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Abstract— Resistive memories, such as phase change memories
and resistive random access memories have attracted signifi-
cant attention in recent years due to their better scalability,
speed, rewritability, and yet non-volatility. However, their limited
endurance is still a major drawback that has to be improved
before they can be widely adapted in large-scale systems. In this
work, in order to reduce the wear out of the cells, we propose
a new coding scheme, called endurance-limited memories (ELM)
codes, that increases the endurance of these memories by lim-
iting the number of cell programming operations. Namely, an
�-change t-write ELM code is a coding scheme that allows to
write t messages into some n binary cells while guaranteeing
that each cell is programmed at most � times. In case � = 1,
these codes coincide with the well-studied write-once memory
(WOM) codes. We study some models of these codes which
depend upon whether the encoder knows on each write the
number of times each cell was programmed, knows only the
memory state, or even does not know anything. For the decoder,
we consider these similar three cases. We fully characterize the
capacity regions and the maximum sum-rates of three models
where the encoder knows on each write the number of times
each cell was programmed. In particular, it is shown that in these
models the maximum sum-rate is log

��
i=0

�
t
i

�
. We also study

and expose the capacity regions of the models where the decoder
is informed with the number of times each cell was programmed.
Finally we present the most practical model where the encoder
read the memory before encoding new data and the decoder has
no information about the previous states of the memory.

Index Terms— Endurance limited memories (ELM), rewriting
codes, resistive memories.

I. INTRODUCTION

EMERGING resistive memory technologies, such as
resistive random access memories (ReRAM) and
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phase-change memories (PCM), have the potential to be the
future’s universal memories. They combine several important
attributes starting from the speed of SRAM, the density of
DRAM, and the non-volatility of flash memories. However,
they fall short in their write endurance, which significantly
increases their bit error rate (BER). Hence, solving the limited
endurance of these memories is crucial before they can be
widely adapted in large-scale systems [9], [18], [28].

Resistive memories are non-volatile memories which are
composed of cells. The information is stored in the cells
by changing their resistance. They combine the following
two properties of DRAM and flash memories. Similarly
to flash memories and unlike DRAM they are non-volatile
memories and thus they don’t require refresh operations.
Furthermore, like DRAM and unlike flash memories they
are rewritable without an erase operation. The main chal-
lenge that has remained to be solved in order to make
these memories a legitimate candidate as a universal memory
is their limited write endurance, which is the goal of this
paper.

Endurance is defined as the number of set/reset cycles to
switch the state of cells in ReRAM while it is still reliable.
Owing to its importance, there are many researches which
test and characterize the endurance of ReRAM in order to
show a strong dependence on material of cells, cell size, [16],
[26], and program operation [22]. To improve the endurance
of ReRAM, recent research have focused on the structure and
material of devices [16], [25] and programming schemes [6],
[22]. In this work, we present a scheme to use rewriting code
to improve the endurance lifetime of ReRAM.

Previous works have offered different solutions to combat
the write endurance of resistive memories. In [12], the authors
proposed to use locally repairable codes (LRC) in order to
construct codes with small rewriting locality in order to miti-
gate both the problems of endurance and power consumption.
In [27], the authors proposed mellow writes, a technique which
is targeted to reduce the wear-out of the writes rather than
reducing the number of writes. Lastly, several other works
proposed coding schemes which correct stuck-at cells; see
e.g. [14], [19], [24].

In order to combat the limited write endurance in resistive
memories, this paper proposes to study the following new
family of codes, called endurance-limited memory (ELM)
codes. Assume there are n binary cells and t messages that
are required to be stored in these cells sequentially. Assume
also that each cell can be programmed at most � � 1 times.
Then, we seek to find the set of achievable rates, i.e., the
capacity region, and design code constructions for this model.
Note that for � = 1, we get the classical problem of write-

0018-9448 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 00:03:54 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8036-0684
https://orcid.org/0000-0003-3303-9078
https://orcid.org/0000-0002-3236-0575
https://orcid.org/0000-0002-9851-5234


1600 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 3, MARCH 2022

once memory (WOM) codes [2], [10], [11], [17], [21], [23].
Besides that, if t � �, the coding scheme is trivial. Hence,
in this work, we only focus on the cases where t > � > 1.
Note that a trivial lower bound on the maximum sum-rate is
min{t, �}, which achieved by writing with rate 1 in the first
min{t, �} writes and with rate 0 in the remaining writes.

Let us consider first the case where � = 2 and t = 3.
A naive solution is to use a two-write WOM code for the first
two writes and then write n more bits on the third write. The
maximum sum-rate using this solution will be log(3) + 1 =
log(6), while, as will be shown in the paper, the maximum
sum-rate in this case is log(7). The intuition behind this is as
follows. Let p1 be the probability to program a cell on the first
write, so we assume that p1n cells are programmed. Then,
on the second and third writes we have a two-write WOM
code problem for the p1n programmed cells, and for the (1−
p1)n non-programmed cells, we can write twice on them so no
coding is needed. The maximum sum-rate is achieved for p1 =
3/7. However, it is still a challenging task to design specific
code constructions that can approach sum-rate of log(7).

There are several models of ELM codes which can be
studied. These models are distinguishable by the information
that is available to the encoder and the decoder. In particular,
for the encoder, we consider three cases which depend upon
whether the encoder knows the number of times each cell was
programmed, encoder informed all (EIA), only the current
state of the cell, encoder informed partially (EIP), or no
information about the cells state, encoder uninformed (EU).
The decoder will also have three cases, corresponding to
the same information that is available to the encoder. Thus,
by considering all combinations of the above three cases for
the encoder and the decoder, it is possible to define and study
nine models, EX : DY , where X, Y ∈ {IA, IP, U}.

The rest of this paper is organized as follows. In Section II,
we formally define the models studied in this paper and
discuss some basic observations. In Section III, we study
the capacity regions and the maximum sum-rates of the EIA
models, and also present capacity achieving codes. We prove
that the capacity region of all EIA models, are the same, for
both �-error and zero-error cases. In the next two sections,
we discuss the EIP:DIA model. In Section IV, we study
the capacity region of this model for the �-error case, and
in Section V, we compare between this model and the EIA
models. Then, we discuss the EU:DIA and the EIP:DU models
in Sections VI and VII, respectively. Finally, we conclude our
results and discuss a future work in Section VIII.

II. DEFINITIONS AND PRELIMINARIES

In this section, we formally define the nine models of ELM
codes, and we state some simple propositions. Assume that
each cell can be programmed at most � times, so if the encoder
attempts to program a cell more than � times then it will not
change its value. For the EIA models, we assume that the
encoder will not try to program a cell that has already been
programmed � times before the current write. We see this as
an extension of the WOM model for � = 1. These models will
be defined both for the zero-error and the �-error cases.

For a positive integer a, the set {0, . . . , a − 1} is defined
by [a]. Throughout this paper, we assume that the number of
cells is n. We use the vector notation c ∈ [2]n to represent the
cell-state vector of the n memory cells, and the vector v ∈
[� + 1]n, which will be called the cell-program-count vector,
to represent the number of times each cell was programmed.
Note that the state of a cell is the parity of the number of
times it was programmed. Thus, if the encoder (or the decoder)
knows the cell-program-count vector v, in particular it knows
the cell-state vector c as well. For a vector v ∈ [� + 1]n,
we denote by 〈v〉2 the length-n binary vector which satisfies
〈v〉2,k = vk(mod 2) for all k ∈ [n], and we say that 〈v〉2
equals to v modulo 2. The complement of a binary vector c
is denoted by c. The all ones, zeros vector will be denoted by
1, 0, respectively. For two length-n vectors a and b, a+b is the
vector obtained by pointwise addition. If a and b are binary
vectors a ⊕ b is the vector obtained by pointwise addition
modulo 2.

For a cell-program-count vector v ∈ [� + 1]n and a new
cell-state vector c ∈ [2]n to be programmed to the cells,
we define by N(v, c) ∈ [�+1]n and f(v, c) ∈ [2]n the result
of programming the new cell-state vector c. That is, N(v, c)
is the new cell-program-count vector after programming c,
f(v, c) is the new cell-state vector, and they are formally
defined as follows. N(v, c)k = vk if ck = vk(mod 2), and
otherwise N(v, c)k = min{�, vk + 1}, where the index k for
a vector means its k-th element. Similarly, f(v, c)k = ck

if vk < �, and otherwise f(v, c)k = vk(mod 2). Note
that 〈N(v, c)〉2 = f(v, c), i.e., f(v, c) equals to N(v, c)
modulo 2. We are ready now to define all models studied
in this paper.

Definition 1: An [n, t, �; M1, . . . , Mt]EX:DY,pe �-change
t-write Endurance-Limited Memory (ELM) code with
error-probability vector pe = (pe1 , . . . , pet), where X, Y ∈
{IA, IP, U}, is a coding scheme comprising of n binary cells
and is defined by t encoding and decoding maps (Ej ,Dj) for
1 � j � t. For the map Ej , Im(Ej) is its image, where by
definition Im(E0) = {(0, . . . , 0)}.

Furthermore, for j ∈ [t + 1], let Nj and Im∗(Ej) be the
sets of all state-program-count vectors, cell-state vectors which
can be obtained after the first j writes, respectively. Formally,
for 1 � j, Nj = {N(v, c) : c ∈ Im(Ej), v ∈ Nj−1}, where
N0 = {(0, . . . , 0)}, and Im∗(Ej) = {〈v〉2 : v ∈ Nj}. Note
that for the EIA models Im∗(Ej) = Im(Ej). The domain and
the range of the encoding maps are defined as follows:

(1) for the EIA models, Ej : [Mj] × Nj−1 → [2]n,

such that for all (m, v) ∈ [Mj] × Nj−1 it holds that

v + (〈v〉2 ⊕ Ej(m, v)) ∈ [� + 1]n.
(2) for the EIP models, Ej : [Mj] × Im∗(Ej−1) → [2]n.
(3) for the EU models, Ej : [Mj] → [2]n.

