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Learning Feature Embedding Refiner for Solving
Vehicle Routing Problems
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Jie Zhang, and Yeow Meng Chee

Abstract— While the encoder–decoder structure is widely used
in the recent neural construction methods for learning to solve
vehicle routing problems (VRPs), they are less effective in
searching solutions due to deterministic feature embeddings and
deterministic probability distributions. In this article, we pro-
pose the feature embedding refiner (FER) with a novel and
generic encoder–refiner–decoder structure to boost the existing
encoder–decoder structured deep models. It is model-agnostic that
the encoder and the decoder can be from any pretrained neural
construction method. Regarding the introduced refiner network,
we design its architecture by combining the standard gated
recurrent units (GRU) cell with two new layers, i.e., an accu-
mulated graph attention (AGA) layer and a gated nonlinear
(GNL) layer. The former extracts dynamic graph topological
information of historical solutions stored in a diversified solution
pool to generate aggregated pool embeddings that are further
improved by the GRU, and the latter adaptively refines the
feature embeddings from the encoder with the guidance of
the improved pool embeddings. To this end, our FER allows
current neural construction methods to not only iteratively
refine the feature embeddings for boarder search range but also
dynamically update the probability distributions for more diverse
search. We apply FER to two prevailing neural construction
methods including attention model (AM) and policy optimization
with multiple optima (POMO) to solve the traveling salesman
problem (TSP) and the capacitated VRP (CVRP). Experimental
results show that our method achieves lower gaps and better
generalization than the original ones and also exhibits competitive
performance to the state-of-the-art neural improvement methods.
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I. INTRODUCTION

DUE to the NP-hard nature, vehicle routing problems
(VRPs) including the traveling salesman problem (TSP)

and the capacitated VRP (CVRP) are intractable to solve
optimally through exact solvers [1]. As desirable alternatives,
heuristic methods (e.g., [2], [3]), which hinge on certain
hand-crafted rules to simplify the search, are always adopted
in industry to find near-optimal solutions with much less
computational costs. On the other hand, given the remarkable
success of deep neural networks in computer vision and natural
language processing, it is commonly known that deep models
without much human guidance could significantly outperform
the hand-crafted ones [4]. Inspired by this superiority, more
and more endeavors have been carried out to explore neural
heuristics for VRPs [5], [6], [7], [8], which apply feature
learning strategy [9] to leverage deep models to automatically
learn the rules in heuristics rather than using the hand-crafted
ones.

In such neural heuristics, the encoder–decoder structure is
widely exploited by the deep models to parameterize the prob-
ability distribution for sampling a solution. Further trained in
the fashion of advanced reinforcement learning or supervised
learning, the encoder–decoder structure performs fairly well
for solving VRPs, especially in learning neural construction
heuristics [10], which sequentially decides the next node to
visit. Typically, as shown in Fig. 1(a), the encoder learns
the representation based on the problem-specific information
and produces feature embeddings for all the nodes, and the
decoder produces a probability distribution over nodes based
on the feature embeddings. Given the probability distribution,
multiple solutions could be sampled, and the best one will
be retrieved as the final output. However, as the search
space may exponentially increase with the problem scales, an
effective and diverse exploration is crucial to find high-quality
solutions with limited computation time [11], [12]. To this
end, the currently used encoder–decoder structure is not
optimal for the neural construction methods in our views.
Specifically, it suffers from two limitations, i.e., deterministic
feature embeddings and deterministic probability distribution.
Regarding the former, the feature embeddings are fixed during
the whole sampling process, which narrows the search range
and ignores the impacts of the sampled solutions. Regarding
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Fig. 1. Structures of neural heuristics. (a) Existing encoder–decoder structure.
(b) Our encoder–refiner–decoder structure.

the latter, although multiple solutions are sampled, most of
them might be intrinsically identical in light of the unchanged
distribution, which may seriously impair the search diversity.

To address the two limitations, we propose the feature
embedding refiner (FER) with a novel and generic encoder–
refiner–decoder structure, where the refiner is added between
the encoder and the decoder to better synergize them as
depicted in Fig. 1(b). Given a (pretrained) neural construction
model, the FER iteratively refines the feature embeddings
generated from the encoder and reconstructs a solution(s) with
dynamic probability distributions accordingly via the decoder.
Specifically, the refiner is composed of an accumulated graph
attention (AGA) layer, a gated recurrent unit (GRU) layer,
and a gated nonlinear (GNL) layer. At each step, the AGA
first extracts the dynamic graph topological features of his-
torical solutions stored in a diversified solution pool to derive
aggregated pool embeddings. The pool embeddings are further
improved by the GRU to absorb more instructive and more
global information from previous steps. Afterward, the GNL
learns to adaptively refine the pretrained feature embeddings
(from the construction encoder) using the improved pool
embeddings for more exploration. In doing so, our FER is
able to not only exploit the historical solutions seen so far
to effectively refine the feature embeddings at each step
for broader search range but also dynamically update the
probability distribution accordingly for more diverse search.
We also note that there is another line of works, i.e., neural
improvement methods [13], [14], [15], which also leverage
deep models to iteratively improve a complete initial solution
through neighborhood search. However, they usually need
to select the operator(s) depending on the problem-specific
properties and only update the solution locally which requires
a large amount of iterations. While our FER is more generic
and could reconstruct a complete solution at each step more
freely. The experimental results also demonstrate that our FER
performs favorably against the state-of-the-art neural improve-
ment methods, especially with limited number of iterations.

