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Abstract— Tandem duplication is the process of inserting a
copy of a segment of DNA adjacent to the original position.
Motivated by applications that store data in living organisms,
Jain et al. (2017) proposed the study of codes that correct tandem
duplications. All code constructions are based on irreducible
words. Such code constructions are almost optimal to combat
tandem duplications of length at most k where k ≤ 3. However,
the problem of designing efficient encoder/decoder for such codes
has not been investigated. In addition, the method cannot be
extended to deal with the case of arbitrary k, where k ≥ 4.
In this work, we study efficient encoding/decoding methods for
irreducible words over general q-ary alphabet. Our methods
provide the first known efficient encoder/decoder for q-ary codes
correcting tandem duplications of length at most k, where k ≤ 3.
In particular, we describe an (�, m)-finite state encoder and
show that when m = Θ(1/�) and � = Θ(1/�), the encoder
achieves rate that is � away from the optimal rate. We also
provide ranking/unranking algorithms for irreducible words and
modify the algorithms to reduce the space requirements for
the finite state encoder. Over the DNA alphabet (or quaternary
alphabet), we also impose weight constraint on the codewords.
In particular, a quaternary word is GC-balanced if exactly half
of the symbols of are either C or G. Via a modification of
Knuth’s balancing technique, we provide an efficient method that
translates quaternary messages into GC-balanced codewords and
the resulting codebook is able to correct tandem duplications of
length at most k, where k ≤ 3. In addition, we provide the
first known construction of codes to combat tandem duplications
of length at most k, where k ≥ 4. Such codes can correct
duplication errors in linear-time and they are almost optimal in
terms of rate.

Index Terms— Error-correction codes, DNA storage, tandem
duplication, GC-balanced codes.

I. INTRODUCTION

ADVANCES in synthesis and sequencing technologies
have made DNA macromolecules an attractive medium
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for digital information storage. Besides being biochemically
robust, DNA strands offer ultrahigh storage densities of
1015-1020 bytes per gram of DNA, as demonstrated in recent
experiments (see [21, Table 1]).

These synthetic DNA strands may be stored ex vivo or
in vivo. When the DNA strands are stored ex vivo or in a
non-biological environment, code design takes into account the
synthesizing and sequencing platforms being used (see [22] for
a survey of the various coding problems). In contrast, when
the DNA strands are stored in vivo or recombined with the
DNA of a living organism, we design codes to correct errors
due to the biological mutations.

This work looks at the latter case, and specifically, examines
codes that correct errors due to tandem duplications. Tandem
duplications or repeats is one of the two common repeats
found in the human genome [11] and they are caused by
slipped-strand mispairings [13]. They occur in DNA when a
pattern of one or more nucleotides is repeated and the repeti-
tions are directly adjacent to each other. For example, consider
the string or word AGTAGTCTGC. The substring AGTAGT is a
tandem repeat, and we say that AGTAGTCTGC is generated from
AGTCTGC by a tandem duplication of length three.

Jain et al. [4] first proposed the study of codes that cor-
rect errors due to tandem duplications. In the same paper,
Jain et al. used irreducible words (see Section I-A for def-
inition) to construct a family of codes that correct tandem
duplications of length at most k, where k ∈ {2, 3}. While
these codes are optimal in size for the case k = 2, these codes
are not optimal for k = 3, and in fact, Chee et al. [1] con-
structed a family of codes with strictly larger size. Recently,
Jain et al. [5] looked at other error mechanisms, and studied
the capacity of these tandem-duplication systems in the pres-
ence of point-mutation noise (substitution errors). In this paper,
we first look at encoding/decoding methods for irreducible
words. In particular, we provide linear-time algorithm that
encodes into irreducible words with exact rate or close to the
asymptotic rate. While the technique is standard in constrained
coding [17] and combinatorics literature [14], our contribution
is a detailed analysis of the space and time complexities of the
respective algorithm.

To further reduce errors, we also impose certain weight
constraints on the individual codewords. Specifically, the
GC-content of a DNA string refers to the number of nucleotides
that corresponds to G or C, and DNA strings with GC-content
that are too high or too low are more prone to both syn-
thesis and sequencing errors (see for example, [16], [20]).
Therefore, most of the earlier work use DNA strings whose
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GC-content is close to 50% as codewords and use randomizing
techniques to encode binary message into the latter [15].
Recently, in addition to the GC-content constraint, Immink
and Cai also studied the homopolymer runlength constraint
for DNA codewords [6]. In this work, via a modification of
Knuth’s balancing technique, we provide a linear-time map
that translates quaternary alphabet messages into GC-balanced
codewords and the resulting codebook is able to correct
tandem duplications of length at most three.

Unfortunately, the set of all irreducible words cannot be
extended to combat tandem duplications of length at most k,
when k ≥ 4. Nevertheless, in Section VI, we provide two
efficient constructions of q-ary codes capable of correcting
tandem duplications of length at most k with k � 4. However,
we require q ≥ k+1. These code families are the first known
families of �k-TD codes for k � 4.

In this work, we study codes that correct an unbounded
number of tandem duplications. For works that deal with a
bounded number of tandem duplications, we refer the inter-
ested reader to [4], [8], [12]. Recently, Kovačević [9] studies
a model that bounds the number of tandem duplications for
each segment, instead of bounding the total number of tandem
duplications.

Before we state the main results of the paper, we go through
certain notation.

A. Notation and Terminology

Let [n] denote the set {1, 2, . . . , n}. Let Σq = {0, 1, · · ·
q−1} be an alphabet of q � 2 symbols. For a positive integer
n, let Σn

q denote the set of all words of length n over Σq, and
let Σ∗

q denote the set of all words over Σq with finite length.
Given two words x,y ∈ Σ∗

q , we denote their concatenation
by xy.

We state the tandem duplication rules. For integers k � n
and i � n−k, we define Ti,k : Σn

q → Σn+k
q such that

Ti,k(x) = uvvw, where x = uvw, |u| = i, |v| = k.
If a finite sequence of tandem duplications, where each

duplication is of length at most k, is performed to obtain
y from x, then we say that y is a �k-descendant of x,
or x is a �k-ancestor of y. Given a word x, we define the
�k-descendant cone of x as the set of all �k-descendants of
x and denote this cone by D∗

�k(x).
Example 1: Consider x = 01210 over Σ3. We have

T1,3(x) = 01211210 and T0,2(01211210) = 0101211210.
So, 0101211210 ∈ D∗

�3(x).
Definition 1 (�k-Tandem-Duplication Codes): A subset

C ⊆ Σn
q is a �k-tandem-duplication code if for all x,y ∈ C

and x �= y, we have that D∗
�k(x)∩D∗

�k(y) = ∅. We say
that C is an (n,�k; q)-TD code.

The size of C is denoted by |C|, while the rate of
C is given by (1/n) logq |C|. Given an infinite family
{Cn : Cn is of length n}∞n=1, its asymptotic rate is given by
limsupn→∞(1/n) logq |Cn|.

When q = 4, consider the alphabet D = {A, T, C, G} and the
following one-to-one correspondence between D and Σ4 =
{0, 1, 2, 3}: A ↔ 0, T ↔ 1, C ↔ 2, G ↔ 3.

Let n be even. We say that σ ∈ Dn is GC-balanced if
the number of symbols in σ that correspond to C and G is

exactly n/2. For DNA-based storage, we are interested in
codewords that are GC-balanced.

B. Irreducible Words

Of interest is a family of tandem-duplication codes con-
structed by Jain et al. [4]. Crucial to the code construction is
the concept of irreducible words and roots.

Definition 2: A word is �k-irreducible if it cannot be
deduplicated into shorter words with deduplications of length
at most k. We use Irr�k(n, q) to denote the set of all
�k-irreducible words of length n over Σq. The �k-ancestors
of x ∈ Σ∗

q that are �k-irreducible words are called the
�k-roots of x.

Construction 1 (Jain et al. [4]): For k ∈ {2, 3} and n � k.
An (n,�k; q)-TD-code C(n,�k; q) is given by

C(n,�k; q) �
n⋃

i=1

{ξn−i(x) | x ∈ Irr�k(i, q)} .

Here, ξi(x) = xzi, where z is the last symbol of x.
We point out certain advantages of Construction 1.