For a message m we denote by Im(x) the indicator function,
where Im(x) = 0 if m = x, and otherwise Im(x) =
1. Additionally, for a message m ∈ [Mj ], Pr(m) is the
probability of programming a message m on the j-th write,
and for v ∈ Nj−1, Pr(v) is the probability to have cell-
program-count vector v before the j-th write. The nine models
are defined as follows. For all 1 � j � t,
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(1) if (X, Y ) = (IA, IA) then

Dj : {(Ej(m, v), v) : m ∈ [Mj], v ∈ Nj−1}→[Mj ],

and ∑
(m,v)∈[Mj ]×Nj−1

Pr(m)Pr(v) · Im (Dj(Ej(m, v), v)) � pej ,

(2) if (X, Y ) = (IA, IP ) then

Dj : {(Ej(m, v), 〈v〉2) : m ∈ [Mj], v ∈ Nj−1}→[Mj ],

and ∑
(m,v)∈[Mj ]×Nj−1

Pr(m)Pr(v) · Im (Dj(Ej(m, v), 〈v〉2)) � pej ,

(3) if (X, Y ) = (IA, U) then

Dj : Im(Ej) →[Mj ],

and ∑
(m,v)∈[Mj ]×Nj−1

Pr(m)Pr(v) · Im (Dj(Ej(m, v))) � pej ,

(4) if (X, Y ) = (IP, IA) then

Dj : {(f(v, Ej(m, 〈v〉2)), v) :m∈ [Mj ], v∈Nj−1}→[Mj ],

and∑
(m,v)∈[Mj ]×Nj−1

Pr(m)Pr(v)·Im (Dj(f(v, Ej(m, 〈v〉2)), v))�pej ,

(5) if (X, Y ) = (IP, IP ) then

Dj :{(f(v,Ej(m,〈v〉2)),〈v〉2) :m∈ [Mj ], v∈Nj−1}→[Mj ],

and∑
(m,v)∈[Mj ]×Nj−1

Pr(m)Pr(v)·Im(Dj(f(v, Ej(m,〈v〉2)),〈v〉2))�pej ,

(6) if (X, Y ) = (IP, U) then

Dj : Im∗(Ej) →[Mj ],

and ∑
(m,v)∈[Mj ]×Nj−1

Pr(m)Pr(v)·Im(Dj(f(v, Ej(m,〈v〉2))))�pej ,

(7) if (X, Y ) = (U, IA) then

Dj : {(f(v, Ej(m)), v) : m ∈ [Mj ], v ∈ Nj−1}→[Mj ],

and ∑
(m,v)∈[Mj ]×Nj−1

Pr(m)Pr(v) · Im (Dj(f(v, Ej(m))v)) � pej ,

(8) if (X, Y ) = (U, IP ) then

Dj : {(f(v, Ej(m)), 〈v〉2) :m∈ [Mj ], v∈Nj−1}→[Mj ],

and ∑
(m,v)∈[Mj ]×Nj−1

Pr(m)Pr(v)·Im (Dj(f(v, Ej(m))〈v〉2))�pej ,

(9) if (X, Y ) = (U, U) then

Dj : Im∗(Ej) →[Mj ],

and ∑
(m,v)∈[Mj]×Nj−1

Pr(m)Pr(v) · Im (Dj(f(v, Ej(m)))) � pej .

If pej = 0 for all 1 � j � t, then the code is called a zero-error
ELM code and is denoted by [n, t, �; M1, . . . , Mt]EX:DY,z .

The rate on the j-th write of an [n, t, �; M1, . . . ,
Mt]EX:DY,pe ELM code, X, Y ∈ {IA, IP, U}, is defined as
Rj = log Mj

n , and the sum-rate is the sum of the individual
rates on all writes, Rsum =

∑t
j=1 Rj . A rate tuple R =

(R1, . . . , Rt) is called �-error achievable in model EX : DY ,

if for all � > 0 there exists an [n, t, �; M1, . . . , Mt]EX:DY ,pe

ELM code with error-probability vector pe = (pe1 , . . . , pet) �
(�, . . . , �), such that log Mj

n � Rj − �. The rate tuple R will
be called zero-error achievable if for all 1 � j � t, pej = 0.
The �-error capacity region of the EX:DY model is the set of
all �-error achievable rate tuples, that is,

CEX:DY,ε
t,� ={(R1, . . . , Rt)|(R1, . . . , Rt) is �-error achievable},

and the �-error maximum sum-rate will be denoted by
REX:DY,ε

t,� . The zero-error capacity region CEX:DY,z
t,� and the

zero-error maximum sum-rate REX:DY,z
t,� are defined similarly.

We say that R � R′ for R = (R1, . . . , Rt) and R′ =
(R′

1, . . . , R
′
t) if Rj � R′

j for all 1 � j � t, and R < R′

if R � R′ and R �= R′.
According to these definitions it is easy to verify the

following relations. For g ∈ {z, �} and X, Y ∈ {IA, IP, U}
it holds that

CEU :DY,g
t,� ⊆ CEIP :DY,g

t,� ⊆ CEIA:DY,g
t,� ,

CEX:DU,g
t,� ⊆ CEX:DIP,g

t,� ⊆ CEX:DIA,g
t,� , and

CEX:DY,z
t,� ⊆ CEX:DY,ε

t,� .

Similar connections hold for the maximum sum-rates.
Note that if � � t then all problems are trivial since it is

possible to program all cells on each write, so the capacity
region in all models is [0, 1]t and the maximum sum-rate
is t. For � = 1, we get the classical and well-studied WOM
codes [2], [10], [11], [17], [21], [23]. In this case, we also
notice that the IA and IP models are the same for both
the encoder and the decoder. The capacity region and the
maximum sum-rate in most of these cases are known; see
e.g. [10], [11], [17], [23]. In the rest of this paper, and unless
stated otherwise, we assume that 1 � � < t.

A. Related Work
The EIA models of ELM codes studied in this paper are

strongly related to non-binary WOM codes and their modified
versions studied in [3], [8], [11], [13]. In these EIA models,
we can treat every cell as an (� + 1)-ary cell, where it is
only possible to increase its level by one on each write,
while its maximum level is �. In non-binary WOM codes,
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each cell has q levels and its level can not be decreased [8],
[11]. In a write �-step-up memory [3], a special version of
the non-binary WOM code, each cell has q levels and each
time we write a cell, its level can be increased by at most
some value �. Recently, Kobayashi et al. [13] also studied
a modified version of non-binary WOM codes, called write
constrained memories, where there is a cost on each state
transition. Yet, these codes are not identical and we can not
apply previous results to solve the models of ELM codes.
In fact, our results on EIA models are useful to obtain an
explicit formula of the capacity region of write �-step-up
memory codes. We also note that some models of ELM codes,
such as the EIP:DU model, are much different from previous
models and are difficult to solve.

Moreover, our proposed ELM coding scheme is also related
to the cooling code which is used to control the peak temper-
ature of an interconnect [1], [2]. In [1], cooling codes are
proposed to avoid all hottest wires and in [2], cooling codes
are shown to be equivalent to two-write binary WOM codes.
Later in this work, we will use cooling codes as two-write
binary WOM codes in order to construct our ELM codes. Now,
we discuss the ability of our ELM codes to control the peak
temperature of an interconnection. In fact, using our coding
scheme in this work, we can control the maximal number of
switches in each wire. We note that the temperature of each
wire is closely related to the number of switches in each wire.
And thus, we can control the peak temperature of each wire.

Recently, the EIA:DIA model of ELM is shown to be
useful for two-dimensional (2D) weight-constrained code
scheme [15]. In a 2D weight-constrained code, each codeword
is an array of size m × n where the number of 1 symbols
in each row and each column is limited by pn and qm,
respectively. The encoder and decoder know the values of all
the mn bits. We can view this 2D weight-constrained code
as we write m messages in ReRAM where each cell can be
switched at most qm times and both encoder and decoder
know all previous messages.

B. Our Contribution

In this work, we propose a novel scheme of rewriting
code to improve the endurance lifetime of ReRAM, called
endurance limited memories (ELM) code. In �-change t-write
ELM codes, each cell can be programmed at most � times dur-
ing the writing of t messages. In the case that � is much smaller
than t, we can significantly improve the lifetime of the mem-
ories. Depending upon whether the encoder (E) and decoder
(D) know the number of times each cell is programmed (IA),
the current state of each cell (IP), or have no information on
the state of each cell (U), we present and investigate all nine
models EX : DY where X, Y ∈ {IA, IP, U}. We note that
the most practical model to increase the endurance of ReRAM
is the EIP:DU model. However, for the theoretical interest,
we study all nine models in this paper. Furthermore, although
the EIA models are not suitable for improving the endurance
of ReRAM, they have several applications, including write
�-step-up memories and two-dimensional weight-constrained
codes. We expect that we can see other applications of all
nine models of ELM codes in near future.

In Section III, all three EIA models are investigated in both
cases, �-error and zero-error. We first provide the capacity
region and the maximum sum-rate of these models. The tech-
niques are used to achieve the results on the capacity regions
in Theorems 2 and 3 are similar to those used in [11] for
WOM codes. To achieve the explicit formula of the maximum
sum-rate in Theorem 4, we need a new simple technique.
We then present several constructions of ELM codes for the
EIA models. To construct these codes, we need some new
ideas even though we also use several special families of
WOM codes as components of our ELM codes. In Section IV,
we use a known technique in information theory to obtain the
capacity region of the EIP:DIA model. The capacity region
of all EIA models is compared to the EIP:DIA model in
Section V. Using the same technique carefully, we can also
find the capacity region of the EU:DIA model in Section VI.
Finally, in Section VII, we study the most practical model for
ReRAM, the EIP:DU model. Although several good bounds
on the maximum sum-rate are presented, these bounds are not
tight and finding an exact formula of the maximum sum-rate
of the EIP:DU model is still an open problem. To achieve
some good constructive lower bounds, we provide several
constructions of EIP:DU ELM codes for the zero-error case.
These results are novel and we need different original methods
to achieve them.

III. THE EIA MODELS

In this section, we explore the capacity region and the
maximum sum-rate of the EIA models for both the �-error
and the zero-error cases. We also propose capacity achieving
codes for these cases.

For each j ∈ [t + 1], we let cj denote the binary length-
n vector which represents the cell-state vector after the j-th
write, where c0 = 0. Recall that in the EIA models, on the
j-th write the encoder knows the number of times each cell
was programmed before the current write. That is, the encoder
receives as an input a length-n cell-program-count vector
N(cj−1) ∈ [� + 1]n that represents the number of times each
cell was programmed so far. Next, for all t and �, we define
the region Ct,� and in Theorem 2, we prove that this is the
capacity region of all the EIA models.

For 1 � j � t and i ∈ [� + 1], i � j, let pj,i ∈ [0, 0.5],
be the probability to program a cell on the j-th write, given
that this cell has been already programmed i times. We define
pj,j = pj,� = 0 for 1 � j � t, and let Qj,i be the probability
that a cell has been programmed exactly i times on the first j
writes. Formally, Qj,i is defined recursively by using pj,i and
pj,i−1 as follows:

Qj,i =

{
Qj−1,i(1 − pj,i) + Qj−1,i−1pj,i−1, if i > 0,
Qj−1,i(1 − pj,i), if i = 0,

(1)

where for j = 0 we set Q0,0 = 1 otherwise Q0,i = 0. The
rates region Ct,� is defined as follows:

Ct,�=
{
(R1, . . . , Rt)|∀1�j�t : Rj �

min{�,j}−1∑
i=0

Qj−1,ih(pj,i),

∀i ∈ [�] : pj,i ∈ [0, 0.5], and Qj,i is defined in (1)
}
,

(2)
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where in this paper both h(x) and H(X) represent the binary
entropy function for 0 � x � 1 and a random variable X ,
respectively.

