
42

Deciding the Confusability of Words under Tandem Repeats

in Linear Time

YEOW MENG CHEE, National University of Singapore, Singapore

JOHAN CHRISNATA, HAN MAO KIAH, and TUAN THANH NGUYEN,

Nanyang Technological University, Singapore

Tandem duplication in DNA is the process of inserting a copy of a segment of DNA adjacent to the original

position. Motivated by applications that store data in living organisms, Jain et al. (2016) proposed the study of

codes that correct tandem duplications to improve the reliability of data storage. We investigate algorithms

associated with the study of these codes.

Two words are said to be �k-confusable if there exists a sequence of tandem duplications for each word,

where each duplication is of length at most k , such that the resulting two words after duplications are equal.

For k = 3, we demonstrate that the problem of deciding whether two words is �3-confusable is linear-time

solvable through a characterisation that can be checked efficiently. Combining with previous results, the

decision problem is linear-time solvable for k � 3. We conjecture that this problem is undecidable for k > 3.

Using insights gained from the algorithm, we study the size of tandem-duplication codes. We improve

the previous known upper bound and then construct codes with larger sizes as compared to the previous

constructions. We determine the sizes of optimal tandem-duplication codes for lengths up to 20, develop

recursive methods to construct tandem-duplication codes for all word lengths, and compute explicit lower

bounds for the size of optimal tandem-duplication codes for lengths from 21 to 30.

CCS Concepts: • Mathematics of computing → Combinatorics on words; • Applied computing →

Bioinformatics;

Additional Key Words and Phrases: Tandem duplications, DNA-based data storage

ACM Reference format:

Yeow Meng Chee, Johan Chrisnata, Han Mao Kiah, and Tuan Thanh Nguyen. 2019. Deciding the Confusability

of Words under Tandem Repeats in Linear Time. ACM Trans. Algorithms 15, 3, Article 42 (July 2019), 22 pages.

https://doi.org/10.1145/3338514

1 INTRODUCTION

At the beginning of the millenium, Lander et al. [9] published a draft sequence of the human
genome and reported that more than 50% of the human genome consists of repeated substrings
[9]. There are two types of common repeats: interspersed repeats and tandem repeats. Interspersed

This work is supported in part by the Singapore Ministry of Education under Grant No.: MOE2015-T2-2-086.

Authors’ addresses: Y. M. Chee, National University of Singapore, Department of Industrial Systems Engineering and Man-

agement, 1 Engineering Drive 2, Singapore 117576; email: pvocym@nus.edu.sg; J. Chrisnata, H. M. Kiah, and T. T. Nguyen,

Nanyang Technological University, School of Physical and Mathematical Sciences, 21 Nanyang Link, Singapore 637371;

emails: {johanchr001, hmkiah, nguyentu001}@ntu.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1549-6325/2019/07-ART42 $15.00

https://doi.org/10.1145/3338514

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

https://doi.org/10.1145/3338514
mailto:permissions@acm.org
https://doi.org/10.1145/3338514
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3338514&domain=pdf&date_stamp=2019-07-16

42:2 Y. M. Chee et al.

repeats are caused by transposons when a segment of DNA is copied and pasted into new positions
of the genome. In contrast, tandem repeats are caused by slipped-strand mispairings [13], and
they occur when a pattern of one or more nucleotides is repeated and the repetitions are adjacent
to each other. For example, consider the word AGTAGTCTGC. The substring AGTAGT is a tandem
repeat, and we say that AGTAGTCTGC is generated from AGTCTGC by a tandem duplication of length
three. Tandem repeats are believed to be the cause of several genetic disorders [3, 17, 18] and this
motivated the study of tandem duplication mechanisms in a variety of contexts.

• Formal languages: Leopold et al. [10, 11] defined the unbounded duplication language and
thek-bounded duplication language to be the set of words generated by seed word under tan-
dem duplications of unbounded length and tandem duplications of length up to k , respec-
tively. They investigated certain decidability problems involving unbounded duplication
languages and showed that all k-bounded duplication languages are context free. Further-
more, they showed that k-bounded duplication language is always regular for any binary
seed and k � 1. However, the k-bounded duplication language is not regular for any square-

free seed word over an alphabet of at least three letters and k � 4. More recently, Jain et al.
[6] completed this characterization and proved that k-bounded duplication languages are
regular for k � 3.

