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Abstract Coupled switched capacitance causes crosstalk in ultra deep submicron/nanometer
VLSI fabrication, which leads to power dissipation, delay faults, and logical malfunctions. We
present the first memoryless transition bus-encoding technique for power minimization, error-
correction, and elimination of crosstalk simultaneously. To accomplish this, we generalize
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design of experiments. Optimal or asymptotically optimal constant weight codes eliminating
each kind of crosstalk are constructed.
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1 Introduction

The ever-decreasing feature size of VLSI fabrication process has led to many challenges in
VLSI circuit design. One of the most important issues concerns the characteristics of on-
chip wires [11]. The wires’ cross-sectional areas and spacings have fallen dramatically with
the move into the ultra deep submicron/nanometer (UDSM) regime. This has increased the
resistance and capacitance of wires. To help reduce resistance, wires today are taller than
they are wide, and they are poised to grow even taller as technology continues to scale.
The resulting growth of side-to-side capacitance between long parallel wires causes coupled
switch capacitance to dominate the wire-to-substrate capacitance in UDSM circuits by several
orders of magnitude [21]. Coupled switched capacitance in turn leads to crosstalks, which
result in power dissipation, delay faults, and logical malfunctions. The problem of eliminating
or minimising crosstalks is considered the biggest signal integrity challenge for long on-chip
buses implemented in UDSM CMOS technology [12].

The worst crosstalk couplings have been classified into four types [6,12], as described in
Table 1. The coupled switched capacitance resulting from type-1, -2, -3, and -4 crosstalks is
in the ratio of 1:2:3:4. Hence, it is particularly important to avoid crosstalks of higher types.
Type-1 crosstalks cannot be avoided in any useful communication channel. However, type-1
crosstalks give rise to power dissipation and must be limited, because low power is a critical
design objective in recent years.

Another factor that has emerged as a new challenge for VLSI circuit designers is UDSM
noise, caused by high-leakage transistors, power-grid fluctuations, ground bounce, IR drops,
clock jitter, and electromagnetic radiation. The effects of such noise are difficult to predict
or prevent. For example, noise in radiation-hardened circuits for satellite communication
systems is random and does not correlate with particular switching patterns on the buses.
A further source of faults is manufacturing defects. In nanotechnology, circuits are manu-
factured with a significant proportion of faults, and occasional errors may be unavoidable.
Hence, preventive techniques are insufficient, and active error correction is required.

Various researchers have proposed coding techniques to encode data on a bus for crosstalk
avoidance [6,17,28], for low power dissipation [3,15,19,22,26], and for error correction
[1,8]. Coding schemes that simultaneously satisfy two of these three criteria have also been
investigated:

• crosstalk avoidance and low power dissipation [12,27];
• crosstalk avoidance and error correction [14]; and
• low power dissipation and error correction [2,16,18].

Table 1 Types of worst crosstalk couplings

Type-1 Type-2 Type-3 Type-4

0 ←→ 1
001 ←→ 110
011 ←→ 100

001 ←→ 010
010 ←→ 100
011 ←→ 101
101 ←→ 110

010 ←→ 101

Single wire undergoes
transition. Adjacent
wires maintain previ-
ous states

Center wire in opposite
transition to an adjacent wire.
The other wire in same transi-
tion as center wire

Center wire in opposite
transition to an adjacent
wire. The other wire main-
tains previous state

All three adjacent
wires undergo oppo-
site transitions
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Optimal low-power coding for crosstalk avoidance 481

Despite many efforts, the only families of optimal codes known are those for low power
dissipation [3]. Many of the results on the comparative performance of existing codes are
based on simulations rather than rigorous mathematical analysis.

In this paper, we begin the study of codes for UDSM buses that simultaneously provide
for low power dissipation, crosstalk avoidance, and error correction. In particular, we exhibit
the first infinite families of such codes that are provably optimal.

The paper is organized as follows. Section 2 establishes necessary terminology and gives a
mathematical formulation of the problem of designing low-power codes that avoid crosstalks
and correct errors. In Sect. 3, we present the relation of codes of each type with packing
sampling plans avoiding adjacent units. In Sect. 4, we focus on optimal solutions for k = 3
for all positive integer n. In Sect. 5, the sizes of optimal codes of all types with small lengths
are determined by computer search, and brief conclusion is given.

2 Background

2.1 Coding framework

A coding framework for data buses was introduced by Ramprasad et al. [15]. A bus inter-
connecting two embedded systems on a systems-on-chip (SoC) platform can be modelled
generically as in Fig. 1. The source encoder (decoder) compresses (decompresses) the input
data so that the number of bits required in the representation of the source is minimised. While
the source encoder removes redundancy, the channel encoder adds redundancy to combat
errors that may arise due to noise in the bus.