Note that for � = 1, it is possible to verify that we get
the capacity region of WOM [10], [17], [23]. It is also readily
verified that the maximum sum-rate is achieved with pj,i = 0.5
for all t − j + 1 � � − i, since t − j + 1 is the number of
the remaining writes, and �− i is the number of times the cell
can be programmed. Thus, if t − j + 1 � � − i then we can
program the cell with probability 0.5 to obtain the maximum
rate. The next theorem proves that for 2 � � � t − 1, Ct,� is
the capacity region of the �-change t-write ELM in all EIA
models, and thus we denote this capacity by CEIA

t,� , and the
maximum sum-rate by REIA

t,� .
Theorem 2: The rates region Ct,� is the capacity region of

the �-change t-write ELM in all EIA models for both �-error
and zero-error cases. That is, for all g ∈ {z, �} and Y ∈
{IA, IP, U}, CEIA:DY,g

t,� = Ct,�.
Proof: Recall that by the definitions of the models

CEIA:DU,z
t,� ⊆ CEIA:DIP,z

t,� ⊆ CEIA:DIA,z
t,� ⊆ CEIA:DIA,ε

t,� , and

CEIA:DU,z
t,� ⊆ CEIA:DU,ε

t,� ⊆ CEIA:DIP,ε
t,� ⊆ CEIA:DIA,ε

t,� .

The rest of the proof consists of two parts. The first part,
called the direct part, proves that Ct,� ⊆ CEIA:DU,z

t,� , and in the

second, called the converse part, we prove that CEIA:DIA,ε
t,� ⊆

Ct,�. The direct part is proved in Subsection III-A for the
zero-error case of the EIA:DU model, while the converse
part is proved in Subsection III-B for the �-error case of the
EIA:DIA model.

Next, we seek to present the capacity region of the EIA
models in a recursive form. While we see this representation
of the capacity region more intuitive, it will also help us in
finding the maximum sum-rate of this model. For all t � 1
and � � 1, let Ĉt,� be the following region which is defined
recursively as follows. For t > � � 1

Ĉt,�=
{
(R1, . . . , Rt)|R1 � h(p), p ∈ [0, 0.5],

for 2 � j � t, Rj � pR′
j + (1 − p)R′′

j ,

(R′
2, . . . , R

′
t) ∈ Ĉt−1,�−1 and (R′′

2 , . . . , R′′
t )∈Ĉt−1,�

}
,

(3)

where for all � � t � 1 we set Ĉt,� = [0, 1]t and Ĉt,0 = {0}.
Theorem 3: For all t and �, Ĉt,� = Ct,�.

Proof: For the first direction, we prove by induction
on t that for all � � 1, if R = (R1, . . . , Rt) = Ĉt,� then
R ∈ CEIA:DIA,ε

t,� . Since CEIA:DIA,ε
t,� = Ct,�, we conclude that

Ĉt,� ⊆ Ct,�.
The base of the induction is t � � for all � � 1. These

cases are readily verified. For the induction step, let R =
(R1, R2, . . . , Rt) ∈ Ĉt,�, 1 � � < t, such that R1 = h(p)
for p ∈ [0, 0.5] and for 2 � j � t Rj = pR′

j + (1 − p)R′′
j

where (R′
2, R

′
3, . . . , R

′
t) ∈ Ĉt−1,�−1 and (R′′

2 , R′′
3 , . . . , R′′

t ) ∈
Ĉt−1,�. By the induction hypothesis, (R′

2, R
′
3, . . . , R

′
t) ∈

CEIA:DI
t−1,�−1 and (R′′

2 , R′′
3 , . . . , R′′

t ) ∈ CEIA:DI
t−1,� . Thus, we have

two codes: C1 - an (� − 1)-change (t − 1)-write ELM code

which achieves the rate tuple (R′
2, R

′
3, . . . , R

′
t) and C2 - an

�-change (t−1)-write ELM code which achieves the rate tuple
(R′′

2 , R′′
3 , . . . , R′′

t ). Then, we can design an �-change t-write
ELM code, such that on the first write the encoder programs
a cell with probability p for p ∈ [0, 0.5], and then on the next
writes it applies C1 for the cells that were programmed on the
first write, and C2 for the other cells. Thus, the rate tuple R
is achieved.

The second direction, Ct,� ⊆ Ĉt,�, is proved by induction
on t, that is, for each t � 1 we prove that Ct,� ⊆ Ĉt,� for
all 1 � � � t. The base of the induction, t = 1 and � =
1, is trivial. The induction assumption is that for each 1 �
�′ � t − 1, Ct−1,�′ ⊆ Ĉt−1,�′ . For the induction step, let R =
(R1, R2, . . . , Rt) ∈ Ct,� which is achieved by the probabilities
pj,i. Denote by R′ = (R′

2, R
′
3, . . . , R

′
t) ∈ Ct−1,�−1 the rate

tuple which is attained by the probabilities p′j,i = pj+1,i+1,
and by R′′ = (R′′

2 , R′′
3 , . . . , R′′

t ) ∈ Ct−1,� the rate tuple which
is attained by the probabilities p′′j,i = pj+1,i. Recall that we
define Ĉt−1,t = Ĉt−1,t−1, and Ĉt−1,0 = {0}. It can be easily
verified that for all j, 2 � j � t, Rj = p1,0R

′
j +(1−p1,0)R′′

j .
By the induction hypothesis, R′ ∈ Ĉt−1,�−1 and R′′ ∈ Ĉt−1,�.
Thus, by defining p = p1,0 we get a recursive form for R,
and we can conclude that Ct,� ⊆ Ĉt,�.

Next, using the result from Theorem 3, it is possible to find
the maximum sum-rate of the EIA models, REIA

t,� .
Theorem 4: For all t and �,

REIA
t,� = log

�∑
i=0

(
t

i

)
,

and this value is achieved for

p1,0 = p =
∑�−1

i=0

(
t−1

i

)∑�
i=0

(
t
i

) ,

where p1,0, p are defined in Equations (2), (3) in Ct,�, Ĉt,�,
respectively. For example, if � = 2 the maximum sum-rate is
achieved for p1,0 = p = 2t

t2+t+2 .

Proof: First, we prove that REIA
t,� � log

∑�
i=0

(
t
i

)
by

counting all the possible sequences of t messages. We describe
each possible sequence as a table of t rows and n columns,
where n is the number of cells. Note that different sequences
will be mapped to different matrices. Recall, that every cell can
be programmed at most � times. Thus, the number of different

possible matrices is
(∑�

i=0

(
t
i

))n

, and the upper bound is
proved.

Next we assure that this upper bound is indeed tight.
We prove this result by using the recursive formula for the
capacity Ĉt,� described in Equation (3). For � = 1, W�M is
the binary WOM, and this upper bound, log(t+1) is known to
be tight, and achieved for p = 1/(t+1) [8], [10], [23]. That is,
the maximum sum-rate of one-change t-write W�M is equal
to log

∑�
i=0

(
t
i

)
= log(t + 1). Let us denote Xt,� =

∑�
i=0

(
t
i

)
and p = Xt−1,�−1

Xt,�
. Note that by the properties of the binomial

coefficients, Xt,� = Xt−1,�−1 + Xt−1,�. Therefore, 1 − p =
Xt−1,�

Xt,�
. By using the recursive formula for the capacity Ĉt,�

described in Equation (3), we are only left to prove that for
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all 2 � � � t − 1,

log Xt,� = h(p) + p log Xt−1,�−1 + (1 − p) log Xt−1,�.

This relation holds since

h(p) + p logXt−1,�−1 + (1 − p) log Xt−1,�

= p
(
log
(

Xt,�

Xt−1,�−1

)
+ log(Xt−1,�−1)

)
+(1 − p)

(
log
(

Xt,�

Xt−1,�

)
+ log(Xt−1,�)

)
= p logXt,� + (1 − p) log(Xt,�)

= log(Xt,�).

A. The EIA:DU Model - Constructions and
Direct Part of Theorem 2

In this subsection, we study the EIA:DU model, that is,
encoder informed all and decoder uninformed. Our main
contribution is a construction of a capacity-achieving �-change
t-write EIA:DU-ELM code for the zero-error case, which
assures that Ct,� ⊆ CEIA:DU,z

t,� . That is, the direct part of
Theorem 2 is proved.

Let us start with the first non-trivial case of t = 3 and � = 2.
Thus, we want to prove that C3,2 ⊆ CEIA:DU,z

3,2 . Recall that,

C3,2=
{
(R1, R2, R3)|R1 � h(p1,0),

R2�1−p1,0 + p1,0h(p2,1),

R3�1−p1,0p2,1, andp1,0, p2,1∈[0, 0.5]
}
.

which is achieved by setting p3,0 = p3,1 = p2,0 = 0.5
in Equation (2). The next theorem states the existence of a
construction of ELM codes for this case.

Theorem 5: For any � > 0 and p1,0, p2,0, p2,1 ∈ [0, 0.5],
there exists an explicit construction of a zero-error two-change
three-write EIA:DU-ELM code satisfying R1 � h(p1,0) − �,
R2 � (1 − p1,0)h(p2,0) + p1,0h(p2,1) − �, and R3 � (1 −
p1,0p2,1) − �.

Before presenting our construction for two-change three-
write EIA:DU-ELM codes, we introduce the following family
of WOM codes. We then use these WOM codes as component
codes in our construction of EIA:DU-ELM codes. Note that
the WOM codes we use for our construction are given for
n → ∞, and thus our constructions for ELM codes use such n.

Definition 6: An [n, 2; M1, M2]EI:DU,z
q two-write q-ary

EI:DU WOM code for the zero-error case is a coding scheme
comprising of n q-ary cells. It consists of two pairs of encoding
and decoding maps (Eq,1,Dq,1) and (Eq,2,Dq,2) which are
defined as follows:
(1) Eq,1 : [M1] → [q]n and Dq,1 : Im(Eq,1) → [M1] such that

for all m1 ∈ [M1], Dq,1(Eq,1(m1)) = m1.
(2) Eq,2 : [M2] × Im(Eq,1) → [q]n and Dq,2 : Im(Eq,2) →

[M2] such that for all (m2, c) ∈ [M2] × Im(Eq,1),
Eq,2(m2, c) � c and Dq,2(Eq,2(m2, c)) = m2.

We say that p = (p0, p1, . . . , pm−1) is a probability vector
if
∑m−1

i=0 pi = 1 and pi � 0 for all i ∈ [m]. We distinguish
between an error-probability vector that is used in Definition 1,

and a probability vector. An error-probability vector is a vector
of error-probabilities, and not a probability vector, i.e., the sum
of the elements of an error-probability vector does not need be
1. For two positive integers n, q and a probability vector p =
(p0, p1, . . . , pq−1), we denote by B(n, p) the set of all length-
n q-ary vectors of constant composition w = (w0, . . . , wq−1),
where wi = pin for i ∈ [q] 1. Let pj,i→k be the probability
that on the j-th write, a cell in state i is programmed to
state k, k � i.

