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Abstract—A cross-bifix-free code is a set of words in which no
prefix of any length of any word is the suffix of any word in the set.
Cross-bifix-free codes arise in the study of distributed sequences
for frame synchronization. We provide a new construction of
cross-bifix-free codes which generalizes the construction by Bajic
to longer code lengths and to any alphabet size. The codes are
shown to be nearly optimal in size. We also establish new results
on Fibonacci sequences, which are used in estimating the size of
the cross-bifix-free codes.

Index Terms—Cross-bifix-free code, Fibonacci sequence, syn-
chronization sequence.

I. INTRODUCTION

A crucial requirement to reliably transmit information in a
digital communication system is to establish synchroniza-

tion between the transmitter and the receiver. Synchronization
is required not only to determine the start of a symbol, but also
to determine the start of a frame of data in the received signals.
The initial acquisition of frame synchronization and the mainte-
nance of this synchronization has been a widely studied field of
research for several decades. Early works on frame synchroniza-
tion concentrated on introducing a synchronization word peri-
odically into the data stream [8], [11]. In the receiver, correla-
tion techniques were used to determine the position of the syn-
chronization sequence within the data stream. Massey [8] intro-
duced the notion of bifix-free synchronization word in order to
achieve fast and reliable synchronization in binary data streams.
A bifix-free word denotes a sequence of symbols in which no
prefix of any length of the word is identical to any suffix of the
word.
The current methods for achieving frame synchronization

at the receiver do not look at exact matching of the synchro-
nization word. Instead, the objective is to search for a word
that is within a specified Hamming distance of the transmitted
synchronization word. This procedure allows for faster syn-
chronization between the transmitter and the receiver [2].
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Van Wijngaarden and Willink [14] introduced the notion of a
distributed sequence where the synchronization word is not a
contiguous sequence of symbols but is instead interleaved into
the data stream. For instance the binary sequence is a
distributed sequence, where the symbol denotes a data symbol
that can take either of the values 0 or 1. Van Wijngaarden and
Willink [14] provided constructions of such sequences for
binary data streams and studied their properties. Bajic et al. [1],
[2] showed that the distributed sequence entails a simultaneous
search for a set of synchronization words. Each word in the
set of sequences is required to be bifix-free. In addition, there
arises a new requirement that no prefix of any length of any
word in the set should be a suffix of any other word in the
set. This property of the set of synchronization words was
termed as cross-bifix-free in [1], [2], and [13]. In the same
works, the properties of sets of words that are cross-bifix-free
were statistically analyzed. In this paper, we term the set of
words which are cross-bifix-free as a cross-bifix-free code. In
the above example of a distributed sequence, the set of words

forms a cross-bifix-free code.
In a follow up work, Bajic [3] provided a new construction

of cross-bifix-free codes over a binary alphabet for word lengths
up to eight. This specific construction uncovers interesting con-
nections to the Fibonacci sequence of numbers. In particular,
the number of binary words of length , for
which are cross-bifix-free satisfies the Fibonacci recursion

It is noted in [3] that although this construction gives larger sets
compared to distributed sequences [14] for , the sizes of
the sets are relatively smaller for lengths greater than eight. In a
recent work, Bilotta et al. [4] introduced a new construction of
binary cross-bifix-free codes based on lattice paths and showed
that their construction attains greater cardinality compared to
the ones in [3].
In this study, we revisit the construction in [3]. We give a

new construction of cross-bifix-free codes that generalizes the
construction of [3] in two ways. First, we provide new binary
codes that are greater in cardinality compared to the ones in
[4] for larger lengths. In the process, we discover interesting
connections of the size of the codes obtained to the so-called
-generalized Fibonacci numbers. Second, we generalize the
construction to -ary alphabets for any To the best of
our knowledge, this is the first construction of cross-bifix-free
codes over alphabets of size greater than two. The size of the
generalized -ary constructions are also related to a Fibonacci

0018-9448/$31.00 © 2013 IEEE

Authorized licensed use limited to: National University of Singapore. Downloaded on May 14,2023 at 01:36:42 UTC from IEEE Xplore.  Restrictions apply. 



