a GDD

(X,G,A) is the multiset 〈|G| : G ∈ G〉. A 2-BD(v, K) can be regarded as a K-GDD of type

1v , where each group contains a single point.

Definition. A transversal design TD(k, m) is a {k}-GDD of type mk .

The following result on the existence of transversal designs (see [2]) is used without

explicit reference in this paper.

Theorem 4.5. Let TD(k) denote the set of positive integers m such that there is a TD(k, m).

Then we have

(i) TD(5) ⊇ 4Z�1,
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(ii) TD(8) ⊇ 3Z�23 and

(iii) TD(k) ⊇ {q : q � k − 1 is a prime power}.

In addition, we require transversal designs with disjoint blocks, and the following

proposition (see [2]) is useful.

Proposition 4.6. Suppose there exists a TD(k + 1, m). Then there exists a TD(k, m) with m

disjoint blocks.

4.2. Recursive constructions for EKGDDs

In this subsection, we give four recursive constructions for EKGDDs.

Proposition 4.7 (Inflation). Suppose there exist a (T , k) EKGDD and a TD(2k, m). Then

an (mT , k) EKGDD exists.

Proof. Let (X,G, C) be a (T , k) EKGDD. For C = {{a1, a2, . . . , ak}, {b1, b2, . . . bk}} ∈ C, let

XC = {a1, a2, . . . , ak, b1, b2, . . . bk} and (XC × [m],AC) be a TD(2k, m) with groups {{x} ×
[m] : x ∈ XC}. Given a block

A = {(a1, i1), (a2, i2), . . . , (ak, ik), (b1, j1), (b2, j2), . . . , (bk, jk)} in AC ,

construct the set-pair

φ(A,C) = {{(a1, i1), (a2, i2), . . . , (ak, ik)}, {(b1, j1), (b2, j2), . . . , (bk, jk)}}.

Let A∗
C = {φ(A,C) : A ∈ AC} and consider

X∗ = X × [m],

G∗ = {G × [m] : G ∈ G} and

C∗ =
⋃
C∈C

A∗
C.

Then (X∗,G∗, C∗) is an (mT , k) EKGDD.

Wilson’s Fundamental Construction for GDDs [21] can also be modified to give the

following recursions for EKGDDs. This construction is described in Table 2.

Proposition 4.8 (Fundamental Construction). Suppose a (master) GDD (X,G,A) of type

T exists and let w : X → Z�0 be a weight function. If, for each A ∈ A, there exists an

(ingredient) (〈w(a) : a ∈ A〉, k) EKGDD, then there exists a (〈
∑

x∈G w(x) : G ∈ G〉, k)
EKGDD.

Proof. The Fundamental Construction in Table 2 constructs the desired EKGDD from

the master GDD and ingredient EKGDD.

Proposition 4.8 admits the following specializations.
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Table 2. Fundamental Construction for EKGDDs.

Input: (master) GDD D = (X,G,A);

weight function w : X → Z�0;

(ingredient) (TA, k) EKGDD (XA,GA,CA) for each A ∈ A, where

TA = 〈w(x) : x ∈ A〉,
XA = ∪x∈A({x} × [w(x)]),

GA = {{x} × [w(x)] : x ∈ A},
Output: (〈

∑
x∈G w(x) : G ∈ G〉, k) EKGDD (X∗,G∗,C∗), where

X∗ = ∪x∈X ({x} × [w(x)]),

G∗ = {∪x∈G({x} × [w(x)]) : G ∈ G},
C∗ = ∪A∈ACA, and

Note: By convention, for x ∈ X, {x} × [w(x)] = ∅ if w(x) = 0.

Proposition 4.9 (PBD closure). Let K ⊂ Z�1. Suppose a 2-BD(v, K) exists and a (gt, k)

EKGDD exists for all t ∈ K . Then there exists a (gv, k) EKGDD.

Proof. Let (X,A) be a 2-BD(v, K). Consider the 2-BD as a (master) GDD of type 1v

and weight function w(x) = g for all x ∈ X. Now apply the Fundamental Construction.

