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1. INTRODUCTION

A (finite) incidence structure is a triple S = (P,B, I), where P and B are two nonempty
disjoint finite sets, and I is a binary incidence relation betweenP andB, that is, I ⊆ P×B.
The elements ofP are called points, and the elements of B are called blocks. If (P,B) ∈ I ,
we say that P and B are incident. We also extend the notion of incidence to sets of points
by saying that a set Q ⊆ P is incident with a block B ∈ B if (P,B) ∈ I for all P ∈ Q.
The pencil of a point P ∈ P is the set (P ) = {B ∈ B|(P,B) ∈ I}, and the trace of a block
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248 CHEE AND LING

B ∈ B is the set (B) = {P ∈ P|(P,B) ∈ I}. The order of S is |P|. If |P| = |B|, then S
is said to be symmetric. If |(B)| = k for all B ∈ B, then S is said to be k-uniform.

For integers 0 < t ≤ k ≤ v and λ ≥ 0, a t-(v, k, λ) design is a k-uniform incidence
structure (P,B, I) of order v such that every set of t distinct points is incident with precisely
λ blocks. A 2-(v, k, λ) design is commonly known as a balanced incomplete block design
(BIBD). A t-(v, k, λ) design can only exist if the divisibility conditions λ(v−it−i ) ≡ 0 mod
(k−it−i ), for 0 ≤ i ≤ t, are satisfied. The notion of minimum coverings is one of many
possible generalizations of t-(v, k, λ) designs to encompass situations when the divisibility
conditions are not met, or when t-(v, k, λ) designs do not exist. A (t;λ)-covering, or more
precisely a t-(v, k, λ) covering, is a k-uniform incidence structure (P,B, I) of order v such
that every set of t distinct points is incident with at least λ blocks of B. The minimum
number of blocks in a t-(v, k, λ) covering is the covering number

Cλ(v, k, t) = min{|B| |(P,B, I) is a t-(v, k, λ) covering}.
We adopt the usual convention of writing C(v, k, t) for C1(v, k, t). A t-(v, k, λ) covering
(P,B, I) is minimum if |B| = Cλ(v, k, t). So every t-(v, k, λ) design is a minimum t-
(v, k, λ) covering.

The focus of this article is the construction of t-(v, k, λ) coverings from geometries
over principal ideal rings. Geometry over rings constitutes an important part of the study
of incidence geometry (see [12] for an excellent survey). In particular, we construct two
new infinite families of minimum t-(v, k, λ) coverings, and show that coverings from cer-
tain geometries possess many interesting combinatorial properties. The results obtained
generalize and extend previous ones in [4].

2. FINITE PRINCIPAL IDEAL RINGS

A. Some Definitions and Results

Definition 2.1. A finite principal ideal ring (PIR) is a finite commutative ring with unity,
in which every ideal is principal. A PIR is called special if it has only one prime ideal M
and if M is nilpotent, that is, if Mr = 0 for some positive integer r.

We recall the structure theorem for PIRs [13]:

Theorem 2.1 (Structure Theorem for PIRs). A direct sum of PIRs is itself a PIR. Every
PIR is a direct sum of PIDs and of special PIRs. (A PID is a principal ideal domain).

Since we are interested only in finite PIRs, and since finite PIDs are fields (hence special
PIRs), by the structure theorem for PIRs, it suffices for us to consider finite special PIRs.

For the remainder of this section, let R be a finite special PIR with maximal ideal
M = 〈π〉, and let r denote the smallest positive integer such that Mr = 0. We note that
the prime element π is unique up to multiplication by a unit of R. We suppose also that the
quotient R/M is isomorphic to Fq, where q = pn, a power of a prime p.

We state without proof three facts on finite special PIRs that are of use later. The proofs
are easy exercises in ring theory (cf. [6], Chapter 1).

1. If r > 1, then for 1 ≤ i ≤ r − 1,M i/M i+1 is an R/M -vector space of dimension
one.

2. We have |R| = qr and |M i| = qr−i for 1 ≤ i ≤ r.
3. The only ideals in R are: R,M,M2, . . . ,Mr = 0.
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COMBINATORIAL COVERINGS FROM GEOMETRIES 249

For an ideal M j = 〈πj〉 and α, β ∈ R, by

α ≡ β mod M j or α ≡ β mod πj ,

we mean that α− β ∈M j = 〈πj〉.

B. Examples of Finite Special PIRs

We give some examples of finite special PIRs that will be of use later in the construction
of associated designs.

1. Finite Fields. By taking R = Fq, where q = pn is a power of a prime p, we have
our first examples of finite special PIRs with M = 0.

2. The rings Z/prZ (p prime). For R = Z/prZ, it is clear that R is a finite special
PIR with M = 〈p〉, and Mr = 0.

3. Examples from Polynomial Rings. For q = pn a prime power, letR = Fq[X]/〈Xr〉,
where r is a positive integer. A maximal ideal M in R corresponds to a maximal
ideal I of Fq[X] containing 〈Xr〉. Since I is a prime ideal, it follows that X ∈ I;
so 〈X〉 ⊆ I. Therefore, I = 〈X〉 since Fq[X]/〈X〉 ' Fq. Consequently, R
has only one maximal ideal, namely M = 〈X〉/〈Xr〉. Clearly Mr = 0, hence
R = Fq[X]/〈Xr〉 is a special PIR. The degenerate case r = 1 is the case when R is
a finite field (Example 1).

4. Examples from Function Fields. Let F be a function field with field of constants
Fq. Let P be a place of F . The ring OP = {α ∈ F |vP (α) ≥ 0} where vP is the
normalized valuation of the placeP , is a discrete valuation ring with unique maximal
(principal) ideal MP = {α ∈ F |vP (α) > 0}. The quotient OP /MP is a finite
field extension of Fq. Let R = OP /Mr

P , where r is a positive integer. Then R is a
finite special PIR with M =MP /Mr

P .

Remark. Given any integer r ≥ 1 and any prime power q = pn, the construction in
Example 3 ensures the existence of a finite special PIRR, with maximal idealM , such that
R/M ' Fq and Mr = 0(Mr−1 6= 0).

C. Rings of Stable Rank 2

Definition 2.2. A commutative ring R with unity is said to be of stable rank 2 if, for all
integers n ≥ 2, the following condition is satisfied:
(SRn) for every x1, . . . , xn ∈ R satisfying 〈x1, . . . , xn〉 = R, there exist a1, . . . , an−1 ∈

R such that 〈x1 + a1xn, . . . , xn−1 + an−1xn〉 = R.

(Actually, the notion of a ring of stable rank 2 exists even for noncommutative rings, but
we do not need this more general version here.)

It is well known that rings satisfying condition (SRn) automatically satisfy condition
(SRn+1) for all n ≥ 2. It is also easy to see that all PIRs satisfy (SR2), so they are rings of
stable rank 2.
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250 CHEE AND LING

3. THE CONSTRUCTION

A. Projective Spaces over Rings

For a commutative ring R with unity, and let St be the set of all (t+ 1)-tuples (a0, . . . , at)
of elements of R such that a0, . . . , at generate R, that is, 〈a0, . . . , at〉 = R. We define the
projective t-space over R, denoted Pt(R), to be an incidence structure (P,B, I), such that
both P and B are the sets of equivalence classes of elements of St under the equivalence
relation given by

(a0, . . . , at) ∼ (b0, . . . , bt)

if and only if there exists λ ∈ R× such that ai = λbi for 0 ≤ i ≤ t, where R× denotes
the (multiplicative) group of all units of R. To differentiate between elements of P and
B in notation, we denote a point P ∈ P by (a0 : · · · : at) if (a0, . . . , at) lies in the
equivalence class P , and we denote a block B ∈ B by [x0 : · · · : xt] if (x0, . . . , xt) lies
in the equivalence class B. The incidence relation I in Pt(R) is defined as follows. Let
P = (a0 : · · · : at) ∈ P be a point and B = [x0 : · · · : xt] ∈ B be a block. Then
(P,B) ∈ I if and only if

t∑
i=0

aixi = 0. (1)

We remark that this definition of Pt(R) satisfies the principle of duality.
WhenR is a ring of stable rank 2, an equivalent formulation of a projective t-space over

R is given in [12, Sec. 3]. The proof of the following proposition is found in [12]. We
remark here that the parameters v and k in the general case may be found using techniques
analogous to those in Section 3 C.