(a) Asymptotic optimal rates. Jain et al. demonstrated
that Construction 1 is optimal for k = 2. However,
when k = 3, Chee et al. [1] provided constructions
that achieve almost twice the size in Construction 1
(see [1, Table I]). Nevertheless, Kovac̆ević recently
demonstrated that the rates of the codes given by Con-
struction 1 are asymptotically optimal [10].

Linear-time
(b) decoding. Consider x ∈ C(n,�k; q) and we read y ∈

D∗
�k(x). To retrieve the codeword x, we simply compute

the �k-root of y and extend the root if the length of the
root is shorter than n. Jain et al. showed that there is at
most one root when k ∈ {2, 3}, while Chee et al. provided
algorithms to compute the root in linear time [1].

In view of these points, we study other practical aspects of
Construction 1. Specifically, we look at efficient encoding of
messages in Σ�

q to codewords in x ∈ C(n,�k; q) for some
� < n.

To this end, we look at the rate of C(n,�k; q). Let
I�k(n, q) � |Irr�k(n, q)|. Then the size of C(n,�k; q) is
given by

∑n
i=1 I�k(i, q). Let rate�k(n, q) and rate�k(q)

denote the rate and asymptotic rate of C(n,�k; q), respec-
tively. In other words, rate�k(n, q) � (1/n) logq |C(n,�k; q)|
and rate�k(q) � limn→∞ rate�k(n, q). Jain et al. observed
that

⋃∞
n=1 Irr�k(n, q) is a regular language (refer to [18] as

a reference for regular language) and hence,

rate�k(q) = lim
n→∞

logq I�k(n, q)
n

. (1)

Furthermore, using Perron-Frobenius theory (see [17]),
Jain et al. computed rate�3(3) to be approximately 0.347934.
In view of (1), we look at encoding of the words to
Irr�k(n, q) instead and the extension of our encoding methods
to C(n,�k; q) is straightforward.

In the special case of q = 4, we are interested in
�k-irreducible words that are GC-balanced. Specifically, we set

IrrB≤k(n; 4) � {x ∈ Dn : x ∈ Irr≤k(n; 4)
and x is GC-balanced},
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and study efficient mapping of messages in Σ�
4 into

IrrB≤k(n; 4). Since the latter is a subcode of C(n,�k; 4), it is
able to correct tandem duplications of length at most k, for
k = 2, 3.

C. Our Contributions

(A) In Section II, we first develop a recursive formula
for I�k(n, q) and hence, provide a closed formula for
the asymptotic rate for C(n,�k; q). Then we compute
rate�k(q) for all q and k ∈ {2, 3}. Using combinator-
ial insights provided by the recursive formula, we then
provide efficient encoding methods and analyse their
corresponding space and time complexities.

(B) In Section III, we propose an (�,m)-finite state encoder
that maps messages into words in Irr�k(n, q) with rate
�/m for k ∈ {2, 3}. Furthermore, we show that we can
choose � and m to be small and yet come close to the
asymptotic rate. In particular, if we choose m = Θ(1/�)
and � = Θ(1/�), we show that the rate is at least
rate�k(q)−�. Here, the running time for the encoder is
linear in codeword length n for constant �.

(C) Using bijections developed in Section II, we pro-
vide a ranking/unranking encoder with rate equal to
(1/n) logq(I�k(n, q)) in Section IV. This algorithm runs
in O(n2) time using O(n2) space. Furthermore, this
ranking/unranking technique can be modified to reduce
the space requirement from O(qm) to O(m2) for the
(�,m)-finite state encoder (Section III).

(D) Section V focusses on the case q = 4 and provides
a linear-time encoder that maps messages in Σ�

4 into
IrrB≤k(n; 4). We achieve this by combining the finite
state encoder of Section III and a novel modification of
Knuth’s balancing technique [7]. Our encoder introduces
2 log2 n+O(1) additional redundant bases, where n is
the word length.

(E) In Section VI, we provide two efficient constructions of
q-ary codes capable of correcting tandem duplications of
length at most k, where k ≥ 4 and q � k+1. These two
families of codes are the first known families of �k-TD
codes for k � 4. Linear-time error decoders are also
provided in this section.

II. ENUMERATING IRREDUCIBLE WORDS

In this section, we compute rate�k(q) for all q and
k ∈ {2, 3} by obtaining a recursive formula for I�k(n, q).
While the Perron-Frobenius theory (see [17]) is sufficient to
determine the asymptotic rates, the recursive formula is useful
in the analysis of the finite state encoder in Section III and the
development of the ranking/unranking methods in Section IV.

To this end, we partition the set of irreducible words into
two classes and provide bijections from irreducible words of
shorter lengths into them. Specifically, notice that the suffix
of an irreducible word is of the form either aba or abc, where
a, b, c are distinct symbols. Hence, we let Irr(s)�k(2, n, q) and

Irr(s)�k(3, n, q) to denote the set of irreducible words, whose
length-three suffixes have two and three distinct symbols,
respectively.

In the case k = 2, we consider the following maps for
n � 4,

φ : Irr�2(n−1, q)× [q−2] → Irr(s)�2(3, n, q),

ψ : Irr�2(n−2, q)× [q−2] → Irr(s)�2(2, n, q).

We first define φ. If x = x1x2 . . . xn−1 ∈ Irr�2(n−
1, q) and i ∈ [q−2], set σ to be the ith element in Σq \
{xn−2, xn−1}. Then set φ(x, i) = x1x2 . . . xn−1σ.

For ψ, let x = x1x2 . . . xn−2 ∈ Irr�2(n−2, q) and i ∈
[q−2] and set σ to be the ith element in Σq \{xn−3, xn−2}.
Then set ψ(x, i) = x1x2 . . . xn−2σxn−2.

Proposition 1: The maps φ and ψ are bijections.
Proof: We construct the inverse map for φ. Specifically,

we set φ−1 : Irr(s)�2(3, n, q) → Irr�2(n−1, q)× [q−2] such
that φ−1(x) = (x1 . . . xn−1, i), where i is the index of xn in
Σq \{xn−2, xn−1}. It can be verified that φ◦φ−1 and φ−1 ◦
φ are identity maps on their respective domains. Similarly,
the inverse map for ψ is given by ψ−1 : Irr(s)�2(2, n, q) →
Irr�2(n−2, q)× [q−2] such that ψ−1(x) = (x1 . . . xn−2, i),
where i is the index of xn−1 in Σq \{xn−3, xn−2}.

The following corollary is then immediate.
Corollary 1: We have that I�2(2, q) = q(q−1),

I�2(3, q) = q(q−1)2, and

I�2(n, q) = (q−2)I�2(n−1, q)+(q−2)I�2(n−2, q) (2)

for n � 4. Therefore, the asymptotic rate is rate�2(q) =
logq λ2, where λ2 = (q−2+

√
q2−4)/2.

The recurrence relation given by (2) defines a special
instance of Lucas sequences with integer coefficients q−2 (see
for example, [19]). When q = 3, we recover the well-known
Fibonacci recurrence.

In the next section, we are interested in irreducible words
with certain prefixes or suffixes. Specifically, let p be a word of
length � < n. Then we denote the set of irreducible words of
length n with prefix p by Irr(p)

�k(p, n, q). The set of irreducible

words of length n with suffix p is denoted by Irr(s)�k(p, n, q).
Fix p. Notice that the maps φ and ψ simply append one and

two symbols to words in their domains. Hence, if we apply
the maps to a word with prefix p, the image also has the same
prefix p. Therefore, both φ and ψ remain as bijections when
we restrict the domains and codomains to the irreducible words
with prefix p. In other words, we obtain a similar recursion
for Irr(p)

�2(p, n, q).

Corollary 2: Let p ∈ Σ�
q For n � �+2,∣∣∣Irr(p)

�2(p, n, q)
∣∣∣ =(q−2)

∣∣∣Irr(p)
�2(p, n−1, q)

∣∣∣
+(q−2)

∣∣∣Irr(p)
�2(p, n−2, q)

∣∣∣ . (3)

We conclude this section with the recursion for Irr�3(n, q).
Proposition 2: We have that I�3(3, q) = q(q−1)2,

I�3(4, q) = q2(q−1)(q−2), I�3(5, q) = q(q−1)(q−
2)(q2−q−1) and for n � 6,

I�3(n, q) = (q−2)I�3(n−1, q)+(q−3)I�3(n−2, q)
+(q−2)I�3(n−3, q). (4)
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Therefore, rate�3(q) = logq λ3, where λ3 is the
largest real root of equation x3−(q−2)x2−(q−3)x−
(q−2) = 0.