Proposition 4.10 (EKGDD from truncated TD). Let r, s be non-negative integers. Suppose

a TD(u + r + s, m) exists with r disjoint blocks and g1, g2, . . . , gs are non-negative integers

at most m − r. If a (gt, k) EKGDD exists for each t ∈ {u, u + 1, . . . , u + r + s}, then a (T , k)

EKGDD exists, where T = (g(m − r))u+r(gg1)(gg2) · · · (ggs).

Proof. Delete the points in the r disjoint blocks from the point set of TD(u + r + s, m)

so that each group is of size m − r. Subsequently, for i ∈ [s], delete points from the ith

group of the TD(u + r + s, m) so that gi points remain. Observe that the remaining u + r

groups are of size m − r. This therefore results in a {u, u + 1, . . . , u + r + s}-GDD of type

(m − r)u+rg1g2 · · · gs.

Use this as the master GDD and apply the Fundamental Construction with weight

function w that assigns weight g to all points.

4.3. Recursive constructions for EK designs of strength t

The above constructions in general yield EK designs of strength two. The following

construction gives t-(n, k) EK designs for general t using t-BDs.

Proposition 4.11 (Filling in t-BDs). Let K ⊂ Z�1 and suppose a t-BD(v, K) (X,A) exists.

If there exists a t-(h, k) EK design for all h ∈ K , then there exists a t-(v, k) EK design.

Proof. Let (X,A) be a t-BD(v, K). For A ∈ A, let (A, CA) be a t-(|A|, k) EK design. Let

C =
⋃
A∈A

CA,

and then (X, C) is a t-(v, k) EK design.
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5. Direct constructions

We construct some small EK designs and EKGDDs that are required to seed the recursive

constructions in the previous section. In general, the objects are constructed via direct

computer search or method of differences. In summary, the following objects are constructed

in this section.

Proposition 5.1. The following objects exist:

(i) a 3-(n, 2) EK design for n ∈ {4, 6},
(ii) a 2-(n, 2) EK design for n ∈ {9, 17, 25}, and

a 2-(n, 3) EK design for n ∈ {19, 28, 37, 46, 55, 73, 82, 91, 109, 118, 127, 145, 163, 181, 199},
(iii) a (2u, 2) EKGDD for u ∈ {4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 19, 23},

a (1ut, 2) EKGDD for (u, t) ∈ {(8, 3), (16, 3), (16, 7), (24, 3), (24, 5), (24, 7)},
an (8ut, 2) EKGDD for u ∈ {6, 7}, t ∈ {4, 6},
a (3u, 3) EKGDD for u ∈ {7, 8, 9, 10, 11}, and

an (18u27, 3) EKGDD for u ∈ {7, 8},
(iv) a 2-(4, 2) EK packing of size one, and

a 2-(n, 2) EK packing of size �n(n − 1)/8	 − 1 for n ∈ {5, 6, 7, 13, 15, 21}.

For small values of n or u, we construct the following combinatorial objects via a direct

computer search. The corresponding objects are recorded in [8].

Proposition 5.2. The following objects exist:

(i) a 3-(n, 2) EK design for n ∈ {4, 6},
(ii) a (24, 2) EKGDD, and

a (1ut, 2) EKGDD for (u, t) ∈ {(8, 3), (16, 3), (16, 7)},
(iii) a 2-(4, 2) EK packing of size one, and

a 2-(n, 2) EK packing of size �n(n − 1)/8	 − 1 for n ∈ {5, 6, 7, 13}.

5.1. Method of differences

In general, when n or u is large, a direct computer search is unable to find a com-

binatorial object of the required size. Hence, we impose a certain algebraic structure

on our combinatorial object and then search for a smaller set of set-pairs satisfying

a new set of requirements. In design theory, this method is known as the method of

differences.

Let Γ be an additive abelian group. Given D ⊆ E(Γ, k), the outer difference list of D is

the multiset

ΔouterD = 〈x − y : x ∈ A, y ∈ B, or x ∈ B, y ∈ A, and {A,B} ∈ D〉,

while the inner difference list of D is the multiset

ΔinnerD = 〈x − y : x, y ∈ A or B, x = y and {A,B} ∈ D〉.
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In addition, let t be a positive integer. For D ⊆ E(Γ × [t], k), we define for i, j ∈ [t]

Δouter
ij D = 〈x − y : xi ∈ A, yj ∈ B, or xi ∈ B, yj ∈ A, and {A,B} ∈ D〉,

Δinner
ij D = 〈x − y : xi, yj ∈ A or B, xi = yj and {A,B} ∈ D〉.