Ramprasad et al. [15] considered various combinations of source-channel encoder-decoder
pairs and presented simulation results for their power dissipation. Their approach is what
is known as joint source-channel coding in the information theory literature. Shannon’s
information separation theorem [20] states that reliable transmission can be accomplished
by separate source and channel coding, where the source encoder and decoder need not take
into account the channel statistics and the channel encoder and decoder need not take into
account the source statistics. This applies, however, only for point-to-point transmissions
and for infinite sequence length. The first condition (point-to-point transmission) holds for
a UDSM bus but the second requirement for infinite sequence length is clearly undesirable
for bus coding, because it could give rise to circuits of unbounded delay. Moreover, joint
source-channel coding is useful only when we know the statistics of the source and channel.
In the absence of such statistics, one can only fall back on optimising the source and channel
separately. Indeed, Ramprasad et al. [15] considered coding schemes and simulations on
certain source data with better understood statistics (for example, pop music, classical music,
video, and speech).

noisy channel

transmitter receiver

source 
encoder

channel 
encoder

channel 
decoder

source 
decoder

Fig. 1 Framework for systems-on-chip
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In many systems, the behaviour of source data is hard to predict and so the joint source-
channel coding approach loses its power. Many researchers have therefore fallen back on
addressing the source coding and channel coding problems separately. This is also the
approach taken in this paper. We focus on designing optimal channel coding schemes for the
scenario where the source statistics are unknown.

2.2 Codes

The Hamming n-space is the set H(n) = {0, 1}n , endowed with the (Hamming) distance
dH(·, ·) defined as follows: for u, v ∈ H(n), dH(u, v) is the number of positions where u and
v differ. The (Hamming) weight of a vector u ∈ H(n) is the number of positions in u with
nonzero value, and is denoted wH(u). The i th component of u is denoted ui . The support of
a vector u ∈ H(n), denoted supp(u), is the set {i : ui = 1}.

A (binary) code of length n is a subset C ⊆ H(n). C is said to be of constant weight w if
wH(u) = w for all u ∈ C. The elements of a code are called codewords and the size of a code
is the number of codewords it contains. The support of C is supp(C) = {supp(u) : u ∈ C}. The
minimum distance of C is dmin(C) = min{dH(u, v) : u, v ∈ C and u �= v}. A constant-weight
code of length n, minimum distance d , and weight w is denoted as an (n, d, w) code.

A code that is capable of correcting any occurrence of e or fewer symbol errors is said to
be e-error-correcting. A code C is e-error-correcting if and only if dmin(C) ≥ 2e + 1 [9].

2.3 Set systems and graphs

For integers i < j , the set {i, i + 1, . . . , j} is abbreviated as [i, j]. We further abbreviate
[1, j] to [ j]. For a finite set X and k ≤ |X |, we define

2X = {B : B ⊆ X}, and

(
X

k

)
= {B ⊆ X : |B| = k}.

A set system is a pair S = (X,B), where X is a finite set of points and B ⊆ 2X . The
elements of B are called blocks. The order of S is the number of points, |X |, and the size of
S is the number of blocks, |B|. A set system (X,B) is said to be k-uniform if B ⊆ (X

k

)
. A

graph is a 2-uniform set system and it is common to refer to the points and blocks of a graph
as vertices and edges, respectively. A path of length n is an alternating sequence of vertices
and edges W = v0, e1, v1, e2, . . . , en, vn , such that all the vertices vi , i ∈ [0, n] and edges
ei , i ∈ [n] are all distinct from one another, except possibly the first and last vertices. A cycle
is a path in which the first and last vertices are the same.

Let (X,B) be a set system of order n. The incidence vector of a block B ∈ B is the vector
ι(B) ∈ H(n) such that

ι(B)i =
{

1, if i ∈ B

0, otherwise.

There is a natural correspondence between the Hamming n-space and the complete set system
(X, 2X ): the positions of vectors in H(n) correspond to points in X , a vector u ∈ H(n)

corresponds to the block supp(u), and dH(u, v) = |(supp(u)\supp(v))∪(supp(v)\supp(u))|.
From this, it follows that there is a bijection between the set of all codes of length n and the
set of all set systems of order n.

An (n, k, λ)-packing is a k-uniform set system (X,B) with |X | = n such that every
element of

(X
2

)
is contained in at most λ blocks of B. Let D(n, k, λ) denote the largest size

among all (n, k, λ)-packings. The leave graph of (X,B) is the multigraph (X, E), where E
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contains each e ∈ (X
2

)
exactly λ− d(e) times, where d(e) is the number of blocks containing

e. When λ = 1, we omit λ in the notation; in this case, the leave is a simple graph. When the
leave contains no edges, the packing is a balanced incomplete block design.

The balanced sampling plan avoiding adjacent units (BSA) was introduced to design
sampling plans that exclude contiguous units in statistical experiments [10,25]; for more
recent work, see [7,29]. In statistical applications, in a circular or linear order of the elements,
elements that are “close” do not appear together, while those more distant all appear the same
number of times together. A (circular) BSAλ(n, k;α) is an (n, k, λ)-packing (X,B) with X =
Zn whose leave graph consists of all the edges {i, j} with i − j ≡ ±1, . . . ,±α (mod n), and
every other pair appears in λ blocks. A (linear) LBSAλ(n, k;α) is an (n, k, λ)-packing (X,B)

with X = [0, n − 1] whose leave graph consists of all the edges {i, j} with 0 ≤ i < j < n
for which j − i ≤ α, and every other pair appears in λ blocks. We employ these only when
λ = 1, and so omit λ in the notation.