Proposition 3.1 ([12, Proposition 4.5]). WhenR is a finite ring of stable rank 2,Pt(R)
is a (t; 1)-covering.

Now let R be an arbitrary finite PIR. By the structure theorem for PIRs, we may write
such an R as the direct sum (or product) of finitely many (finite) special PIRs R1, . . . , Rs,

R = R1 × · · · ×Rs.
An element x ofRmay equivalently be regarded as an s-tuple (x1, . . . , xs), where xi ∈ Ri.
Let Mi denote the maximal ideal of Ri, let ri denote the smallest positive integer such that
Mri
i = 0, and let qi = pnii be the prime power such that Ri/Mi ' Fqi .
For each i, the construction of Pt(Ri) has been described above. We take the Cartesian

product ×si=1P
t(Ri) to refer simply to the incidence structure (P,B, I), where

i. a point P ∈ P is an s-tuple (P1, . . . , Ps) such that Pi is a point in Pt(Ri);
ii. a block B ∈ B is an s-tuple (B1, . . . , Bs) such that Bi is a block in Pt(Ri); and

iii. (P,B) ∈ I if (Pi, Bi) ∈ I for all i = 1, 2, . . . , s.

Theorem 3.1. There is a natural bijection between Pt(R) and ×si=1P
t(Ri) that pre-

serves incidence.

Proof. Let P = (a0 : · · · : at) be a point of Pt(R). For each j = 0, . . . , t, we think of
aj as (aj1, . . . , ajs) ∈ R1 × · · · × Rs. Since 〈a0, . . . , at〉 = R, it follows that for each
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COMBINATORIAL COVERINGS FROM GEOMETRIES 251

i = 1, . . . , s, 〈a0i, . . . , ati〉 = Ri. Let Pi be the point (a0i : · · · : ati) in Pt(Ri). For a
blockB = [x0 : · · · : xt] of Pt(R), we may similarly define a blockBi of Pt(Ri) for each
i = 1, . . . , s. We claim that the map

Ξ : Pt(R) → ×si=1P
t(Ri),

P 7→ (P1, . . . , Ps),
B 7→ (B1, . . . , Bs),

is the desired bijection that preserves the incidence relation.
The map Ξ is well defined in the sense that the image of a point (respectively, a block) of

Pt(R) under Ξ exists, and is uniquely defined. For instance, write P as (λa0 : · · · : λat),
where λ ∈ R×. Taking λ as (λ1, . . . , λs) ∈ R1×· · ·×Rs, it is clear that λi ∈ R×i for each
i = 1, . . . , s. Then (λia0i, . . . , λiati) defines the same point in Pt(Ri) as (a0i, . . . , ati),
namely Pi.

To see the surjectivity of Ξ, we start with a point (P1, . . . , Ps) of ×si=1P
t(Ri). Write

Pi = (a0i : · · · : ati). Define a0, . . . , at ∈ R as follows:

aj = (aj1, . . . , ajs) ∈ R1 × · · · ×Rs.
Since for each i, 〈a0i, . . . , ati〉 = Ri, it follows therefore that 〈a0, . . . , at〉 = R. So
P = (a0 : · · · : at) is indeed a point of Pt(R), and clearly Ξ(P ) = (P1, . . . , Ps).

For the injectivity of Ξ, let P = (a0 : · · · : at) and P ′ = (a′0 : · · · : a′t) be two points
such that Ξ(P ) = Ξ(P ′). Using the same notation as above, for all i = 1, . . . , s, we have

(a0i : · · · : ati) = (a′0i : · · · : a′ti).
In other words, there exists a λi ∈ R×i such that aji = λia

′
ji for all j = 0, . . . , t. Taking

λ ∈ R× to be λ = (λ1, . . . , λs) ∈ R1 × · · · × Rs, it then follows that aj = λa′j for
j = 0, . . . , t, that is, P = P ′.

Given a point P = (a0 : · · · : at) and a blockB = [x0 : · · · : xt] in Pt(R), recall that P
is incident withB if and only if (1) holds. In view of the identificationR = R1×· · ·×Rs,
(1) holds if and only if

t∑
j=0

ajixji = 0 in Ri, (2)

for i = 1, . . . , s. Now (2) is equivalent to saying that Pi is incident with Bi for every
i = 1, . . . , s, that is, the point (P1, . . . , Ps) of ×si=1P

t(Ri) is incident with the block
(B1, . . . , Bs).

This completes the proof of Theorem 3.1.

B. Blowing Up Coverings

In this section, we describe a construction for blowing up coverings.
Let S = (P,B, I) be a t-(v, k, a) covering, and λ, µ be positive integers. Let P ′ =

{P (i)|1 ≤ i ≤ µ, P ∈ P},B′ = {B(j)|1 ≤ j ≤ λ,B ∈ B}, and I ′ = {(P (i), B(j))|1 ≤
i ≤ µ, 1 ≤ j ≤ λ, and (P,B) ∈ I}. We call S ′ = (P ′,B′, I ′) the (µ, λ)-blowup of S.
For simplicity, we abbreviate (λ, λ)-blowup to λ-blowup. Let P ∈ P and B ∈ B. The set
{P (i)|1 ≤ i ≤ µ} is called the fiber of P , and the set {B(j)|1 ≤ j ≤ λ} is the fiber of B.
We define ϑλ,µ : S ′ → S to be the map such that ϑλ,µ(P (i)) = P for any P (i) ∈ P ′, and
ϑλ,µ(B(j)) = B for any B(j) ∈ B′. When λ = µ, we abbreviate ϑλ,µ to ϑλ.

 15206610, 1999, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/(SIC

I)1520-6610(1999)7:4<
247::A

ID
-JC

D
3>

3.0.C
O

;2-W
 by N

ational U
niversity O

f Singapore N
us L

ibraries T
echnical Services, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



252 CHEE AND LING

Lemma 3.1. The (µ, λ)-blowup of a t-(v, k, a) covering is a t-(µv, µk, λa) covering.

We omit the proof of Lemma 3.1, which is straightforward.
Let R be a finite PIR. Since Pt(R) is a t-(v, k, 1) covering, Lemma 3.1 applies, so we

denote by Pt
λ(R) the t-(λv, λk, λ) covering which is the λ-blowup of Pt(R).

C. Counting Points and Blocks

We now compute |P| and |B|, B ∈ B, for any Pt
λ(R) = (P,B, I), whereR is a finite PIR.

We continue to write R = R1 × · · · ×Rs, where R1, . . . , Rs are finite special PIRs.

Proposition 3.2. Let R be a finite PIR. The number of points (and hence the number of
blocks) in Pt

λ(R) is

λ|R|t
∏
i

(
1− 1
|Ri/Mi|t+1

)/(
1− 1
|Ri/Mi|

)
= λ

∏
i

q
(ri−1)t
i

(
qt+1
i − 1
qi − 1

)
.

Proof. By Theorem 3.1, it suffices to prove the Proposition in the case when R is a finite
special PIR, with maximal idealM,Mr = 0,Mr−1 6= 0 andR/M ' Fq, and when λ = 1.
We need to show that the number of points in this case is then (|R|t+1−|M |t+1)/(|R|−|M |).