Our contributions are summarized as follows: 1) We propose
the FER with a novel and generic encoder–refiner–decoder
structure for boosting the existing encoder–decoder structured
neural construction models for routing problems. It is designed
to be model-agnostic, so that the encoder and the decoder can
be from any pretrained models; 2) We design the architec-
ture of the newly added refiner network by combining the
standard GRU cell with two new layers, i.e., an AGA layer
and a GNL layer. Given the sampled historical solutions in
a diversified pool, the former effectively extracts dynamic
graph topological information to generate the aggregated pool
embeddings that are further improved by the GRU cell. The
latter adaptively refines the feature embeddings from the
encoder with the guidance of the improved pool embeddings
for more exploration. In doing so, the refiner enables the policy
to achieve dynamic feature embeddings for broader search
range and further dynamic probability distributions for more
diverse search; and 3) we evaluate our FER by applying it
to two prevailing neural construction models, i.e., attention
model (AM) [16] and policy optimization with multiple optima
(POMO) [10]. Extensive experimental results on both the
synthesized and benchmark instances of routing problems
(TSP and CVRP) well verify the superiority of our FER to
the existing encoder–decoder structured construction models
and other state-of-the-art learning-based baselines.

The remaining of this article is organized as follows.
Section II reviews related works. Section III presents problem
formulations. Section IV introduces our FER method in detail.
Section V reports the experimental results. Finally, Section VI
concludes the article.

II. RELATED WORK

In this section, we briefly review recent works in learning
neural construction and improvement heuristics for routing
problems, as well as some other learning-based methods.

A. Neural Construction Methods

Starting from an empty solution, neural construction meth-
ods learn to iteratively add node to a partial solution to
construct a complete one, where deep neural networks are
exploited to produce a distribution over the permutation of
nodes. Among the seminal works, Vinyals et al. [17] pre-
sented the first attempt where a Pointer network was proposed
to solve TSP with supervised learning. It was then extended to
reinforcement learning [18] and CVRP [14]. Other than RNNs
used in the Pointer network, graph neural networks were also
leveraged in [19] and [20]. For example, in [20], the graph
conventional network (GCN) was exploited to compute the
probability of each edge appearing in the optimal TSP tour.
With recent developments of the self-attention mechanism [4],
the AM [16] adopted a Transformer-style network which
follows the encoder–decoder structure to learn a construction
model. It exhibited favorable performance in solving various
routing problems and was recognized as one of the mile-
stones in this field. Different from the single decoder used in
AM, Xin et al. [21] proposed a multidecoder AM (MDAM)
to learn multiple decoding policies to improve the solution
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quality. In another work, POMO [10], which is recognized as
the current state-of-the-art, improved AM by forcing diverse
rollouts and explored data augment techniques. Although con-
suming short time for inference, these methods usually require
postprocessing procedures to ensure more desirable solution
quality, such as sampling [14], [16], [22], active search [18],
beam search [20], [21], or data augmentation [10]. However,
they may suffer from limited efficiency and diversity since
the feature embeddings and probability distributions are fixed
during the whole process.

B. Neural Improvement Methods

As another line of research, neural improvement methods
learn to search high-quality solutions by iteratively improving
a complete initial solution until reaching a step limit. In [23],
a neural heuristic was proposed which learns to pick local
search operations and the local components of the current
solution to perform rewriting. A neural large neighborhood
search (NLNS) method was proposed in [24] which learns to
repair solutions following the idea of neighborhood search.
Wu et al. [13] proposed a Transformer-based improvement
heuristic to pick node pairs for a given local operator. It was
extended to dual-aspect collaborative transformer (DACT) [15]
to better combine embeddings of the node and positional
features. Together with a novel cyclic positional encoding
method, DACT has achieved the state-of-the-art performance
among the existing neural improvement methods. However,
it still suffers from long computational time caused by large
numbers of iterative steps. Different from the above works
that need less domain expertise, Lu et al. [25] introduced
the L2I framework based on a number of problem-specific
features and operators. Though the solution quality found by
L2I outperforms LKH, one of the strongest traditional solver,
in solving CVRP, its computation time could be prohibitively
longer than other improvement methods (e.g., DACT [15] and
Wu et al. [13]).

C. Other Learning-Based Methods

The CVAE-opt-DE in [26] leveraged conditional variational
autoencoder to learn a latent search space for routing prob-
lems, based on which differential evolution (DE) was adopted
to search high-quality solutions. A fully convolutional network
(FCN) was adopted to solve TSP with up to 12 customers
in [27] with the optimal solutions as the labeled data, which
is limited to solve large-scale instances and more constrained
routing problems, e.g., CVRP. More recently, the learning col-
laborative policies (LCPs) proposed in [28] combined both the
construction and improvement methods to solve routing prob-
lems, which leveraged a seeder to construct diverse candidate
solutions and a reviser to improve each candidate solution.
However, their performance is still inferior to POMO [10] in
terms of solution quality and inference time.

Different from the above neural works that usually take an
encoder–decoder structure, in this article, we propose the FER
with a novel encoder-refiner–decoder structure to iteratively
improve an encoder–decoder structured construction method.
It allows the neural construction methods to not only iteratively

refine the feature embeddings based on sampled historical
solutions for boarder search range but also dynamically update
the probability distributions for more diverse search.

III. PROBLEM FORMULATION

In this section, we introduce the studied VRPs, i.e., TSP
and CVRP, and formulate the process of applying our FER to
solve them as a Markov decision process (MDP).

Given a set of customer nodes V indexed by i =
1, 2, . . . , N , TSP aims to optimize a tour to visit each node
exactly once with the objective of minimizing the total travel
cost (length). With an additional depot node 0 in V , CVRP
aims to optimize routes for a fleet of identical vehicles with
capacity to serve a set of customers with demands under the
constraints that: 1) each customer must be visited exactly once
while the depot could be visited multiple times and 2) for
each vehicle, the total demands from customers on its route
cannot exceed its capacity. Formally, we define the solution
to a target routing problem (i.e., TSP or CVRP) as a directed
graph δ = (V, E), where each element {i, j} ∈ E is a directed
edge from node i to node j . Let C = C(δ) =

∑
{i, j}∈δ di j be

the objective value (cost) of solution δ, where di j refers to the
Euclidean distance between node i and node j .