We generalize circular and linear BSAs (with λ = 1) to a packing sampling plan avoiding
adjacent units (PSA). A (circular) CPSA(n, k;α) is an (n, k)-packing (X,B) with X = Zn

whose leave graph contains all the edges {i, j} with i − j ≡ ±1, . . . ,±α (mod n), and every
other pair appears in at most one block. A (linear) LPSA(n, k;α) is an (n, k)-packing (X,B)

with X = [0, n − 1] whose leave graph contains all the edges {i, j} with 0 ≤ i < j < n
for which j − i ≤ α, and every other pair appears in at most one block. (In this case, every
CPSA(n, k;α) is an LPSA(n, k;α) but the converse need not hold.) Let B(n, k;α) denote
the largest size of any LPSA(n, k;α); the LPSA is optimal if its size is B(n, k;α). Similarly,
let B◦(n, k;α) denote the largest size of any CPSA(n, k;α); the CPSA is optimal if its size
is B◦(n, k;α).

Let U (n, k;α) =
⌊

2
∑α−1

i=0

⌊
n−α−i−1

k−1

⌋
+(n−2α)

⌊
n−2α−1

k−1

⌋
k

⌋
.

Lemma 2.1 B(n, k;α) ≤ U (n, k;α).

Proof For an LPSA(n, k;α) constructed on [0, n − 1], for each i ∈ [0, α − 1], the points i

and n − 1 − i appear in at most
⌊

n−α−i−1
k−1

⌋
blocks, and all the other points appear in at most⌊

n−2α−1
k−1

⌋
blocks. Then k B(n, k;α) ≤ 2

∑α−1
i=0

⌊
n−α−i−1

k−1

⌋
+ (n − 2α)

⌊
n−2α−1

k−1

⌋
. �

When α = 1, we omit it in the notation. If there is an (n, k)-packing with leave graph
containing a path of length n − 1, we can always relabel the points to get an LPSA(n, k).

Corollary 2.2 B(n, k) ≤
⌊

2
⌊

n−2
k−1

⌋
+(n−2)

⌊
n−3
k−1

⌋
k

⌋
.

Theorem 4.1 shows that when k = 3, this inequality is tight.

2.4 Problem formulation

Limited weight codes have been widely exploited for the case of on-chip communication
to achieve crosstalk coupling elimination and energy efficiency [12,23]. We consider an n-
bit parallel bus in a single metal layer, for which we want memoryless codes to weaken
crosstalk, reduce power consumption, and correct errors. We use constant weight codes with
small weight to achieve low power similarly by reducing the node switching activity, that is,
reducing the total number of transitions occurring between the newly arrived data and the
present data on the bus.
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Assume an n-bit bus, consisting of signals b0, b1, b2, . . . , bn−1. Consider a group of three
wires in an on-chip bus, which are driven by signals bi−1, bi and bi+1. The delay and energy
consumption are primarily affected by transition patterns based on the bus signals bi−1, bi

and bi+1 as the crosstalk patterns in Table 1.
The selection of codeword does not depend on previous history, so the environment is

memoryless. Consequently coding must address the possibility that any two codewords can
appear one after the other. Therefore to avoid crosstalk and correct errors, we are interested
in constant weight codes of length n, weight w and minimum distance d ≥ 3 satisfying the
condition that there do not exist three consecutive coordinates i − 1, i, i + 1 such that the
crosstalk couplings of type-2 (or -3, -4) occur in any two different codewords.

We denote such a code avoiding crosstalk of each type as an (n, d, w)-II (or -III, -IV)
code. The maximum size of these codes are denoted as AI I (n, d, w) (or AI I I (n, d, w),
AI V (n, d, w)), and any code achieving this size is optimal. When S ⊆ {I I, I I I, I V }, the
maximum size of a code that is simultaneously an (n, d, w)-S code for each S ∈ S is denoted
by AS(n, d, w).

When d = 2w, the following results are straightforward.

Lemma 2.3 For all positive integers n and w,

(i) AI I (n, 2w,w) = AI V (n, 2w,w) = ⌊ n
w

⌋
;

(ii) AI I I (n, 2w,w) = ⌊ n
w

⌋
when w �= 1; AI I I (n, 2, 1) = ⌊ n+1

2

⌋
.

Proof The quantity s = ⌊ n
w

⌋
is an upper bound on the size of the desired code in each case.