Proof: Recall that for a word p of length � < n,
Irr(s)�k(p, n, q) is the set of irreducible words of length n
with suffix p. For any arbitrary set of words L, we let
Irr(s)�k(L, n, q) to denote the set of irreducible words of length
n with suffix in L. To prove this proposition, we par-
tition the set of irreducible words Irr�3(n, q) into three
classes and provide bijections from irreducible words of
shorter length into them. Specifically, we consider all pos-
sible suffixes of length six of an irreducible word. For a
word x = x1 . . . xn−5xn−4xn−3xn−2xn−1xn ∈ Irr�3(n, q),
if xn = xn−3 = a, every suffix of length six must be of
the form {bcabda, bcacba, bcacda, bcadba, bcadca, bcadea,
abacba, abacda}, where a, b, c, d, e are different elements
in Σq. On the other hand, if xn �= xn−3, every suf-
fix of length four must be of the form {abcd, abcb, abac}.
Let L1 = {abcd, abcb, abac | a, b, c, d ∈ Σq}, L2 =
{bcabda, bcacba, bcacda, bcadea, bcadca | a, b, c, d, e ∈ Σq},
L3 = {bcadba, abacba, abacda | a, b, c, d ∈ Σq}. We consider
the following maps for n � 6.

ϕ1 : Irr�3(n−1, q)× [q−2] → Irr(s)�3(L1, n, q),

ϕ2 : Irr�3(n−2, q)× [q−2] → Irr(s)�3(L2, n, q),

ϕ3 : Irr�3(n−3, q)× [q−3] → Irr(s)�3(L3, n, q).

Recall that Irr�k(n, q) = Irr(s)�k(3, n, q)∪Irr(s)�k(2, n, q).
We first define ϕ1. If x = x1 . . . xn−3xn−2xn−1 ∈
Irr(s)�3(3, n−1, q) and i ∈ [q−2], then set σ to be the ith
element in Σq \{xn−3, xn−1}, and set

ϕ1(x, i) = xσ = x1 . . . xn−3xn−2xn−1σ.

If x = x1 . . . xn−3xn−2xn−1 ∈ Irr(s)�3(2, n−1, q) where
xn−3 = xn−1 and i ∈ [q−2], then set σ to be the ith element
in Σq \{xn−2, xn−1}, and set

ϕ1(x, i) = xσ = x1 . . . xn−1xn−2xn−1σ.

Similarly, we now define ϕ2, ϕ3 as follows.
If x = x1 . . . xn−5xn−4xn−3xn−2 ∈ Irr(s)�3(3, n−2, q) and
i ∈ [q−3], then if xn−5 /∈ {xn−2, xn−3}, set σ to be
the ith element in Σq \{xn−5, xn−3, xn−2}, otherwise if
xn−5 ∈ {xn−2, xn−3}, set σ to be the ith element in Σq \
{xn−4, xn−3, xn−2}, and set

ϕ2(x, i) = xσxn−3 = x1 . . . xn−5xn−4xn−3xn−2σxn−3.

If x = x1 . . . xn−5xn−4xn−3xn−2 ∈ Irr(s)�3(2, n−2, q) where
xn−4 = xn−2 and i ∈ [q−3], then set σ to be the ith element
in Σq \{xn−5, xn−3, xn−2} and we set

ϕ2(x, i) = xσxn−3 = x1 . . . xn−5xn−4xn−3xn−2σxn−3.

If x = x1 . . . xn−5xn−4xn−3 ∈ Irr(s)�3(3, n−3, q) and i ∈
[q−2], then set σ to be the ith element in Σq \{xn−5, xn−3},
and set

ϕ3(x, i) = xσxn−5xn−3 = x1 . . . xn−5xn−4xn−3σxn−5xn−3.

TABLE I

THE ASYMPTOTIC INFORMATION RATES FOR
k-IRREDUCIBLE WORDS FOR k ∈ {2, 3}

If x = x1 . . . xn−5xn−4xn−3 ∈ Irr(s)�3(2, n−3, q) where
xn−5 = xn−3 and i ∈ [q−2], then set σ to be the ith element
in Σq \{xn−4, xn−3}, and set

ϕ3(x, i) = xσxn−4xn−3 = x1 . . . xn−5xn−4xn−3σxn−4xn−3.

We can prove that ϕi is bijection for i = 1, 2, 3 by constructing
the inverse map for each ϕi. We first prove ϕ1 is bijection.
Specifically, we set ϕ−1

1 : Irr(s)�3(L1, n, q) → Irr�3(n−1, q)×
[q−2] such that ϕ−1

1 (x) = (x1 . . . xn−3xn−2xn−1, i) where i
is the index of xn in Σq \{xn−3, xn−1} if xn−1 �= xn−3 or i
is the index of xn in Σq \{xn−2, xn−1} otherwise. It can be
verified that ϕ1 ◦ϕ−1

1 and ϕ−1
1 ◦ϕ1 are identity maps on their

respective domains. Similarly, the inverse maps for ϕ2, ϕ3 are
given by

ϕ−1
2 : Irr(s)�3(L2, n, q) → Irr�3(n−2, q)× [q−2],

ϕ−1
3 : Irr(s)�3(L3, n, q) → Irr�3(n−3, q)× [q−3],

such that ϕ−1
2 (x) = (x1 . . . xn−3xn−2, i) where i is the index

of xn−1 in

• Σq \{xn−5, xn−3, xn−2} if xn−5 /∈ {xn−3, xn−2} or
xn−4 = xn−2,

• Σq \{xn−4, xn−3, xn−2} if xn−5 ∈ {xn−3, xn−2} and
xn−4 �= xn−2.

and ϕ−1
3 (x) = (x1 . . . xn−3, i) where i is the index of

xn−2 in

• Σq \{xn−5, xn−3} if xn−5 �= xn−3,
• Σq \{xn−4, xn−3} if xn−5 = xn−3.

We can prove that ϕ2, ϕ3 are bijections as ϕ2 ◦ϕ−1
2 , ϕ−1

2 ◦
ϕ2, ϕ3 ◦ϕ−1

3 , and ϕ−1
3 ◦ϕ3 are identity maps on their

respective domains. Since Irr�3(n, q) = Irr(s)�3(L1, n, q)∪
Irr(s)�3(L2, n, q)∪Irr(s)�3(L3, n, q), we have

I�3(n, q) = (q−2)I�3(n−1, q)+(q−3)I�3(n−2, q)
+(q−2)I�3(n−3, q).

The following corollary is analogous to Corollary 2.
Corollary 3: For any p ∈ Σ�

q and n � �+3, we have∣∣∣Irr(p)
�3(p, n, q)

∣∣∣ =(q−2)
∣∣∣Irr(p)

�3(p, n−1, q)
∣∣∣

+(q−3)
∣∣∣Irr(p)

�3(p, n−2, q)
∣∣∣

+(q−2)
∣∣∣Irr(p)

�3(p, n−3, q)
∣∣∣ . (5)

Remark 1: We compute the values of rate�k(q) for
k ∈ {2, 3} in Table I. Let T (n, q) be the largest
size of an (n,�3; q)-TD code and define τ(q) �
lim supn→∞(1/n) logq T (n, q). From [1], [4], we have
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that that rate�3(q) � τ(q) � rate�2(q). Therefore,
Table I demonstrates that C(n,�3; q) is almost optimal
for q � 5.

When q = 4, we are interested in the asymptotic information
rate for GC-balanced �k-irreducible words. Even though we
do not provide an explicit recursion formula for the size
of IrrB≤k(n; 4), the following asymptotic information rate is
implied by the encoder described in Section V. We defer the
proof of Corollary 4 to Section V.

Corollary 4: For k ∈ {2, 3}, we have that

lim
n→∞

logq |IrrB≤k(n; 4)|
n

= rate�k(q). (6)

III. FINITE STATE ENCODER

In this section, we propose an (�,m)-finite state encoder
that maps messages into words in Irr�k(n, q) with rate �/m
for k ∈ {2, 3} (refer to [17] as a reference for finite state
encoders). In particular, for arbitrary � > 0, if we choose
m = Θ(1/�) and � = Θ(1/�), we show that the rate of our
encoder is at least rate�k(q)−�.