The multiset is called a list of pure outer/inner differences when i = j, and called a list of

mixed outer/inner differences when i = j. Note that when t = 1, the difference lists Δouter
11 ,

Δinner
11 are the same as Δouter, Δinner, respectively. Hence, we use the latter notation and also

Γ, instead of Γ × [1].

In this section, we construct D ⊆ E(Γ × [t], k) whose difference lists satisfy certain

conditions. Then we obtain EK designs and EKGDDs (Γ × [t], C) by developing D over

Γ. We state this formally in the subsequent sections.

Adopt the following notations. Let {A,B} ∈ E(Γ × [t], k) and γ ∈ Γ. Then

{A,B} + γ := {{(x + γ)i : xi ∈ A}, {(y + γ)j : yj ∈ B}}.

Sometimes we include infinite elements so that X = (Γ × [t]) ∪ ({∞} × [s]), where s > 0.

Then, for ∞i ∈ X,

∞i + γ = ∞i for all γ ∈ Γ.

If D ⊆ E(X, k), then

Δinner
ij D = 〈x − y : x, y ∈ Γ, xi, yj ∈ A or B, {A,B} ∈ D〉 for i, j ∈ [t].

The difference list Δouter
ij D is similarly defined.

5.2. Direct constructions for EK designs

Definition. Let k > 0 and Γ be an abelian group of odd size m. Let t > 0 such that

t(mt − 1) ≡ 0 mod 2k2. Suppose D ⊆ E(Γ × [t], k) with size t(mt − 1)/2k2. Then (Γ × [t],D)

is a (Γ × [t])-base-set for a 2-(mt, k) EK design if the following conditions hold.

(i) For i, j ∈ [t],

Δouter
ij D =

{
Γ \ {0} if i = j,

Γ otherwise.

(ii) Fix i, j ∈ [t]. If i = j, then each element in Γ \ {0} appears at most once in Δinner
ij D.

Otherwise, each element in Γ appears at most once in Δinner
ij D.

Proposition 5.3. If a (Γ × [t])-base-set for a 2-(mt, k) EK design exists, then a 2-(mt, k) EK

design exists.

Proof. Let X = Γ × [t], (X,D) be the X-base-set and

C = {D + γ : D ∈ D, γ ∈ Γ}.

Then (X, C) is a 2-(mt, k) EK design.
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Example. Let X = Z19 and k = 3. Suppose D = {{0, 1, 4}, {3, 8, 14}}. We check that

ΔouterD = X \ {0} and

ΔinnerD = 〈1, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 18〉.

Hence, (X,D) is a Z19-base-set for a 2-(19, 3) EK design. In fact, developing D over Z19

yields the EK code C given in the first example.

Corollary 5.4. A 2-(n, 2) EK design exists for n ∈ {9, 17, 25}.

Proof. For m ∈ {9, 17, 25}, the required Zm-base-sets for 2-(m, 2) EK designs are given

in [8].

Corollary 5.5. A 2-(n, 3) EK design exists for n ∈ {19, 28, 37, 46, 55, 73, 82, 91, 109, 118, 127,

145, 163, 181, 199}.

Proof. The required Zm-base-sets for 2-(m, 3) EK designs for m ∈ {19, 37, 55, 73, 91, 109,

127, 145, 163, 181, 199}, (Zm × [2])-base-sets for 2-(2m, 3) EK designs for m ∈ {23, 41, 59}
and a (Z7 × [4])-base-set for a 2-(28, 3) EK design are given in [8].

5.3. Direct constructions for EKGDDs and EK-packings

Definition. Let k > 0 and Γ be an abelian group of odd size m. Suppose D ⊆ E(Γ × [k], k)

with size (m − 1)/2. Then (Γ × [k],D) is a (Γ × [k])-base-set for a (km, k) EKGDD if the

following conditions hold.

(i) Fix i, j ∈ [k]. Then Δouter
ij D = Γ \ {0}.