A (t + 1)-tuple (a0, . . . , at) gives rise to a point in Pt(R) if and only if not all of
a0, . . . , at belong to M . Two such (t + 1)-tuples (a0, . . . , at) and (b0, . . . , bt) give rise
to the same point in Pt(R) if and only if there exists u ∈ R× such that ai = ubi for
0 ≤ i ≤ t.
Proposition 3.3. The number of points incident with a block in Pt

λ(R) is

λ|R|t−1
∏
i

(
1− 1
|Ri/Mi|t

)/(
1− 1
|Ri/Mi|

)
= λ

∏
i

(qri−1
i )t−1

(
qti − 1
qi − 1

)
.

By the principle of duality, this is also the number of blocks incident with a point.

Proof. Using the same argument as in the proof of Proposition 3.2, it suffices to prove this
Proposition when R is a finite special PIR with λ = 1.

Given a fixed block [x0 : · · · : xt] in Pt(R), we may suppose without loss of generality
that x0 6∈ M . A point (a0 : · · · : at) is incident with [x0 : · · · : xt] if and only if∑t
i=0 aixi = 0. Given a1, . . . , at, then a0 is uniquely determined since x0 is a unit. For

(a0 : · · · : at) to be a point in Pt(R), not all of a1, . . . , at can belong toM simultaneously.
The same argument as in Proposition 3.2 then completes the proof.

D. (2; λ)-Coverings

In the case when t = 2, given a set of two distinct points, we can determine precisely the
number of blocks that are incident with this set. We state this as:

Theorem 3.2. Let P1 and P2 be two points of P2
λ(R) such that ϑλ(P1) = (a : b : c) and

ϑλ(P2) = (d : e : f) in P2(R). Let (ai : bi : ci) and (di : ei : fi) be the points in P2(Ri)
(1 ≤ i ≤ s) corresponding toϑλ(P1) andϑλ(P2). If 〈aiei−bidi, aifi−cidi, bifi−ciei〉 =
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COMBINATORIAL COVERINGS FROM GEOMETRIES 253

Mαi
i , 0 ≤ αi ≤ ri, for each 1 ≤ i ≤ s, then the number of blocks in P2

λ(R) incident with
both P1 and P2 is

λ

( ∏
i:αi<ri

qαii

)( ∏
i:αi=ri

qri−1
i (qi + 1)

)
.

Proof. A block B = (B1, . . . , Bs) is incident with (a : b : c) and (d : e : f) in P2(R)
if and only if Bi is incident with (ai : bi : ci) and (di : ei : fi) for all i = 1, . . . , s. By
definition of Pt

λ(R) and Theorem 3.1, to prove Theorem 3.2, it suffices to prove it when
λ = 1 and when R is a finite special PIR, which we assume for the rest of this proof.

If there is a block in P2(R) incident with (a : b : c) and (d : e : f), then let it be
[x : y : z]. Without loss of generality, we may assume that a ∈ R×. By the definition of
P2(R), we have

ax+ by + cz = 0, (3)

dx+ ey + fz = 0. (4)

Eliminating x, we obtain

(ae− bd)y + (af − cd)z = 0. (5)

Suppose 〈ae−bd, af−cd〉 = Mβ , α ≤ β ≤ r. We have−c(ae−bd)+b(af−cd) ∈Mβ ,
that is, a(bf − ce) ∈ Mβ . Since a ∈ R×, we have that (bf − ce) ∈ Mβ . Therefore,
〈ae− bd, af − cd〉 = Mα = 〈ae− bd, af − cd, bf − ce〉.
Case (I): If α = r, then any y, z will satisfy (5). Note that if y ∈ M and z ∈ M , then (3)
implies that x ∈ M . Hence, in order to find triples (x, y, z) such that 〈x, y, z〉 = R, we
need to have y 6∈M or z 6∈M (or both). The number of (y, z) (and hence (x, y, z), since x
is uniquely determined by y, z) satisfying this condition is |R|2−|M |2. Hence the number
of blocks [x : y : z] incident with both points is

|R|2 − |M |2
|R| − |M | = qr−1(q + 1).

Case (II): If α < r, we may assume that ae − bd = uπα, where u ∈ R×. Writing
af − cd = vπα, (5) becomes

uy + vz ∈Mr−α. (6)

Note that if z ∈ M then y ∈ M , and by (3), x ∈ M . Therefore we need z 6∈ M in order
to find triples (x, y, z) such that 〈x, y, z〉 = R. The number of such (x, y, z) is given as
follows. For a given z, the number of y satisfying (6) [and hence (5)] is easily seen to be
|Mr−α| = qα. For z 6∈ M , there are |R| − |M | choices for z. The value of x is uniquely
determined by (y, z). Therefore the number of blocks [x : y : z] incident with both points
is

(|R| − |M |)|Mr−α|
|R| − |M | = qα.

Unfortunately, for t > 2, the situation becomes more complicated and we have not been
able to obtain a ‘‘nice’’ corresponding formula.

 15206610, 1999, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/(SIC

I)1520-6610(1999)7:4<
247::A

ID
-JC

D
3>

3.0.C
O

;2-W
 by N

ational U
niversity O

f Singapore N
us L

ibraries T
echnical Services, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



254 CHEE AND LING

4. APPLICATIONS

In this section, we give applications of the projective spaces over PIRs constructed above
to some design-theoretic problems in combinatorics.

A. An Infinite Family of Minimum (t; 1)-Coverings

The determination of the function Cλ(v, k, t) has a rich history and involved many re-
searchers (see bibliography in [8]). Let

Lλ(v, k, t) =
⌈
v

k

⌈
v − 1
k − 1

⌈
· · ·
⌈
v − t+ 1
k − t+ 1

λ

⌉
· · ·
⌉⌉⌉

.

Schönheim [9] establishedLλ(v, k, t) as a lower bound forCλ(v, k, t) for allv > k > t > 0.

In this subsection, we determine the values of C( q(q
t+1−1)
q−1 , q(q

t−1)
q−1 , t) for all positive

integers t and prime powers q by showing that the derived incidence structure of Pt(Fq) are
in fact minimum coverings. Our strategy is to evaluate Schönheim’s bound and then show
that the number of blocks in these coverings meets the bound. Previously, Todorov [11]
had shown that Pt(Fq) are minimum (t; 1)-coverings, but their derived incidence structures
seem not to have been studied.

Definition 4.1. Let S = (P,B, I) be an incidence structure. The derived incidence
structure of S at the point P ∈ P is the induced incidence structure SP = (PP ,BP , IP ),
where PP = P \ {P},BP = {B ∈ B|(P,B) ∈ I} = (P ), and IP = {(P ′, B)|P ′ 6=
P,B ∈ BP , and (P ′, B) ∈ I}.

Proposition 4.1. The derived incidence structure of a t-(v, k, λ) covering at any point
is a (t− 1)-(v − 1, k − 1, λ) covering.

The proof of Proposition 4.1 is omitted. We note that the idea of the proof is the same as in
[2, Lemma 1.7(ii)].

Corollary 4.1. The derived incidence structure of Pt+1(Fq) at any point is a

t-( q(q
t+1−1)
q−1 , q(q

t−1)
q−1 , 1) covering with qt+1−1

q−1 blocks.

Proof. That the derived incidence structure of Pt+1(Fq) at any point is a t-( q(q
t+1−1)
q−1 ,

q(qt−1)
q−1 , 1) covering follows immediately from Proposition 3.1 and Proposition 4.1. The

number of blocks in the derived incidence structure of Pt(Fq) is obtained from the fact that

the number of blocks incident with a point in Pt+1(Fq) is qt+1−1
q−1 (Proposition 3.3).

Proposition 4.2. Let q ≥ 2. Then for any positive integer t and any integer k, 0 ≤ k ≤
t− 1, we have ⌈∑t

i=0 q
i − k∑t−1

i=0 q
i − k ·

t−k−1∑
i=0

qi

⌉
=

t−k∑
i=0

qi.
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COMBINATORIAL COVERINGS FROM GEOMETRIES 255

Proof. It suffices to show that

t−k∑
i=1

qi <

∑t
i=0 q

i − k∑t−1
i=0 q

i − k ·
t−k−1∑
i=0

qi ≤
t−k∑
i=0

qi.