• Information theory: Farnoud et al. [2] introduced the concept of capacity to determine
average information content of a k-bounded duplication language. Later, Jain et al. [6] in-
troduced the notion of expressiveness to measure a language’s capability to generate words
that contain certain desired substrings. A complete characterization of fully expressive
k-bounded duplication languages was provided by Jain et al. for all alphabet sizes and all k .

• Codes correcting tandem duplications: Motivated by applications that store data in liv-
ing organisms [1, 4, 12, 15], Jain et al. [7] proposed the study of codes that correct tandem
duplications to improve the reliability of data storage. They investigated various types of
tandem duplications and provided optimal code construction for uniform tandem duplica-
tion channel and in the case where tandem duplication length is at most two.

In this article, we study the last problem and investigate algorithms associated with these codes.
In particular, given two words x and y, we look for efficient algorithms that answer the following
question:

When are the words x and y confusable under tandem repeats? In other words, are
there two sequences of tandem duplications such that the resulting words x′ and
y′ are equal?

Interestingly, as we demonstrate, even for small duplication lengths, the solutions to this ques-
tion are nontrivial. This is surprising as efficient algorithms are well known for analogous ques-
tions in other problems in string matching [14]. Before we give an account of these results, we
introduce some necessary notations and provide a formal statement of our problem.

2 PRELIMINARIES

Let Σq = {0, 1, . . . ,q − 1} be an alphabet of q � 2 symbols. For a positive integer n, let Σn
q denote

the set of all strings or words of length n over Σq , and let Σ∗q denote the set of all finite words over
Σq , or the Kleene closure of Σq . Given two words x ,y ∈ Σ∗q , we denote their concatenation by xy.

We state the tandem duplication rules. For nonnegative integers k � n and i � n − k , we define
Ti,k : Σn

q → Σn+k
q such that

Ti,k (x) = uvvw, where x = uvw, |u | = i, |v | = k .

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

Deciding the Confusability of Words under Tandem Repeats in Linear Time 42:3

If a finite sequence of tandem duplications of length k is performed to obtain y from x , then

we say that y is a k-descendant of x , or x is a k-ancestor of y, and denote this relation by x
∗
=⇒
k

y.

Formally, x
∗
=⇒
k

y means that for some positive t , there exist t non-negative integers i1, i2, . . . it

such that y = Tit ,k ◦Tit−1,k ◦ · · · ◦Ti1,k (x).
Given a sequence x and integer k , we consider the set of words that may be obtained from x via

a finite number of tandem duplications of length k . We define the k-descendant cone of x to be the
set of all k-descendants of x and denote this cone by D∗

k
(x). In other words,

D∗k (x) �
{
y ∈ Σ∗q | x

∗
=⇒
k

y
}
.

Our work studies tandem duplications whose lengths are upper bounded by an integer k , and
we extend the previous definitions. Formally, if a finite sequence of tandem duplications of length
up to k is performed to obtain y from x , then we say that y is a �k-descendant of x and denote

this relation by x
∗
===⇒
�k

y. We have analogous definitions of �k-descendant, �k-ancestor, and �k-

descendant cone D∗�k
(x).

Example 2.1. Consider x = 01210 over Σ3. Since T1,3 (x) = 01211210 and T0,2 (01211210) =

0101211210, we write 01210
∗
=⇒
3

01211210 and 01210
∗
==⇒
�3

0101211210. Alternatively, we have that

01211210 ∈ D∗3 (x) and 0101211210 ∈ D∗�3
(x).

2.1 Problem Formulation

Motivated by applications that store data on living organisms, Jain et al. [7] looked at the �k-
descendant cones of a pair of words and asked whether the two cones have a nontrivial intersec-
tion. Specifically, we introduce the notion of confusability.

Definition 2.2 (Confusability). Two words x andy, are said to bek-confusable ifD∗
k

(x) ∩ D∗
k

(y) �
∅. Similarly, they are said to be �k-confusable if D∗�k

(x) ∩ D∗�k
(y) � ∅.

To design error-correcting codes that store information in the DNA of living organisms, Jain
et al. then proposed the use of codewords that are not pairwise confusable.