CHEE et al.: CROSS-BIFIX-FREE CODES WITHIN A CONSTANT FACTOR OF OPTIMALITY 4669

sequence, which we call the -weighted -generalized Fi-
bonacci sequence (see Section II for the exact definition). Using
this relation to the Fibonacci sequences, we analyze the asymp-
totic size of our construction. In the process of this asymptotic
analysis, we generalize a result of Dresden [5] on -general-
ized Fibonacci sequence to -weighted -generalized Fi-
bonacci sequence. The main asymptotic result on the size of
cross-bifix-free codes that we prove is described in the theorem
below.
Theorem 1.1: Let denote the maximum size of a

cross-bifix-free code of length over an alphabet of size . Then

(1)

(2)

Note that the lower bound is within a constant factor of the
best possible construction. The ratio between the lower and the
upper bound increases toward for larger alphabet
sizes. In comparison, a similar ratio of the size of the binary
codes constructed by Bilotta et al. [4], or the distributed se-
quences by van Wijngaarden and Willink [14], to the quantity

, asymptotically goes to zero.
The rest of this paper is organized as follows. Our presen-

tation is provided for general alphabet size , and the
results for the binary alphabet are obtained as a special case. In
Section III, we provide the construction of the cross-bifix-free
code and show that for the binary alphabet, it is optimal for
lengths barring an exception at In Section IV,
we study the asymptotic behavior of the size of cross-bifix-free
codes obtained from our construction. In particular, we exhibit
(1) and (2) in Theorems 4.2 and 4.3, respectively. Results on
the behavior of the -weighted -generalized Fibonacci
sequence are also presented in this section. Lengthy calcula-
tions and some proofs are deferred to the Appendix. In the fol-
lowing section, we introduce the basic notations and definitions
required.

II. NOTATIONS AND DEFINITIONS

Let be an alphabet of elements. We
denote by all the nonzero elements of the set , that is,

A consecutive sequence of elements
is denoted by the short form As an example, the word

is represented in short as . For
convenience, if , then is used to denote the absence
of any element.
Definition 2.1: For a word , a word is called a

prefix of if we can write as , for some word .
The word is called a suffix of if we can write as

, for some word .
For any word , we only consider prefixes and suffixes which

have length strictly less than the length of
Definition 2.2: Aword is called bifix-free if the prefix

of any length of the word is not a suffix of the word.
Definition 2.3: A cross-bifix-free code is a set of words in

which satisfy the property that the prefix of any length of any
word is not the suffix of any word in the set, including itself.

We denote the maximum size of a cross-bifix-free code by the
notation .
Definition 2.4: The -weighted -generalized Fi-

bonacci sequence is a sequence of numbers which satisfies the
recurrence relation

for some initial values of . For
, the sequence obtained is called a -generalized Fibonacci
sequence. For , , and the initialization

we obtain the usual Fibonacci sequence.
The -weighted -generalized Fibonacci sequence is a

special case of the weighted -generalized Fibonacci sequence
which satisfies the recurrence relation [7], [12]

where the weights are given by , and de-
notes the integers. Setting all the weights equal to gives
the sequence in the above definition.
The -weighted -generalized Fibonacci sequence

arises in the study of cross-bifix-free codes as described in the
following section.

III. CONSTRUCTION OF CROSS-BIFIX-FREE CODES

In this section, we provide a general construction of cross-
bifix-free codes over the -ary alphabet. Interestingly, the sizes
of our construction are related to the -weighted -gener-
alized weighted Fibonacci numbers . The initialization
on that we use is given as

(3)

Below, we describe the family of cross-bifix-free codes in the
space . The family is obtained by varying the value of .
The construction: For any , denote by

the set of all words in that satisfy the fol-
lowing two properties:
1) , and ,
2) the subsequence does not contain
any string of consecutive 0’s.