To show that
∑t−k
i=1 q

i <

∑t

i=0
qi−k∑t−1

i=0
qi−k ·

∑t−k−1
i=0 qi, consider

(
t∑
i=0

qi − k
)(

t−k−1∑
i=0

qi

)
−
(
t−1∑
i=0

qi − k
)(

t−k∑
i=1

qi

)

=
(
qt+1 − 1
q − 1

− k
)(

qt−k − 1
q − 1

)
−
(
qt − 1
q − 1

− k
)(

qt−k+1 − 1
q − 1

− 1
)

=
(qt+1 − 1− k(q − 1))(qt−k − 1)− (qt − 1− k(q − 1))(qt−k+1 − 1− (q − 1))

(q − 1)2

=
(qt−k − 1)(k(q − 1) + 1)

q − 1
> 0.

We now show that
∑t

i=0
qi−k∑t−1

i=0
qi−k ·

∑t−k−1
i=0 qi ≤∑t−k

i=0 q
i.

(
t−1∑
i=0

qi − k
)(

t−k∑
i=0

qi

)
−
(

t∑
i=0

qi − k
)(

t−k−1∑
i=0

qi

)

=
(
qt − 1
q − 1

− k
)(

qt−k+1 − 1
q − 1

)
−
(
qt+1 − 1
q − 1

− k
)(

qt−k − 1
q − 1

)
=

(qt − 1− k(q − 1))(qt−k+1 − 1)− (qt+1 − 1− k(q − 1))(qt−k − 1)
(q − 1)2

=
qt−k

q − 1
(qk − kq + k − 1).

It is not hard to show that qk − kq + k − 1 ≥ 0 for k ≥ 0; so the quantity on the right is
non-negative. This completes the proof.

Theorem 4.1. Let

L(m) =

⌈∑t
i=0 q

i − t+m∑t−1
i=0 q

i − t+m

⌈∑t
i=0 q

i − t+m− 1∑t−1
i=0 q

i − t+m− 1

×
⌈
· · ·
⌈∑t

i=0 q
i − t+ 1∑t−1

i=0 q
i − t+ 1

⌉
· · ·
⌉⌉⌉

, (7)

where 1 ≤ m ≤ t. Then L(m) =
∑m
i=0 q

i.
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256 CHEE AND LING

Proof. For m = 1, this result is Proposition 4.2 by letting k = t− 1. For general m ≥ 2,
we carry out an induction on m. Observe that

L(m) =

⌈∑t
i=0 q

i − t+m∑t−1
i=0 q

i − t+m
· L(m− 1)

⌉
.

By the induction hypothesis,

L(m) =

⌈∑t
i=0 q

i − t+m∑t−1
i=0 q

i − t+m
·
m−1∑
i=0

qi

⌉
.

By Proposition 4.2 (letting k = t−m) we have L(m) =
∑m
i=0 q

i.

Corollary 4.2. The derived incidence structure of Pt+1(Fq) at any point is a minimum

t-( q(q
t+1−1)
q−1 , q(q

t−1)
q−1 , 1) covering. Hence, C( q(q

t+1−1)
q−1 , q(q

t−1)
q−1 , t) = qt+1−1

q−1 for all t > 0
and prime powers q.

Proof. Corollary 4.1 gives

C

(
t+1∑
i=1

qi,
t∑
i=1

qi, t

)
≤

t∑
i=0

qi,

and Schönheim’s bound gives

C

(
t+1∑
i=1

qi,

t∑
i=1

qi, t

)
≥ L1

(
t+1∑
i=1

qi,

t∑
i=1

qi, t

)
= L(t),

where L is the function defined by (7). But L(t) =
∑t
i=0 q

i by Theorem 4.1.

B. An Infinite Family of Symmetric Minimum (2; 2)-Coverings

In [4], using P2(Z/4Z), the authors determined the functions C(2, 6, 6n · 28) for all n ≥ 0
and C(2, 6, 6n · 28− 5) for all n ≥ 1. Here, we construct an infinite family of minimum 2-
(2(q2 +q+1), 2(q+1), 2) coverings, for q a prime power, thereby completely determining
the values of C2(2(q2 + q + 1), 2(q + 1), 2). These minimum coverings are symmetric.

We compute the Schönheim bound Lλ(v, k, t) when v = λ(q2 + q + 1), k = λ(q + 1)
and t = 2.

Proposition 4.3. We have

Lλ(λ(q2 + q + 1), λ(q + 1), 2) = λ(q2 + q + 1)− q(λ− 2)

if λ− 2 ≤ q and λ ≥ 2.

Proof.

Lλ(λ(q2 + q + 1), λ(q + 1), 2) =
⌈
λ(q2 + q + 1)
λ(q + 1)

⌈
(λ(q2 + q + 1)− 1)λ

λ(q + 1)− 1

⌉⌉
=
⌈
q2 + q + 1
q + 1

⌈
λq + 1 +

(λ− 1)2

λq + (λ− 1)

⌉⌉
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COMBINATORIAL COVERINGS FROM GEOMETRIES 257

=
⌈
q2 + q + 1
q + 1

(λq + 2)
⌉

(since (λ− 1)(λ− 2) ≤ λq)

=
⌈
λ(q2 + q + 1)− q(λ− 2)− λ− 2

q + 1

⌉
= λ(q2 + q + 1)− q(λ− 2).

Corollary 4.3. P2
2(Fq) is a symmetric minimum 2-(2(q2 + q+ 1), 2(q+ 1), 2) covering.

Hence, C2(2(q2 + q + 1), 2(q + 1), 2) = 2(q2 + q + 1) for all prime powers q.

Proof. When λ = 2, L2(2(q2 + q + 1), 2(q + 1), 2) = 2(q2 + q + 1). From Proposition
3.2, P2

2(Fq) gives the appropriate covering realizing the number of blocks.

Remark. Starting from the Steiner system of a projective geometry giving C(q2 + q +
1, q + 1, 2) = q2 + q + 1, we obtain from the blowup construction the bound Cλ(2(q2 +
q + 1), 2(q + 1), 2) ≤ λ(q2 + q + 1). By computing the Schönheim bound as above, we
show that this last inequality is in fact an equality for λ = 2 (and so for λ = 1).

C. Imbrical Designs

From Proposition 4.3, we see easily that the number of blocks in the (2;λ)-covering P2
λ(Fq)

is q(λ−2) more than the lower bound of Schönheim. It is therefore natural to ask whether in
the case ofλ > 2, one can delete blocks from P2

λ(Fq) and still end up with a (2;λ)-covering.
The results in this section show that this is not possible.

Definition 4.2. A (t;λ)-imbrical design, or more specifically a t-(v, k, λ) imbrical de-
sign, is a t-(v, k, λ) covering (P,B, I) such that for any B ∈ B, there exists a set of t
distinct points incident with B that is also incident with exactly λ blocks (including B).

In an imbrical design, every block is essential; deleting a block results in an incidence
structure in which some set of t distinct points is incident with fewer than λ blocks. It is
obvious that minimum t-(v, k, λ) coverings are all t-(v, k, λ) imbrical designs. However,
the converse is not necessarily true. The 2-(v, k, λ) imbrical designs were introduced by
Mendelsohn and Assaf [7]. In [4], the authors showed that P2(Z/nZ) are 2-(v, k, 1)
imbrical designs. Here, we show that Pt

λ(R) are t-(v, k, λ) imbrical designs when R is a
finite PIR.

Theorem 4.2. If S is a t-(v, k, a) imbrical design, then the λ-blowup of S, denoted S ′
is a t-(λv, λk, λa) imbrical design.

Proof. Given a block B in S ′, to show the existence of a set of t distinct points Q =
{P1, . . . , Pt} incident with B such that there are exactly λa blocks incident with Q, it
suffices to show that {ϑλ(P1), . . . , ϑλ(Pt)} [incident with the block ϑλ(B)] have exactly
a blocks incident with it. Since S is a t-(v, k, a) imbrical design, the existence of such a
set of points is guaranteed.