Given an encoder–decoder-based construction model, our
task is to sample it for T steps and retrieve the best solution
found in the process. To better exploit the sampled historical
solutions at step t , we maintain a solution pool denoted as Pt =

{δt
1, . . . , δ

t
K , C t

1, . . . , C t
K } which includes at most K solutions

and their costs. We model the above search process as an MDP
defined as follows.

A. State

The state st defined in (1) consists of static and dynamic
components. The former refers to node embeddings {hi , i ∈
V } directly attained from the construction encoder. The latter
includes features of the solution pool at step t , which is defined
as a function 8(Pt ) = {E t

k, C t
k}

K
k=1 that outputs the edges and

costs of solutions in Pt

st =
(
{hi }

N
i=1, 8(Pt )

)
. (1)

B. Action

The action is to construct y complete solutions at step t ,
i.e., at = {δ

t
1, δ

t
2, . . . , δ

t
y}. Note that y depends on the decoder

of the construction model. If AM [16] is used, then y = 1.
For some other construction models that generate multiple
solutions with different decoding settings, it is possible that
y > 1 (e.g., POMO [10], which considers taking each node as
the first node of the solutions, generates y = N solutions at
each step). In the experiments, we show that FER can improve
performance in both the aforementioned scenarios.

C. Reward

We record the best-so-far objective value at step t as C t
bsf ∈

R, where C0
bsf is the objective value of the initial solution. The

reward is defined as rt = C t−1
bsf −C t

bsf which means the decrease
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Fig. 2. Illustration of our policy network with solution pool size K = 3.

in the best-so-far objective value. Note that the reward can
also be applied when multiple solutions (i.e., y > 1) are
constructed at each step. In such case, we independently record
y best-so-far objective values of the solutions to calculate the
reward.

D. Transition Dynamic

At each step t , we update the solution pool following the
designed diverse solution pool scheme introduced later in
Section IV-D.

IV. METHODOLOGY

Given an existing encoder–decoder structured neural con-
struction model, our FER adds a new component called the
refiner between the encoder and the decoder. Intuitively, the
refiner aims to leverage more diverse information during
search process by dynamically refining the feature embeddings
from the encoder. As illustrated in Fig. 2, the refiner uses the
sampled historical solutions stored in the diversified pool to
iteratively refine the given node embeddings (obtained from
the encoder) and improve the diversity and the efficiency for
solution reconstruction (performed by the decoder). Specific
to the architecture of the refiner network, it mainly comprises
an AGA layer, a GRU layer, and a GNL layer. The detailed
architecture of these layers in our refiner is displayed in
Fig. 3(a). At each step, the AGA first leverages the useful
information of historical solutions with their corresponding
costs from current pool to derive the aggregated pool embed-
ding. Then the GRU further improves the pool embeddings
by fusing more instructive and more global information from
previous steps. Afterward, the GNL adaptively refines the node
embeddings from the construction encoder with the guidance
of the improved historical embeddings for more exploration.
Finally, the refined node embeddings are flowed into the
construction decoder for generating solutions, and then the
solution pool is updated accordingly. This process is iterated
until reaching the step limit T . Below we formally introduce
them in detail.

A. Encoder

In our method, the encoder could be from any pre-
trained neural construction model. Here, we focus on the
Transformer-styled encoder in AM [16] and POMO [10],
which delivers state-of-the-art performance. In both AM and
POMO, the encoder first embeds problem-specific features to
higher dimensional space, and then passes them to stacked
attention layers to extract useful information for better rep-
resentation. Let fi be the problem-specific features of node
xi , i ∈ V , which contains 2-D location coordinates (for
both TSP and CVRP) and 1-D demand vector (for CVRP
only). Specifically, fi is linearly projected to initial node
embedding h0

i of 128-D [16]. Then it is processed through
L (3 and 6 for AM and POMO, respectively) attention layers
with different parameters to final node embedding hL

i , where
each attention layer is composed of a multihead attention
(MHA) sublayer and a feedforward (FF) sublayer. Following
the original design of the Transformer model [4], both the
outputs of the MHA sublayer and the FF sublayer are followed
by a skip-connection layer [29] and a batch normalization
(BN) layer [30], as shown in the following:

h̃i = BN
(
hl

i +MHA
(
hl

i

))
(2)

hl+1
i = BN(h̃i + FF(h̃i )). (3)

1) MHA Sub-Layer: The MHA sublayer uses a multihead
self-attention mechanism [4] with M = 8 heads to compute
the attention weights between each two nodes. Specifically, the
query/key/value proposed in [4] are defined with dk = d/M
dimension as shown in the following:

q l,m
i = W l,m

Q hl
i , kl,m

i = W l,m
K hl

i , v
l,m
i = W l,m

V hl
i . (4)

Then the attention weights are computed using the Softmax
activation function in (5) to represent the influence between
each two nodes

ul,m
i j = softmax

((
q l,m

i

)⊤(kl,m
i

)
√

dk

)
. (5)
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Fig. 3. Our proposed refiner network for routing problems. (a) Overall architecture. (b) Illustration of the multihead AGA with three solutions in the pool.

Finally, the lth MHA sublayer first computes the new context
vectors by doing an elementwise multiplication of the attention
weights with value in (6), and then aggregates the information
from M heads in the following:

hl,m
i =

∑
j

ul,m
i j v

l,m
j , m = 1, 2, . . . , M (6)

MHA
(
hl

i

)
=
[
hl,1

i ; h
l,2
i ; . . . ; h

l,M
i

]
W l

O (7)

where W l,m
Q , W l,m

K , W l,m
V ∈ Rd×dk , and W l

O ∈ Rmdk×d are
learnable parameters, and [; ] denotes the concatenate operator.