This construction implies that contains all possible
words of length that start with zeroes, end with a nonzero
element, and have at most consecutive zeroes in the last

coordinates. In the remaining part of this section, we show
that for every , this set of words forms
a cross-bifix-free code. We determine its size in terms of the
Fibonacci sequence. First, in the theorem below, we show that

is a cross-bifix-free code. Additionally, we show that
the code has the property that it cannot be expanded
while preserving the property that it is cross-bifix-free. That is,
for every word , the set is not
cross-bifix-free.
Theorem 3.1: For any , the set is

a nonexpandable cross-bifix-free code.
Proof: To see that is a cross-bifix-free code, note

that the prefix of any word of starts with consecutive
zeroes. But in the last coordinates of any word, we have at
most consecutive zeroes, and the last coordinate is always
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nonzero. Thus, no prefix of any length of any word can match
any suffix of itself or of any other word in .
To show that is nonexpandable, we consider all the

possible configurations of words that could be appended to the
set . First, we note that we cannot append any word
starting with a nonzero element since the nonzero element oc-
curs in the last coordinate of some word in . Similarly,
we cannot append any word ending with a zero element. The
other possible configurations of words that we need to consider
are as follows.
1) Let be a word which contains at least consecutive ze-
roes in the last coordinates.We consider the suffix in
that starts with the last set of consecutive zeroes and con-
tains at most consecutive zeroes following it, that is,
the suffix has the form , where is nonzero and
is a vector of length that has at most consecutive

zeroes. Then, the word of length
is a word in and has a prefix matching a suffix of
. Thus, cannot be appended to .

2) Let be a word which contains a prefix of at most ze-
roes followed by a nonzero element, that is ,
where , is nonzero, and has length

. It is readily seen that is also the suffix of
the word in . Hence, such a
word cannot be appended to .

Thus, no additional word can be appended to the set ,
while still preserving the cross-bifix-free property.
The nonexpandability of the construction above parallels the

nonexpandability of the cross-bifix-free codes obtained in [3]
and [4]. However, note that the nonexpandability does not auto-
matically indicate the optimality of the construction, as is evi-
dent from the many values of for which the nonexpandability
holds true. In the following sections, we instead show that the
largest sized set obtained by optimizing over the value of

, differs (in ratio) from the size of the optimal code
by only a factor of a constant .
We first describe a recursive construction of the set

in terms of the sets This recursive
construction immediately establishes the connection to the Fi-
bonacci recurrence and helps us determine the size of the set in
terms of the Fibonacci numbers.
Theorem 3.2:

Proof: For , the coordinates
necessarily have at most zeroes

and hence can contain all the words of length This
establishes the result for
Now, let For brevity, denote each set on the

right-hand side (RHS) of the equation in Theorem 3.2 by

(4)

Note that the sets are mutually disjoint for different
since the last coordinates have different structure for the dif-
ferent sets. To show that , note that any

element has at most zeroes in the last
coordinates, and hence, the word must be of the form

where
and . Thus, .
To show the reverse inclusion, let and let

. Note that ends with a nonzero element. The
word , where , starts with a sequence , ends
with a nonzero element, and has at most consecutive zeroes
in the last coordinates. Hence, and
the set is a subset of . Hence,

for every .
Corollary 3.1: The cardinality of for is given

by the equation

Proof: For the corollary can be
readily verified from the expression in (3) and Theorem 3.2. We
use an induction argument for . Assume that the
corollary is true for where First, note that
by using the definition in (4), we get

Now

We used the induction argument in the second last step. This
proves the corollary.
For fixed and , the largest size of the set can be

obtained by optimizing over the choice of Let denote
this maximum. It is given by the expression

(5)

In particular, the size is upper bounded by the max-
imum cardinality of a cross-bifix-free code.

A. Sizes of Cross-Bifix-Free Codes for Small Lengths

The size of binary cross-bifix-free codes obtained in [4] is
obtained by counting lattice paths, in particular, Dyck paths.
Theorem 3.3 (see [4]): Let denote the size of a binary

cross-bifix-free code of length constructed by Bilotta et al.
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TABLE I
COMPARING THE VALUES FROM [4] WITH (5)