Theorem 4.3. IfR is a finite PIR, then Pt(R) is a (t; 1)-imbrical design for every t ≥ 2.
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258 CHEE AND LING

Proof. Given a block B, where B = [x0 : · · · : xt] in Pt(R), it suffices to find a set of t
distinct points {P1, . . . , Pt} in Pt(R) such that B is the unique block incident with it.

First, we prove this fact in the case R is a finite special PIR (cf. [6, Theorem 2.6]).
Without loss of generality, we may assume that x0 ∈ R× and hence assume that the

block B is of the form [1 : x1 : · · · : xt]. The following set of t points in Pt(R),

Q = {(−x1 : 1 : 0 : · · · : 0), (−x2 : 0 : 1 : 0 : · · · : 0), . . . , (−xt : 0 : · · · : 0 : 1)},
is incident with B. Furthermore, any block incident with Q is of the form [a : ax1 : · · · :
axt], for some a ∈ R. In particular, we have a ∈ R× and [a : ax1 : · · · : axt] = [1 : x1 :
· · · : xt] = B is the unique block incident with Q.

When R = R1× · · ·Rs, where Ri are finite special PIRs, the block B may be regarded
as (B1, . . . , Bs) in×si=1P

t(Ri). From the above, for eachBi, we can find a set of t points
{Pi1, . . . , Pit} in Pt(Ri) such that Bi is the unique block in Pt(Ri) incident with it. For
each j between 1 and t, set Pj = (P1j , . . . , Psj). By Theorem 3.1, B is the unique block
in Pt(R) incident with {P1, . . . , Pt}. Therefore Pt(R) is an imbrical design for every
t ≥ 2.

Combining Theorems 4.2 and 4.3, we obtain:

Corollary 4.4. For every integer t ≥ 2, if R is a finite PIR, then Pt
λ(R) is a (t;λ)-

imbrical design.

D. Regular Covering Designs

Let S = (P,B, I) be a 2-(v, k, λ) covering design. An undirected multigraph G = (V,E)
is an excess of S if V = P , and the edge {P1, P2} appears precisely s times inG whenever
|{B ∈ B : (P1, B) ∈ I, (P2, B) ∈ I}| = λ + s. If the excess of S is regular of degree
∆, then S is called a regular 2-(v, k, λ) covering and ∆ is called the degree of S as a
2-(v, k, λ) covering. (Note that if S is a 2-(v, k, λ) covering with an excess that is regular
of degree ∆, then S is also a 2-(v, k, λ − ε) covering with an excess that is regular of
degree ∆ + (v − 1)ε. Therefore the degree is only well-defined relative to λ.) For a
fixed λ, if ∆ is as small as possible, then S is called a degree-minimum regular 2-(v, k, λ)
covering. When ∆ = 0,S is a BIBD. Degree-minimum regular coverings were first studied
by Bermond, Bond, and Sotteau [1]. These incidence structures have applications in the
design of bus interconnections for computer networks. In [4], it was shown that P2(Z/4Z)
is a degree-minimum regular 2-(v, k, 1) covering and based on this, an infinite family of
degree-minimum regular 2-(v, k, 1) coverings was constructed. Here, we show that there
is no peculiarity with the ring Z/4Z; more general results hold.

Theorem 4.4. If S is a regular 2-(v, k, a) covering, then the λ-blowup of S, denoted S ′,
is a regular 2-(λv, λk, λa) covering.

Proof. Let P be a point of S ′.
For a point P ′ 6= P in the same fiber as P (under ϑλ), the number of blocks incident

with {P, P ′} is λ times the number of blocks incident with ϑλ(P ), i.e., λk. The number
of P ′ in the same fiber as P (and P ′ 6= P ) is λ− 1.

For a point Q 6= ϑλ(P ) in S, let kQ be the number of blocks incident with {ϑλ(P ), Q}.
Since S is regular, the number

∑
Q6=ϑλ(P )(kQ − a) is constant. In fact, this sum is the

degree of the excess of D as a 2-(v, k, a) covering. Let it be denoted by ∆.
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COMBINATORIAL COVERINGS FROM GEOMETRIES 259

IfP ′ is not in the same fiber asP , then ϑλ(P ′) 6= ϑλ(P ). The number of blocks incident
with {P, P ′} is λkϑλ(P ′). Moreover, for eachQ 6= ϑλ(P ) in S, there exist exactly λ points
P ′ in S ′ such that ϑλ(P ′) = Q.

It follows then that, in the excess G of S ′ as a 2-(v, k, λa) covering, the degree of the
vertex P is given by∑

P ′ 6=P :ϑλ(P )=ϑλ(P ′)

(λk − λa) +
∑

P ′:ϑλ(P ) 6=ϑλ(P ′)

(λkϑλ(P ′) − λa)

= λ(λ− 1)(k − a) + λ
∑

Q6=ϑλ(P )

λ(kQ − a)

= λ(λ− 1)(k − 1) + λ2∆.

Since this degree is independent of the vertex chosen, every vertex ofG has the same degree
λ(λ− 1)(k − a) + λ2∆, and G is hence regular.

Theorem 4.5. Let R be a finite PIR. Then the excess of P2(R) (as a (2; 1)-covering) is
regular of degree

(∏
i

qri−1
i (qi + 1)

)(∏
i

qri−1
i (qi + 1)− 1

)

−
(∏

i

q
2(ri−1)
i (q2

i + qi + 1)

)
+ 1 = k(k − 1)− v + 1, (8)

where v is the number of points in P2(R) and k is the cardinality of block traces in P2(R).
Consequently, P2

λ(R) is a regular 2-(v, k, λ) covering of degreeλ(λ−1)(k−1)+λ2(k(k−
1)− v + 1).

Proof. The second statement follows immediately from the first by applying Theorem 4.4.
We now prove the first statement.

Let P = (a : b : c) be a given point P2(R). For every i = 1, 2, . . . , s, consider the
projection

Ψi : P2(R) → P2(Ri),
(a : b : c) 7→ (ai : bi : ci).

It has been shown that the map Ψi is well defined (see proof of Theorem 3.1).
For a point P ′ = (d : e : f) of P2(R), suppose we have

〈aiei − bidi, aifi − cidi, bifi − ciei〉 = Mαi
i , αi ≤ ri. (9)

If αi = ri, then it is clear from (9) that Ψi(P ) = Ψi(P ′). Hence, there exists a unit µi
of Ri such that

di ≡ µiai(mod Mri
i ),

ei ≡ µibi(mod Mri
i ),

fi ≡ µici(mod Mri
i ).
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260 CHEE AND LING

If αi < ri, then by considering Ψi(P ) and Ψi(P ′), and assuming without loss of
generality that ai is a unit in Ri, we obtain the congruences

aiei ≡ bidi(mod Mαi
i ),

aifi ≡ cidi(mod Mαi
i ), (10)

and at least one of the congruences in (10) fails when αi is replaced by αi + 1.
Now we count the number of triples (d, e, f) such that d, e, f generate R and (9) is

satisfied for each i = 1, . . . , s [that is, those (d, e, f) which will define a point in P2(R)].
We do so by counting the number of such triples ‘‘locally’’ at each i.

For αi = 0, the number of such triples in Ri ×Ri ×Ri is

(q3ri
i − q3(ri−1)

i )− (qrii − qri−1
i )q2(ri−1)

i = (qrii − qri−1
i )q2(ri−1)

i qi(qi + 1).

For 0 < αi < ri, the number is

(qrii − qri−1
i )q2(ri−αi)

i − (qrii − qri−1
i )q2(ri−αi−1)

i = (qrii − qri−1
i )q2(ri−αi−1)

i (q2
i − 1).

For αi = ri, this number is (qrii − qri−1
i ).