We construct codes of size s as follows. The code with support

{{i, s + i, 2s + i, . . . , (w − 1)s + i} : i ∈ [0, s − 1]}
is an optimal (n, 2w,w)-II code. The code with support

{{wi, 1 + wi, . . . , (w − 1) + wi} : i ∈ [0, s − 1]}
is an optimal (n, 2w,w)-IV code, and an optimal (n, 2w,w)-III code when w �= 1. When
w = 1, the code with support {{2i} : i ∈ [0,

⌊ n−1
2

⌋]} is an optimal (n, 2, 1)-III code. �
Next we show there is close connection between (n, 2k − 2, k) codes of each type and

optimal LPSA(n, k)s. Hence, optimal codes are constructed based on the construction of
optimal LPSA(n, k)s.

3 Codes and LPSA(n, k;α)s

In this section, we establish connections between optimal LPSA(n, k;α)s and the codes of
each type. We begin with optimal (n, 2k − 2, k)-II codes for sufficiently large n.

Theorem 3.1 Let k ≥ 3. Then AI I (n, 2k − 2, k) ≥ B(n, k). Further, if B(n, k) = U (n, k)

and n ≥ 3k2 + 2k − 3, then AI I (n, 2k − 2, k) = B(n, k).

Proof Whenever (X,B) is an LPSA(n, k), the code with supportB is an (n, 2k−2, k)-II code.
Now suppose that (X,B) is an optimal LPSA(n, k) of size U (n, k). We prove that U (n, k)

is the largest possible size of an (n, 2k − 2, k)-II code. Assume that D is an (n, 2k − 2, k)-II
code of size M . Partition the code into three parts as follows.

The first part A contains all codewords with at least one segment “11”. Because n > k, for
each codeword in A, there always exist three adjacent coordinates such that “110” or “011”
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Optimal low-power coding for crosstalk avoidance 485

appears in these coordinates. Let S = {i : ∃u ∈ A, s.t.,u has “110′′ in coordinates i − 2, i −
1, i , or “011” in coordinates i, i + 1, i + 2}, and let s = |S|. For each i ∈ S, there exist at
most two codewords in A that have “110” in i − 2, i − 1, i or “011” in i, i + 1, i + 2. Hence
|A| ≤ 2s.

The second part T ⊆ D \A contains all codewords with “1” in at least one coordinate in
S. Without loss of generality, if there exists a codeword in A with “110” in the coordinates
i − 2, i − 1, i for some i , then the codewords in T with “1” in i must have segment “101”
in these coordinates to avoid type-2 crosstalk. Because dmin(D) = 2k − 2, there is only one
such codeword. So for each i ∈ S, there is at most one codeword in T with “1” in i . Hence
|T | ≤ s.

Finally, let C = D \ (A ∪ T ). Then M = |A| + |T | + |C|. Because each codeword in C
has “0” in all coordinates in S, we can shorten C to a code C′ by deleting all coordinates in
S. Then C′ is an (n − s, 2k − 2, k) code, and supp(C′) is an (n − s, k)-packing.

The shortening process partitions the coordinates of C′ into at most s+1 classes, separated
in C by the coordinates deleted to form C′. No codeword of C′ has “11” in consecutive
coordinates of any single class. Let x be the number of isolated coordinates in this partition,
and m be the number of classes with at least two coordinates; then x + m ≤ s + 1. We now
estimate the size of C′ using the packing.

Let a0 =
⌊

n−s−1
k−1

⌋
, a1 =

⌊
n−s−2

k−1

⌋
, a2 =

⌊
n−s−3

k−1

⌋
. Then we have:

|C| = |C′| ≤
⌊

x · a0 + 2m · a1 + (n − s − 2m − x) · a2

k

⌋
.

Because �x� − �y� − 1 ≤ �x − y� ≤ �x� − �y�, we have:

M ≤ 3s +
⎢⎢⎢⎣ x

(⌊
n−s−1

k−1

⌋
−

⌊
n−s−3

k−1

⌋)
+2m

(⌊
n−s−2

k−1

⌋
−

⌊
n−s−3

k−1

⌋)
+ (n − s)

⌊
n−s−3

k−1

⌋
k

⎥⎥⎥⎦

≤ 3s +
⎢⎢⎢⎣ x

(⌊
2

k−1

⌋
+ 1

)
+ 2m

(⌊
1

k−1

⌋
+ 1

)
+ (n − s)

⌊
n−s−3

k−1

⌋
k

⎥⎥⎥⎦

≤ 3s +
⎢⎢⎢⎣2x + 2m + (n − s)

⌊
n−s−3

k−1

⌋
k

⎥⎥⎥⎦ ≤ 3s +
⎢⎢⎢⎣2(s + 1) + (n − s)

⌊
n−s−3

k−1

⌋
k

⎥⎥⎥⎦ .

Let F(s) = 3s +
⌊

2(s+1)+(n−s)
⌊

n−s−3
k−1

⌋
k

⌋
. We claim that because n ≥ 3k2 + 2k − 3,

U (n, k) ≥ maxs∈[1,n] F(s).