Definition 2.3 (�k-Tandem-Duplication Codes). A subset C ⊂ Σn
q is a�k-tandem-duplication code

if for all x ,y ∈ C and x � y, we have that x and y are not �k-confusable. We say that C is an
(n,�k ;q)-tandem-duplication code or (n,�k ;q)-TD code.

Therefore, to determine if a set of words is a tandem-duplication code, we need to verify that
all pairs of distinct words are not confusable. Hence, we state our problem of interest.

Confusability Problem
Instance: Two words x and y over Σq and an integer k
Question: Are x and y �k-confusable?

While the confusability problem is a natural question, efficient algorithms are only known for
the case where k ∈ {1, 2}. We review these results in the next subsection.

2.2 Previous Work

Confusability. We summarize known efficient algorithms that determine whether two words are
k-confusable for all k , and whether they are �k-confusable for k ∈ {1, 2}. We then highlight why
these methods cannot be extended for the case k � 3. Crucial to the algorithms is the concept of
irreducible words and roots.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

42:4 Y. M. Chee et al.

Definition 2.4. A word x is said to be k-irreducible if x cannot be deduplicated into shorter words

with deduplication of length k . In other words, ify
∗
=⇒
k

x , theny = x . The set of k-irreducible q-ary

words is denoted by Irrk (q) and the set of k-irreducible words of length n is denoted by Irrk (n,q).
The k-ancestors of x ∈ Σ∗q that are k-irreducible words are called the k-roots of x . The set of k-roots

of x is denoted by Rk (x). In a similar fashion, we have the definitions of �k-irreducible words and
�k-roots of x , and the notation Irr�k (q), Irr�k (n,q), and R�k (x).

Example 2.5. For alphabet Σ3, we have R�3 (01012012) = {012}, and R�2 (012012) = {012012}.
However, R�4 (012101212) = {012, 0121012}.

As we see, it is possible for a word to have more than one root. Jain et al. [7] determined when
a tandem duplication system has only one root, irrespective of the word, and provided efficient
algorithms to compute this unique root.

Proposition 2.6 (Jain et al. [7]). For any x ∈ Σ∗q , we have that |Rk (x) | = 1 for all k , and

|R�k (x) | = 1 for all k ∈ {1, 2, 3}. Furthermore, there exist linear-time algorithms to compute Rk (x)
for all k .

One may easily derive linear-time algorithms to compute R�k (x) for all k ∈ {1, 2, 3}. For com-
pleteness, we formally describe these algorithms in Appendix A.

As it turns out, for certain cases, determining the confusability of two words is equivalent to
computing the roots for the words.

Proposition 2.7 (Jain et al. [7]). For all x ,y ∈ Σ∗q , we have that

(i) x and y are k-confusable if and only if Rk (x) = Rk (y) for all k ;

(ii) x and y are �k-confusable if and only if R�k (x) = R�k (y) for k ∈ {1, 2}.
(iii) If R�3 (x) � R�3 (y), then x and y are not �3-confusable.

In other words, when k ∈ {1, 2}, to determine x and y are � k-confusable, it is both necessary
and sufficient to compute the �k-roots of x and y. Therefore, applying Proposition 2.6 and the
algorithms in Appendix A, we are able to determine whether two words are �k-confusable in
linear time for k ∈ {1, 2}.

Unfortunately, when k = 3, it is no longer sufficient to compute the �3-roots of x andy. Specifi-
cally, even though R�3 (x) = R�3 (y), it is possible that x andy are not �3-confusable. We illustrate
this in the next example.

Example 2.8. Consider x = 012012 and y = 011112 over Σ3. The words have the same root as
R�3 (x) = R�3 (y) = {012}. However, x and y are not �3-confusable, because any �3-descendant
of x has a 2 to the left of a 0, whereas any �3-descendant of y does not.

Therefore, the next smallest open case is where k = 3. A polynomial-time algorithm is implied
by the results of Leupold et al. [11] and Jain et al. [6].

Proposition 2.9 (Leupold et al. [11], Jain et al. [6]). Let k ∈ {2, 3}. Let x ∈ Σ∗q . Then D∗�k
(x)

is a regular language. Furthermore, if |x | =m, then the deterministic finite automaton that generates

D∗�k
(x) has O (m) vertices and O (m) edges. The number of vertices and edges is independent of the

alphabet size.