Therefore, for P = (a : b : c), the number of points P ′ = (d : e : f) such that (9) is
true for each i = 1, . . . , s, is given by∏

i:αi=ri

(qrii − qri−1
i )

∏
i:αi=0

(qrii − qri−1
i )q2(ri−1)

i qi(qi + 1)

×
∏

i:0<αi<ri

(qrii − qri−1
i )q2(ri−αi−1)

i (q2
i − 1)

/∏
i

(qrii − qri−1
i )

=
∏

i:αi=0

q
2(ri−1)
i qi(qi + 1)

∏
i:0<αi<ri

q
2(ri−αi−1)
i (q2

i − 1)

=
∏

i:αi<ri

(qi + 1)q2(ri−αi−1)
i

∏
i:αi=0

qi
∏

i:0<αi<ri

(qi − 1).

(The product is interpreted as 1 when αi = ri for all i. This means that 〈aiei−bidi, aifi−
cidi, bifi − ciei〉 = 0 for all i if and only if P ′ = P .) For such points P ′, the number of
blocks incident on {P, P ′} is (cf. Theorem 3.2)∏

i:αi<ri

qαii
∏

i:αi=ri

qri−1
i (qi + 1).

Therefore, in the excess G of P2(R), the degree of the vertex P is given by (writing
D = {∏i q

αi
i |0 ≤ αi ≤ ri for all i} and n =

∏
i q
ri
i )

∑
d∈D:d6=n

( ∏
i:αi<ri

(qi + 1)q2(ri−αi−1)
i

∏
i:αi=0

qi
∏

i:0<αi<ri

(qi − 1)

)

×
( ∏
i:αi<ri

qαii
∏

i:αi=ri

qri−1
i (qi + 1)− 1

)

=

(∏
i

qri−1
i (qi + 1)

) ∑
d∈D:d6=n

fn(d)−
∑

d∈D:d6=n
gn(d), (11)
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COMBINATORIAL COVERINGS FROM GEOMETRIES 261

where, for d =
∏
i q
αi
i ∈ D,

fn(d) =
∏

i:αi<ri

qri−αi−1
i

∏
i:αi=0

qi
∏

i:0<αi<ri

(qi − 1),

gn(d) =
∏

i:αi<ri

q
2(ri−1)−2αi
i (qi + 1)

∏
i:αi=0

qi
∏

i:0<αi<ri

(qi − 1).

Note that empty products in the definition of fn(d) and gn(d) are taken to be 1.
For a fixed n, the functions fn(d) and gn(d) can be regarded as multiplicative functions

of d ∈ D, so ∑
d∈D

fn(d) =
∏
i

 ri∑
j=0

fn(qji )


and ∑

d∈D
gn(d) =

∏
i

 ri∑
j=0

gn(qji )

 .

It follows then that ∑
d∈D:d6=n

fn(d) =
∏
i

qri−1
i (qi + 1)− 1. (12)

and ∑
d∈D: 6=n

gn(d) =
∏
i

q
2(ri−1)
i (q2

i + qi + 1)− 1. (13)

The degree of the vertex P is then obtained by substituting (12) and (13) in (11). Since the
degree is independent of the vertex chosen, G is regular of the degree stated in (8).

Proposition 4.4. If a 2-(v, k, λ) covering has an excess that is regular of degree ∆, then
v, k, λ, and ∆ must satisfy the following congruences:

λ(v − 1) + ∆ ≡ 0 (mod k − 1),

v(λ(v − 1) + ∆) ≡ 0 (mod k(k − 1)).

Proof. To prove the first congruence, let P be any fixed point of a regular 2-(v, k, λ)
covering S, and count in two ways the number of pairs of points, exactly one of which is
P , that are contained in the blocks of S.

To prove the second congruence, count in two ways the total number of pairs of distinct
points that are contained in the blocks of S.

Proposition 4.5. The smallest non-negative integer ∆ that satisfies

v − 1 + ∆ ≡ 0 (mod k − 1),

v(v − 1 + ∆) ≡ 0 (mod k(k − 1)), (14)

where v = q2(q2 + q + 1) (q prime power) and k = q(q + 1), is (q − 1)(q2 − 1).
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262 CHEE AND LING

Proof. For ∆ = (q − 1)(q2 − 1), we have

v − 1 + ∆ = q4 + q3 + q2 − 1 + (q3 − q2 − q + 1)
= q4 + 2q3 − q
= (q(q + 1)− 1)(q2 + q)
≡ 0 (mod k(k − 1)).

So ∆ = (q − 1)(q2 − 1) satisfies the congruences (14).
Any ∆ that satisfies the congruences (14) must satisfy

∆ ≡ −q2(q2 + q + 1) + 1 ≡ 2q − 1 (mod q2 + q − 1)

and

q2(q2 + q + 1)(q2(q2 + q + 1)− 1 + ∆) ≡ 0 (mod q(q + 1)),

that is,

q(q2 + q + 1)(q2(q2 + q + 1)− 1 + ∆) ≡ 0 (mod q + 1),

that is,

∆ ≡ 0 (mod q + 1).

Since q2 + q − 1 > (q − 1)2, it follows that

(q + 1)(q2 + q − 1) > (q − 1)(q2 − 1),

implying that (q − 1)(q2 − 1) is the smallest non-negative integer ∆ that satisfies the
congruences (14).

Corollary 4.5. If R is a finite special PIR such that M2 = 0,M 6= 0, then P2(R) is a
degree-minimum regular 2-(q2(q2 + q + 1), q(q + 1), 1) covering.

Proof. This follows immediately from Theorem 4.5 and Propositions 4.4, 4.5.

Corollary 4.6. For every prime power q, there is a degree-minimum regular 2-(q2(q2 +
q + 1), q(q + 1), 1) covering.

Proof. This follows immediately from Corollary 4.5 and the remark in Sec. 2 B.

Proposition 4.6. P2(Z/8Z) is a degree-minimum regular 2-(112, 12, 1) covering. Its
degree is 21.

Proof. Mimic the proof for Proposition 4.5.
For a finite special PIRRwithMr = 0,Mr−1 6= 0 andR/M ' Fq, when r ≥ 3, except

for the case q = 2 and r = 3, the degree of P2(R) is greater than (q+ 1)(qr−1(q+ 1)−1),
and so the argument in Proposition 4.5 fails to show that these are degree-minimum regular
coverings. It would be interesting to know if they still yield degree-minimum regular
coverings.

Corollary 4.7. P2
2(Z/4Z) is a degree-minimum regular 2-(56, 12, 2) covering of degree

22. P2
2(Z/9Z) is a degree-minimum regular 2-(234, 24, 2) covering of degree 86.

Proof. Mimic the proof for Proposition 4.5.
Now let us investigate the case when R = Fq.
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COMBINATORIAL COVERINGS FROM GEOMETRIES 263

Proposition 4.7. P2
λ(Fq) is a regular 2-(λ(q2 + q + 1), λ(q + 1), λ) covering. More-

over, the excess of P2
λ(Fq) is regular of degree λ(λ− 1)q.

Proof. Follows immediately from Theorems 4.5 and 4.4.

Proposition 4.8. If S is a minimum (2;λ)-covering that is regular, then S is a degree-
minimum regular (2;λ)-covering.

Proof. Follows easily from the observation that fewer lines in the covering results in fewer
edges in the corresponding excess.

Corollary 4.8. P2
2(Fq) is a degree-minimum regular 2-(2(q2 + q + 1), 2(q + 1), 2)

covering.

Proof. Corollary 4.3, Propositions 4.7, and 4.8 yield the result.
We now show that even though we cannot conclude from Propositions 4.7 and 4.8 that

P2
λ(Fq) is a degree-minimum regular covering for λ 6= 2 (because in this case P2

λ(Fq) is not
known to be a minimum covering), it is nevertheless a degree-minimum regular covering
for any λ ≤ q + 3.