Because F(s) = 3s +
⌊

2(s+1)+(n−s)
⌊

n−s−3
k−1

⌋
k

⌋
and F(s + 1) = 3(s + 1) +

⌊
2(s+2)+(n−s−1)

⌊
n−s−4

k−1

⌋
k

⌋
, we have

⌊⌊
n−s−4

k−1

⌋
−2

k

⌋
−3≤ F(s)−F(s+1) ≤

⌊⌊
n−s−4

k−1

⌋
+n−s−2

k

⌋

−2. Further, we have:⌊
n − 3k2 − 1 − s

k(k − 1)

⌋
≤ F(s) − F(s + 1) ≤

⌊
n − 2k − s

k − 1

⌋
.

So when s ≤ n − 3k2 − 1, F(s) − F(s + 1) ≥ 0, i.e., F(s) is decreasing; and when
s ≥ n − 2k, F(s) − F(s + 1) ≤ 0, i.e., F(s) is increasing. When s ∈ [n − 3k2, n − 2k − 1],
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486 Y. M. Chee et al.

F(s) ≤ F(1); because the verification is tedious, we omit it here. We therefore only need to
compare F(1) and F(n) to find the maximum value of F(s).

F(1) − F(n) = 3+
⎢⎢⎢⎣4+(n − 1)

⌊
n−4
k−1

⌋
k

⎥⎥⎥⎦− 3n−
⌊

2(n+1)

k

⌋
≥

⌊
(n − 1)(n − 3k2 − 1)

k(k − 1)

⌋
.

Because n ≥ 3k2 + 2k − 3 ≥ 3k2 + 1, F(1) ≥ F(n) and maxs∈[1,n] F(s) = F(1).

U (n, k) − F(1) ≥
⎢⎢⎢⎣2

⌊
n−2
k−1

⌋
+ (n − 2)

⌊
n−3
k−1

⌋
− 4 − (n − 1)

⌊
n−4
k−1

⌋
k

⎥⎥⎥⎦ − 3

≥
⎢⎢⎢⎣

⌊
n−2
k−1

⌋
+ (n − 1)

⌊
n−3
k−1

⌋
− 4 − (n − 1)

⌊
n−4
k−1

⌋
k

⎥⎥⎥⎦ − 3

≥
⎢⎢⎢⎣

⌊
n−2
k−1

⌋
− 4

k

⎥⎥⎥⎦ − 3 ≥
⌊

n − 3k2 − 2k + 3

k(k − 1)

⌋
≥ 0.

Hence U (n, k) ≥ maxs∈[1,n] F(s). �
For (n, 2k − 2, k)-III codes and (n, 2k − 2, k)-IV codes, we establish lower bounds.

Lemma 3.2 1. AI I I (n, 2k − 2, k) ≥ AI I,I I I,I V (n, 2k − 2, k) ≥ D(
⌈ n

2

⌉
, k).

2. AI I I (n, 4, 3) ≥ AI I,I I I,I V (n, 4, 3) ≥ B(
⌈ n

2

⌉
, 3) + � n−1

2 �.
3. AI I I (n, 4, 3) ≥ AI I,I I I,I V (n, 4, 3) ≥ B◦(

⌈ n
2

⌉
, 3) + � n

2 �.

Proof For the first inequality, take an (
⌈ n

2

⌉
, k)-packing (X,B), and construct a code C of

length
⌈ n

2

⌉
by taking supp(C) = B. View C as an |B| × ⌈ n

2

⌉
array. When n ≡ 1 (mod 2),

we add one column of all zeroes between every two consecutive columns of C, and when
n ≡ 0 (mod 2) we add one further column of all zeroes after C to get an (n, 2k − 2, k)-III
code. The verification is straightforward, because every second column is all zeroes.

The construction for the second is similar. Apply the same inflation to an LPSA
( ⌈ n

2

⌉
, 3

)

of size B
( ⌈ n

2

⌉
, 3

)
to obtain a code C1. In every codeword of C1, two 1s are separated by three

(or more) coordinates, and different codewords cannot have 1s in adjacent coordinates. Now
form code C2, consisting of all codewords with support {2i, 2i +1, 2i +2} for 0 ≤ i < � n−1

2 �.
No prohibited situation arises from 000 or 111 in three consecutive coordinates of a codeword.
In consecutive coordinates in which two codewords of C2 are neither 000 nor 111, the two
codewords contain 011 and 110, which is permitted. So we consider one codeword from
C1 and one from C2. The coordinates with indices in {2i + 1 : 0 ≤ i < � n−1

2 �} appear in
only one codeword, which is {2i, 2i + 1, 2i + 2}. So in the consecutive coordinates in which
two such codewords are neither 000 nor 111, and are not equal, the two codewords contain
{001, 100}, {010, 011}, or {010, 110}. All are permitted.

The bound in the third case is equal to that in the second unless n is even and B◦( ⌈ n
2

⌉
, 3

) =
B

( ⌈ n
2

⌉
, 3

)
. When both occur, use a CPSA to form C1 and C2 as in the second case; one further

codeword can be added with support {0, n − 2, n − 1}. �
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Optimal low-power coding for crosstalk avoidance 487

Lemma 3.3 AI V (n, 2k − 2, k) ≥ B(n, k).