Therefore, for two words x and y with |x | =m and |y | = n, the language D∗�3
(x) ∩ D∗�3

(y) is

regular and the corresponding finite automaton hasO (mn) vertices andO (mn) edges (see for exam-
ple, Sipser [16, Footnote 3, Theorem 1.25]). Hence, to determine if x andy are confusable, it suffices
to determine if the language D∗�3

(x) ∩ D∗�3
(y) is nonempty. The latter can be done inO (mn) time.

We improve this running time by providing an algorithm that runs in O (max{m,n}) time.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

Deciding the Confusability of Words under Tandem Repeats in Linear Time 42:5

Code Construction. We are interested in determining the maximum possible size of an (n,�k ;q)-
TD code. An (n,�k ;q)-TD code that achieves this maximum is said to be optimal.

Motivated by Proposition 2.7, Jain et al. used irreducible words to construct tandem-duplication
codes.

Construction 1. For k ∈ {2, 3} and n � k . An (n,�k ;q)-TD code CI (n,�k ;q) is given by

CI (n,�k ; 3) =
n⋃

i=1

{
ξn−i (x) | x ∈ Irr�k (i,q)

}
.

Here, ξi (x) = xzi , where z is the last symbol of x . In other words, ξi (x) is the sequence x with its last

symbol z repeated i more times. Furthermore, the size of CI (n,�k ;q) is
∑n

i=1
���Irr�k (i,q)���.

It then follows from Proposition 2.7 that CI (n,�2;q) is an optimal (n,�2;q)-TD code. Unfortu-
nately, the TD code CI (n,�3;q) is not an optimal for n � 6, and we illustrate this via the following
example.

Example 2.10. Consider n = 6, q = 3. The code CI (6,� 3; 3) from Construction 1 is given by

CI (6,�3;q) = {aaaaaa | a ∈ Σ3} ∪ {abbbbb | a,b ∈ Σ3,a � b}
∪ {abaaaa,abcccc | a,b, c ∈ Σ3,a � b,b � c,a � c}
∪ {abaccc,abcaaa,abcbbb | a,b, c ∈ Σ3,a � b,b � c,a � c}
∪ {abacaa,abacbb,abcabb,abcacc,abcbaa | a,b, c ∈ Σ3,a � b,b � c,a � c}
∪ {abacab,abacba,abacbc,abcaba,abcacb,abcbab,abcbac | a,b, c ∈ Σ3,a � b,b � c,a � c}.

Hence, |CI (6,�3; 3) | = 111. However, we may remove from CI (6,�3; 3) the six codewords
{abcccc | a,b, c ∈ Σ3,a � b,b � c,a � c} and augment the code with twelve more codewords
{abcabc,abbbbc | a,b, c ∈ Σ3,a � b,b � c,a � c}. Then, we can check that the new code has size
117, and we later verify using Proposition 2.11 that the new code is indeed optimal. For lengths at
least six, we construct TD codes with strictly larger sizes.

Upper Bound. We also study upper bounds on the size of an optimal (n,�3;q)-TD code. By defi-
nition, an (n,�3;q)-TD code is also an (n,�2;q)-TD code. Since an optimal (n,�2;q)-TD code is
provided by Construction 1, we have the following upper bound on the size of an optimal (n,�3;q)-
TD code.

Proposition 2.11. The size of an (n,�3;q)-TD code is at most
∑n

i=1
���Irr�2 (i,q)���.

Proposition 2.11 implies that Construction 1 is tight for k = 3 and n � 5. Using a combinatorial
characterization implied by our algorithm, we improve this upper bound for longer lengths in
Section 4.

2.3 Our Contributions

• Confusability. In Section 3, we present sufficient and necessary conditions for two words
to be �3-confusable and propose a linear-time algorithm to solve the �3-confusability
problem.

• Estimates on code sizes. Using insights gained from Section 3, we study the size of
tandem-duplication codes in Section 4. We first improve the upper bound given by Propo-
sition 2.11 and then construct codes with larger sizes as compared to those given by Con-
struction 1. We also provide certain explicit constructions and recursive constructions for
tandem-duplication codes. Furthermore, we determine the sizes of optimal �3-tandem-
duplication codes for lengths up to 20.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

42:6 Y. M. Chee et al.