2) FF Sublayer: The FF sublayer processes the node
embeddings {h̃i , i ∈ V } through a hidden sublayer with
dimension 512 and an ReLU activation function, as shown in
the following:

FF(h̃i ) = W 1
F ReLU

(
W 0

F h̃i + b0
F

)
+ b1

F (8)

where W 0
F , W 1

F , b0
F , b1

F are trainable parameters.
Finally, the encoder outputs a set of node embeddings in the

Lth layer hL
i , i ∈ V . These embeddings will be preserved as a

part of the input to the refiner in each iteration for producing
better embeddings, as shown in Figs. 2 and 3(a).

B. Refiner

We now elaborate the architecture of the three main layers
in our refiner, i.e., the AGA, the GRU, and the GNL layer.

1) AGA Layer: To extract the graph topological information
from all the solutions in the pool Pt = {δ

t
k, C t

k}
K
k=1, we design a

novel AGA layer based on a proposed multihead accumulated
attention mechanism. Let et

i jk ∈ {0, 1} be a binary variable
that indicates whether the edge {i, j} exists in the solution δt

k
at step t . For the edge {i, j}, we define E-left and E-right as
the node embeddings of its two endpoints, respectively. Our
AGA collects queries (from E-left) and keys (from E-right)
to perform the multihead AGA as shown in Fig. 3(b). Given
the node embeddings {hi , h j }, the multihead accumulated
attention first linearly projects the node embeddings to form
queries (qi = hiw

m
1 ) and keys (k j = h jw

m
2 ) in the M heads

of dimension dk , where wm
1 , wm

2 ∈ Rd×dk are learnable param-
eters. Then it processes them via an elementwise production
and concatenates the output with the distance di j of the edge
{i, j} to compute initial weights, which are further fine-tuned

through an FF tuning (FFT) sublayer1 to generate the fused
weights wt

i jk by gathering information from M heads. Note
that the weight of the edge {i, j} equals to 0 if it does not
exist in Pt . In doing so, the network could automatically learn
the best fusion with multiple heads from different perspectives.
Below, we summarize the formulation of the above process as
follows:

am
i jk =

FFT
([

qi · k j
√

dk
; di j

])
, if et

i jk = 1

0, otherwise

wt
i jk =

[
a1

i jk; a
2
i jk; . . . ; a

M
i jk

]
wo (9)

where wo ∈ RM×1 are learnable parameters.
Based on the fused weights, we define a matrix Z̃ t

∈ RN×N ,
where each element z̃t

i j (initialized as negative infinity) stores
the accumulated compatibility weights of the corresponding
edge {i, j}. More specifically, z̃t

i j defined in (10) is accumu-
lated by summing up the fused weights of the edge {i, j}
(after being scaled by the corresponding cost of the solution)
appearing in all the solutions in the current pool

z̃t
i j =

K∑
k=1

et
i jkw

t
i jk

/
C t

k . (10)

The logic of dividing the weight by C t
k (i.e., the solution cost

δt
k) is that solutions of higher quality in the pool should have

greater impacts. In doing so, the accumulated compatibility
vector z̃t

i = {z̃
t
i1, . . . , z̃t

i N } stores all the edge information
concerning node i in the pool at step t . Specifically, only the
elements which refer to the edges starting from the node i
in the pool are not negative infinity. In (11), the accumulated
compatibility Z̄ t

∈ RN×N is then normalized by the softmax
function to calculate the accumulated attention weights

Z t
= softmax(Z̃ t ). (11)

The aggregated pool embedding of node i is further gathered
as the linear combination of the node embeddings of its
successors across the whole solution pool, as shown in the
following:

h̄t
i =

∑
j

zt
i j h j . (12)

1The FFT includes an FF network with three layers (dimensions are 2, 16,
and 1, respectively) and an ReLU activation function.
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Note that the AGA layer could not be removed from the
refiner since it is a basic component to provide diverse infor-
mation (aggregated pool embeddings) learned from dynamic
historical solutions stored in the pool. Based on AGA, subse-
quent components can further learn to improve the aggregated
pool embeddings (via GRU cell) and refine the node embed-
dings from the encoder (via GNL layer).

2) GRU Layer: The aggregated pool embedding of each
node i is further processed using a GRU cell to extract and
memorize global historical information from all the previous
steps, and the output is expressed in the following:

h̆t
i = GRUcell

(
h̆t−1

i , h̄t
i

)
. (13)

3) GNL Layer: Given the aggregated historical embedding
h̆t

i , i ∈ V at step t , we design a novel GNL layer to refine the
node embeddings hi , i ∈ V generated from the construction
encoder, which is fixed and shared across the whole process.
We leverage an absorb gate to absorb the new guidance
information from the aggregated historical embedding at the
current step, and a reserve gate to reserve the desirable prop-
erty of node embeddings, i.e., ut = σ(Wu[hi ; h̆t

i ]) and rt =

σ(Wr [hi ; h̆t
i ]), where Wu and Wr are trainable parameters. The

two gates combine the information taken from the aggregated
historical embeddings and the given node embeddings. Then
a nonlinear active function is used to express absorbed new
information from current pool, as shown in the following:

ĥt
i = tanh

(
W
[
hi ; ut · h̆t

i

])
, i ∈ V (14)

where W is a trainable parameter. In (15), the final node
embeddings h⃗t

i , i ∈ V are defined as the linear combination
of new guidance information and original node embeddings

h⃗t
i = rt · hi + (1− rt ) · ĥt

i , i ∈ V . (15)

The function of each component of the proposed refiner is
verified in Section V-D.