A family of two-write q-ary capacity-achieving EI:DU
WOM codes was constructed recently by Shpilka [21].
Particularly, given � > 0 and probability vectors p1,0,
p2,0, . . . , p2,q−2, Shpilka [21] constructed a family of two-
write q-ary EI:DU WOM codes that match these probability
vectors on the first and second writes. We state this result
formally.

Lemma 7: [21] For all (j, i) ∈ {(1, 0), (2, 0), (2, 1), . . . ,
(2, q − 2)}, let pj,i = (pj,i→i, pj,i→i+1, . . . , pj,i→q−1) be
a probability vector. Then, for all � > 0 there exists an
[n, 2; M1, M2]EI:DU,z

q two-write q-ary EI:DU WOM code
satisfying:
• Im(Eq,1) ⊆ B(n, p1,0) and R1 = log M1

n � h(p1,0) − �.
• For all c1 ∈ Im(Eq,1), m2 ∈ [M2], and c2 = Eq,2(m2, c1),
the following condition holds. For i ∈ [q], let ci

2 be a length-
w1,i, w1,i = np1,0→i, substring of c2 at all locations k
with value i before the second write, that is, c1,k = i.
Then, ci

2 ∈ B(w1,i, p2,i). Furthermore, R2 = log M2
n �∑q−2

i=0 p1,0→ih(p2,i) − �.

We refer to the family of WOM codes from Lemma 7 as
an [n, 2; M1, M2]EI:DU

q (�, p1,0, p2,0, . . . , p2,q−2) WOM code,

where M1 = 2R1n and M2 = 2R2n are determined as the
maximal possible values based on �, which tends to zero, and
the probability vectors pj,i.

For the case q = 2, for shorthand, given p1,0→1 = p
we denote these codes by [n, 2; M1, M2]EI:DU,z(�, p) (where
p2,0→1 = 0.5). Furthermore, using cooling codes, the work
in [1] provides the following family of binary WOM codes.

Lemma 8: For all p ∈ [0, 0.5] and � > 0, there exists a
two-write binary WOM code [n, 2; M1, M2]EI:DU,z(�, p) such
that M1 =

∑τ
i=0

(
n
i

)
and M2 = 2n−τ−1, where τ = pn.

Therefore, for any � > 0, there exists n such that R1 =
log M1

n � h(p) − � and R2 = log M2
n � 1 − p − �.

We are now ready to present a construction of two-change
three-write EIA:DU-ELM codes which establishes the result
in Theorem 5.

Construction 9: Given p1,0, p2,0, p2,1 ∈ [0, 0.5] and � >
0, we construct an [n, 3, 2; M1, M2, M3]EIA:DU,z ELM code
where Mj = 2nRj for j = 1, 2, 3 such that R1 � h(p1,0)− �,
R2 � (1 − p1,0)h(p2,0) + p1,0h(p2,1) − �, and R3 � (1 −
p1,0p2,1) − �. We use the following two WOM codes.

1) Let p1,0 = (p1,0→0, p1,0→1, p1,0→2) = (1− p1,0, p1,0, 0),
p2,0 = (p2,0→0, p2,0→1, p2,0→2) = (0, p2,0, 1 − p2,0),
and p2,1 = (p2,1→1, p2,1→2) = (1 − p2,1, p2,1). Let C1

be an [n, 2; M1, M2]
EI:DU,z
3 (�, p1,0, p2,0, p2,1) two-write

1We assume here that pi is a rational number and n is large enough such
that pin is an integer for i ∈ [q].
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ternary EI:DU WOM code from Lemma 7 with two pairs
of encoder/decoder (E3,1,D3,1) and (E3,2,D3,2).

2) Let ρ1 = p1,0p2,1, and C2 be an [n, 2; M ′
1,

M3]EI:DU,z(�, ρ1) two-write binary EI:DU WOM code
from Lemma 8 with two pairs of encoder/decoder
(E2,1,D2,1) and (E2,2,D2,2).

The three pairs of encoder/decoder mappings (EEIA:DU
j ,

DEIA:DU
j ) for j = 1, 2, 3 are defined as follows.

First write: EEIA:DU
1 (m1) = E3,1(m1) for all m1 ∈ [M1].

Similarly, DEIA:DU
1 (c1) = D3,1(c1). Note that since we chose

the probability to program level 2 in the first write of C1 to be
zero, the output of the encoder E3,1 is indeed a binary vector,
so EEIA:DU

1 and DEIA:DU
1 are well defined.

Second write: The idea is to use the second write encoder E3,2

of C1 with the probability vectors p2,0 and p2,1, and notice that
here we write all cells to levels 1 or 2. Then, we can view this
“ternary word” as a binary word. Let c1 = (c1,1, . . . , c1,n) ∈
Im(EEIA:DU

1 ) be the cell-state vector after the first write,
and note that this is a binary vector. The encoder/decoder
(EEIA:DU

2 ,DEIA:DU
2 ) are defined formally as follows. For all

(m2, c1) ∈ [M2] × Im(EEIA:DU
1 ),

c2 = EEIA:DU
2 (m2, c1) = c′2(mod2),

where c′2 = E3,2(m2, c1) ∈ [3]n. Furthermore, for all c2 ∈
Im(EEIA:DU

2 ),

DEIA:DU
2 (c2) = D3,2(c′2) = m2,

where c′2 = 2 ·1−c2, that is, c′2,i = 1 if c2,i = 1 and c′2,i = 2
if c2,i = 0.
Third write: Let c2 be the cell-state vector after the second
write. We note that the encoder on the third write knows the
program-count vector v2 ∈ [3]n, but the decoder does not
have this information. Among the n cells, there are ρ1n cells
which have been programmed twice, where ρ1 = p1,0p2,1,
and therefore (only) these cells cannot be programmed on this
write. Hence, the encoder can interpret the vector v2 as a
length-n binary vector indicating for each cell whether it can
be programmed on this write. We denote this vector by c′′2 ,
so c′′2,i = 1 if and only if v2,i = 2. We will use the code
C2 to encode and decode on this write, and we denote by
c̄ the bitwise complement of a binary vector c. Specifically,
the encoder/decoder mappings are defined as follows. For all
m3 ∈ [M3] and v2 ∈ N2,

EEIA:DU
3 (m3, v2) = E2,2(m3, c′′2).

Furthermore, for all c3 ∈ Im(EEIA:DU
3 ),

DEIA:DU
3 (c3) = D2,2(c3).

To illustrate Construction 9, we present the following example.
Example 1: Let n = 7, p1,0 = 3/7, p2,0 = 1/2, and

p2,1 = 1/3, we construct a [7, 3, 2; M1, M2, M3]EIA:DU,z

three-change two-write ELM code as follows.

• In the first write, we encode a message m1 to obtain a
binary vector of length 7, e.g., c1 = (1, 1, 1, 0, 0, 0, 0).

• In the second write, to encode a message m2, in the
first step, we use the second write encoder E3,2 of the

ternary code C1 in Lemma 7 with probability p2,0 =
(0, 1/2, 1/2) and p2,1 = (2/3, 1/3) to obtain c′2 =
E3,2(c1, m2), e.g., c′2 = (2, 1, 1, 1, 1, 2, 2). In the second
step, we can replace symbol 2 by symbol 0 in the vector
c′2 to obtain the binary vector c2 = (0, 1, 1, 1, 1, 0, 0).
So, c2 is the output in the second write. We observe that
it is not difficult to decode the vector c2 to obtain the
message m2.

• In the last write, the encoder has all information and
know that the first cell is programmed twice and the
program-count vector is v2 = (2, 1, 1, 1, 1, 0, 0). The
encoder also view the vector v2 as a binary vector
c′′2 = (1, 0, 0, 0, 0, 0, 0) where the first cell (=1) is not pro-
grammable. Using the second-write encoder E2,2 of the
EIU:DI WOM code C2, we can encode the message m3

to obtain c′3 = E2,2(m3, c
′′
2), e.g., c′3 = (1, 0, 0, 0, 1, 1, 1).

We now take the bitwise complement of c′3 to obtain
EEIA:DU
3 (m3, v2) = c3 = (0, 1, 1, 1, 0, 0, 0). So, all

the three messages are c1 = (1, 1, 1, 0, 0, 0, 0), c2 =
(0, 1, 1, 1, 1, 0, 0), and c3 = (0, 1, 1, 1, 0, 0, 0).

�

We now present the proof of Theorem 5.
Proof of Theorem 5: Let Rj(Ci) be the rate of the WOM

code Ci on the j-th write. For any � > 0 and p1,0, p2,0, p2,1 ∈
[0, 0.5], we choose the codes C1 and C2 in Construction 9 to
satisfy

R1(C1) � h(p1,0) − � = h(p1,0) − �,

where p1,0 = (1 − p1,0, p1,0, 0).

R2(C1) � p1,0→0h(p2,0) + p1,0→1h(p2,1) − �

� (1 − p1,0)h(p2,0) + p1,0h(p2,1) − �,

and
R2(C2) � 1 − ρ1 − � = 1 − p1,0p2,1 − �.

The result follows from the fact that the rate tuple of the two-
change three-write ELM code is (R1(C1), R2(C1), R2(C2)).

�
The solution for the case t = 3, � = 2 is generalized for

any t and � in the following theorem.
Theorem 10: For all t and �, Ct,� ⊆ CEIA:DU,z

t,� , that is, for
any � > 0 and a rate t-tuple (R1, . . . , Rt) ∈ Ct,�, there exists
a zero-error �-change t-write EIA:DU ELM code C such that
its rate on the j-th write is at least Rj − � for all 1 � j � t,
that is, Rj(C) � Rj − �.

To prove Theorem 10, we construct a zero-error �-change
t-write ELM code. The idea is to generalize Construction 9.
Hence, for any given j, we use q-ary EI:DU WOM code from
Lemma 7 to program all cells up to the two highest levels
q − 1 and q − 2. So, the decoder can look at q − 1 as 0 and
q − 2 as 1 to decode the original message. We now present
the construction formally as follows.

Construction 11: Given pj,i ∈ [0, 0.5], for all i ∈
[� + 1], 1 � j � t, and � > 0, we construct
an [n, t, �; M1, . . . , Mt]EIA:DU,z ELM code where M1 =(

n
p1,0n

)
and Mj = 2nRj for 2 � j � t such that

Rj �
∑m−1

i=0 Qj−1,ih(pj,i) − �, where Qj−1,i is defined
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in Equation (1). The t pairs of encoder/decoder mappings
(EEIA:DU

j ,DEIA:DU
j ) are defined as follows.