3 DETERMINING �3-CONFUSABILITY

We derive a linear-time algorithm to determine the �3-confusability of two words x and y. For
the sake of simplicity, we omit the use of “�3” and assume confusable, descendant, and root to
mean �3-confusable, �3-descendant, and �3-root, respectively.

Prior to stating the algorithm, we make some technical observations on tandem duplications of
length at most three. The first lemma states that given a sequence of tandem duplications, we may
reorder the tandem duplications such that the lengths of the repeats are nonincreasing.

Lemma 3.1. Let k1 < k2 � 3 and x ∈ Σ∗q . Suppose that Ti2,k2
◦Ti1,k1

(x) = x ′ for some i1, i2. Then

there exist integers 3 � �1 � �2 � · · · � �t and j1, j2, . . . , jt such that

Tjt , �t
◦Tjt−1, �t−1 ◦ · · · ◦Tj1, �1 (x) = x ′.

Proof. Consider a sequence of two tandem duplicationsTi2,k2
◦Ti1,k1

with k1 < k2 � 3. We re-
place the sequence of duplications according to the following rules.

• Suppose that k1 = 1 and k2 = 3.
(a) If i2 � i1 − 2, then substitute with Ti1+3,1 ◦Ti2,3.
(b) If i2 = i1 − 1, then substitute with Ti1+3,1 ◦Ti1,1 ◦Ti1−1,2.
(c) If i2 = i1, then substitute with Ti1+3,1 ◦Ti1,1 ◦Ti1,2.
(d) If i2 � i1 + 1, then substitute with Ti1,1 ◦Ti2−1,3.
• Suppose that k1 = 2 and k2 = 3.

(a) If i2 � i1 − 1, then substitute with Ti1+3,2 ◦Ti2,3.
(b) If i2 = i1, then substitute with Ti2,1 ◦Ti1,2 ◦Ti1,2.
(c) If i2 = i1 + 1, then substitute with Ti1+3,1 ◦Ti1,2 ◦Ti1,2.
(d) If i2 � i1 + 2, then substitute with Ti1,2 ◦Ti2−2,3.
• Suppose that k1 = 1 and k2 = 2.

(a) If i2 � i1 − 1, then substitute with Ti1+2,1 ◦Ti2,2.
(b) If i2 = i1, then substitute with Ti1,1 ◦Ti1,1 ◦Ti1,1.
(c) If i2 � i1 + 1, then substitute with Ti1,1 ◦Ti2−1,2.

Thus, given a sequence of tandem duplications, we may reorder the tandem duplications such
that the lengths of the repeats are non-increasing. �

The next lemma states that we may assume the duplications of length two and three are per-
formed on segments whose symbols are distinct. This is because if a duplication is performed on a
segment whose symbols are not distinct, then we may find an equivalent sequence of duplications
of strictly shorter lengths.

Lemma 3.2. Let k ∈ {2, 3}. Suppose Ti,k (x) = uvvw , where x = uvw , |u | = i and |v | = k . If the

symbols inv are not pairwise distinct, then there exist integers k > �1 � �2 and j1, j2 such that

Tj2, �2 ◦Tj1, �1 (x) = Ti,k (x).

Proof. When k = 3, we consider the following three cases.

• Duplication of aba to abaaba is equivalent to T2,1 ◦T1,2 (aba) = T2,1 (ababa) = abaaba.
• Duplication of aab to aabaab is equivalent to T3,1 ◦T1,2 (aab) = T3,1 (aabab) = aabaab.
• Duplication of abb to abbabb is equivalent to T1,1 ◦T0,2 (abb) = T1,1 (ababb) = abbaab.
• Duplication of aaa to aaaaaa is equivalent to T0,1 ◦T0,2 (aaa) = T0,1 (aaaaa) = aaaaaa.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

Deciding the Confusability of Words under Tandem Repeats in Linear Time 42:7

When k = 2, we consider the duplication of length two on aa to obtain aaaa. This is equiv-
alent to T0,1 ◦T0,1 (aa) = T0,1 (aaa) = aaaa. Therefore, if a duplication is performed on a segment
whose symbols are not distinct, then we may find an equivalent sequence of duplications of strictly
shorter lengths. �

Henceforth, we use the notation x
∗
==⇒
kd

y to denote that there is a sequence of tandem duplica-

tions of length k of distinct symbols from x toy. It follows from definition that x
∗
=⇒
1
y is equivalent

to x
∗
==⇒
1d

y. The next lemma is immediate from Lemmas 3.1 and 3.2.