(ii) Fix i, j ∈ [k]. Then each element in Γ appears at most once in Δinner
ij D and the zero

element does not appear in Δinner
ij D.

Proposition 5.6. If a (Γ × [k])-base-set for a (km, k) EKGDD exists, then a (km, k) EKGDD

exists.

Proof. Let (Γ × [k],D) be the (Γ × [k])-base-set and

G = {{γ} × [k] : γ ∈ Γ},
C = {D + γ : D ∈ D, γ ∈ Γ}.

Then (Γ × [k],G, C) is a (km, k) EKGDD.

Definition. Let k > 0 and Γ be an abelian group of odd size m. Suppose D ⊆ E((Γ ∪
{∞}) × [k], k) of size (m + 1)/2. Then ((Γ ∪ {∞}) × [k],D) is a ((Γ ∪ {∞}) × [k])-base-set

for a (km+1, k) EKGDD if the following conditions hold.

(i) D contains k set-pairs, {A1, B1}, {A2, B2}, . . . , {Ak, Bk}, such that Ai contains ∞i and

{j : bj ∈ Bi} = [k] for i ∈ [k].

(ii) Fix i, j ∈ [k]. Then Δouter
ij D = Γ \ {0}.
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(iii) Fix i, j ∈ [k]. Then each element in Γ appears at most once in Δinner
ij D and the zero

element does not appear in Δinner
ij D.

Proposition 5.7. Suppose there exists a ((Γ ∪ {∞}) × [k])-base-set for a (km+1, k) EKGDD.

Then a (km+1, k) EKGDD exists.

Proof. Let X = (Γ ∪ {∞}) × [k], let (X,D) be the X-base-set, and

G = {{γ} × [k] : γ ∈ Γ} ∪ {{∞} × [k]},
C = {D + γ : D ∈ D, γ ∈ Γ}.

Then (X,G, C) is a (km+1, k) EKGDD.

Corollary 5.8. A (2u, 2) EKGDD exists for u ∈ {5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 19, 23}.

Proof. The (Zm × [2])-base-sets for (2m, 2) EKGDD for m ∈ {5, 7, 9, 11, 15, 19, 23} and

the ((Zm ∪ {∞}) × [2])-base-sets for (2m+1, 2) EKGDD for m ∈ {5, 7, 9, 11, 13, 17} are given

in [8].

Corollary 5.9. A (3u, 3) EKGDD exists for u ∈ {7, 8, 9, 11}.

Proof. The required (Zm × [3])-base-sets for (3m, 3) EKGDDs for m ∈ {7, 11}, the ((Z7 ∪
{∞}) × [3])-base-set for a (38, 3) EKGDD and (Z3 × Z3 × [3])-base-set for a (39, 3)

EKGDD are given in [8].

To end this section, we construct some EKGDDs and EK packings that are required to

seed the recursion techniques. In general, the construction uses the method of differences.

However, the detailed construction is ad hoc and we refer to the interested reader to [8].

Proposition 5.10. The following EKGDDs exist:

(i) a (124t, 2) EKGDD for t ∈ {3, 5, 7},
(ii) an (8ut, 2) EKGDD for u ∈ {6, 7} and t ∈ {4, 6},
(iii) a (310, 3) EKGDD,

(iv) an (18u27, 3) EKGDD for u ∈ {7, 8}.

Proposition 5.11. There is a 2-(n, 2) EK packing of size �n(n − 1)/8	 − 1 for n ∈ {15, 21}.

6. C(n, k, d) for (k, d) ∈ {(2, 2), (2, 3), (3, 5)}

We apply recursive constructions in Section 4 with the objects constructed in Section 5 to

prove Theorems 1.4(ii) and 1.4(iii). For purposes of exposition, we rewrite Theorems 1.4(ii)

and 1.4(iii) as the following set of equations:

C(n, 2, 2) =

{
n(n − 1)(n − 2)/8 if n ≡ 0 mod 2, (6.1)

n(n − 1)(n − 3)/8 otherwise, (6.2)
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C(n, 2, 3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 if n = 6,

n(n − 2)/8 if n ≡ 0 mod 2, n = 6, (6.3)

�n(n − 1)/8	 if n ≡ 1, 3 mod 8, (6.4)

�n(n − 1)/8	 − 1 if n ≡ 5, 7 mod 8, (6.5)

C(n, 3, 5) =

⎧⎪⎨
⎪⎩

2 if n = 10,

n(n − 3)/18 if n ≡ 0 mod 3, n � 1029, (6.6)

n(n − 1)/18 if n ≡ 1 mod 9, n /∈ {10, 64, 100, 136}. (6.7)

Note that we determine C(6, 2, 3) = 2 and C(10, 3, 5) = 2 via an exhaustive computer

search.