For integers � < m, an (�,m)-finite state encoder is a
triplet (S, E ,L), where S is a set of states, E ⊂ S×S is
a set of directed edges, and L : E → Σ�

q ×Σm
q is an edge

labeling.
To encode into irreducible words, we choose m � 2k−1,

and set

S � Irr�k(m, q) and E � {(x,x′) : xx′ ∈ Irr�k(2m, q)}.

For x ∈ S, we define the neighbors of x to be N(x) �
{x′ : (x,x′) ∈ E}. We also consider the quantity
Δ�k(m, q) � min{|N(x)| : x ∈ S} and choose � such
that

Δ�k(m, q) � q�. (7)

We now define the edge labeling L using this choice of �.
For x ∈ S, since |N(x)| � q�, we may use the set Σ� to
index the first q� words in N(x). Hence, for x′ ∈ S, if x′ is
one of the first q� words, we let yx′ ∈ Σ� to denote the
index. Otherwise, we simply set yx′ = −. Therefore, for
(x,x′) ∈ E , we set L(x,x′) = (yx′ ,x′). Finally, we call this
triplet (S, E ,L) an (�,m)- finite state encoder for irreducible
words.

Example 2: Let k = 2, q = 3, m = 3. Then S = {010,
012, 020, 021, 101, 102, 120, 121, 201, 202, 210, 212}, and

N(010) = {201, 210, 212},
N(012) = {010, 012, 021, 101, 102}.

We verify that Δ�2(3, 3) = 3 and so, we choose � = 1.
So, we can set L to map the edges exiting the state 010 as
follow: (010, 201) �→ (0, 201), (010, 210) �→ (1, 210), and
(010, 212) �→ (2, 212). We represent the mapping L using
the following lookup table.

Here, to determine L(x,x′), we look at the row corresponding
to x and look at the column corresponding to x′. If the
column is yx′ , then L(x,x′) = (yx′ ,x′). So, L(012, 010) =
(0, 010).

A. Encoding

(�,m)-Finite State Encoder. Let s be a positive integer and
set n = s�.

INPUT: message y = y1y2 . . .ys ∈ Σs�, where yi ∈ Σ�,
for 1 ≤ i ≤ s
OUTPUT: x ∈ Irr�k(sm; q)

(I) Set x0 to be the first word lexicographically in S =
Irr�k(m, q).

(II) For i ∈ [s], set xi to be the unique word such that
L(xi−1,xi) = (yi,xi).

(III) The encoded word is x = x1x2 . . .xs.

Example 3 (Example 2 continued): Let s = 3 and consider
the message y = 012. First, we set x0 = 010. Then x1 = 201
since L(010, 201) = (0, 201). Similarly, x2 = 021 and x3 =
021. Therefore, the encoded word x is 201021021.

Since the encoded word has length sm, the (�,m)-finite
state encoder for irreducible words has rate �/m. In the next
subsection, we see that � and m can be chosen in such a way
that the rate �/m approaches rate�k(q) quickly.

B. Approaching the Asymptotic Information Rate

Pick � > 0. We find suitable values for � and m so that the
encoding rate satisfies

�/m � rate�k(q)−�. (8)

In particular, we show that � = Θ(1/�) and m = Θ(1/�)
suffice to guarantee (8).

Recall that � and m are required to satisfy (7). Hence,
we determine Δ�k(m, q). These values have the same recur-
sive structure as I�k(m, q) and therefore have the same growth
rate.

Proposition 3: We have that Δ�2(3, q) = q(q−2)2,
Δ�2(4, q) = (q−2)2(q2−q−1), and for m � 5,

Δ�2(m, q) = (q−2)Δ�2(m−1, q)+(q−2)Δ�2(m−2, q).
(9)
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Proof: Observe that by symmetry, |N(x)| = |N(x′)| for
any x,x′ ∈ Irr(s)�2(2,m, q). Similarly, |N(y)| = |N(y′)| for

any y,y′ ∈ Irr(s)�2(3,m, q). Therefore, to show that |N(x)| �
|N(y)| for x ∈ Irr(s)�2(2,m, q) and y ∈ Irr(s)�2(3,m, q), it

suffices to pick any x0 ∈ Irr(s)�2(2,m, q) and any y0 ∈
Irr(s)�2(3,m, q) and show that |N(x0)| � |N(y0)|.

Hence, we assume that x ∈ Irr(s)�2(010,m, q) and y ∈
Irr(s)�2(210,m, q). Then the neighbors of x and y are given by

N(x) =

⎧⎨
⎩x′ : 10x′ ∈

⋃
σ/∈{0,1}

Irr(p)
�2(10σ,m+2, q)

⎫⎬
⎭ , (10)

N(y) =

⎧⎨
⎩y′ : 10y′ ∈

⋃
σ �=0

Irr(p)
�2(10σ,m+2, q)

⎫⎬
⎭ . (11)

Since N(x) ⊆ N(y), the inequality |N(x)| � |N(y)| follows.
Hence, Δ�2(m, q) = |N(x)| where x ∈ Irr(s)�2(010,m, q).

Since Δ�2(m, q) =
∑

σ/∈{0,1}
∣∣∣Irr(p)

�2(10σ,m+2, q)
∣∣∣, the

recursive equation (9) follows from Corollary 2.
Proposition 4: We have that

Δ�3(5, q) = (q−2)(q2−2q−1)2,

Δ�3(6, q) = (q−1)(q5−6q4+9q3 +4q2−8q−9),
Δ�3(7, q) = (q−2)(q6−6q4+9q3 +4q2−8q−10q+3),

and for m � 8,

Δ�3(m, q) = (q−2)Δ�3(m−1, q)+(q−3)Δ�3(m−2, q)
+(q−2)Δ�3(m−3, q). (12)

Proof: Let L = {abcab, abcac, abcad, abcba,
abcbd, abaca, abacb, abacd, abcde, abcdb, abcdc, abcda :
where a, b, c, d, e are distinct symbols in Σq} be the set
of all possible suffixes of length five of an irreducible
word. We first show that Δ�3(m, q) = |N(x)| where
x ∈ Irr(s)≤3(abcab,m, q), where a, b, c are distinct symbols
in Σq . In other words, we need to show that for any x ∈
Irr(s)�3(abcab,m, q) and for any y ∈ Irr(s)�3(p,m, q), where
p ∈ L, |N(x)| � |N(y)|. We illustrate our idea of comparison
by one particular case which is when p = abcad, while
the remaining cases can be done similarly. Without loss
of generality, we assume that x ∈ Irr(s)�3(01201,m, q) and

y ∈ Irr(s)�3(03201,m, q). Then the neighbors of x and y are
given by

N(x) =

⎧⎨
⎩x′ : 201x′ ∈

⋃
σ/∈{1,2}

Irr(p)
�3(201σ,m+3, q)

⎫⎬
⎭ ,

(13)

N(y) =

⎧⎨
⎩y′ : 201y′ ∈

⋃
σ �=1

Irr(p)
�3(201σ,m+3, q)

⎫⎬
⎭ . (14)

Since N(x) ⊆ N(y), the inequality |N(x)| � |N(y)| follows.
Hence, Δ�3(m, q) = |N(x)| where x ∈ Irr(s)�3(01201,m, q).

Since Δ�3(m, q) =
∑

σ/∈{1,2}
∣∣∣Irr(p)

�3(201σ,m+3, q)
∣∣∣, the

recursive equation (12) follows from Corollary 3.

Recall that λ2 and λ3 are roots of the equations x2−(q−
2)x−(q−2) = 0 and x3−(q−2)x2−(q−3)x−(q−2) = 0,
respectively. Set κ2 such that Δ�2(m, q) � κ2λ

m
2 for m ∈

{3, 4}. Similarly, set κ3 so that Δ�3(m, q) � κ3λ
m
3 for m ∈

{5, 6, 7}. By inductive argument, it follows from (9) and (12)
that for k ∈ {2, 3},

Δ�k(m, q) � κkλ
m
k for all m. (15)

We are now ready to present the main theorem of this section.
Theorem 1: Let k ∈ {2, 3}. Set ck = rate�k(q) = logq λk.

For � > 0, if we choose m and � such that

� =
⌈

(ck−�)(ck− logq κk)
�

⌉
, (16)

m =
⌈
�− logq κk

ck

⌉
, (17)

then the (�,m)-finite state encoder has rate at least
rate�k(q)−�.