Proof Take an LPSA(n, k) (X,B) of size B(n, k). Apply to the points in [0, n − 1] the
permutation {

i → 2i, if i < �n/2�, and

i → 2i − 2�n/2� + 1, if i ≥ �n/2�,
to get (X,B′). The code C′ with supp(C′) = B′ is an (n, 2k − 2, k)-IV code. �

We give another construction for an (n, 2k−2, k)-IV code from an optimal LPSA(n, k; k−
1). When k = 3, this construction gives a better lower bound than Lemma 3.3.

Lemma 3.4 Let k ≥ 3.

1. AI I,I V (n, 2k − 2, k) ≥ B(n, k; k − 1),

2. AI V (n, 2k − 2, k) ≥ B(n, k; k − 1) +
⌊

n−1
k−1

⌋
, and

3. AI V (n, 2k − 2, k) ≥ B◦(n, k; k − 1) +
⌊

n
k−1

⌋
.

Proof Let s =
⌊

n−1
k−1

⌋
, and (X,B) be an LPSA(n, k; k − 1) of size B(n, k; k − 1). Then the

code C with supp(C) = {B : B ∈ B} is an (n, 2k−2, k)-II code and an (n, 2k−2, k)-IV code.
Further, the codeC with supp(C) = {B : B ∈ B}∪{{(k−1)i, (k−1)i+1, . . . , (k−1)i+k−1} :
i ∈ [0, s−1]} is an (n, 2k−2, k)-IV code. When n �≡ 0 (mod k − 1), statement (3) is implied
by statement (2). So suppose that n ≡ 0 (mod k − 1). Using instead a CPSA(n, k; k − 1) of
size B◦(n, k; k − 1), adjoin the block {(k − 1)s, (k − 1)s + 1, . . . , (k − 1)s + k − 2, 0}. �
Lemma 3.5 AI I,I V (n, 4, 3) ≤ U (n, 3; 2) when n ≥ 13.

Proof Computational results reported in Table 2 show that AI I,I V (13, 4, 3) = U (13, 3; 2) =
16, AI I,I V (14, 4, 3) = U (14, 3; 2) = 20, AI I,I V (15, 4, 3) = U (15, 3; 2) = 25, and

Table 2 Sizes of optimal codes for n ≤ 20

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D (n, 3) 1 1 2 4 7 8 12 13 17 20 26 28 35 37 44 48 57 60

B (n, 3) 0 0 1 2 4 6 9 10 14 16 21 24 30 32 39 42 50 54

B◦(n, 3) 0 0 0 2 3 5 9 10 13 16 20 23 30 32 38 42 49 53

B (n, 3; 2) 0 0 0 0 1 2 4 6 9 12 16 20 25 28 34 37 45 48

B◦(n, 3; 2) 0 0 0 0 0 0 3 5 8 12 15 18 25 26 34 36 43 46

AI I .(n, 4, 3) 1 1 2 4 5 6 9 10 14 16 21 24 30 32 39 42 50 54

AI I I (n, 4, 3) 1 1 2 3 4 5 6 7 8 9 10 11 13 14 17 18 19 21

AI V (n, 4, 3) 1 1 2 4 6 7 10 12 15 19 23 26 32 35 42 45 54 57

AI I,I I I (n, 4, 3) 1 1 2 3 3 4 5 6 7 8 10 11 13 13 17 18 19 20

AI I,I V (n, 4, 3) 1 1 2 4 4 4 7 8 12 13 16 20 25 28 34 37 45 48

AI I I,I V (n, 4, 3) 1 1 2 3 4 5 6 7 8 9 10 11 13 14 17 18 19 21

AI I,I I I,I V (n, 4, 3) 1 1 2 3 3 4 5 6 7 8 10 11 13 13 17 18 19 20

Lower bounds and exact values
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AI I,I V (16, 4, 3) = U (16, 3; 2) = 32. Suppose to the contrary that AI I,I V (n, 4, 3) >

U (n, 3; 2) for some n ≥ 17, and let n be the smallest such value. When n ≥ 17 we have
U (n, 3; 2) ≥ U (n − 1, 3; 2)+ 3 and U (n, 3; 2) ≥ U (n − 3, 3; 2)+ 4. (See Table 2 for small
values.)

Let (X,B) be the support of an (n, 4, 3)-{II,IV} code of size AI I,I V (n, 4, 3). Some triple
ofB covers a pair of the form {a, b} ∈ {{i, i +1}, {i, i +2}} because it is not an LPSA(n, 3; 2).

Case 1 Some element appears in at most one triple. Suppose that element i appears in no
triple. Shorten the code by deleting coordinate i and delete the triples (if any) containing
pairs {i − 1, i + 1}, {i − 2, i + 1}, and {i − 1, i + 2}. The result is a type II and IV code, so
the given code has at most AI I,I V (n − 1, 4, 3)+ 3 triples, a contradiction. Suppose now that
element i appears in exactly one triple T . Then if i ∈ {0, n −1}, delete coordinate i and triple
T to get a contradiction. If i ∈ {1, n − 2}, delete coordinate i and delete triple T , along with
triples containing {0, 2} and {0, 3} when i = 1 or {n − 4, n − 1} and {n − 3, n − 1}, to get a
contradiction. So 2 ≤ i ≤ n−3. If T contains neither i−1 nor i+1, then no triple contains both
i −1 and i +1, because the code is type IV. Shorten by deleting coordinate i and delete triple T
and the triples (if any) containing pairs {i −2, i +1} and {i −1, i +2}, yielding a contradiction.