First write: Given p1,0, we program all words of length n,
weight p1,0n as on the first write of Construction 9. Hence,
M1 =

(
n

p1,0n

)
and the rate on the first write satisfies R1 �

h(p1,0) − �.
j-th write, 2 � j � t: Let m = min{j, �}.
We denote the cell-state vector and the cell-program-
count vector after the j − 1 writes by cj−1 =
(cj−1,1, . . . , cj−1,n) ∈ Im(EEIA:DU

j−1 ) and vj−1 =
(vj−1,1, . . . , vj−1,n) ∈ B(n, qj−1) ⊂ [m]n, respectively,
where qj−1 = (Qj−1,0, Qj−1,1, . . . , Qj−1,m−1) and Qj,i are
defined in Equation (1). To program on the j-th write, we use
the two-write (2m + 1)-ary WOM code from Lemma 7,
[n, 2; M1,j, M2,j]

EI:DU,z
2m+1 (�, p1,0, p2,0, p2,1, . . . , p2,2m−1)

where p1,0 = (qj−1, 0, 0, . . . , 0) and for all i ∈ [m−1], p2,i =
(p2,i→i, . . . , p2,i→2m) = (0, . . . , 0, pj,i, 1 − pj,i) if i is even
and p2,i = (p2,i→i, . . . , p2,i→2m) = (0, . . . , 0, 1 − pj,i, pj,i)
if i is odd. As in Lemma 7, M2,j = 2Rjn where
Rj �

∑m−1
i=0 Qj−1,ih(p2,i) − � =

∑m−1
i=0 Qj−1,ih(pj,i) − �

since p2,i = (p2,i→i, . . . , p2,i→2m) = (0, . . . , 0, 1 − pj,i, pj,i)
or p2,i = (p2,i→i, . . . , p2,i→2m) = (0, . . . , 0, pj,i, 1 − pj,i).

Hence, on the j-th write, we choose Mj = M2,j = 2Rjn.
We denote the two pairs of the encoder/decoder of the used
WOM code by (Em,1,Dm,1) and (Em,2,Dm,2). The idea
is to push all cells to the two highest levels and view the
obtained word as a binary word. Hence, to decode correctly,
the decoder only needs to know the cell-state vector after
the j-th write which is a binary word. We now define the
encoder/decoder (EEIA:DU

j ,DEIA:DU
j ) formally as follows.

For all each mj ∈ [Mj ] and vj−1 ∈ Im(Em,1)

cj = EEIA:DU
j (mj , vj−1) = c′j(mod2),

where c′j = Em,2(mj , vj−1) ∈ [2m+1]n. Furthermore, for all
cj ∈ Im(EEIA:DU

j ),

DEIA:DU
j (cj) = Dm,2(c′j) = mj ,

where c′j,i = 2m − 1 if cj,i = 1 and c′j,i = 2m if cj,i = 0.
Proof of Theorem 10: Given all parameters as in

Construction 11, the rate of this ELM code on the first write
is R1 � h(p1,0) − �. Now, we consider the j-th write. Since
we used the WOM code in Lemma 7 to program the j-th
write of the ELM code, the rate on this write is exactly the
rate on the second write of the used WOM code. Hence, the
rate in the j-th write of the ELM code is Rj �

∑m−1
i=0 Qj−1,i

h(pj,i) − �. �
Remark 1: In this section, we provide an explicit construc-

tion of zero-error two-change three-write EIA:DU ELM code
and generalize the result to construct a zero-error �-change
t-write EIA:DU ELM code. Since Shpilka [21] provided a
pair of polynomial time encoding/decoding algorithms of a
family of two-write WOM codes, the encoder and decoder
in Theorem 10 also run in polynomial time. As shown in
Theorem 10, using these constructions, we can achieve any
rate in the capacity region and thus achieve the maximum
sum-rate when the length n tends to infinity. However, for a

fixed value of n, we can only achieve a high sum-rate but can
not achieve the maximum sum-rate. Furthermore, Shpilka’s
technique only works for large block length [21]. Hence, for
small value of block length n, we need other constructions to
obtain a high sum-rate, for example, Construction 19 that will
be presented later.

B. The EIA:DIA Model - Converse Part of Theorem 2

In this section, we prove the converse part of Theorem 2
for the EIA:DIA model �-error case. That is, we prove that
CEIA:DIA,ε

t,� ⊆ Ct,�.
For this direction we need to prove that if there exists

an [n, t, �; M1, . . . , Mt]EIA:DIA,pe ELM code where pe =
(pe1 , . . . , pet), then(

log M1

n
− �1,

log M2

n
− �2, . . . ,

log Mt

n
− �t

)
∈ Ct,�,

where (�1, �2, . . . , �t) tends to 0 if pe tends to 0 and n tends

to infinity. In our proof �j =
H(pej

)+pej
log(Mj)

n , and therefore
�j → 0 when pej → 0 and n → ∞.

Let Xj be a length-n binary vector where Xj,k = 1 if
and only if the k-th cell is intended to be programmed on
the j-th write. Similarly, Yj , is a length-n binary vector,
where Yj,k = 1 if and only if the value of the k-th cell
was successfully changed on the j-th write, that is, Yj =
cj ⊕ cj−1. Note that the encoder knows the number of times
each cell was programmed. Therefore, we can assume that a
cell is not intended to be programmed more than � times.
Furthermore, the decoder also knows the number of times
each cell was programmed. Thus we assume that Xj = Yj

where Xj is the encoded word and Yj is the input of the
decoder.

Let S1, . . . , St be independent random variables, where Sj

is uniformly distributed over the messages set [Mj], and Ŝj is
the decoding result on the j-th write. Let Vj be an independent
random variable on Nj , the set of all cell-programs-count
vectors after the first j writes. The data processing yields the
following Markov chain:

Sj |Vj−1 — Xj |Vj−1 — Yj |Vj−1 — Ŝj |Vj−1

and therefore, I(Xj ; Yj |Vj−1) � I(Sj ; Ŝj |Vj−1).
Additionally,

I(Sj ; Ŝj |Vj−1) = H(Sj |Vj−1) − H(Si|Ŝj , Vj−1)

� H(Sj) − H(Sj |Ŝj)
� log(Mj) − H(pej ) − pej log(Mj).

The first inequality follows from the independence of Vj−1

and Sj which implies that H(Sj |Vj−1) = H(Sj), and from
the fact that conditioning does not increase the entropy. The
second inequality follows from Fano’s inequality [7, p. 38]
H(Sj |Ŝj) � H(pej ) + pej log(Mj).

Let L be an index random variable, which is uniformly
distributed over the index set [n]. Since L is independent of
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all other random variables we get

1
n

I(Xj ; Yj |Vj−1) � 1
n

H(Yj |Vj−1)

(a)

� 1
n

∑n−1

k=0
H(Yj,k|Vj−1,k)

(b)
= H(Yj,L|Vj−1,L, L)
(c)

� H(Yj,L|Vj−1,L)

=
∑�

i=0
Pr(Vj−1,L= i)H(Yj,L|Vj−1,L = i)

(d)
=
∑�−1

i=0
Pr(Vj−1,L= i)H(Yj,L|Vj−1,L = i),

where steps (a) and (c) follow from the fact that entropy of
a vector is not greater than the sum of the entropies of its
components, and conditioning does not increase the entropy.
Step (b) follows from the fact that

H(Yj,L|Vj−1,L, L) =
∑n−1

k=0
Pr(L=k)H(Yj,k|Vj−1,L, L=k)

=
1
n

∑n−1

k=0
H(Yj,k|Vj−1,k),

and step (d) follows from H(Yj,L|Vj−1,L = �) = 0.
Now, we set pj,i = Pr(Xj,L = 1|Nj−1,L = i) =

Pr(Yj,L = 1|Nj−1,L = i), and thus we can conclude that
Qj,i = Pr(Nj,L = i) where Qj,i is calculated in Equation (1),
and then

log(Mj)
n

− �j � 1
n

I(Xj ; Yj |Nj−1)

�
∑�−1

i=0
Pr(Nj−1,L = i)H(Yj,L|Nj−1,L = i)

=
∑�−1

i=0
Qj−1,ih (pj,i) ,

where �j =
H(pej

)+pej
log(Mj)

n , and the converse part is
implied.

By Theorem 10 in Subsection III-A and by the proof of
the converse part in Subsection III-B we completed the proof
of Theorem 2. Furthermore by Theorem 4 we conclude the
following corollary.

Corollary 12: For all t and �, Ct,� = Ĉt,� is the capacity
region for all the EIA models for both the zero-error and the
�-error cases and is denoted by CEIA

t,� . The maximum sum-rate

of all the EIA models is REIA
t,� = log

∑�
i=0

(
t
i

)
.

IV. THE CAPACITY OF THE EIP:DIA MODEL

In this section we discuss the capacity region and the
maximum sum-rate of the EIP:DIA model. Recall that if � = 1
then by definition, EIP is equivalent to EIA and this model is
equivalent to the known WOM model. Thus, in this section we
assume that � > 1. We focus on the �-error case and present the
capacity region of this model. The zero-error case is harder to
solve, and is left for future research. However the �-error case
provides an upper bound for the zero-error case. Note that
the EU:DI WOM model is simpler than the EIP:DIA ELM
model, and even though its exact capacity for the zero-error
case is still not known for general t. As done in the EIA
models, let us denote by cj , j ∈ [t + 1], the length-n binary

vector which represents the memory state after the j-th write,
where c0 = 0.

For 1 � j � t and i ∈ [� + 1], we define the probabilities
pj,0, pj,1, and Qj,i as follows. pj,k is the probability of
programming a cell on the j-th write given that the value of
this cell was k, k ∈ {0, 1}, and Qj,i is the probability of a
cell to be programmed exactly i times after the first j writes.
Additionally, let Qj,e, Qj,o be the probability of a cell to be
programmed an even, odd number of times after the first j
writes, respectively. Formally, Qj,i is defined recursively by
using the probabilities pj′,0 and pj′,1 for j′ � j. We now
assume that � is even. The case of an odd � is defined similarly.
We define Qj,i for j > 0 as follows. For even i � 0,

Qj,i =

⎧⎪⎨⎪⎩
Qj−1,i−1pj,1 + Qj−1,i(1 − pj,0), if 0 < i < �,

Qj−1,i−1pj,1 + Qj−1,i, if i = �,

Qj−1,i(1 − pj,0), if i = 0,

(4)

and for odd i > 0, Qj,i = Qj−1,i−1pj,0+Qj−1,i(1−pj,1). The

base j = 0, is Q0,0 = 1 and Q0,i = 0 for i > 0. Furthermore,

let Qj,e =
∑�/2

i=0 Qj,2i and Qj,o =
∑�/2

i=1 Qj,2i−1.