Proof: We have to verify that (7) and (8) hold for the
choice of � and m. Now, (16) implies that �� � (ck−�)(ck−
logq κk), and equivalently, ck�/(�− logq κk +ck) � ck−�.
Therefore,

�

m
� �

1+(�− logq κk)/ck
=

ck�

�− logq κk +ck
� ck−�.

Thus, we verify (8).
Next, from (15) and (17), we have that

Δ�k(m, q) � κkλ
(�−logq κk)/ logq λk

k = q�.

Hence, we verify (7) and complete the proof.
Therefore, to achieve encoding rate at least rate�k(q)−�,

we only require � = Θ(1/�) and m = Θ(1/�). If we naively
use a lookup table to represent (S, E ,L), we require qΘ(1/ε)

space. Furthermore, using binary search, the (�,m)-finite state
encoder for irreducible words encodes in O(n/�) time. In the
next section, we use combinatorial insights from (2) and (4)
to reduce the space requirement to O(1/�2).

IV. RANKING/UNRANKING ALGORITHM

A ranking function for a finite set S of cardinality N is a
bijection rank : S → [N ]. Associated with the function rank
is a unique unranking function unrank : [N ] → S, such that
rank(s) = j if and only if unrank(j) = s for all s ∈ S
and j ∈ [N ]. In this section, we present an algorithm for
ranking and unranking Irr�k(n, q). This method is also known
as enumerative coding [3]. For ease of exposition, we focus
on the case where k = 2 and present the ranking/unranking
algorithm for k = 3 at the end of the section. The basis of
our ranking and unranking algorithms is the bijections defined
in Section II. As implied by the codomains of φ and ψ, for
n � 4, we order the words in Irr�2(n, q) such that words in
Irr(s)�2(3, n, q) are ordered before words in Irr(s)�2(2, n, q). For
words in Irr�2(2, q) and Irr�2(3, q), we simply order them
lexicographically. We illustrate the idea behind the unranking
algorithm through an example.

Example 4: Let n = 6 and q = 3. Then the values of
I�2(m, q) are as follow.
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Suppose we want to compute unrank(40). Proposition 1 gives

Irr�2(6, 3) = φ(Irr�2(5, 3)× [1])∪ψ(Irr�2(4, 3)× [1]).

Now, we are interested in the 40th word of Irr�2(6, 3). Since
40 > I�2(5, 3) = 30, the 40th word of Irr�2(6, 3) is the
image of the 40−30 = 10th word in Irr�2(4, 3) under ψ.
Recursing tells us that the 10th word in Irr�2(4, 3) is the
image of the 10th word under φ(Irr�2(3, 3)× [1]). The 10th
word of Irr�2(3, 3) is 202. This gives

unrank(40) = ψ(φ(202, 1), 1)
= ψ(2021, 1) = 202101.

The formal unranking algorithm is described in Algorithm 1.

Algorithm 1 unrank(n, q, j)
Input: Integers n ≥ 2, q � 3, 1 ≤ j ≤ I�2(n, q)
Output: x, where x is the codeword of rank j in Irr�2(n, q)

if n ≤ 3 then
return j-th codeword in Irr�2(n, q)

if j � (q−2)I�2(n−1, q) then
j′ ← 1+�(j−1)/(q−2)�
i← (j−1) (mod q−2)+1
return φ(unrank(n−1, q, j′), i)

else
j′ ← 1+�(j− (q−2)I�2(n−1, q)−1)/(q−2)�
i← (j− (q−2)I�2(n−1, q)−1) (mod q−2)+1
return ψ(unrank(n−2, q, j′), i)

The corresponding ranking algorithm for Irr�2(n, q) has a
similar recursive structure and is described in Algorithm 2.

Algorithm 2 rank(n, q,x)
Input: n ≥ 2, q � 3 and irreducible word x of length n
Output: j, where 1 ≤ j ≤ I�2(n, q), the rank of x in Irr�2(n, q)

if n ≤ 3 then
return rank(x) in Irr�2(n, q)

if xn �= xn−2 then
x′ ← x1x2 . . . xn−1

i← the index of xn in Σq \{xn−2, xn−1}
return (rank(n−1, q,x′)−1)(q−2)+ i

else
x′ ← x1x2 . . . xn−2

i← the index of xn−1 in Σq \{xn−3, xn−2}
return (rank(n−2, q,x′)−1)(q−2)+ i+(q−2)I�2(n−
1, q)

Example 5: Let n = 6 and q = 3 as before. Sup-
pose we want to compute rank(202101). Since 202101 ∈
Irr(s)�2(2, 6, 3), we have that 202101 is obtained from applying

ψ to 2021 ∈ Irr�2(4, 3). Again, since 2021 ∈ Irr(s)�2(3, 6, 3),
we have that 2021 is obtained from applying φ to 202 ∈
Irr�2(3, 3). Therefore,

rank(202101) = rank(2021)+I�2(5, 3)
= rank(202)+I�2(5, 3)
= 10+30 = 40

The set of values of {I�2(m, q) : m � n} required in
Algorithms 1 and 2 can be precomputed based on the recur-
rence (2). Since the numbers I�2(m, q) grow exponentially,
these n stored values require O(n2) space.

Next, Algorithms 1 and 2 involve O(n) iterations and
each iteration involves a constant number of arithmetic
operations. Therefore, Algorithms 1 and 2 involve O(n)
arithmetics operations and have time complexity O(n2).
Similarly, the corresponding ranking/unranking algorithm for
Irr�3(n, q) have similar recursive structures and are described
in Algorithm 3 and 4.

Algorithm 3 unrank(n, q, j)
Input: Integers n ≥ 3, q � 3, 1 ≤ j ≤ I�3(n, q)
Output: x, where x is the codeword of rank j in Irr�3(n, q)

if n ≤ 5 then
return j-th codeword in Irr�3(n, q)

if j � (q−2)I�3(n−1, q) then
j′ ← 1+�(j−1)/(q−2)�
i← (j−1) (mod q−2)+1
return ϕ1(unrank(n−1, q, j′), i)

else
j′ ← j− (q−2)I�3(n−1, q)

if j′ � (q−3)I�3(n−2, q) then
j′ ← 1+�(j′−1)/(q−3)�
i← (j′−1) (mod q−3)+1
return ϕ2(unrank(n−2, q, j′), i)

else
j′ ← j′− (q−3)I�3(n−2, q)
i← (j′−1) (mod q−2)+1
return ϕ3(unrank(n−3, q, j′), i)

Algorithm 4 rank(n, q,x)
Input: n ≥ 3, q � 3 and irreducible word x of length n
Output: j, where 1 ≤ j ≤ I�3(n, q), the rank of x in Irr�3(n, q)

if n ≤ 5 then
return rank(x) in Irr�3(n, q)

if x ∈ Irr
(s)
�3(L1, n, q) then

(x′, i)← ϕ−1
1 (x)

return (rank(n−1, q,x′)−1)(q−2)+ i

if x ∈ Irr
(s)
�3(L2, n, q) then

(x′, i)← ϕ−1
2 (x)

return (rank(n−2, q,x′)−1)(q−3)+ i+(q−2)I�3(n−
1, q)

if x ∈ Irr
(s)
�3(L3, n, q) then

(x′, i)← ϕ−1
3 (x)

return (rank(n−3, q,x′)−1)(q−2)+ i+(q−2)I�3(n−
1, q)+(q−3)I�3(n−2, q)

A. Reducing the Space Requirement for the
Finite State Encoder

As discussed earlier, a naive implementation of the
(�,m)-finite state encoder in Section III requires qΘ(m) space
(assuming � = Θ(m)). Here, we modify our unranking
algorithm to reduce the space requirement to O(m) integers
or O(m2) bits.