Otherwise, without loss of generality T also contains i − 1 but does not contain i + 1. But
then if some triple T ′ contains i − 2 and i + 1, it cannot contain i . If T ′ does not also contain
i − 1, then we have T ∩ {i − 1, i, i + 1} = {i − 1, i} and T ′ ∩ {i − 1, i, i + 1} = {i + 1},
which cannot happen in a type II code. So T ′ = {i − 2, i, i + 1}. Hence there are at most
two triples among those containing pairs {i − 1, i + 1}, {i − 2, i + 1}, and {i − 1, i + 2}, so
shorten as before.

Case 2 Some triple T satisfies |T ∩ {i, i + 1, i + 2}| = 2 for some 0 ≤ i ≤ n − 3. Suppose
that {a, b} = T ∩{i, i +1, i +2} and let {c} = {i, i +1, i +2} \ {a, b}. There can be no triple
containing c but neither a nor b, because the code is type II and type IV. So c is in exactly two
triples, T ′ that contains a and T ′′ that contains b; only T contains both a and b. Applying the
same argument to T ′ and T ′′, a and b each appear in exactly two triples. So there are only
three triples (T , T ′, and T ′′) that contain a, b, or c. Shorten by deleting coordinate i + 1 and
the triples T , T ′, and T ′′ to obtain a contradiction.

Case 3 No triple T satisfies |T ∩ {i, i + 1, i + 2}| = 2 for any 0 ≤ i ≤ n − 3. If a triple
T satisfies |T ∩ {i, i + 1, i + 2}| = 3 for some 0 ≤ i ≤ n − 3, equivalently it satisfies
|T ∩ {i + 1, i + 2, i + 3}| = 2 for some 0 ≤ i ≤ n − 4 or |T ∩ {i − 1, i, i + 1}| = 2 for some
1 ≤ i ≤ n −3. Apply Case 2. Otherwise every triple T satisfies |T ∩{i, i +1, i +2}| ≤ 1 for
0 ≤ i ≤ n − 3. But then (X,B) is an LPSA(n, 3; 2) and hence we have at most B(n, 3; 2) ≤
U (n, 3; 2) triples, the final contradiction. �

4 Optimal packing sampling plans

By Corollary 2.2, we have the upper bound:

U (n, 3) =
⌊

2
⌊ n−2

2

⌋ + (n − 2)
⌊ n−3

2

⌋
3

⌋
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n2−4n+4
6 , if n ≡ 2 (mod 6),

n2−3n
6 , if n ≡ 3 (mod 6),

n2−4n
6 , if n ≡ 0, 4 (mod 6),

n2−3n−4
6 , if n ≡ 1, 5 (mod 6).

Theorem 4.1 B(n, 3) = U (n, 3) for all n ≥ 0.
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Proof When n ≡ 3 (mod 6), Colbourn and Rosa [4] (and Colbourn and Ling [5]) construct

a BSA(n, 3) of size n2−3n
6 , which is an optimal LPSA(n, 3). Because each point appears in

n−3
2 blocks, we get an LPSA(n − 1, 3) of size n2−3n

6 − n−3
2 = (n−1)2−4(n−1)+4

6 by removing
the point n − 1 and all blocks containing it, which is optimal.

When n ≡ 1, 5 (mod 6), Colbourn and Rosa [4] showed there exists an (n, 3)-packing of

size n2−3n+2
6 , whose leave graph consists of a cycle of length n − 1 and one isolated point.

Assume n−1 is the isolated point. Remove the block {x, n−2, n−1} for some x ∈ [0, n−3];
the result is an optimal LPSA(n, 3). Now, n − 1 appears in n−3

2 blocks. Removing n − 1
and all blocks containing it from the optimal LPSA(n, 3) constructed above, we obtain an

LPSA(n − 1, 3) of size n2−3n−4
6 − n−3

2 = (n−1)2−4(n−1)
6 , which is optimal. �

Theorem 4.2 1. B◦(n, 3) = U (n, 3) when n ≡ 0, 3, 4 (mod 6).
2. B◦(n, 3) = U (n, 3) − 1 when n ≡ 1, 2, 5 (mod 6).

Proof The constructions in Theorem 4.1 yield a CPSA(n, 3) with n(n−3)
6 blocks when n ≡

3 (mod 6) and with n(n−4)
6 blocks when n ≡ 0, 4 (mod 6). A CPSA(n, 3) can have at most⌊ n

3

⌊ n−3
2

⌋⌋
blocks, which equals U (n, 3) when n ≡ 0, 3, 4 (mod 6), so these are optimal.