C. Decoder

Similar to the encoder, the decoder could also be from
any pretrained neural construction model. We still apply the
Transformer-styled decoder in AM and POMO. However,
instead of taking the original embeddings hi generated by
the encoder, the decoder in our model takes the final node
embeddings h⃗i , i ∈ V from the refiner as input, based on
which it sequentially selects a node at each decoding step to
sample a complete solution δ = {π1, π2, . . . , πZ }, where Z
refers to decoding steps. In specific, Z equals to N for TSP
but may be larger than N for CVRP due to multiple visits to
the depot.

Taking TSP as an example, the decoder first calculates the
mean of node embeddings to provide a more global perspec-
tive, i.e., ḣt

= (1/N )
∑N

i h⃗t
i , and then defines a context vector

in (16) as the combination of the mean graph embedding, the
embeddings of the end node of the route and the last visited
node (we omit step t for simplification)

hc
= (ḣ, h⃗π1 , h⃗πz−1) (16)

where h⃗πz is the node embedding of the node visited at
decoding step z. For the first step, the last two elements of hc

are replaced by trainable parameters. The context vector and
refined node embeddings are then processed by an MHA layer
as introduced in Section IV-A to generate a glimpse vector hg

in the following:

hg
= MHA

(
W g

Qhc, W g
K h⃗, W g

V h⃗
)

(17)

after which the decoder computes the compatibility between
the enhanced glimpse and node embeddings, and further the
probability of selecting the next node to visit at decoding step
z as shown in the following:

cz
= G · tanh

(
(hgWQ)T (h⃗WK )

√
dk

)
(18)

pz
= Softmax(cz) (19)

where W g
Q, W g

K , W g
V , WQ, WK are trainable parameter matri-

ces, and G is often set to 10 to control the entropy of cz .
Regarding POMO, since it constructs N solutions by taking

each of the N nodes as the first node to visit (i.e., h⃗i
π1
= h⃗i ),

it defines N context vectors hc
i , ∀i ∈ V as shown in the

following:

hc
i =

{(
ḣ, h⃗i , h⃗i

πz−1

)
, if z > 1

None, if z = 1.
(20)

The N context embeddings are then processed following
(17)–(19) in parallel to obtain the probability of picking the
next node in each of the N solutions.

Pertaining to the decoding strategy, we could choose the
node with the maximum probability in a greedy manner or
sample a node according to the probability in a sampling
manner at each decoding step. The newly generated solutions
will be added to the pool Pt following the pool updating
mechanism introduced in Section IV-D.

D. Solution Pool Diversification

Solution diversity is important for the search performance.
We design the following mechanism to increase the solution
diversity of our FER. First, we randomly replace a solution
δi from the current pool with the newly constructed one δt (by
the decoder). Second, with a probability gradually increased as
the training progresses, we further choose to replace another
solution δ j in the pool with a randomly generated new one
δR

t following the rules below: we first check whether the
current pool contains a randomly generated solution added
in the previous steps; if yes, such solution is set to δ j ; if
not, we randomly choose another solution from the pool as δ j

(δ j ̸= δt ). We summarize the above operation in the following:

Pt =

Pt−1 \ {δi , δ j } ∪
{
δt , δ

R
t

}
, if ϵ < exp

(
e ln E

E

)
Pt−1 \ {δi } ∪ {δt }, otherwise

(21)

where i ̸= j , and “\” and “∪” are the set subtraction and union
operator, respectively. The decision probability is computed
based on the epoch index e, the total epoch number E (defined
in the below subsection), and a random number ϵ ∈ [1, E+1].
For POMO, we randomly select K solutions from the newly
sampled N solutions to update the pool.
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Algorithm 1 n-Step A2C
1 Input: construction encoder πe with pretrained parameters θe

(fixed); refiner πr with randomly initialized parameters θr
(trainable); construction decoder πd with pretrained parameter
θd (trainable); critic vφ with randomly initialized parameters φ;
learning rate βπ , βφ ;

2 foreach e = 1, 2, . . . , E do
3 foreach b = 1, 2, . . . , B do
4 Randomly generate training instances Ib; t ← 0;
5 Get node embeddings using pretrained construction

encoder, h = πe(Ib|θe), as static component of st ;
6 while t < T do
7 dθr,d ← 0; dφ← 0;
8 while t − ts < nstep and t < T do
9 Perform the refiner to get h⃗t

= πr (h⃗t
|st , θr );

10 Sample solutions, i.e., at ∼ πd(at |h⃗t , θd);
11 Get reward rt and the next state st+1.

t ← t + 1;
12 end
13 Bootstrap from the last state R = vφ(st );
14 foreach i = t − 1, . . . , ts do
15 R← ri + γ R;
16 Accumulate gradients: dθr,d ←

dθr,d+
1
|Ib |y

∑
Ib

∑
y(R−vφ(si ))∇logπθr,d (ai |si );

17 Accumulate gradients:
dφ← dφ + 1

|Ib |y

∑
Ib

∑
y(R − vφ(si )) ∇vφ(si );

18 end
19 θr ← θr +

βπ

nstep
dθr ; θd ← θd +

βπ

nstep
dθd ;

20 φ← φ −
βφ

nstep
dφ.

21 end
22 end
23 end

In doing so, the pool could 1) provide a more diverse
dynamic state (in MDP) with different solutions between steps
t−1 and t and 2) achieve a better balance between exploration
and exploitation by gradually converging to the case that only
one random solution is contained in the pool.

E. Training Algorithm

As summarized in Algorithm 1, we adopt an n-step advan-
tage actor critic (A2C) algorithm to train our FER to optimize
the objective value defined in Section III, which performs
E epochs of training. The actor {πe, πd , πr } consists of the
pretrained construction encoder πe and decoder πd , and the
introduced refiner πr , where the parameters of the encoder
πe are fixed during training. Regarding the critic network
vφ , it takes the refined node embeddings generated by the
refiner as the input and computes the estimated state value.
The structure of the critic network is similar to [13], which
first concatenates the refined node embeddings and its mean
pooling as the fused ones, and then processes the fused
embeddings by a multilayer perception (MLP) layer [31], [32]
to obtain the output value.