Next, we define the rates region C̃t,� which will be proved
to be the capacity region of the EIP:DIA model for the �-error
case. We present here the definition for even �, while the odd
case is defined similarly.

C̃t,�=
{
(R1, R2, . . . , Rt)|∀1 � j � t :

Rj � Qj−1,oh(pj,1) + (Qj−1,e − Qj−1,�)h(pj,0),

pj,0,pj,1∈[0, 0.5] and Qj,e, Qj,o, Qj,� are defined above
}
.

(5)

For example, for t = 3, � = 2, we have that

C̃3,2 = C3,2=
{
(R1, R2, R3)|R1 � h(p1,0),

R2�1−p1,0+p1,0h(p2,1),

R3�1−p1,0p2,1, and p1,0, p2,1∈[0, 0.5]
}
,

which is achieved by substituting p3,0 = p3,1 = p2,0 = 0.5 in
Equations (2) and (5). Using the region C̃t,�, the next theorem
characterizes the capacity region of the EIP models for the
�-error case.

Theorem 13: The rates region C̃t,� is the capacity region of
t-write �-change ELM EIP:DIA model for the �-error case.
That is, C̃t,� = CEIP :DIA,ε

t,� .
Proof: To show the achievable region, we should prove

that for each � > 0 and (R1, R2, . . . , Rt) ∈ C̃t,�, there exists
an
[n, t; M1, . . . , Mt]

EIP :DIA,pe

t,� ELM code, where for all 1 �
j � t, log Mj

n � Rj − � and pe = (pe1 , . . . , pet) � (�, . . . , �).
We use the well-known random channel-coding theorem [7,
p. 200] on each write. We describe the encoding and decoding
on each write.

The j-th write presents a DMC with the input length-
n binary vector Xj and the output is (Zj−1, Yj), where
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Zj−1 ∈ [� + 1]n represents the times each cell was pro-
grammed before the j-th write, and Yj ∈ [2]n represent
the state of the memory after the j-th write. Let xj = Xj,k,
zj = Zj−1,k, and yj = Yj,k for some index k. By the random
coding theorem, for n large enough, the following region is
achievable{

(R1, . . . , Rt)| ∀1 � j � t, Rj � I(xj ; yj)
}

.

By the definitions and notations of the probabilities pj′,i′

and Qj′,i′ ,

I(xj ; (zj−1, yj))=H(zj−1, yj) − H(zj−1, yj |xj)
= H(zj−1) + H(yj |zj−1) − H(zj−1, yj|xj)
(a)
= H(zj−1) + H(yj |zj−1) − H(zj−1)
= H(yj|zj−1)

=
�∑

i=0

Pr(zj−1 = i)H(yj |zj−1 = i)

(b)
=

�−1∑
i=0

Pr(zj−1 = i)H(yj |zj−1 = i)

=
�/2∑
i=1

(Qj−1,2i−1h(pj,1)+Qj−1,2i−2h(pj,0))

=Qj−1,oh(pj,1)+(Qj−1,e−Qj−1,�)h(pj,0).

Step (a) follows from H((zj−1, yj)|xi) = H(zj−1|xj) since
yj is a function of xj , zj−1, and H(zj−1|xj) = H(zj−1)
because zj−1 is independent on xj . Step (b) is implied by
H(yj |zj−1 = �) = 0.

Hence, we can achieve the region C̃t,� for the �-change
t-write W�M EIP:DIA model for the �-error case.

The proof of the converse part, CEIP :DIA,ε
t,� ⊆ C̃t,�, is similar

to the proof of this part in Theorem 2, and hence is deferred
to Appendix.

We could also present a family of capacity achieving codes
using the binary erasure channel (BEC). Note that on the j-th
write, both the encoder and the decoder know cj−1, the
state of the memory before writing the new data, while the
decoder also knows vj−1, the number of times each cell was
programmed before the j-th write. Therefore, the encoder on
the j-th write treats the one and the zero cells separately.
On the cells with value one, the encoder writes zero with
probability pj,1 (for example by using a constant weight code),
while for the zero cells, the decoder knows which cells have
been already programmed � times before the j write. Thus,
the encoding on the zero cells can be represented as encoding
over BEC with erasure probability Q�/Qe. The capacity of
the BEC with erasure probability π and probability α for
occurrence one in the encoded vector is (1−π)h(α) [7, p. 188].
By substituting pj,0 = α and π = Q�/Qe, we get the rate on
the j-th write Qj−1,oh(pj,1) + (Qj−1,e − Qj−1,�)h(pj,0).

The following theorem is an immediate result deduced by
the definitions of C̃t,� and Ct,� and Theorems 2 and 13.

Theorem 14: For � = 2 the capacity region of the EIP:DIA
model for the epsilon error case is equal to the capacity region
for the EIA models, i.e., CEIP :DIA,ε

t,2 = CEIA
t,2 .

In Section V, we compare between the EIP:DIA model
which was discussed in this section, and the EIA models,
which were presented in Section III.

V. A COMPARISON BETWEEN THE EIA MODELS

AND THE EIP:DIA MODEL

In this section we compare between the EIA models and the
EIP:DIA model. The capacity of the EIA models, CEIA:DY,g

t,�

for g ∈ {z, �} and Y ∈ {IA, IP, U}, was stated in Section III
to be equal to Ct,�, while in Section IV we presented the

capacity region of the EIP:DIA model for the �-error case,

C̃t,� = CEIP :DIA,ε
t,� .

The next theorem proves that for t > � � 3 the maximum
sum-rate of the EIP:DIA model for the epsilon-error case
is smaller than the maximum sum-rate of the EIA models.
Hence, the capacity region CEIP :DIA,ε

t,� is a proper subset of
the capacity region CEIA

t,� for these parameters. Recall that for
� = 2 these regions were shown to be the same in Theorem 14,
and therefore the maximum sum-rates of these models for
� = 2 are the same too.

Theorem 15: For t > � � 3, REIP :DIA,ε
t,� < REIA

t,� , and

hence CEIP :DIA,ε
t,� � CEIA

t,� .

Proof: Let R̃ = (R̃1, R̃2, . . . , R̃t) be a rate tuple which
achieves the maximum sum-rate REIP :DIA,ε

t,� , and we denote

by p̃j,0, p̃j,1, and Q̃j,i, 1 � j � t and i ∈ [� + 1], the
probabilities which attain R̃ in C̃t,�.

Now we present a rate tuple R = (R1, R2, . . . , Rt) ∈ Ct,� >

R̃. Then, we conclude that R ∈ CEIA
t,� \ CEIP :DIA,ε

t,� , which

implies that REIP :DIA,ε
t,� < REIA

t,� and CEIP :DIA,ε
t,� � CEIA

t,� .
We assume now that � is even, while the proof for the

odd case is similar. Since R̃ is maximal rate tuple we have
p̃t−1,0 = p̃t,0 = p̃t,1 = 0.5. For all j and i, 1 � j � t− 2 and
i ∈ [�], we define pj,i = p̃j,i′ where i′ = i mod 2. In addition,
for all i ∈ [�− 1], pt−1,i = 0.5, pt−1,�−1 = p̃t−1,1, and for all
i, pt,i = 0.5.

Thus, for all j and i, 1 � j � t − 2 and i ∈ [�], Rj = R̃j

and Qj,i = Q̃j,i. For the (t − 1)-th write we have, Rt−1 =
1 − Q̃t−2,�−1 − Q̃t−2,� + Q̃t−2,�−1h(p̃t−1,1) while R̃t−1 =
Q̃t−2,oh(p̃t−1,1) + (Q̃t−2,e − Q̃t−2,�), and for the last write
Rt = R̃t = 1 − Q̃t−1,�.

Now we prove that p̃t−1,1 < 0.5 which immediately implies

that Rt−1 > R̃t−1 and thus completes the proof. Recall

that R̃t = 1 − Q̃t−1,� = 1 − Q̃t−2,� − Q̃t−2,�−1p̃t−1,1.
Thus, given the probabilities for the first t − 2 writes,
in order to achieve the maximal rate tuple R̃, we have
to maximize R̃t−1 + R̃t. That is, we choose p̃t−1,1 which

maximizes Q̃t−2,oh(p̃t−1,1)− Q̃t−2,�−1p̃t−1,1. The derivative

is Q̃t−2,0 log(1−�pt−1,1
�pt−1,1

) − Q̃t−2,�−1, and the maximum is

obtained for p̃t−1,1 = 1/(1 + 2 �Qt−2,�−1/ �Qt−2,o). Since R̃ is
maximal and t > � � 3, we have Q̃t−2,�−1 > 0, and therefore
p̃t−1,1 �= 0.5.

We can summarize the results regarding the capacity region
of the EIP:DIA model in the following corollary.
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Corollary 16: For all t > � the following holds

CEIP :DIA,ε
t,� = C̃t,� ⊆ Ct,� = CEIA

t,� .

Furthermore,
• For t > � = 2 all these regions are equal, in particular,

CEIP :DIA,ε
t,2 = CEIA

t,2 .

• For t > � � 3, CEIP :DIA,ε
t,� � CEIA

t,� and REIP :DIA,ε
t,� <

REIA
t,� .

VI. THE CAPACITY OF EU:DIA MODEL

In this section we study the EU:DIA model for the �-error
case, and provide the capacity region of this model. As in the
EIP:DIA model, the capacity region for the zero-error case
and the exact maximum sum-rate are left for future research.

For 1 � j � t and i ∈ [� + 1], let pj be the probability
of programming a cell on the j-th write, and Qj,i denotes the
probability of a cell to be programmed exactly i times on the
first j writes. Additionally, let Qj,e, Qj,o be the probabilities
of a cell to be programmed even, odd number of times on the
first j writes, respectively. Formally, Qj,i is defined recursively
by using pj′ probabilities for j′ � j. For j � 1,

Qj,i =

⎧⎪⎨⎪⎩
Qj−1,i−1pj + Qj−1,i(1 − pj), if 0 < i � �,

Qj−1,i−1pj + Qj−1,i, if i = �,

Qj−1,i(1 − pj), if i = 0,

(6)

where Q0,0 = 1 and Q0,i = 0 for i > 0.
Then, we define the region Ct,� which is proved later in this

section to be the capacity region CEU :DIA,ε
t,� .

Ct,� =
{
(R1, R2, . . . , Rt)|∀1 � j � t :

Rj � h(pj) − Qj−1,�h(pj),

pj ∈ [0, 0.5], Qj,� is defined above
}
.

(7)

The next theorems establish the capacity region of the
EU:DIA model for the �-error case and compare between this
model and the EIP:DIA model. The techniques applied for the
EU:DIA model are very similar to the proofs in Section IV.
The proofs of Theorems 17 and 18 are similar to the proofs
of Theorems 13 and 15, respectively. Therefore, these proofs
are moved to Appendix.

Theorem 17: The rates region Ct,� is the capacity region

of t-write �-change ELM EU:DIA model for the �-error case.