[4]. For , let denote the th Catalan
number. Then

For values of it is verified by numerical computa-
tions that the sizes obtained by our construction are all optimal,
except for the value In particular, we get Table I of values
for The first column gives the value of the word
length , the second column shows the sizes of the codes ob-
tained in [4], the third column gives the sizes obtained from our
construction after optimizing over different values of , and fi-
nally, the last column gives the values of for which
achieves the maximal size in the third column. The numbers in
bold denote the sizes that are known to be optimal.
The optimality of the values for is proved compu-

tationally by setting up a specific program that searches for the
largest clique in a graph. The graph consists of vertices which
correspond to the set of all words in that are bifix-free. An
edge exists between two vertices, i.e., two words, if they are mu-
tually cross-bifix-free. The algorithm [6] is used
to determine the maximum size of the clique in the graph. This
algorithm shows that the values denoted by bold in Table I are
optimal.
Note that our construction has larger size than the construc-

tion in [4] for all values of This trend is
observed asymptotically too, as we describe in the following
sections.

IV. NEAR OPTIMALITY OF THE SIZE

In this section, we show that the size is close to the
maximum size . The ratio measures
how close the construction in Section III is to the optimal value.
The following theorem gives an asymptotic lower bound on this
ratio.

Theorem 4.1: The following limit holds:

(6)

This lower bound is proved by showing a lower bound on
and an upper bound on . The derivation of the

lower bound on crucially depends on the properties of
the -weighted -generalized Fibonacci sequence of num-
bers.We digress in the next section to first establish these needed
properties.

A. Properties of the Fibonacci Sequence

Levesque [7] showed in a very general context that to every
weighted -generalized Fibonacci sequence of numbers we can
associate a characteristic polynomial (see Theorem A.1 in the
Appendix). For the -weighted -generalized Fibonacci
sequence, this polynomial specializes to the following form:

(7)

Below, we state the properties of this polynomial and of the
corresponding Fibonacci numbers. The initialization sequence
that we use is the one described in (3). The proofs in this section
are omitted for clarity of presentation and are instead provided
in the Appendix.
Proposition 4.1: The polynomial has distinct roots with

a unique real root outside the unit circle. The root
lies in the interval .
The value of the root is in fact close to . An estimate of

this root is given by the following lemma.
Lemma 4.1: There exists a number such that the fol-

lowing holds. For all , there exists a in
the interval such that

(8)

Finally, the Fibonacci numbers can be expressed in terms of
this real root . Let denote the integer closest to the real
number
Proposition 4.2: Let . The th number in the
-weighted -generalized Fibonacci sequence is given by the

expression

We note here that Proposition 4.1 is a generalization to
of the result obtained by Miles [9] for We adopt a tech-
nique similar to the one in [10]. Additionally, Proposition 4.2 is
a generalization of the result in Dresden [5] to -weighted
-generalized Fibonacci numbers, for For the
expression above reduces to the expression for the sequence

as obtained in [5].

B. Lower Bound on

Using the properties of the Fibonacci numbers from Sec-
tion IV-A, we establish an asymptotic lower bound on the size

.
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Theorem 4.2: The asymptotic size satisfies the limit

(9)

Proof: Using Corollary 3.1 and Proposition 4.2 in succes-
sive steps, we obtain

where the term as To derive the asymptotics,
we choose as an increasing function of :

where is a positive constant. Note that is also a function of
We obtain

The last term in the RHS of the equation above can be further
lower bounded by using Lemma 4.1.We assume that there exists
a number and , as required by the lemma

The RHS of the above equation tends to as
since as and as .

The term attains a maximum of when
. The theorem follows by substituting this value into

the lower bound above.

C. Upper Bound on the Maximum Size

Let denote the size of a cross-bifix-free code of length
over an alphabet of size . An upper bound for the maximum
size of a cross-bifix-free code is readily obtained from the study
of the statistical properties of such sets in the data stream. The
main object of study is the time when the search for any word of
the cross-bifix-free code in the data stream returns with a pos-
itive match. Bajic et al. [1], [2] establish the probability distri-
bution function of this time, the expected time duration for a

match, and the variance of this distribution. The variance of
the time for the first match is given by the expression [2, eq.
(18)]

(10)

Using the property that the variance is always nonnegative im-
mediately gives us the required upper bound on any cross-bifix-
free code. In particular, we have the following theorem.
Theorem 4.3: Let denote the maximum size of a

cross-bifix-free code in . Then

We remark that this upper bound, albeit immediate from (10),
was not noted in the previous works on the size of the cross-
bifix-free codes. Combining Theorems 4.2 and 4.3, we obtain
Theorems 4.1 and 1.1.