Proposition 4.9. The smallest non-negative integer ∆ that satisfies

λ(v − 1) + ∆ ≡ 0 (mod k − 1),

v(λ(v − 1) + ∆) ≡ 0 (mod k(k − 1)),

where v = λ(q2 + q + 1), k = λ(q + 1), and λ ≤ q + 3, is λ(λ− 1)q.

Proof. First we check that ∆ = λ(λ − 1)q satisfies both the given congruences. This
follows from

λ(λ(q2 + q + 1)− 1) + λ(λ− 1)q = λ2q2 + 2λ2q + λ2 − λ− λq
= (λq + λ− 1)λ(q + 1)
≡ 0 (mod k(k − 1)).

Now we prove that this above value for ∆ is indeed the least non-negative value of ∆
that satisfies the congruences.

Any ∆ that satisfies the given congruences must satisfy

∆− λ(λ− 1)q ≡ 0 (mod k − 1), (15)

and

v(∆− λ(λ− 1)q) ≡ 0 (mod k(k − 1)). (16)

Note that (16) is true if and only if

λ(q2 + q + 1)(∆− λ(λ− 1)q) ≡ 0 (mod λ(q + 1)(λq + λ− 1)),

which is equivalent to

(q2 + q + 1)(∆− λ(λ− 1)q) ≡ 0 (mod (q + 1)(λq + λ− 1)). (17)
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264 CHEE AND LING

Congruence (17) implies

(q2 + q + 1)(∆− λ(λ− 1)q) ≡ 0 (mod q + 1). (18)

Since it is clear that q + 1 and q2 + q + 1 = q(q + 1) + 1 are relatively prime, we have
from (18)

∆ ≡ λ(λ− 1)q (mod q + 1). (19)

From (15), we get

∆ ≡ λ(λ− 1)q (mod λq + λ− 1). (20)

Since q + 1 and λq + λ− 1 = λ(q + 1)− 1 are relatively prime, the Chinese Remainder
Theorem implies that

∆ ≡ λ(λ− 1)q (mod (q + 1)(λq + λ− 1)). (21)

When λ = 1, λ(λ − 1)q = 0 is clearly the smallest non-negative ∆ that satisfies the
congruences given in the statement of the proposition.

When q − 1 ≥ λ ≥ 2, then q ≥ 3, so q2 − q > q + 1. This implies

λ(λ− 1)q ≤ (λ− 1)q(q − 1)
= λq(q − 1)− (q2 − q)
< λ(q + 1)2 − (q + 1)
= (q + 1)(λq + λ− 1). (22)

When q ≤ λ ≤ q + 3, it is straightforward to verify case by case that

λ(λ− 1)q ≤ (q + 1)(λq + λ− 1). (23)

Together with (21), the inequalities (22) and (23) show that λ(λ − 1)q is the small-
est non-negative value of ∆ that satisfies the congruences given in the statement of the
proposition.

Remark. For λ ≥ q + 4, an easy argument shows that λ(λ− 1)q > (q + 1)(λq + λ− 1).

Corollary 4.9. P2
λ(Fq) is a degree-minimum regular 2-(λ(q2 + q + 1), λ(q + 1), λ)

covering for all λ ≤ q + 3.

Proof. Follows immediately from Propositions 4.7, 4.4, and 4.9.
The method used here does not yield any conclusive result for λ ≥ q + 4. It would be

interesting to determine if the condition λ ≤ q + 3 can be removed in Corollary 4.9.
We now discuss the case when R is a finite PIR (i.e., not necessarily special).

Proposition 4.10. Let R = R1 × · · · × Rs be a finite PIR, so P2(R) is a 2-(v, k, 1)
covering, and let l = gcd(k, v). If

l <
k(k − 1)

k(k − 1)− v + 1
, (24)

then P2(R) is a degree-minimum regular 2-(v, k, 1) covering.

Proof. From Theorem 4.5, the degree of the excess of the regular 2-(v, k, λ) covering
P2(R) is ∆ = k(k− 1)− v+ 1. It is quite clear from the congruences (14) that the degree
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COMBINATORIAL COVERINGS FROM GEOMETRIES 265

of the excess of a regular 2-(v, k, 1) covering is unique modulo k(k − 1)/l. Therefore, if
(24) is true, then l < k(k − 1)/∆, implying 0 ≤ ∆ < k(k − 1)/l, which means P2(R) is
degree-minimum.

Corollary 4.10. IfR = Fq×· · ·×Fq (s times), then P2(R) is a degree-minimum regular
2-(v, k, 1) covering, where v = (q2 + q + 1)s and k = (q + 1)s.

Proof. This follows from Proposition 4.10 since l = gcd(k, v) = 1 in this case.

Corollary 4.11. Let q1 be a fixed prime power. Let q2 > q2
1 + q1 be another prime

power such that gcd(q2
1 + q1 + 1, q2 + 1) = 1. Then for R = Fq1 × Fq2 ,P2(R) is a

degree-minimum regular 2-(v, k, 1) covering, with v = (q2
1 + q1 + 1)(q2

2 + q2 + 1) and
k = (q1 + 1)(q2 + 1).

Proof. Since gcd(q2
1 + q1 + 1, q2 + 1) = 1, we have that l = gcd(q2

2 + q2 + 1, q1 +
1) ≤ q1 + 1. If q2 > q2

1 + q1, then q1q2 + q2
1 + 2q1 ≤ q1q2 + q1 + q2. Therefore,

q1(q1 + q2 + 2) ≤ (q1q2 + q1 + q2). So,

l ≤ q1 + 1 <
(q1 + 1)(q2 + 1)(q1q2 + q1 + q2)

q1q2(q1 + q2 + 2)
=

k(k − 1)
k(k − 1)− v + 1

.

We then complete the proof by invoking Proposition 4.10.

Corollary 4.12. For a fixed prime power q1, there exist infinitely many prime powers
q2 such that P2(Fq1 × Fq2) is a degree-minimum regular 2-(v, k, 1) covering, where v =
(q2

1 + q1 + 1)(q2
2 + q2 + 1) and k = (q1 + 1)(q2 + 1).

Proof. Dirichlet’s Theorem on the distribution of primes in an arithmetic progression
guarantees that there are infinitely many primes, and hence prime powers q2, satisfying the
conditions of Corollary 4.11.

Lemma 4.1. If q2 > q1 are prime powers, and

l ≤ q1 + 1
q1

· q2 + 1
q2

· q1 + 1
2

,

then P2(Fq1 ×Fq2) is a degree-minimum regular 2-(v, k, 1) covering with v = (q2
1 + q1 +

1)(q2
2 + q2 + 1) and k = (q1 + 1)(q2 + 1).

Proof. From q2 > q1, we have q2 ≥ q1 + 1, so q1 + q2 + 1 ≤ 2q2, that is, q1 + q2 +
2 ≤ 2q2 + 1. Therefore,

l ≤ q1 + 1
q1

· q2 + 1
q2

· q1 + 1
2

=
q1 + 1
q1

· q2 + 1
q2

· (q1 + 1)
(
q2 + 1

2

)
2
(
q2 + 1

2

)
<

q1 + 1
q1

· q2 + 1
q2

· q1q2 + q1 + q2

q1 + q2 + 2

=
k(k − 1)

k(k − 1)− v + 1
.
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266 CHEE AND LING

Example 4.1. For any prime power q ≥ 2 such that q 6≡ −1 mod 7, P2(F2 × Fq) is a
degree-minimum regular 2-(7(q2 + q + 1), 3(q + 1), 1) covering.

Proof. This is assured for q > 6 such that gcd(q+1, 7) = 1 (Corollary 4.11 of Proposition
4.10). For q = 2, 3, 4, 5, it is easy to check that (24) is satisfied.

Example 4.2. For any prime power q ≥ 3 such that q 6≡ −1 mod 13, P2(F3 × Fq) is a
degree-minimum regular 2-(13(q2 + q + 1), 4(q + 1), 1) covering.

Proof. Whenever gcd(q + 1, 13) = 1, it is easy to see that l = gcd(4(q + 1), 13(q2 + q +
1)) = 1, so (24) is satisfied.