Recall the notation in Section III. In particular, let xi−1 ∈
Irr�2(m, q) and yi ∈ Σ�

q . Our encoding task is to determine
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the irreducible word xi in N(xi−1) whose index corresponds
to yi. Equivalently, if j is the rank of yi ∈ Σ�

q , then
our task is to find xi such that its rank in N(xi−1) is j.
Since xi−1 is irreducible and using symmetry, we assume
that xi−1 ∈ Irr(s)�2(010,m, q) or xi−1 ∈ Irr(s)�2(210,m, q).
Furthermore, (10) and (11) imply that N(xi−1) corresponds to
a union of �2-irreducible words with prefixes of the form 10σ.
Therefore, it suffices to provide ranking/unranking algorithms
for Irr(p)

�2(10σ,m, q).
Since (3) implies that Irr(p)

�2(10σ,m, q) has the same recur-
sive structure as Irr�2(m, q), we can modify Algorithms 1
and 2 to unrank and rank Irr(p)

�2(10σ,m, q).
Now, to rank/unrank Irr(p)

�2(10σ,m, q), we require O(m)
precomputed integers. Assuming q is constant, we require only
O(m) integers or O(m2) bits. However, the running time is
increased to O(m2).

V. ENCODER FOR DNA GC-BALANCED CODES

Set q = 4 and k ∈ {2, 3}. Recall that IrrB�k(n; 4) is
the set of all GC-balanced �k-irreducible words of length n.
In this section, we look at efficient ways of encoding qua-
ternary messages in Σ�

4 = {0, 1, 2, 3}� into codewords in
IrrB�k(N ; 4).

To do so, we first map a message x ∈ Σ�
4 to an irre-

ducible word y ∈ Irr≤k(n; 4) using the finite state encoder
in Section III. We then modify Knuth’s balancing technique
to give an linear-time algorithm that encodes y to z ∈
IrrB≤k(n+r; 4) by introducing additional r redundant bases.
We refer to the latter algorithm as the GC-balanced encoder.
In Section V-A, we describe the algorithm in detail and show
that r is at most 2 �log2 n�+8. Consequently, if the rate of
the initial finite state encoder is rate�k(4)−�, the rate of the
GC-balanced encoder tends to rate�k(4)−� as word length
increases.

Alternatively, we can modify the finite state encoder
(SB, EB,LB) in Section III so that the resulting codewords
belong to IrrB�k(N ; 4). In Section V-B, we describe this
alternative finite state encoder in detail and compare it with
our GC-balanced encoder.

A. GC-Balanced Encoder

We first modify Knuth’s balancing technique to map
a quaternary �k-irreducible word to a GC-balanced
�k-irreducible word. Specifically, Knuth’s balancing
technique is a linear-time algorithm that maps a binary
message x to a balanced word z of the same length by
flipping the first t bits of x [7]. The crucial observation
demonstrated by Knuth is that such an index t always
exists and t is commonly referred to as the balancing index.
Formally, we have the following theorem.

Theorem 2 (Knuth [7]): There exists a pair of linear-time
algorithms ENC : {0, 1}n → {0, 1}n× [n] and DEC :
{0, 1}n× [n] → {0, 1}n such that the following holds.
If ENC(x) = (z, t), then z is balanced and DEC(z, t) = x.

To represent the balancing index, Knuth appends z with
a short balanced suffix of length �logn� and so, a lookup

table of size n is required. However, for the encoding
of irreducible words, this short balanced suffix may intro-
duce unwanted duplications and so, certain modifications are
required. Here, we develop a method to represent the balancing
index with a balanced suffix of length 2�logn�. In contrast
with Knuth’s technique, the balancing index can be encoded
and decoded in linear time without the use of a lookup
table.

To apply Knuth’s method, we define the flipping rule f :
D → D, where

f(A) = C, f(C) = A, f(G) = T and f(T) = G.

For a word x ∈ Dn and index i with 0 ≤ i ≤ n, fi(x) denotes
the word obtained by flipping the first i symbols of x under
the mapping f . Similar to Knuth’s balancing method, it is easy
to see that there exists an index i so that fi(x) is GC-balanced.
Let Index(x) � min0≤i<n{i : fi(x) is GC-balanced}.

Example 6: Let x = TCACGCATCG. Observe that f5(x) =
GACATCATCG is GC-balanced, while fi(x) is not GC-balanced
for 0 � i < 5. Hence, Index(x) = 5.

Let Index(x) be t. The above example also illustrates that
even though x is �k-irreducible, the word ft(x) may not be
�k-irreducible. Nevertheless, we observe that certain prefix
and suffix of ft(x) remain �k-irreducible. For brevity, given
a word x ∈ Dn, we use P i(x) and Si(x) to denote the prefix
and suffix of x of length i, respectively.

Proposition 5: Let 0 � t � n. If a word x is �k-
irreducible and y = ft(x), then P t(y) and Sn−t(y) are both
�k-irreducible.

Proof: The complement of P t(y) is P t(x). Since x ∈
Irr≤k(n; 4), P t(x) ∈ Irr≤k(t; 4). Therefore, since f is a bijec-
tion of alphabets in D, it implies that P t(y) ∈ Irr≤k(t; 4).
On the other hand, Sn−t(y) = Sn−t(x), which is the suffix
of length (n− t) of x. Hence, we also have Sn−t(y) ∈
Irr≤k(n− t; 4).

Example 7 (Example 6 continued): Observe that x =
TCACGCATCG is � 3-irreducible, but y = f5(x) =
GACATCATCG is not � 3-irreducible. Nevertheless, we
have P 5(y) = GACAT and S5(y) = CATCG are both
� 3-irreducible.

Hence, even though the resulting word y = ft(x) may not
be irreducible, Proposition 5 hints at the following solution.
Add redundant bases between P t(y) and Sn−t(y) so that the
extended word is both balanced and irreducible.

The high-level idea of our algorithm is as follows. Suppose
that k ∈ {2, 3} and x ∈ Irr≤k(n; 4). To encode x into
IrrB≤k(n; 4), we have the following three steps.

(Step 1) Let t = Index(x) and set y = ft(x). So, y =
P t(y)Sn−t(y).

(Step 2) We encode the balancing index t to a word p ∈
IrrB�k(2 �log2 n� ; 4).

(Step 3) Given P t(y),Sn−t(y) and p, we construct two
linking words R1,R2 of length four such that the
resulting word w = P t(y)R1Sn−t(y)R2p is GC-
balanced and �k-irreducible. We refer R1,R2 as
redundant links. Then the final word w is of length
n+2 �log2 n�+8.
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It remains to present the details of Step 2 and Step 3.
In Step 2, we encode an index 0 � t < n to a word in
IrrB�k(2 �log2 n� ; 4).
Index Encoder. Let k ∈ {2, 3} and set p � �log2 n�.

INPUT: t, where 0 ≤ t ≤ n−1
OUTPUT: p � INDEXENC1(t) ∈ IrrB�k(2p; 4)

(I) Let τ1τ2 · · · τp be the binary representation of t of
length p.

(II) For i ∈ [p], set πi = A if τi = 0, and set πi = T if
τi = 1.

(III) Interleave π1π2 · · ·πp with the alternating length-m
sequence CGCG · · ·CG with to obtain p of length 2m.
In other words, set p = π1Cπ2Gπ3Cπ4G · · · .

We illustrate the Index Encoder via an example.
Example 8 (Example 6 continued): Let n = 10 and so,

p = 4. Consider the index t = 5 and the binary representation
of length four of t is 0101. Then π1π2π3π4 = ATAT and
so, p = ACTGACTG. We can verify that p ∈ IrrB�k(8; 4) for
k ∈ {2, 3}.

Proposition 6: The Index Encoder is correct. In other
words, the word p ∈ IrrB�k(2 �log2 n� ; 4), where k ∈ {2, 3}.

Proof: Set p = �log2 n� and let p = p1p2 · · · p2p.
Observe that pi ∈ {A, T} if i is odd and pi ∈ {C, G} if
i is even. Hence, p is GC-balanced. Also, for h ∈ {1, 3},
it follows that pi �= pi+h for 1 ≤ i ≤ 2p−h. Hence, there is
no duplication of length h in p. Since pi �= pi+2 for all even
i and 1 � i � 2p−2, there is no duplication of length two.
Therefore, p ∈ IrrB�3(2p; 4) ⊂ IrrB�2(2p; 4).

In Step 3, we construct the redundant links R1 and R2 so
that the resultant word is both GC-balanced and �k-irreducible.

Proposition 7: Let k ∈ {2, 3}. Let X ∈ IrrB�k(n; 4) and
Y ∈ IrrB�k(m; 4). There exists a word Z of length four such
that the concatenated word XZY belongs to IrrB�k(m+n+
4; 4). Furthermore, Z can be constructed in constant time.