That is, Ct,� = CEU :DIA,ε
t,� .

Theorem 18: For t > � � 2, REU :DIA,ε
t,� < REIP :DIA,ε

t,� ,

and hence CEU :DIA,ε
t,� � CEIP :DIA,ε

t,� .

VII. THE EIP:DU MODEL

In this section, we study the EIP:DU model and its sum-
rate. First, we note that CEIP :DU,ε

t,� ⊆ CEIP :DIA,ε
t,� for all t, �,

and thus,

REIP :DU,ε
t,� � REIP :DIA,ε

t,� � log
�∑

i=0

(
t

i

)
. (8)

That is, we obtain an upper bound of the maximum sum-
rate REIP :DU,ε

t,� . Note that for t > � � 3 this upper bound
is not tight (Theorem 15). We are now interested in some
good lower bounds for the maximum sum-rate. Our goal is
to provide several constructions with high sum-rate. We first
present a general construction for the zero-error case and then
show how to obtain higher sum-rate for the �-error case with
t = 3, � = 2.

The following construction provides a family of �-change
t-write EIP:DU ELM codes for the zero-error case.

Construction 19: Let (k1, . . . , k�) be such that 1 �
ki � t for 1 � i � � and

∑�
i=1 ki = t. Let

[n, ki; Mji+1, . . . , Mji+ki ]EI:DU,z be a binary ki-write EI:DU
WOM code for 1 � i � � with sum-rate Ri where j1 = 0 and
ji =

∑i−1
r=1 kr. Each of which consists of n bits and ki pairs

of encoding and decoding maps (EEI:DU
ji+h ,DEI:DU

ji+h ) for 1 �
h � ki. We define an [n, t, �; M1, . . . , Mt]EIP :DU,z �-change
t-write ELM code consists of n bits and t pairs of encoders and
decoders (EEIP :DU

j ,DEIP :DU
j ) where EEIP :DU

j = EEI:DU
j

and DEIP :DU
j = DEI:DU

j for 1 � j � t.
The maximum sum-rate of the ELM codes from
Construction 19 is Rsum �

∑�
i=1 log(ki + 1) − � since

for 1 � i � �, Ri � log(ki + 1)− �/� and Rsum =
∑�

i=1 Ri.
Hence, in order to maximize the sum-rate, our goal is
to maximize the value of

∑�
i=1 log(ki + 1) given that∑�

i=1 ki = t. Assume that t = k� + r, r ∈ [�], then
this maximum value will be achieved when choosing
k1 = · · · = kr = k + 1 and kr+1 = · · · = k� = k. The next
corollary summarizes this result.

Corollary 20: For all t and �, where t = k� + r, r ∈ [�],

REIP :DU,z
t,� � r log(k + 2) + (� − r) log(k + 1)

= � log
(⌊

t

�

⌋
+1
)

+(t mod �) log

(
1+

1⌊
t
�

⌋
+1

)
.

Proof: We choose (k1, . . . , k�) such that k1 = · · · =
kr = k + 1 and kr+1 = · · · = k� = k and thus

∑�
i=1 ki = t.

We note that k =
⌊

t
�

⌋
and r = t mod �. Since we presented

in Construction 19 an [n, t, �; M1, . . . , Mt]EIP :DU,z �-change
t-write ELM code with sum-rate Rsum =

∑�
i=1 Ri �

r log(k + 2) + (�− r) log(k + 1)− � for any � > 0, we obtain
the result in Corollary 20.

From the above corollary, we have a lower bound of
the maximum sum-rate of the EIP:DU model. Recall that
REIP :DU,z

t,� � REIA
t,� = log

∑�
i=0

(
t
i

)
, that is the exact

maximum sum-rate of the EIA model is an upper bound of the
maximum sum-rate of the EIP:DU model. Hence, we obtain a
lower bound and an upper bound of the maximum sum-rate of
the EIP:DU ELM model. We note that when t � �, we always
achieve the full capacity, that is, the maximum sum-rate is t.
When t > �, the maximum sum-rate is difficult to compute
exactly and there is a gap between the above lower and upper
bounds. We illustrate the results for � = 2, t ∈ [3, 23] in the
following figure.

The following result shows that for � = 2 the sum-rate of
the ELM code from Construction 19 is already close to the
upper bound when t is large and n → ∞.
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Fig. 1. The upper and lower bounds of the maximum sum-rates of the
EIP:DU ELM codes when � = 2, t ∈ [3, 23].

Proposition 21: For � = 2 and t � 3, REIP :DU,z
t,2 �

REIA
t,2 −1.

Proof: Recall that REIA
t,2 = log

∑2
i=0

(
t
i

)
= log t2+t+2

2 .
When t is even, there exists a positive integer t1 such that
t = 2t1. In this case,

REIP :DU,z
t,2 � 2 log(t1 + 1) = log(t21 + 2t1 + 1)

and,

REIA
t,2 = log

4t21 + 2t1 + 1
2

.

Hence,

REIA
t,2 −REIP :DU,z

t,2 � log
4t21 + 2t1 + 1

2(t21 + 2t1 + 1)
� log 2 = 1.

When t is odd, there exists a positive integer t2 such that
t = 2t2 + 1. In this case,

REIP :DU,z
t,2 � log(t2 + 1) + log(t2 + 2) = log(t22 + 3t2 + 2)

and,

REIA
t,2 = log

4t22 + 6t2 + 4
2

.

Hence,

REIA
t,2 −REIP :DU,z

t,2 � log
4t22 + 6t2 + 4

2(t22 + 3t2 + 2)
� log 2 = 1.

In conclusion, the proposition is proven.
We note that when t = 3 and � = 2, the maximum achiev-

able sum-rate of the codes in Construction 19 is log 6 ≈ 2.585,
while the upper bound is log 7 ≈ 2.807. Lastly, we show how
to improve this result for the �-error case.

The main ideas of the following construction are as follows.
On the first two writes, we follow exactly the first two writes of
Construction 9 which is a construction for a two-change three-
write EIA:DU ELM code. After the second write, there are ρ1n
cells which were programmed twice, where ρ1 = p1,0p2,1.
However, while the encoder in the EIA:DU model knows
these positions, the encoder in the third write in the EIP:DU
model does not know these positions. In order to overcome

this difficulty, we use the following family of binary EU:DU
WOM codes.

Definition 22: An [n, 2; M1, M2]
EU :DU,(pe1 ,pe2)
2 (p1, p2)

two-write binary EU:DU WOM code is a coding scheme
comprising of n bits. It consists of two pairs of encoding
and decoding maps (EEU :DU

j ,DEU :DU
j ) for j = 1, 2.

For the map EEU :DU
j , Im(EEU :DU

j ) is its image and

Im∗(EEU :DU
j ) is the set of all the cell-state vectors

which can be obtained after the j-th write. We note
that Im(EEU :DU

0 ) = Im∗(EEU :DU
0 ) = {(0, . . . , 0)} and

Im∗(EEU :DU
2 ) = {max{c1, c2} where ci ∈ Im(EEU :DU

i ) :
i = 1, 2}. The encoding and decoding maps are defined as
follows. For j = 1, 2,

EEU :DU
j : [Mj ] → B(n, (1 − pj, pj))

and
DEU :DU

j : Im∗(EEU :DU
j ) → [Mj ]

such that for all m ∈ [Mj],∑
(m,c)∈[Mj ]×Im∗(EEU:DU

j−1 )

Pr(m)Pr(c)Im

(DEU :DU
j (max{c, EEU :DI

j (m)}))�pei .

Two-write binary EU:DU WOM codes have been studied
for a long time [23]. Recently, in [11] several constructions of
EU:DU WOM codes were presented. Assume that there exists
a capacity achieving code for the Z channel, then the following
result for EU:DU WOM codes can be received based upon the
constructions from [11].

Lemma 23: [11] For all 0 � p1, p2 � 0.5 and � > 0 there
exists an [n, 2; M1, M2]EU :DU,(0,ε) two-write binary EU:DU
WOM code satisfying:
• c1 ∈ B(n, (1 − p1, p1)), and R1 = log M1

n � h(p1) − �.

• c2 ∈ B(n, (1 − p2, p2)), and R2 = log M2
n � h(p1p2) −

p2h(p1) − �,
where ci ∈ Im(EEU :DU

i ) for i = 1, 2.
We refer to the family of WOM codes from Lemma 23 as an
[n, 2; M1, M2]

EU :DU,(0,ε)
q (�, p1, p2) WOM code, where M1 =

2R1n and M2 = 2R2n are determined as the maximal possible
values based on �, which tends to zero, and the probabilities
p1 and p2.

We are now ready to present a construction of two-change
three-write EIP:DU ELM code.

Construction 24: Given p1,0, p2,0, p2,1, p3 ∈ [0, 0.5], we
use the following two codes:

• An [n, 3, 2; M1, M2, M
′
3]EIA:DU,z code from Construc-

tion 9 with the first two pairs of encoder/decoder
(EEIA:DU

i ,DEIA:DU
i ) for i = 1, 2.

• An [n, 2; M ′
1, M3]EU :DU,(0,ε))(�, ρ1, p3) two-write binary

EU:DU WOM code from Lemma 23, ρ1 = p1,0p2,1,
with the pair of encoder/decoder in the second write
(EEU :DU

2 ,DEU :DU
2 ).

We construct an [n, 3, 2; M1, M2, M3]EIP :DU,(0,0,ε) two-
change three-write EIP:DU ELM code where its 3 pairs of
encoding/decoding maps (EEIP :DU

j ,DEIP :DU
j ) for j = 1, 2, 3

are defined as follows.
(1) For i = 1, 2, EEIP :DU

i = EEIA:DU
i and DEIP :DU

i =
DEIA:DU

i . That is, the first two writes of this EIP:DU
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ELM code are exactly the same as the first two writes of
the EIA:DU ELM code from Construction 9.

(2) After the first two writes, we note that ρ1n cells
are already programmed twice, and thus can not be
programmed this time. Hence, we use the pair of
encoder/decoder (EEU :DU

2 ,DEU :DU
2 ) to encode/decode

information. The pair of encoder/decoder in the third write
is defined formally as follows:

EEIP :DU
3 : [M3] × Im∗(EEIP :DU

2 ) → [2]n

such that for all m3 ∈ [M3] and c2 ∈ Im∗(EEIP :DU
2 ),

EEIP :DU
3 (m3, c2) = EEU :DU

2 (m3). Furthermore,

DEIP :DU
3 : Im∗(EEIP :DU

3 ) → [M3]

such that for all c∗3 ∈ Im∗(EEU :DU
3 ), DEIP :DU

3 (c∗3) =
DEU :DU

2 (c∗3) = m3.

On the first two writes, it is clear that R1 � h(p1,0) − � and
R2 � (1 − p1,0)h(p2,0) + p1,0h(p2,1) − �. In the third write,
R3 � h(p1,0p2,1p3) − p3h(p1,0p2,1) − �.