D. Comparison to Earlier Results

To compare the construction in this study with the new con-
struction of binary cross-bifix-free codes [4] and the construc-
tion of distributed sequences [14], we study the asymptotics of
their respective constructions for large . In both cases, we ex-
hibit that the size of the previous constructions is a negligible
fraction of , in contrast to the nearly optimal construction
described in the previous section.
The asymptotic behavior of the construction in [4] is obtained

from the expressions in Theorem 3.3. We obtain that

where is the th Catalan number and
Using Stirling’s approximation, we get that the number is
approximately

Thus, for odd

which goes to zero as . Similar conditions
hold for the case Thus, the construction in [4] is a
negligible fraction of .
On the other hand, van Wijngaarden and Willink [14, eq. (4)]

showed that for a set of distributed sequences of length , and
with synchronization positions

(11)

Let denote the maximum size of a set of distributed se-
quences. Then, it follows from (11) that

Hence, the ratio tends to zero with increasing .
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V. CONCLUSION

We provided a new construction of cross-bifix-free codes that
are close to the maximum possible size. The construction for
the binary codes is shown to be larger than the previously con-
structed codes for all lengths barring an exception
at We also provided the first construction of -ary
cross-bifix-free codes for In the process, we established
new results on the Fibonacci sequences, generalizing some ear-
lier works on these sequences.

APPENDIX

In this appendix, we provide the proofs of the results on the
Fibonacci sequences that are stated in Section IV-A. First, we
recall a very general theorem on weighted -generalized Fi-
bonacci sequences proved in [7].

Theorem A.1 (see [7]): Let . Let be defined
by the following recurrence relation:

for

for and with the initial conditions,
. Additionally, suppose that the

characteristic polynomial associated with the sequence
,

has distinct roots . Then, for , the values of
are given by the expression

where

for

for

For , we obtain the corresponding
expressions for the -weighted -generalized Fibonacci
numbers. In particular, the polynomial reduces to the poly-
nomial defined in (7).
We proceed with the proofs of the propositions in

Section IV-A. In order to prove Proposition 4.1, we first
establish two lemmas below. Define a polynomial as

(12)

Lemma A.1: The polynomial has a real root in the
interval .

Proof: This follows from the fact that
and .

Lemma A.2: Let be the real root of in
. Then, the polynomial , and consequently the poly-

nomial , satisfies the following inequalities:
(i) for ,

(ii) for .
Proof: Observe that

and so for and for
. Since ,

and , the lemma follows.
Next, we establish Proposition 4.1.
Proof of Proposition 4.1: First, we show that the roots of
in (12), and hence of , are distinct. Indeed,

if and only if or . However, and

. Therefore, the roots are distinct.

Next, let be a root of with . We prove by con-
tradiction that . We consider the two cases
and separately. Suppose . Since

, we get

and so, , contradicting part (i) of Lemma A.2.
Next, suppose . Since is also a root of ,

. Then

(13)

which implies that . Then, by part (ii) of Lemma
A.2, and equality in (13) holds. Hence,
and are real, implying that is real. Since the roots of
are distinct, . But

and ,
contradicting the fact that is a root of .
Therefore, is the only root outside the unit circle. By

Lemma A.1, is in the required interval.
Proof of Proposition 4.2: We apply Lemma A.1 with

and with . Observe that
. We obtain

To obtain the fourth step, we used the fact that ’s are roots of
. Without loss of generality, let be the defined

in Proposition 4.2 and so for . We note that
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. We get the following
sequence of inequalities for :

where the second last step is obtained by observing that for
, we have the inequalities and

. The last step is obtained by applying the inequality
This completes the proof for . The proof for

is present in [5].
Finally, we prove Lemma 4.1. Again, for brevity, we denote

and by and , respectively.
Proof of Lemma 4.1: Observe that if

and only if

where is the polynomial defined in (12). Since
as , there exists a constant

such that for all .
Hence, for all , there exists in the interval

such that . We claim that satisfies (8) by
showing that implies that . Indeed,
since

we get

Since , we get .
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