Example 4.3. For any prime power q ≥ 5 such that q 6≡ −1 mod 31, P2(F5 × Fq) is a
degree-minimum regular 2-(31(q2 + q + 1), 6(q + 1), 1) covering.

Proof. For q > 5 such that q 6≡ −1 mod 31, we have l = gcd(6(q+ 1), 31(q2 + q+ 1)) =
gcd(6, q2 + q + 1) = 1 or 3. In any case, the condition in Lemma 4.1 is satisfied, so
P2(F5×Fq) is a degree-minimum covering. For q = 5, it is just a special case of Corollary
4.10 of Proposition 4.10.

Example 4.4. For any prime power q ≥ 7 such that q 6≡ −1 mod 19, P2(F7 × Fq) is a
degree-minimum regular 2-(57(q2 + q + 1), 8(q + 1), 1) covering.

Proof. For q > 7 such that q 6≡ −1 mod 19, we have l = gcd(8(q+ 1), 57(q2 + q+ 1)) =
gcd(q + 1, 57) = 1 or 3. In either case, the condition in Lemma 4.1 is satisfied, so
P2(F7 × Fq) is a degree-minimum covering. For q = 7, this is again a special case of
Corollary 4.10 of Proposition 4.10.

Example 4.5. For any prime power q ≥ 4 such that q 6≡ −1 mod 7, P2(F4 × Fq) is a
degree-minimum regular 2-(21(q2 + q + 1), 5(q + 1), 1) covering.

Proof. For q > 4 such that q 6≡ −1 mod 7, we have l = gcd(5(q + 1), 21(q2 + q + 1)) =
gcd(q + 1, 21) = 1 or 3. In either case, the condition in Lemma 4.1 is satisfied (since
4+1

4 · 4+1
2 > 3), so P2(F4 × Fq) is a degree-minimum covering. For q = 4, this is just a

special case of Corollary 4.10 of Proposition 4.10.

Example 4.6. For any prime power q ≥ 9 such that gcd(q + 1, 91) = 1,P2(F9 × Fq) is
a degree-minimum regular 2-(91(q2 + q + 1), 10(q + 1), 1) covering.

Proof. Since l = gcd(10(q+ 1), 91(q2 + q+ 1)) = gcd(q+ 1, 91) = 1, (24) is satisfied.

Example 4.7. For any prime power q ≥ 8 such that q 6≡ −1 mod 73, P2(F8 × Fq) is a
degree-minimum regular 2-(73(q2 + q + 1), 9(q + 1), 1) covering.

Proof. For q > 8 such that q 6≡ −1 mod 73, l = gcd(9(q + 1), 73(q2 + q + 1)) =
gcd(9, q2 +q+1) = 1 or 3, so the condition in Lemma 4.1 is satisfied (since 8+1

8 · 8+1
2 > 3).

Therefore, P2(F8 × Fq) is a degree-minimum covering. For q = 8, this follows from
Corollary 4.10 of Proposition 4.10.

Further families of regular coverings can be constructed using combinatorial structures
called orthogonal arrays.
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COMBINATORIAL COVERINGS FROM GEOMETRIES 267

Definition 4.3. Let S be a set of cardinality v. A (v, k, λ) orthogonal array, denoted
OA(v, k, λ), is a k × v2λ matrix with entries from S such that each 2 × v2λ submatrix
contains every possible 2× 1 column vector precisely λ times.

We note that the existence of an OA(v, k, λ) implies the existence of an OA(v, k′, λ) for
all k′ < k (simply by deleting rows of the orthogonal array).

In [5], Gardner generalized a quadrupling construction of Stanton, Kalbfleish, and Mullin
[10] to a k-tupling construction for 2-(v, k, 1) coverings. We extend Gardner’s k-tupling
construction to 2-(v, k, λ) coverings for any λ.

Proposition 4.11 (k-Tupling Construction). Let S = (P,B, I) be a 2-(v, k, λ) cov-
ering and let 0 ≤ a ≤ v. If there exists an OA(v − a, k, λ), then there exists a 2-
(kv − (k − 1)a, k, λ) covering with k|B|+ (v − a)2λ blocks.

Proof. Let Si = (Pi,Bi, Ii) be a 2-(v, k, λ) covering, isomorphic to S, with Pi =
{Pj |1 ≤ j ≤ a}∪{Pi,a+j |1 ≤ j ≤ v−a}, for 1 ≤ i ≤ k. Now take an OA(v−a, k, λ)M
with entries from the set S = {a + 1, a + 2, . . . , v}. In this orthogonal array M , we
replace the entry M(i, j) by Pi,M(i,j) for all rows i and columns j. Let S ′ = (P ′,B′, I ′)
be an incidence structure such that P ′ = {Pi,j |1 ≤ i ≤ k, a + 1 ≤ j ≤ v},B′ =
{{M(1, i),M(2, i), . . . ,M(k, i)}|1 ≤ i ≤ (v − a)2λ}, and for P ∈ P ′, B ∈ B′, we
have (P,B) ∈ I ′ if and only if P ∈ B. It is straightforward to verify that (∪ki=1Pi,B′ ∪
(∪ki=1Bi), I ′ ∪ (∪ki=1Ii)) is a 2-(kv − (k − 1)a, k, λ) covering with k|B| + (v − a)2λ
blocks.

Proposition 4.12. If there exists an OA(v, k, λ) and there exists a 2-(v, k, λ) covering S
with regular excess of degree ∆, then the k-tupling construction (with a = 0) produces a
regular 2-(kv, k, λ) covering with regular excess of degree ∆.

Proof. Each of the pairs of points {Pi,j , Pi′,j′}, 1 ≤ i, i′ ≤ k, i 6= i′, 1 ≤ j, j′ ≤
v, is incident with exactly λ blocks of the constructed 2-(kv, k, λ) covering, and hence
contributes no edge to the excess. Consequently, the excess of this 2-(kv, k, λ) covering is
a disjoint union of k copies of the excess of S.

The following theorem on the existence of orthogonal arrays was obtained by Bose and
Bush [3].

Theorem 4.6. If v and λ are both powers of the same prime, then an OA(v, λv + 1, λ)
always exists.

Most of the work on orthogonal arrays focused on the case λ = 1. When λ = 1, Theorem
4.6 yields the well-known result that there exists an OA(v, v + 1, 1) whenever v is a prime
power.

Corollary 4.13. Let q be a prime power such that q2 + q + 1 is also a prime power.
Then there exists a 2-((q + 1)(q2 + q + 1), q + 1, 1) design.

Proof. The existence of an OA(q2 + q + 1, q + 1, 1) guarantees that Propositions 4.7 and
4.12 give a 2-((q + 1)(q2 + q + 1), q + 1, 1) design.

Potentially, an infinite number of 2-((q + 1)(q2 + q + 1), q + 1, 1) designs could be
obtained from Corollary 4.13. This would depend on whether there are infinitely many
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prime powers of the form q2 + q+ 1, where q is a prime power. However, this is at present
an unsolved problem in number theory.

The existence of orthogonal arrays is also far from settled. We regret that we could
not find any orthogonal arrays with λ > 1 that would enable us to construct more regular
coverings from those presented in this section via Proposition 4.12. We present these
results, however, in the hope that the appropriate orthogonal arrays would be discovered in
the future.

5. CONCLUSION

We have shown in this article that certain incidence structures over principal ideal rings
possess many interesting combinatorial properties. These incidence structures are all shown
to be imbrical designs. These incidence structures allow us to determine the values of

C( q(q
t+1−1)
q−1 , q(q

t−1)
q−1 , t), and C2(2(q2 + q + 1), 2(q + 1), 2) for all positive integers t and

prime powers q. We also exhibit many infinite families of regular covering designs that are
degree-minimum. We note that the PIRs used to obtain the best results (e.g., to determine
the two covering numbers mentioned above) are often found to be finite fields.
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