In conclusion, we constructed a two-change three-write
EIP:DU ELM code satisfying R1 � h(p1,0) − �, R2 �
(1− p1,0)h(p2,0)+ p1,0h(p2,1)− � and R3 � h(p1,0p2,1p3)−
p3h(p1,0p2,1) − � for all � > 0.

Therefore, the following region is achievable for the �-error
case:

CEIP :DU
3,2 = {(R1, R2, R3) : R1 � h(p1,0),

R2 � (1 − p1,0)h(p2,0) + p1,0h(p2,1),
R3 � h(p1,0p2,1p3) − p3h(p1,0p2,1),
p1,0, p2,0, p2,1, p3 ∈ [0, 1]}.

The sum-rate of the above code is Rsum = R1 + R2 + R3 �
h(p1,0) + (1 − p1,0)h(p2,0) + p1,0h(p2,1) + h(p1,0p2,1p3) −
p3h(p1,0p2,1) − � for any � > 0. By choosing p1,0 =
3/7, p2,0 = 1/2, p2,1 = 2/3, and p3 = 1/2, we obtain the
sum-rate Rsum = R1 + R2 + R3 ≈ 2.64.

Remark 2: In this section, we construct a family of zero-
error �-change t-write EIP:DU ELM codes for any � and
t. Using some efficient encoding/decoding algorithms of
the well-known binary t-write EI:DU WOM codes, we can
encode/decode our EIP:DU ELM codes efficiently in poly-
nomial time. When n tends to infinity, we can obtain some
codes with high sum-rate and thus get a lower bound on
the maximal sum-rate of the EIP:DU model. We note that
the lower bound is not tight even though it is close to the
upper bound. We actually improve the lower bound for the
�-error case when � = 2 and t = 3 in Construction 24. Using
some known polynomial time encoding/decoding algorithms
of a two-write EU:DU WOM code in Lemma 23 [11], the
encoding and decoding algorithms in Construction 24 also run
in polynomial time. Since the exact capacity region and the
maximum sum-rate of the EIP:DU model are not known yet,
we expect to have better constructions in near future.

VIII. CONCLUSION

In this paper, we have proposed and studied a new coding
scheme, called ELM codes. This family of codes can be used

to increase the endurance of resistive memories by rewriting
codes. This new family of rewriting codes generalizes the
well-known WOM codes. We investigated the coding schemes
of nine different models which depend upon the knowledge of
the encoder and the decoder. In all these models, we focused
on the capacity region and the achievable maximum sum-rate.
In several important models, we also presented constructions
of ELM codes with high sum-rate and some constructions of
capacity-achieving codes. For future work, we are interested in
practical constructions of capacity-achieving codes with effi-
cient encoding/decoding algorithms, especially in the EIP:DU
model.

APPENDIX

Theorem 13 - The Converse Part: The rates region C̃t,�

is a superset of the capacity region of t-write �-change
ELM EIP:DIA model for the �-error case. That is,

CEIP :DIA,ε
t,� ⊆ C̃t,�.

Proof: Let Sj , Ŝj , Vj , 1 � j � t, and L be defined
as in the proof of the converse part in Theorem 2. Thus,
exactly as proved in Theorem 2, we have I(Xj ; Yj |Vj−1) �
I(Sj ; Ŝj |Vj−1), I(Sj ; Ŝj |Vj−1) � log(Mj) − H(pej ) −
pej log(Mj), and

1
n

I(Xj ; Yj |Vj−1) �
�−1∑
i=0

Pr(Vj−1,L = i)H(Yj,L|Vj−1,L = i).

Now, we set pj,0 = Pr(Xj,L = 1|Vj−1,L mod 2 = 0) and
similarly pj,1 = Pr(Xj,L = 0|Vj−1,L mod 2 = 1). Thus, for
even i < � H(Yj,L|Vj−1,L = i) = H(pj,0), and for odd i < �
H(Yj,L|Vj−1,L = i) = H(pj,1). We also define for i ∈ [�+1]
Qj,i = Pr(Vj,L = i), and we note that Qj,i can be calculated
as in Equation (4), and we use the notations Qj,o and Qj,e as
defined above. Then,

log(Mj)
n

− �j � 1
n

I(Xj ; Yj |Vj−1)

�
∑�−1

i=0
Pr(Vj−1,L = i)H(Yj,L|Vj−1,L = i)

=
∑�/2

i=1
(Qj−1,2i−1h (pj,1)+Qj−1,2i−2h (pj,0))

=h(pj,1)
∑�/2

i=1
Qj−1,2i−1+h(pj,0)

∑�/2

i=1
Qj−1,2i−2

=Qj−1,oh(pj,1) + (Qj−1,e − Qj−1,�)h (pj,0) ,

where �j =
H(pej

)+pej
log(Mj)

n , and the claim is implied.
Theorem 17: The rates region Ct,� is the capacity region

of t-write �-change ELM EU:DIA model for the �-error case.

That is, Ct,� = CEU :DIA,ε
t,� .

Proof: To show the achievable region, we should prove
that for each � > 0 and (R1, R2, . . . , Rt) ∈ Ct,�, there exists

an [n, t; M1, . . . , Mt]
EU :DIA,pe

t,� ELM code, where for all 1 �
j � t, log Mj

n � Rj − � and pe = (pe1 , . . . , pet) � (�, . . . , �).
We use the well-known random channel-coding theorem [7,
p. 200] on each write. We describe the encoding and decoding
on each write.
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The j-th write presents a DMC with the input length-n
binary vector Xj and the output is (Zj−1, Yj), where Zj−1 ∈
[�+1]n represents the times each cell was programmed before
the j-th write, and Yj ∈ [2]n represent the state of the memory
after the j-th write. Let xj = Xj,k, zj = Zj−1,k, and yj = Yj,k

for some index k. By the random coding theorem, for n large
enough, the following region is achievable{

(R1, . . . , Rt)| ∀1 � j � t, Rj � I(xj ; yj)
}

.

By the definitions and notations of the probabilities pj′

and Qj′,i′ ,

I(xj ; (zj−1, yj))=H(zj−1, yj) − H(zj−1, yj |xj)
= H(zj−1) + H(yj |zj−1) − H(zj−1, yj|xj)
(a)
= H(zj−1) + H(yj |zj−1) − H(zj−1)
= H(yj|zj−1)

=
�∑

i=0

Pr(zj−1 = i)H(yj |zj−1 = i)

(b)
=

�−1∑
i=0

Pr(zj−1 = i)H(yj |zj−1 = i)

=
�−1∑
i=1

Qj−1,ih (pj)

= (1 − Qj−1,�)h (pj) .

Step (a) follows from H((zj−1, yj)|xi) = H(zj−1|xj) since
yj is a function of xj , zj−1, and H(zj−1|xj) = H(zj−1)
because zj−1 is independent on xj . Step (b) is implied by
H(yj |zj−1 = �) = 0. Hence, we can achieve the region C̃t,�

for the �-change t-write W�M EIP:DIA model for the �-error
case.

The proof of the converse part is similar to the proof of this
part in Theorem 2. Let Sj , Ŝj , Vj , 1 � j � t, and L be defined
as in the proof of the converse part in Theorem 2. Thus,
exactly as proved in Theorem 2, we have I(Xj ; Yj |Vj−1) �
I(Sj ; Ŝj |Vj−1), I(Sj ; Ŝj |Vj−1) � log(Mj) − H(pej ) −
pej log(Mj), and

1
n

I(Xj ; Yj |Vj−1) �
�−1∑
i=0

Pr(Vj−1,L = i)H(Yj,L|Vj−1,L = i).

Now, we set pj = Pr(Xj,L = 1). Thus, for i < �
H(Yj,L|Vj−1,L = i) = h(pj). We also define for i ∈ [� + 1]
Qj,i = Pr(Vj,L = i) and we note that Qj,i can be calculated
as in Equation (4). Then

log(Mj)
n

− �j � 1
n

I(Xj ; Yj |Vj−1)

�
∑�−1

i=0
Pr(Vj−1,L = i)H(Yj,L|Vj−1,L = i)

=
∑�−1

i=1
Qj−1,ih (pj) = (1 − Qj−1,�)h (pj) ,

where �j =
H(pej

)+pej
log(Mj)

n , and the theorem is implied.
Theorem 18: For t > � � 2, REU :DIA,ε

t,� < REIP :DIA,ε
t,� ,

and hence CEU :DIA,ε
t,� � CEIP :DIA,ε

t,� .

Proof: Let R = (R1, R2, . . . , Rt) be a rate tuple which

achieves the maximum sum-rate REU :DIA,ε
t,� , and we denote

by pj and Qj,i, 1 � j � t and i ∈ [� + 1], the probabilities

which attain R in Ct,�.
Now we present a rate tuple R̃ = (R̃1, R̃2, . . . , R̃t) ∈

C̃t,� > R. Then, we conclude that R̃ ∈ CEIP :DIA,ε
t,� \

CEU :DIA,ε
t,� , which implies that REU :DIA,ε

t,� < REIP :DIA,ε
t,� and

CEU :DIA,ε
t,� � CEIP :DIA,ε

t,� .
We assume now that � is even, while the proof for the odd

case is similar. Since R achieves maximum sum-rate we have
pt = 0.5. For all j and i, 1 � j � t− 2 and i ∈ [�], we define
p̃j,0 = p̃j,1 = pj . In addition, p̃t−1,0 = 0.5, p̃t−1,1 = pt−1,
and p̃t,0 = p̃t,1 = 0.5.

Thus, for all j and i, 1 � j � t − 2 and i ∈ [�],

R̃j = Rj and Q̃j,i = Qj,i. For the (t − 1)-th write we
have, R̃t−1 = Qt−2,oh(pt−1) + (Qt−2,e − Qt−2,�) while
Rt−1 = (1 − Qt−2,�)h(pt−1), and for the last write R̃t =
Rt = 1 − Qt−1,�,

Now we prove that pt−1 < 0.5 which immediately implies
that R̃t−1 > Rt−1 and thus completes the proof. Recall that
Rt = 1−Qt−1,� = 1−Qt−2,�−Qt−2,�−1pt−1. Thus, given the
probabilities for the first t − 2 writes, in order to achieve the
maximal rate tuple R we have to maximize Rt−1 + Rt. That
is, we choose pt−1 which maximizes (1 − Qt−2,�)h(pt−1) −
Qt−2,�−1pt−1. The derivative is (1−Qt−2,�) log(1−pt−1,1

pt−1,1
)−

Qt−2,�−1, and the maximum is obtained for pt−1 = 1/(1 +
2Qt−2,�−1/(1−Qt−2,�)). Since R is maximal and t > � � 2,
we have Qt−2,�−1 > 0, and therefore pt−1 �= 0.5.
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