When n ≡ 2 (mod 6),
⌊ n

3

⌊ n−3
2

⌋⌋ = U (n, 3) − 1 so B◦(n, 3) ≤ U (n, 3) − 1. When

n ≡ 1, 5 (mod 6), if there were a CPSA(n, 3) with U (n, 3) = n2−3n−4
6 codewords, then the

number of edges in the leave graph is n(n−1)
2 − 3(n2−3n−4)

6 = n + 2. The leave must be an
n-cycle with two additional edges, but every vertex in the leave must have even degree, which
cannot occur. So B◦(n, 3) ≤ U (n, 3) − 1. To establish equality when n ≡ 1, 2, 5 (mod 6),
remove the block {0, n − 1, x} from an LPSA(n, 3) from Theorem 4.1. �
Lemma 4.3 B◦(n, 3; 2) = B(n, 3; 2) = U (n, 3; 2) whenever n ≡ 3, 5 (mod 6) and n ≥
15. B◦(n, 3; 2) + 2 = B(n, 3; 2) = U (n, 3; 2) whenever n ≡ 2, 4 (mod 6) and n ≥ 14.

Proof Zhang and Chang [30] establish that whenever n ≥ 15 and n ≡ 3, 5 (mod 6), there is a
BSA(n, 3; 2) having n(n−5)

6 blocks; this is also an optimal CPSA(n, 3; 2) and LPSA(n, 3; 2).
Now suppose that n ≥ 14 and n ≡ 2, 4 (mod 6). When n ≡ 2 (mod 6), writing n = 6t + 2,
U (6t + 2, 3; 2) = (2t)(3t − 1). Delete element 6t + 2 from a BSA(6t + 3, 3; 2) with
(2t + 1)(3t − 1) blocks, removing 3t − 1 blocks to obtain an LPSA(6t + 2, 3; 2), which is
therefore optimal. When n ≡ 4 (mod 6), writing n = 6t + 4, U (6t + 4, 3; 2) = t (6t + 2).
Delete element 6t +4 from a BSA(6t +5, 3; 2) with t (6t +5) blocks, removing 3t blocks to
obtain an LPSA(6t + 4, 3; 2), which is therefore optimal. Remove the blocks {0, n − 2, x},
{1, n − 1, y} for some x and y from the optimal LPSA(n, 3; 2) constructed above to obtain
an optimal CPSA(n, 3; 2) when n ≡ 2, 4 (mod 6). �

For n = 6t , U (6t, 3) = 6t (t − 1) + 1, and
⌊

6t
3

⌊
6t−5

2

⌋⌋
= 6t (t − 1). For n = 6t + 1,

U (6t+1, 3) = t (6t−3), and
⌊ 6t+1

3

⌊ 6t−4
2

⌋⌋ = t (6t−3)−1. However, if a CPSA(6t+1, 3; 2)

were to have t (6t − 3) − 1 blocks, its leave must have 2(6t + 1) + 1 edges and every such
graph with minimum degree 4 has two vertices of degree 5. Because all vertices in the leave
must have even degree, no CPSA(6t +1, 3; 2) can exist with more than t (6t −3)−2 blocks.

We provide bounds to apply when n ≡ 0, 1 (mod 6).

Lemma 4.4 B(2n, 3; 2) ≥ 4B(n, 3), and B(2n + 1, 3; 2) ≥ 4B(n, 3) + n − 2. In addition,
B◦(2n, 3; 2) ≥ 4B◦(n, 3), and B◦(2n + 1, 3; 2) ≥ 4B◦(n, 3) + n − 3.
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Proof Start with an LPSA(n, 3) on [0, n − 1]. We form an LPSA(2n, 3; 2) on [0, 2n − 1].
For each block {a, b, c} in the LPSA, form four blocks {{2a +α, 2b +β, 2c +γ } : α, β, γ ∈
{0, 1}, α +β + γ ≡ 0 (mod 2)}. The verification is straightforward. To form an LPSA(2n +
1, 3) on [0, 2n], adjoin {{2i, 2i + 3, 2n} : 0 ≤ i ≤ n − 3}.

The construction for CPSAs is the same, except that one does not adjoin {0, 3, 2n}. �

5 Conclusion

Applying Theorem 3.1 with the results in Theorem 4.1, we have optimal (n, 4, 3)-II codes for
all n ≥ 30. By computer search (using cliquer [13] and hill-climbing (a variant of [24])),
we determined the sizes of optimal LPSA(n, 3;α)s, CPSA(n, 3;α)s, and (n, 4, 3) codes of
lengths n ≤ 20. The sizes are listed in Table 2 and corresponding optimal codes are available
from the authors; those in slanted font are lower bounds from Theorem 3.1 and Lemma 3.4.

In this paper, we present the first memoryless transition bus-encoding technique for power
minimization, error-correcting and elimination of crosstalk simultaneously. We establish the
connection between codes avoiding crosstalk of each type with packing sampling plans
avoiding adjacent units. Optimal codes of each type are constructed.
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