6.1. Determining C(n, 2, 2)

Lemma 6.1. There exists a 3-(n, 2) EK design for n � 4 and n ≡ 0 mod 2.

Proof. By Proposition 5.1(i), a 3-(n, 2) EK design exists for n ∈ {4, 6}. For n � 8, there

exists a 3-BD(n, {4, 6}) by Theorem 4.4. The lemma follows from Proposition 4.11.

Equation (6.1) follows from Theorem 1.2, Proposition 2.1 and Lemma 6.1.

Lemma 6.2. There exists a 3-(n, 2) EK packing of size n(n − 1)(n − 3)/8 for n � 5 and

n ≡ 1 mod 2.

Proof. By Lemma 6.1, there exists a 3-(n + 1, 2) EK design (X, C). Fix any point x ∈ X.

Define X ′ = X \ {x} and C ′ = {{A,B} ∈ C : x /∈ A ∪ B}.
Since x is contained in exactly n(n − 1)/2 set-pairs in C, then

|C ′| = (n + 1)n(n − 1)/8 − n(n − 1)/2 = n(n − 1)(n − 3)/8.

Hence, (X ′, C ′) is the required EK packing.

Equation (6.2) follows from Theorem 1.2, Proposition 2.1 and Lemma 6.2.

6.2. Determining C(n, 2, 3)

Lemma 6.3. There exists a (2m, 2) EKGDD and an (8m, 2) EKGDD for m � 4.

Proof. By Proposition 5.1(iii), there exists a (2m, 2) EKGDD for m ∈ {4, 5, 6, 7, 8, 9, 10, 11,

12, 14, 15, 18, 19, 23}. For other values of m, we apply Proposition 4.9 with a 2-BD

(m, {4, 5, 6}) to obtain a (2m, 2) EKGDD. For m � 4, apply Proposition 4.7 with a (2m, 2)

EKGDD and a TD(4, 4) to obtain an (8m, 2) EKGDD.

Equation (6.3) follows from Theorem 1.2, Propositions 2.2 and 5.1(iv), and Lemma 6.3.
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Proposition 6.4. Let n ≡ 3, 5, 7 mod 8, X be an n-set and C ⊆ E(X, 2). Then C is an optimal

(n, 2, 3) EK code if

(i) n ≡ 3 mod 8 and (X,G, C) is a (1n−33, 2) EKGDD, where G is a partition of X into

n − 3 groups of single points and one group of three points, or

(ii) n ≡ 5, 7 mod 8 and (X, C) is a 2-(n, 2) EK packing of size exactly �n(n − 1)/8	 − 1.

Proof. If n ≡ 3 mod 8 and (X,G, C) is a (1n−33, 2) EKGDD, then (X, C) is a 2-(n, 2) EK

packing of size �n(n − 1)/8	. Optimality of C follows from Theorem 1.2.

If n ≡ 5, 7 mod 8 and (X, C) is a 2-(n, 2) EK packing of size �n(n − 1)/8	 − 1, then C is an

(n, 2, 3) EK code of size �n(n − 1)/8	 − 1 by Proposition 2.1. From Theorem 1.2, it suffices

to show that there exists no (n, 2, 3) EK code of size �n(n − 1)/8	. Suppose otherwise.

Then equivalently, there exists a 2-(n, 2) EK packing (X,D) of size �n(n − 1)/8	. Consider

the following subset P ⊆
(
X
2

)
:

P := {{x, y} : x ∈ A, y ∈ B for some {A,B} ∈ D}.

Since (X,D) is an EK-packing, we obtain∣∣∣∣
(
X

2

)
\ P

∣∣∣∣ =

(
n

2

)
− 4

⌊
n(n − 1)

8

⌋
=

{
2 if n ≡ 5 mod 8,

1 if n ≡ 7 mod 8.