Lemma 3.3. Suppose that x
∗
==⇒
�3

x ′. Then there exist x1 and x2 such that x
∗
==⇒
3d

x2
∗
==⇒
2d

x1
∗
==⇒
1d

x ′.

Furthermore, x1 and x2 are uniquely determined by x1 = R1 (x ′) and x2 = R�2 (x ′).

Equipped with this lemma, we state the following theorem that provides a necessary and suffi-
ciency condition for two words to be confusable.

Theorem 3.4. Two words x and y are �3-confusable if and only if there exist x ′ and y ′ such that

x
∗
==⇒
3d

x ′, y
∗
==⇒
3d

y ′ and R�2 (x ′) = R�2 (y ′).

Proof. Suppose that x andy are confusable. Then there exists z such that x
∗
==⇒
�3

z andy
∗
==⇒
�3

z.

By Lemma 3.3, there exist x1,x2,y1,y2 such that x
∗
==⇒
3d

x2
∗
==⇒
2d

x1
∗
==⇒
1d

z and y
∗
==⇒
3d

y2

∗
==⇒
2d

y1

∗
==⇒
1d

z.

Hence, we set x ′ = x2 and y ′ = y2. Note that by Proposition 2.7, R�2 (x ′) = R�2 (y ′), since x ′ and
y ′ are �2-confusable.

Conversely, suppose that there exist x ′ and y ′ such that x
∗
==⇒
3d

x ′, y
∗
==⇒
3d

y ′, and R�2 (x ′) =

R�2 (y ′). Since x ′ and y ′ have a common �2-root, it follows from Proposition 2.7 that x ′ and
y ′ are �2-confusable. Thus, x and y are confusable. �

In conclusion, for two words x and y to be confusable, it is equivalent to checking if there are
tandem duplications of length three that make their descendants x ′ andy ′ have the same �2-root.
We make use of this important fact in the next section.

3.1 Strategy Behind Algorithm

We outline our strategy to determine the confusability of two words x and y. Recall from Propo-
sition 2.7(iii), if x and y have different roots, then they are not confusable. Hence, our first step
is to determine R�3 (x) and R�3 (y) and see if the roots are equal. We can do this in linear time
using Algorithm 2. If the roots are not equal, then we immediately conclude that x and y are not
confusable. Therefore, the nontrivial task is to determine confusability when R�3 (x) = R�3 (y).
Henceforth, we assume that the common root of x and y is r .

Suppose that r contains at most two distinct symbols. Then from Lemma 3.3, we have that r
∗
==⇒
�2

x and r
∗
==⇒
�2

y. In other words, r is also the �2-root of both x andy. Applying Proposition 2.7, we

have that x and y are �2-confusable and so, �3-confusable. Therefore, it remains to consider the
case where r contains at least three distinct symbols.

Given r , x andy, our next step is to compute certain proper prefixes ∗Pref (r ,x) and ∗Pref (r ,y)
of x and y, respectively, such that under certain conditions the following holds:

(x and y are confusable) if and only if (x \ ∗Pref (r ,x) and y \ ∗Pref (r ,y) are confusable).

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

42:8 Y. M. Chee et al.

Here, x \ z denotes the word we obtain by removing the prefix z from x . Since the words on the
righthand side are strictly shorter than the words on the lefthand side, we may repeat this process
for the shorter words until the common root of the words has less than three distinct symbols.

Before we formally define the prefixes ∗Pref (r ,x) and ∗Pref (r ,y), we provide certain intuition
behind our technical definitions via an example.

Example 3.5. Let x = 01102021020120111 and y = 00101002110200120201. Since both x and y
have the same �3-root r � 010201, it is possible that x and y are � 3-confusable.

To do so, we make some observations on the root r and look at how we obtain x and y from r .
Now, r has two 3-substrings that contain three distinct symbols: namely, 102 and 201, and so, we
divide r two overlapping substrings r 1 = 0102 and r 2 = 0201.