Proof: We construct the word Z = z1z2z3z4. Let
the suffix S3(X) and the prefix P 4(Y ) be xn−2xn−1xn

and y1y2y3y4, respectively. To ensure the resulting word is
balanced, we choose z1, z2, z3, and z4 to be the four distinct
elements in D. We choose them according to the following
cases,

• If y1 = y4, then

– set z1 to be a symbol in D\{xn−2, xn−1, xn},
– set z4 to be a symbol in D\{z1, y1, y3},
– set z3 to be a symbol in D\{z1, z4, y1},
– set z2 to be a symbol in D\{z1, z4, z3}.

• If y1 �= y4, then

– set z1 to be a symbol in D\{xn−2, xn−1, xn},
– set z4 to be a symbol in D\{z1, y1, y2},
– set z2 to be a symbol in D\{z1, z4, y1},
– set z3 to be a symbol in D\{z1, z4, z2}.

Since X and Y are GC-balanced and z1, z2, z3, z4 are
distinct symbols in D, the concatenation XZY is also
GC-balanced.

To demonstrate � 3-irreducibility, it suffices to consider the
string S5(X)ZP 5(Y ) and we check that there is no substring

of the form XX , XYXY or XY ZXY Z , where X,Y, Z are
distinct symbols in D.

Example 9: Let X = GACAT ∈ IrrB�3(5; 4) and Y =
CATCG ∈ IrrB�3(5; 4). Notice that y1 = y4 = C and so, we
set z1 to be any symbol in D\{C, A, T} = {G}. So, we set z1
to be G. Following the rules, the bases z4, z3 and z2 are set to
be A, T and C, respectively. Therefore, we choose Z = GCTA
and verify that XZY = GACATGCTACATCG ∈ IrrB�3(14; 4).

Remark: Now, given any pair of �k-irreducible words X
and Y , Proposition 7 states that there exists a redundant link
of length four. In some cases, redundant links of length two
and zero1 exists.

However, it turns out a redundant link of length four is
necessary. Specifically, the following example provides a pair
of �k-irreducible words X and Y such that no redundant
links of length shorter than four exists.

Example 10: Set k ∈ {2, 3}. Let X = CGCATA,Y =
TATCGC ∈ IrrB�k(6; 4). Note that XY is not �k-irreducible.
Now, all GC-balanced words of length two belong to the set
Z = {CA, CT, GA, GT, AC, AG, TC, TG}. It is easy to check that
XZY is not �k-irreducible for all Z ∈ Z .

To conclude this section, we formally describe the
linear-time encoder that maps an irreducible word to a
GC-balanced irreducible word.
GC-Balanced Encoder. Let k ∈ {2, 3} and set p � �log2 n�.

INPUT: x ∈ Irr�k(n; 4)
OUTPUT: w � ENC2(x) ∈ IrrB�k(n+2p+8; 4)

(I) In linear time, compute t = Index(x). Set y = ft(x).
(II) Use Index Encoder and map the balancing index t to

z = INDEXENC1(t) ∈ IrrB�k(2p; 4).
(III) Using Proposition 7 to construct the links R1 and R2

of length four such that

• P t(y)R1Sn−t(y) ∈ IrrB�k(n+4; 4),
• P t(y)R1Sn−t(y)R2p ∈ IrrB�k(n+2p+8; 4).

(IV) Return w = P t(y)R1Sn−t(y)R2p.

B. Approaching Asymptotic Information Rate

From Table I, we have that rate�2(4) ≈ 0.7249 and
rate�3(4) ≈ 0.7054. In this subsection, we demonstrate
that we can get close to these rates by combining the GC-
balanced encoder with an appropriate choice of (m, �)-finite
state encoder. Specifically, consider the following encoder.

Encoder A. Let s be a positive integer and set n = sm+
2 �log2 sm�+8.

INPUT: message y = y1y2 . . .ys ∈ Σs�
4 , where yi ∈ Σ�

4

for 1 ≤ i ≤ s
OUTPUT: w ∈ IrrB�k(n; q)

(I) Using the (�,m)-finite state encoder, map y to x ∈
Irr�k(sm; q).

(II) Using the GC-balanced encoder, map x to w ∈
IrrB�k(n; q).

We have the following convergence rate of Encoder A.

1In other words, XY is also �k-irreducible.
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Theorem 3: Let k ∈ {2, 3}. Set ck = rate�k(4) = log4 λk.
For � > 0, if we choose m, � and s such that

� =
⌈

(ck −�/2)(ck− log4 κk)
�/2

⌉
, (18)

m = max
{⌈

�− log4 κk

ck

⌉
,
2
�
−1

}
, (19)

s � 20+4 log2m, (20)

then Encoder A has rate at least ck−�.
Proof: Given any m, � and s, the rate of Encoder A

is s�/n.
Now, since s � 17, we have that 2s � s4 or s/2 � 2 log2 s.

Also, since s � 20+4 log2 m, we have s/2 � 10+2 log2 m.
Hence,

2 �log2 sm�+8 � 2(log2 s+log2 m+1)+8
= 2 log2 s+(2 log2 m+10)
� s.

Also, it follows from the proof of Theorem 1 that �/m �
ck−�/2. Therefore,

s�

n
� s�

sm+s
=

�

m+1
=

m

m+1

�

m

≥
�

1− 1

m+1

��
ck− ε

2

�

=
�
ck− ε

2

�
− ck−ε/2

m+1
� ck−ε.

Here, the last inequality follows from the fact that ck−�/2 �
1 and 1/(m+1) � �/2.

Therefore, the asymptotic rate of GC-balanced irreducible
words given in Corollary 4 follows directly from Theorem 3.

To complete our discussion, we define an alternative finite
state encoder Encoder B that encodes quaternary messages
into GC-balanced �k-irreducible words.

Specifically, for �′ < m′, we consider the set of states
SB � IrrB�k(m′, 4) and the set of directed edges EB �
{(x,x′) : xx′ ∈ IrrB�k(2m′, 4)}. For x ∈ SB, the neighbors
of x is defined to be NB(x) � {x′ : (x,x′) ∈ EB} and
we set ΔB

�k(m′, 4) � min{|NB(x)| : x ∈ SB}. When
ΔB

�k(m′) � 4�′ , we can then define the edge labelling LB :
EB → Σ�′

4 ×Σm′
4 so that for all x ∈ SB and y ∈ Σ�′

4 , there
exists a unique word x′ ∈ SB with LB(x,x′) = (y,x′)
(see Example 2 for details). We can now formally describe
Encoder B.

Encoder B. Let s be a positive integer. Choose m′ and �′

such that ΔB
�k(m′) � 4�′ .

INPUT: message y = y1y2 . . .ys ∈ Σs�′ , where yi ∈ Σ�′

for 1 ≤ i ≤ s
OUTPUT: x ∈ IrrB�k(sm′; 4)

(I) Set x0 to be the first word lexicographically in S =
IrrB�k(m; 4).

(II) For i ∈ [s], set xi to be the unique word such that
LB(xi−1,xi) = (yi,xi).

(III) The encoded GC-balanced irreducible word is x =
x1x2 . . .xs.

We now compare the encoding rates of Encoders A and
B for various subblock lengths m and m′, respectively.

Fig. 1. Coding Rates for Encoders A and B.

Figure 1 plots these coding rates against message lengths and
we observe that the coding rates of Encoder A approach the
rate�3(4) much faster than Encoder B.

VI. (n,�k; q)-TD CODES, WHERE k ≥ 4

In this section, we look at correcting tandem duplications
of length at most k, where k ≥ 4. First, we remark that there
is no known result on (n,�k; q)-TD codes when k ≥ 4.
Construction 1 cannot be extended for k ≥ 4 as there are
different irreducible words that share a common descendant.
For example, when q = 3, k = 4, consider the two words
x = 012 and y = 0121012, which are two �4-irreducible
words in Irr�4(3). Since x = 012 =⇒

2
01212 =⇒

4
012101212

and y = 0121012 =⇒
2

012101212, x and y share a common
descendant 012101212. Furthermore, given any two words
x,y ∈ Σ∗

q with q � 3, we are unaware of any algorithm that is
able to decide whether D∗

�k(x)∩D∗
�k(y) = ∅ in finite time

(see [1] for a discussion).
Nevertheless, we construct (n,�k; q)-TD codes given q �

k+1. To do so, we consider the following subset of �k-
irreducible words.

Definition 3: A q-ary word c is t-distinct if every t consec-
utive positions of c, or equivalently, every substring of length
t, comprise t distinct symbols.