Then there exists x ∈ X that occurs exactly once in the pairs of
(
X
2

)
\ P . Consider all

pairs in P that contain x. On one hand, since there is exactly one pair in
(
X
2

)
\ P that

contains x, the number |{{x, y} ∈ P : y ∈ X}| = (n − 1) − 1 = n − 2 is odd. On the other

hand, if we consider all set-pairs in D containing x, then

|{{x, y} ∈ P : y ∈ X}| = 2|{x ∈ A ∪ B : {A,B} ∈ D}|

is even, a contradiction. Therefore, (ii) follows.

Lemma 6.5. There exists a 2-(n, 2) EK design for n � 9 and n ≡ 1 mod 8.

Proof. A 2-(n, 2) EK design exists for n ∈ {9, 17, 25} by Proposition 5.1(ii). For n � 33,

write n = 8m + 1 for m � 4. Then an (8m, 2) EKGDD exists by Lemma 6.3. Apply

Corollary 4.2 to obtain the desired design.

Lemma 6.6. There exists a (1n−33, 2) EKGDD for n � 11 and n ≡ 3 mod 8.

Proof. A (1n−33, 2) EKGDD exists for n ∈ {11, 19, 27} by Proposition 5.1(iii). For n � 35,

write n = 8m + 3 for m � 4. Then an (8m, 2) EKGDD exists by Lemma 6.3. Apply

Proposition 4.1 to obtain the desired EKGDD.

Equation (6.4) follows from Propositions 2.1 and 6.4, and Lemmas 6.5 and 6.6.

Lemma 6.7. Let r ∈ {0, 1} and r + s > 0 and suppose there exists a TD(4 + r + s, 4m + r).

Let 0 � gi � 4m, i ∈ [s] and suppose there exists a 2-(n, 2) EK design for all
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Table 3. Existence of 2-(n, 2) EK packings of size �n(n − 1)/8	 − 1 for n ≡ 5, 7 mod 8.

Authority n

Proposition 5.1(iv) 5, 7, 13, 15, 21

Lemma 6.8 23, 29, 31, 53, 55, 61, 63

Lemma 6.7 with m = 1, r = 0, g1 ∈ {2, 3} 37, 39

Lemma 6.7 with m = 1, r = 1, g1 ∈ {2, 3} 45, 47

Lemma 6.7 with m = 2, r = 0, g1, g2, g3 ∈ {0, 4, 8}, g4 ∈ {2, 3, 6, 7} 69–127

n ∈ {8m + 1} ∪ {2gi + 1 : i ∈ [s − 1]} and a 2-(2gs + 1, 2) EK packing of size �gs(2gs + 1)/4	 −
1. Then there exists a 2-(N, 2) EK packing of size �N(N − 1)/8	 − 1, where

N = 1 + 8m(4 + r) + 2

s∑
i=1

gi.

Proof. By Lemma 6.3, a (2u, 2) EKGDD exists for u � 4. Apply Proposition 4.10 to obtain

an ((8m)4+r(2g1) · · · (2gs), 2) EKGDD. Now apply Proposition 4.3 to obtain a 2-(N, 2) EK

packing of size �N(N − 1)/8	 − 1.

Lemma 6.8. A 2-(n, 2) EK packing of size �n(n − 1)/8	 − 1 exists for n ∈ {23, 29, 31, 53,

55, 61, 63}.

Proof. For (u, t) ∈ {(16, 7), (24, 5), (24, 7)}, apply Proposition 4.3 to (1ut, 2) EKGDDs

constructed in Proposition 5.1(iii) to obtain 2-(n, 2) EK packings for n ∈ {23, 29, 31}.
For u ∈ {6, 7} and t ∈ {4, 6}, apply Proposition 4.3 to the (8ut, 2) EKGDDs constructed in

Proposition 5.1(iii) to obtain 2-(n, 2) EK packings for n ∈ {53, 55, 61, 63}.

Lemma 6.9. There exists a 2-(n, 2) EK packing of size �n(n − 1)/8	 − 1 for n � 5 and

n ≡ 5, 7 mod 8.