V. EXPERIMENTS

We conduct experiments on two most widely studied VRPs,
i.e., TSP and CVRP, to verify the effectiveness of our method.
Following [10], [15], [16], we randomly generate instances
with N (20, 50, and 100) nodes for each problem for training

and use the same 10 000 instances from [16] for testing.
To evaluate the applicability of our FER to different neural
construction methods, we apply it to two prevailing deep
models, i.e., AM2 and POMO,3 by adopting their original
encoder and decoder. We call the corresponding new models
as FER-AM and FER-POMO, respectively.

We train our FER with B = 20 batches per epoch for E =
100 epochs for CVRP20 and CVRP50 and E = 200 epochs
for CVRP100. Regarding FER-AM, we set the batch size
to 512 and nstep = 4 with T = 100 steps. The Adam
optimizer [33] is adopted with initial learning rate 10−4 for
the actor and 5 × 10−5 for the critic with a decay rate equal to
0.99. Regarding FER-POMO, we set the batch size to 32 and
nstep = 5 with T = 100 steps. The initial learning rate is set
to 5 × 10−5 for the actor and 10−6 for the critic with a decay
rate equal to 0.988. The decoder follows the design of the
corresponding original construction methods, which samples
a single solution for AM and N solutions for POMO at each
step. Our dataset and code in PyTorch are available.4

A. Solution Pool Analysis

We first analyze the impacts of the solution pool size and
the solution pool diversification scheme in our proposed FER.

1) Impacts of the Solution Pool Size: In Table I, we train
and test our FER-AM using different numbers of K
(from 2 to 10) for solving CVRP instances with T = 5000 to
show the impacts of the solution pool size. The gaps are
calculated based on the solutions obtained by the method with
lowest objective values (i.e., total length of the solutions),
and the time refers to the computation time of solving all
the 10 000 instance for all the methods. We can observe
that larger pool sizes tend to achieve lower objective values
and optimality gaps but longer computation time. To achieve
a desirable tradeoff between the solution quality and the
computation cost, we adopt K = 6 for CVRP20 and CVRP50,
and K = 8 for CVRP100 for both FER-AM and FER-POMO
in the following experiments.

2) Impacts of the Solution Pool Diversification Scheme:
In Table II, we replace the solution pool Pt with a greedy
one which reserves the best K solutions for solving CVRP
with T = 200. We can observe that the diversified pool
consistently achieves lower objective values than the greedy
one, and the superiority of our diversified pool is more obvious
as the problem scales up, which verifies the effectiveness of
our design.

B. Comparison Analysis

We now compare FER with neural construction models, i.e.,
AM and POMO, to show the effectiveness of our method.
Regarding AM, we use its sampling strategy to generate S
solutions to solve an instance, where S is set to 200 and
5000, respectively. Regarding POMO with the diverse rollout
strategy, we use sampling strategy with S = 200 with

2https://github.com/wouterkool/attention-learn-to-route
3https://github.com/yd-kwon/POMO
4https://github.com/Demon0312/Feature-Embedding-Refiner
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TABLE I
GAPS OF FER-AM WITH DIFFERENT POOL SIZES

TABLE II
OBJ. OF FER-AM WITH DIFFERENT POOL SCHEMES

and without ×8 augment to solve an instance. It generates
8 × 200 × N and 200 × N solutions, respectively, where N
is the size of an instance (number of nodes). For fair compari-
son, we test FER-AM and FER-POMO by sampling the same
number of solutions to AM and POMO, respectively. We also
consider the most recent neural model LCP [28]5 as a baseline,
which combines both the construction and improvement meth-
ods to refine AM. To calculate the optimality gaps for all the
neural models, we leverage three strong conventional solvers,
i.e., Gurobi [34],6 LKH [35],7 and HGS [36]8 (the state-of-
the-art conventional CVRP solver). Note that it is hard to
absolutely fair compare the run time between neural methods
(Python, GPU) and conventional solvers (C++, CPU), and
thus, we follow the conventions to report the total run time
using a single TITAN XP GPU (for neural methods) or a single
CPU core at 2.0 GHz (for conventional methods).

The comparison results for TSP and CVRP are summarized
in Table III. We can observe that our FER-AM significantly
improves the performance of AM on both TSP and CVRP,
despite slightly longer computation time. Our FER-AM (T =
200) outperforms both AM (S = 200) and AM (S = 5000)
for all the cases in terms of objective values and gaps and
consumes shorter computation time than AM (S = 5000).
With step limit T = 5000, FER-AM achieves slightly better
performance than AM + LCP with much lower computational
costs.

Pertaining to the state-of-the-art method POMO, our FER
can still improve its performance in terms of the gap. With step
limit T = 200, our FER-POMO outstrips POMO (S = 200)
for all the cases with slightly longer computation time. It also
outperforms POMO (S = 200, ×8 augment) on TSP20 and
CVRP20 with much shorter computation time and delivers
competitive results for larger problem sizes. Furthermore,
FER-POMO (T = 200) even exhibits superior performance
to the specialized heuristic solver LKH and almost the
same performance to the state-of-the-art HGS on CVRP20.

5https://github.com/alstn12088/LCP
6https://www.gurobi.com/
7http://webhotel4.ruc.dk/∼keld/research/LKH-3/
8https://github.com/vidalt/HGS-CVRP/tree/main/Program

By leveraging the same data augmentation strategy in POMO,
FER-POMO (T = 200, ×8 augment) further improves the
solution qualities and delivers better results than POMO (S =
200, ×8 augment) for all the cases. In particular, our FER-
POMO (T = 200, ×8 augment) achieves the lowest objective
values and gaps among all the neural heuristics and exhibits
almost the same performance to LKH and slightly worse
performance than HGS. The superiority of our method well
justified the effectiveness of the proposed encoder–refiner–
decoder structure, which allows more efficient search for
neural construction models to produce higher quality solutions.