We can also similarly divide each of x and y into two overlapping substrings. Namely,

x1 = 0110202102, x2 = 020120111,

y1 = 001010021102, y2 = 0200120201.

We can easily check that r 1
∗
==⇒
�3

x1, r 1
∗
==⇒
�3

y1, r 2
∗
==⇒
�3

x2, and r 2
∗
==⇒
�3

y2. In what follows, we prove

that x and y are �3-confusable if and only if x i and yi are �3-confusable for i ∈ {1, 2}. Further-
more, for i ∈ {1, 2}, we define a combinatorial property of x i and yi that allows one to easily
determine that x i and yi are � 3-confusable.

Before this, we describe rules on how to break r into the regions: r 1 and r 2.

We now provide the formal definitions. Assume that r contains at least three distinct symbols.
Since r ∈ Irr�3 (q), we easily check that either r1r2r3 or r2r3r4 is a substring with three distinct
symbols. Define main(r) to be the first substring in r with three distinct symbols and we define
the first region of r , denoted by Reg(r), to be a certain prefix of r according to the following rule.

If r1 = r3, then we set

main(r) � r2r3r4, and Reg(r) �
⎧⎪⎪⎨⎪⎪⎩
r1r2r3r4 = r1r2r1r4, if r2 � r5,
r1r2r3r4r5 = r1r2r1r4r2, if r2 = r5, r3 � r6,
r1r2r3r4r5r6 = r1r2r1r4r2r1, otherwise.

If r1 � r3, then we set

main(r) � r1r2r3, and Reg(r) �
⎧⎪⎪⎨⎪⎪⎩
r1r2r3, if r1 � r4,
r1r2r3r4 = r1r2r3r1, if r1 = r4, r2 � r5,
r1r2r3r4r5 = r1r2r3r1r2, otherwise.

Intuitively, the first region Reg(r) of r is defined as above so that the following properties of
the region, or Lemma 3.6 hold.

Lemma 3.6. Suppose the root r has three distinct symbols. Define Reg(r) as above. Then Reg(r) can

be written asw (abc)�ab, where a,b, c are distinct symbols, � ∈ {0, 1} andw is prefix of length at most

three over the alphabet {a,b, c}. Furthermore, if Reg(r)
∗
==⇒
3d

z, then z can be written as w (abc)mab

withm � �. Also, the symbol in r after the prefix Reg(r) is not c .

Example 3.7. Suppose that r = 010201. Then main(r) = 102 and Reg(r) = 0102. Indeed, we can
write Reg(r) as w (abc)�ab with w = 01, � = 0, and abc = 021. Note that abc is not necessarily
main(r). We also check that the next symbol after Reg(r) in r is 0, which is not c = 1.

Remark 1. Given a root r , we provide the rule to determine the first region. The subsequent
regions of r are then recursively defined by looking at the “first region” of a certain suffix of r .
Details are provided in Algorithm 1.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

Deciding the Confusability of Words under Tandem Repeats in Linear Time 42:9

Fig. 1. Prefixes used to determine confusability.

Given Reg(r) = w (abc)�ab, we consider the longest prefix of x that is generated from Reg(r)
through a sequence of tandem duplications of length at most three. We call this prefix the first

extended region of r in x and denote it with Ext(Reg(r),x). This prefix can be computed determin-
istically using the finite automaton that defines D∗�3

(Reg(r)) (see Subsection 3.2 for details).

Finally, we define our special prefix ∗Pref (r ,x). Suppose that Ext(Reg(r),x) = p1p2 · · ·pt = p
and pi is the last appearance of a in p, where a is the second last symbol of Reg(r). The special

prefix ∗Pref (r ,x) is given by p1p2 · · ·pi−1.

Example 3.8. Let r = 010201 and x = 01102021020120111. Recall that Reg(r) = 0102 and a = 0.
Then,

Ext(0102,x) = 0110202102 and ∗Pref (r ,x) = 01102021.

Remark 2. Consider a word x whose root is r . Similar to the definition of the first region of r ,
we only provide the rule to determine the first extended region of r in x . The subsequent extended
regions of r in x are then recursively defined by looking at the “first extended region” of a certain
suffix of r in a certain suffix of x . As before, details are provided in Algorithm 1.

We summarize the relationships of r , x , Reg(r), Ext(Reg(r),x), and ∗Pref (r ,x) in Figure 1, and
we are ready to state the main characterization theorem.