Proof. A 2-(n, 2) EK packing of size �n(n − 1)/8	 − 1 can be constructed for n ≡ 5, 7 mod

8, 5 � n � 127. Details are provided in Table 3.

For n � 133, write n = 32m + 2t + 1, such that m � 4 and t ∈ {2, 3, 6, 7, 10, 11, 14, 15}.
Then a TD(5, 4m) exists by Theorem 4.5 and a 2-(8m + 1, 2) EK design exists by Lemma 6.5.

Apply Lemma 6.7 with r = 0 and g1 = t to obtain the result.

Equation (6.5) follows from Proposition 6.4 and Lemma 6.9.

6.3. Determining C(n, 3, 5)

Lemma 6.10. There exists a (3m, 3) EKGDD for m � 343.

Proof. By Proposition 5.1(iii), there exists a (3m, 3) EKGDD for m ∈ {7, 8, 9}. For m � 343,

there exists a 2-BD(m, {7, 8, 9}) by Theorem 4.4. Apply Proposition 4.9 to obtain a (3m, 3)

EKGDD.
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Table 4. Existence of (n, 3) EK designs

Authority n

Proposition 5.1(ii) 19–55, 73–91, 109–127, 145, 163, 181, 199

Lemma 6.12 154, 172

Lemma 6.11 with m = 3, r = 0, g1, g2, g3 ∈ {0, 2, 3} 190, 208–271

Lemma 6.11 with m = 3, r = 2, g1, g2 ∈ {2, 3} 280–298

Lemma 6.11 with m ∈ {4, 5, 6, 8, 10, 12, 14, 16}, 307–1513

r = 1, 0 � g1, g2, g3 � m, g1, g2, g3 /∈ {1, 7, 11, 15}

Hence, equation (6.6) follows from Proposition 2.2 and Lemma 6.10.

Lemma 6.11. Let r ∈ {0, 1, 2}, r + s ∈ [4] and suppose there exists a TD(7 + r + s, 3m + r)

with r disjoint blocks. If 0 � gi � m, i ∈ [s] and there exists a 2-(n, 3) EK design for all

n ∈ {9m + 1} ∪ {9gi + 1 : i ∈ [s]},

then there exists a 2-(1 + 9m(7 + r) + 9
∑s

i=1 gi, 3) EK design.

Proof. By Proposition 5.1(iii), a (3u, 3) EKGDD exists for u ∈ {7, 8, 9, 10, 11}. By Propos-

ition 4.10, there exists a ((9m)7+r(9g1) · · · (9gs), 3) EKGDD. Now apply Corollary 4.2 to

obtain the desired design.

Lemma 6.12. A 2-(n, 3) EK design exists for n ∈ {154, 172}.

Proof. Apply Corollary 4.2 to 2-(n, k) EK designs for n ∈ {19, 28} and (18u27, 3) EKGDD

for u ∈ {7, 8} from Propositions 5.1(ii) and 5.1(iii), respectively, to obtain the required EK

designs.

Lemma 6.13. A 2-(n, 3) EK design exists for all n � 19 and n ≡ 1 mod 9, except possibly

for n ∈ {64, 100, 136}.

Proof. A 2-(n, 3) EK design can be constructed for n ≡ 1 mod 9, 19 � n � 1513, and

n /∈ {64, 100, 136}. Details are provided in Table 4.

For n � 1522, we prove by induction. Write n = 63m + 9t + 1, where t ∈ {0, 2, 3, 4, 5, 6, 8}
and 23 � m < n. Then a TD(8, 3m) exists by Theorem 4.5 and a 2-(9m + 1, 3) EK design

exists by induction hypothesis. Apply Lemma 6.11 with r = 0 and g1 = t to obtain the

result.

Therefore, equation (6.7) follows from Proposition 2.1 and Lemma 6.13.

7. Conclusion

New infinite families of optimal codes in the Enomoto–Katona space are obtained in

this paper. In particular, we show that C(n, k, 2k − 1) attains the Quistorff bound for
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infinitely many n. In addition, the value of C(n, 2, d) is also completely determined,

while the value of C(n, 3, 5) is determined for certain congruence classes with finite

exceptions.
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