Furthermore, the existing evolutionary algorithms for VRPs
also maintain a solution pool (a population) for crossover
and mutation to improve the solution quality, which shares
some similarities to our FER method. We thus compare our
FER with the population-based evolutionary algorithm, e.g.,
genetic algorithm (GA) [37], on CVRP with 1000 instances
as shown in Table IV, where the gaps are calculated based
on the solutions obtained by the method with lowest objective
values. Specifically, we take the initial solution pool of our
FER-AM as the initial population of GA and run two methods
with the same iterations, i.e., 200 and 5000. For example,
GA (FER-AM Pop, iter = 200) refers to GA with the same
initial solution pool as FER-AM (T = 200). The first row
refers to GA following the settings in the original paper, where
we further add more iterations for better performance. From
Table IV, we can observe that with the same initial solution
pool (population) and iterations, our FER-AM outperforms GA
in terms of the objective values and optimality gaps on all the
cases with less computation time. With larger population size
and iterations, GA achieves lower optimality gaps with longer
computation time. However, it is still inferior to our FER-AM,
which shows the effectiveness of our method.

C. Efficiency Analysis

We continue to compare the search efficiency of our FER
with three representative neural improvement methods, i.e.,
Wu et al. [13],9 NLNS [24]10 (CVRP only), and DACT [15]11

(state-of-the-art) for solving the instances of TSP50, TSP100,
CVRP50, and CVRP100, respectively. We use the pretrained
models for these improvement methods which are available
online. Regarding DACT, we use the same ×8 data augments
as FER-POMO (S = 200, ×8 augment) with T = 5000

9https://github.com/WXY1427/Learn-Improvement-Heuristics-for-Routing
10https://github.com/ahottung/NLNS
11https://github.com/yining043/VRP-DACT
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TABLE III
COMPARISON WITH VARIOUS BASELINES ON TSP AND CVRP

TABLE IV
COMPARISON WITH GA ON 1000 CVRP INSTANCES

TABLE V
EFFECTS OF EACH COMPONENT OF THE Refiner

iterative steps similar to other improvement methods, so as
to largely preserve its favorable performance.

The curves of searching progress for these methods are
plotted in Fig. 4, where the horizontal coordinate refers to
the iterative steps and the vertical one refers to the best-so-
far objective values averaged over 10 000 instances used in
Table III. Here, T = 5000 was used expect for FER-POMO
where T = 200 was used. We further plot the best objective
values of the vanilla AM (S = 5000) in blue dotted lines and

that of the vanilla POMO (S = 200, ×8 augment) in green
dotted lines as baselines to show the improvement of our FER.
We can observe the large gaps between AM and FER-AM,
which verifies the superiority of FER. Although FER-AM is
inferior to POMO, which indicates that the performance of
our FER depends on the performance of pretrained backbone
models, it is a fair case since one approach (like our FER)
cannot guarantee to boost the backbone model to outperform
other more advanced and larger models (e.g., POMO).12

Furthermore, although the improvement of FER-POMO to
the state-of-the-art POMO is less significant when compared
with the case of FER-AM, it is also reasonable since it is
really hard to significantly improve a highly optimized model.
Nevertheless, our FER can still improve its performance and

12POMO leverages group baselines during training and the data augmen-
tation schemes during inference, and the number of parameters of POMO is
almost twice that of AM.
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Fig. 4. Curves of searching progress for our FER and baselines including AM [16], POMO [10], NLNS [24], Wu et al. [13], and DACT [15]. (a) TSP50.
(b) TSP100. (c) CVRP50. (d) CVRP100.

TABLE VI
GENERALIZATION ON TSPLIB INSTANCES

enhance its generalization ability (refer to Tables VI and VII),
which shows the effectiveness of our method. For improvement
baselines, it can be observed that our FER-AM converges
much faster than Wu et al. [13] and achieves lower objective
values for all the cases. With comparable performance to
NLNS, our FER-AM converges faster and outperforms NLNS
given limited iterative steps (i.e., 1000 steps). Regarding our
FER-POMO (S = 200, ×8 augment), it significantly outstrips
both Wu et al. [13] and NLNS for all the cases where the
superiority is more salient on larger sizes. More importantly,
it also converges much faster than the state-of-the-art neural
improvement method DACT (T = 5000, ×8 augment) for all
the cases, which further verifies the significance of our method.

D. Further Analysis of Our FER

We now provide more analysis to study the effects of the
proposed refiner network and its components.

TABLE VII
GENERALIZATION ON CVRPLIB INSTANCES

1) Effect of the Refiner: To verify that the refiner can
effectively refine feature embeddings from the encoder and
further contribute to diverse exploration, we visualize the
probability distributions of selecting the next node during
solving a CVRP50 instance in Fig. 5. We perform 200 steps of
searching using FER-POMO with and without the introduced
refiner, respectively, and produce one solution at each step
for demonstration. Given a fixed partial solution shown in
the left side of Fig. 5, we plot the probability distributions
of selecting the next node at the 50th, 100th, 150th, and
200th steps for FER-POMO and FER-POMO-w/o-Refiner,
respectively. We find that the probability of selecting the
next node for FER-POMO-w/o-Refiner is always the same
through the whole searching process, and the sole diversity
in solutions comes from sampling with the same distribution.
On the other hand, our FER-POMO could explore more
diverse solutions by consistently refining the node embed-
dings and gradually update the probability distributions for
sampling, which helps improve the solution quality (objective
values at the 200th step are 11.53 and 11.70 for FER-POMO
and FER-POMO-w/o-Refiner, respectively) and the sampling
efficiency.
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Fig. 5. Probability distributions of FER-POMO and POMO for taking actions at last visited node 37 given a fixed partial solution {0, 5, 37}. The distributions
at four different steps are presented, i.e., 50, 100, 150, and 200.