For example, c = 012340123 is 5-distinct, while x =
0123012340123 is not 5-distinct. Here, c =⇒

4
x. Observe that

any word c that contains a �k-tandem duplication (i.e. not �k-
irreducible) is necessarily not (k+1)-distinct. Furthermore,
if x is a �k-descendant of c, the order of the k+1 distinct
symbols of a (k+1)-substring in c is preserved in x.

Therefore, this motivates the following construction.
Theorem 4 (Construction 2): Given n, k and q ≥ k+1,

set C = {c ∈ Σn
q : c is (k+1)-distinct}. Then C is a code

correcting tandem duplications of length at most k. The size
of C is |C| = q(q−1) · · · (q−k+1)(q−k)n−k, and hence,
the asymptotic rate of the code family is logq(q−k).

Proof: We prove the correctness of Construction 2 by pro-
viding a decoding algorithm. Suppose that c = c1c2 · · · cn ∈ C
and x is a �k-descendant of c. We now provide an efficient
decoding algorithm to recover the original codeword c.
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Recover the first k symbols. Since c is (k+1)-distinct,
the first k symbols of c are distinct. Hence, we simply search
for the first k distinct symbols in x. Since the order of these
k distinct symbols is preserved, we recover c1c2 . . . ck. For
i ∈ [k], let ti be the first instance in x such that xti = ci.

Recover the next symbol. Suppose that we have recovered
c1c2 . . . ci with i � k and we have the indices t1, t2, …, ti.
Since c is (k+1)-distinct, the next symbol ci+1 (if it exists)
is necessarily distinct from ci−k+1, ci−k+2, …, ci. Hence,
we set ti+1 to be the smallest index larger than ti such that
xti+1 /∈ {ci−k+1, ci−k+2, . . . , ci} If ti+1 exists and since the
order of ci−k+1, ci−k+2, …, ci, ci+1 is preserved, ci+1 is
necessarily xti+1 . Otherwise, if such an index does not exist,
we terminate the algorithm and c = c1c2 . . . ci.

Example 11: Consider q = 5 and k = 4. Suppose that we
receive a vector x = 0101230123412340123.

First, we recover the first four distinct symbols 0, 1, 2, 3.
So, c1c2c3c4 = 0123 with the indices t1 = 1, t2 = 2, t3 = 5,
and t4 = 6.

In the next step, we search for an index t5 greater than six
such xt5 /∈ {0, 1, 2, 3}. Here, t5 = 11 and hence, c5 = 4.
Repeating the procedure, we then obtain c = 012340123 with
t6 = 16, t7 = 17, t8 = 18, and t9 = 19.

In the next construction, we improve the rates of
Construction 2. Instead of constraining the entire codeword to
be (k+1)-distinct, we regard the codeword as a concatenation
of s blocks of length k and require that each block is k-distinct.
The construction is formally defined below.

Theorem 5 (Construction 3): Given s, k and q ≥ k+1, set
n = sk and C′ = {c1c2 · · · cs, where ci is a k-distinct word
of length k for i ∈ [s] and the first symbol of ci+1 is distinct
from the symbols in ci for i ∈ [s−1]}. Then C′ is a code
correcting tandem duplications of length at most k. The size
of C′ is

|C′| = q(q−k)s−1 ((q−1)(q−2) · · · (q−k+1))s ,

and hence, the asymptotic rate of the code family is
1
k

∑k
i=1 logq(q− i).

Proof: As before, we prove the correctness of
Construction 3 by providing a decoding algorithm. Suppose
that c = c1c2 · · · cs ∈ C′ and x is a �k-descendant of c.

We now provide an efficient decoding algorithm to recover
the original codeword c. In what follows, we recover blocks
from left to right. Here, we use ci1 to denote the first symbol
of block ci.

Recover the first block c1. Similar to Construction 2, since
c1 is k-distinct, the first k distinct symbols in x correspond to
c1. In addition to the first block, we also look for the (k+1)th
distinct symbol which corresponds to c21 by design. We set
t2 to be the corresponding index.

Recover the ith block ci for 2 � i � s−1. Suppose that
we have recovered c1, c2, …, ci−1 and we have the index ti
such that ci1 = xti . We proceed as follows.

(I) We search for the index set T such that (i) |T | = k+1;
(ii) the indices in T are at least ti; (iii) the indices in T
are the smallest indices of x (after ti) that correspond
to distinct symbols.

TABLE II

UPPER AND LOWER BOUNDS ON THE RATES OF (n, �4; q)-TD CODES

(II) Let ti+1 be the largest index in T . If there exists index
j with ti < j � ti+1 such that ci1 = xj , we choose
the smallest such index j and update ti to j and repeat
Step (I) to find another T .

(III) If such an index does not exist, we set ci to be the
subsequence of x restricted on the index set T . Note
that ti+1 is set to be the largest index in T .

Recover the last block cs. Update ts to be largest index
of x that corresponds to the symbol cs1. Similar to Step
(I), we find a set of k smallest indices of x (after ts)
that correspond to distinct symbols. Then set cs to be the
subsequence of x restricted on the index set T .

Example 12: Let s = 3, q = 5 and k = 4. Each codeword
c ∈ C′ is the concatenation of three blocks of length four. Sup-
pose that we receive a word x = 01234123434321012124124.

Recovering c1. The first four distinct symbols in x =
012341234343210124 are highlight in red, and we get c1 =
0123. In addition, we have t2 = 5 and c21 = 4.

Recovering c2. Here, we start with t2 = 5 and c21 = 4
• In Step (I), we have T = {5, 6, 7, 8, 15} with

the corresponding symbols highlighted in red:
012341234343210124. Since x9 = 4, we are unable to
proceed to Step (III). So, we update t2 = 9 and repeat
Step (I).

• Repeating Step (I) with t2 = 9, we have T =
{9, 10, 13, 14, 15} with the corresponding symbols high-
lighted in red: 012341234343210124. Again, we are
unable to proceed as x11 = 4 and so, we update t2 = 11.

• Repeating Step (I) with t2 = 11, we have T =
{11, 12, 13, 14, 15}with the corresponding symbols high-
lighted in red: 012341234343210124. Now, we proceed
to Step (III). We set c2 = 4321 and set t3 = 15.

Recovering c3. Since x15 is the last occurrence of the
symbol 0, we look at the set of indices after 15. Then we
have T = {15, 16, 17, 18} and c3 = 0124.

To conclude this section, we compare the rates of C or C′

for the case k = 4 and certain values of q. In addition to
the rates, we also compute the corresponding upper bound.
Observe that an (n,�4; q)-TD code is also an (n,�2; q)-TD
code while the optimal size of the latter is given by I�2(n, q).
Hence, using Corollary 1, we compute rate≤2(q) and tabulate
the values as an upper bound. Table II demonstrates that C′ is
almost optimal for large q.

VII. CONCLUSION

For k ∈ {2, 3} and all q ≥ 2, we provided an explicit
recursive formula for Irr�k(n, q) and hence, derived the
expressions for rate�k(q). In addition, we designed efficient
encoders/decoders for Irr�k(n, q).
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(i) We provided an (�,m)-finite state encoder and showed
that for all � > 0, if we choose m = Θ(1/�) and
� = Θ(1/�), the encoder achieves rate that is at least
rate�k(q)−�. The implementation of the finite state
encoder with a lookup table runs in O(n/�) time and
requires qΘ(1/ε) space. However, if we use the ranking/
unranking method in Section IV, the encoder runs in
O(n/�2) time and requires O(1/�) space.

(ii) We provided an unranking algorithm for irreducible
words whose encoding rate is (1/n) logq(Irr�k(n, q)) �
rate�k(q). The encoder runs in O(n2) time and requires
O(n2) space.

(iii) Motivated by applications that store data in living organ-
isms, we focused on q = 4 and provided a linear-time
encoder that translates quaternary alphabet messages
into GC-balanced codewords that can correct tandem
duplications of length at most k, where k ∈ {2, 3}.

For k ≥ 4, the set Irr�k(n, q) does not form an (n,�k; q)-TD
code. We provided two methods to construct (n,�k; q)-TD
codes with efficient error decoders. Our constructed codes are
subsets of Irr�k(n, q) and we believe that irreducible words
play an important role to design optimal (n,�k; q)-TD codes.
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