2) Effect of Each Component of the Refiner: In Table V,
we conduct an ablation study to showcase the effect of each
part of the refiner on CVRP50 instances using FER-AM,
where the gaps are calculated based on the solutions obtained
by the method with lowest objective values. The markers
“✓” and “×” refer to using the corresponding part or not,
respectively, and the marker “×(+)” refers to replacing the
GNL layer with simply adding the fixed node embeddings
from the encoder and the refined embeddings from previous
components together. Note that the AGA layer could not be
removed from FER since it is a basic component of the refiner
to provide diverse information as introduced in Section IV-B.
Thus, AGA is kept for the last four rows. From Table V,
we can observe that the GNL layer outperforms “(+)” strategy
in terms of the objective values and optimality gaps for the
method with and without the GRU cell, since the GNL layer
could adaptively combine the pool embeddings and the node
embeddings for more desirable representation. Moreover, the
GRU cell can also improve the performance for the method
with both GNL layer and “(+)” strategy since it aggregates
the instructive and global information learned from AGA in all
the previous steps. Further combining GRU and GNL together,
our FER-AM (the final row) achieves the best performance in
terms of the objective values and optimality gaps.

E. Generalization Analysis

We now evaluate the generalization performance of our
FER on two well-known benchmarks, i.e., TSPLIB [38]13

and CVRPLib [39],14 respectively. We compare FER-POMO
(T = 200, ×8 augment) with Wu et al. [13] and POMO
(S = 200, ×8 augment) and record the results in Tables
VI and VII. Similar to Wu et al. [13], we use the models
trained for TSP100 and CVRP100 to solve those instances,
with sizes from 51 to 200 and 101 to 200, respectively. For
POMO and FER-POMO, we construct solutions by sampling a
node from candidates with three highest probabilities for more
stable inference on both TSPLIB and CVRPLIB, which have
different distributions of customer locations and larger prob-
lem sizes in comparison to the training instances. We report
the objective value to each instance and also the average
gaps based on the optimal solutions provided in the datasets.
In Table VI, we can observe that FER-POMO significantly
outperforms Wu et al. [13] and POMO in terms of the average

13http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
14http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

Fig. 6. Computation time of the whole FER-AM and its refiner over different
(a) problem sizes and (b) pool capacities.

gap. Especially, though POMO produces high-quality solu-
tions, FER-POMO still could reduce its gap by 13.12% on
TSPLIB. Moreover, FER-POMO achieves the lowest objective
values among neural methods on most instances of various
scales, which shows stable superiority of our method even
on large-scale instances. In Table VII, patterns similar to
that of TSPLIB could be observed, where our FER-POMO
outstrips all other neural methods on CVRPLIB and improves
the performance of POMO by 19.82%. The superiority in
generalization performance further justifies the effectiveness
of our encoder–refiner–decoder structure which allows more
diverse search to improve the solution quality.

F. Complexity Analysis

We finally provide complexity analysis of the proposed
FER, especially the designed refiner. We further plot the
computation time of FER-AM and its refiner part over 1)
problem size from 20 to 500 with K = 2 in Fig. 6(a) and
2) pool size from 2 to 20 with N = 100 in Fig. 6(b) on
1000 randomly generated instances. From Fig. 6(a), we can
observe that the computation time of both FER-AM and refiner
seems to quadratically increase as the problem size scales
up, which might be due to the quadratic complexity of the
attention mechanism [4] applied in AM and the accumulated
attention mechanism with operations inside an N × N table
in refiner. However, the increasing speed of computation time
of the refiner is much slower than that of the whole FER-AM,
which indicates low computational complexity of the designed
refiner. From Fig. 6(b), we can observe that the computation
time of FER-AM and the refiner seems to approximately
increase linearly as the pool size increases, which is reasonable
since the refiner needs to aggregate the information from all
the solutions in the pool. Moreover, the computation time
of the refiner could be negligible compared with that of the
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whole model, which further demonstrates the computational
efficiency of our method.

VI. CONCLUSION AND FUTURE WORK

In this article, we propose a novel encoder–refiner–decoder
structure for solving VRPs, which iteratively improves a neural
construction method by refining the feature embeddings from
the encoder for broader search range and reconstructing a
solution(s) with dynamic probability distributions accordingly
via the decoder for more diverse search. To be specific, the
proposed refiner first extracts graph topological features from
dynamic historical solutions to derive the aggregated pool
embeddings via an AGA layer, then improves the aggregated
pool embeddings by absorbing the instructive and global
information from previous improvement steps via a GRU cell,
and finally refines the pretrained feature embeddings from
the encoder with the guidance of improved pool embeddings
via a GNL layer. By doing so, the FER allows the neural
construction methods to not only iteratively refine the feature
embeddings for broader search range but also dynamically
update the probability distributions for more diverse search.
Extensive experiments show that our method can effectively
improve prevailing neural construction methods and also
exhibit competitive performance to the state-of-the-art neural
improvement methods with much higher sampling efficiency.
Given the genericness and effectiveness of the proposed FER,
it could be used in any encoder–decoder structured neural
construction methods [10], [16], [21] to enhance their per-
formance for solving routing problems. While our FER is
effective, there are still some potential limitations: 1) its final
performance may depend on the performance of the pretrained
backbone models and 2) its boost may not be significant for
highly optimized models (e.g., the state-of-the-art POMO)
as discussed in Section V-C. In the future, we will investi-
gate: 1) applying FER to ameliorate the out-of-distribution
generalization performance; 2) considering effectively refin-
ing improvement methods; 3) applying FER to solve other
combinatorial optimization problems such as bin packing and
scheduling; and 4) generalizing FER to larger problem sizes.
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