Theorem 3.9. Suppose that x andy are two words such that r = R�3 (x) = R�3 (y) and r contains

at least three distinct symbols. Set

p = Ext(Reg(r),x), q = Ext(Reg(r),y),

u = x \ ∗Pref (r ,x), v = y \ ∗Pref (r ,y).

Then x and y are confusable if and only if p and q are confusable, and u andv are confusable.

Proof. From Lemma 3.6, we may set Reg(r) = w (abc)�ab. Since Reg(r)
∗
==⇒
�3

p, Lemma 3.3 im-

plies that Reg(r)
∗
==⇒
3d

R�2 (p). So, R�2 (p) = w (abc)mab for some m � �, and R�2 (q) = w (abc) jab

for some j � �.
Suppose that x and y are confusable. By Theorem 3.4, there exist 3d -descendants of x and y

namely x′ and y′, such that R�2 (x ′) = R�2 (y ′). Set

p ′ = Ext(Reg(r),x ′), q′ = Ext(Reg(r),y ′),

u ′ = x ′ \ ∗Pref (r ,x ′), v ′ = y ′ \ ∗Pref (r ,y ′).

Since the overlapping substring between p and u must be of the form ab · · ·b, each duplication

of distinct triplets from x to x ′ must be either entirely in p or in u. In other words, p
∗
==⇒
3d

p ′ and

u
∗
==⇒
3d

u ′, and likewise q
∗
==⇒
3d

q′ and v
∗
==⇒
3d

v ′. Looking at the overlapping substring between p ′

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

42:10 Y. M. Chee et al.

and u ′, we can observe that R�2 (x ′) = R�2 (p ′u ′). Then Reg(r)
∗
==⇒
�3

p ′ and Lemma 3.3 imply that

Reg(r)
∗
==⇒
3d

R�2 (p) and so, R�2 (p ′) = w (abc)iab for some i �m.

Next,w (abc)iR�2 (u ′) is a�2-irreducible word, becauseR�2 (u ′) starts with ab and by definition,
w (abc)i ends with c but not cac . Therefore, w (abc)iR�2 (u ′) is the �2-root of x ′, or, R�2 (x ′) =
w (abc)iR�2 (u ′) and likewise R�2 (y ′) = w (abc)hR�2 (v ′) for some h � j .

Since the first symbol of R�2 (x ′ \ p ′) and R�2 (y ′ \ q′) cannot be c , neither R�2 (u ′) nor
R�2 (v ′) start with abc . Therefore, since R�2 (x ′) = R�2 (y ′), we can deduce that h = i and

R�2 (u ′) = R�2 (v ′). Since h = i , we have R�2 (p ′) = R�2 (q′). Together with p
∗
==⇒
3d

p ′, q
∗
==⇒
3d

q′, by

Theorem 3.4, we can havep andq are confusable. Sinceu
∗
==⇒
3d

u ′,v
∗
==⇒
3d

v ′, and R�2 (u ′) = R�2 (v ′),

we can also conclude by Theorem 3.4 that u andv are confusable.
Suppose that p and q are confusable, and u and v are confusable. Hence, pu and qv are con-

fusable. Note that pu is a descendant of x and qv is a descendant of y, hence x and y are also
confusable. �

We can efficiently determine whether the prefixes p and q are confusable. When the substring
main(r) appears the same number of times in R�2 (p) as in R�2 (q), we may assume that R�2 (p) =
w (abc)mab = R�2 (q). Hence, p and q are confusable by Proposition 2.7. In particular, we have
Corollary 3.10.

Consider z = abc , where a, b, c are three distinct symbols. Let Count(z,x) denote the number
of times z appears as a substring in x , and Count(rot(z),x) denote the number of times abc , bca,
or cab appears as a substring in x .

Corollary 3.10. Suppose that x and y are two words such that r = R�3 (x) = R�3 (y) and r con-

tains at least three distinct symbols. Set p = Ext(Reg(r),x) and q = Ext(Reg(r),y). Suppose further

that Count(main(r),R�2 (p)) = Count(main(r),R�2 (q)). Then x and y are confusable if and only

if x \ ∗Pref (r ,x) and y \ ∗Pref (r ,y) are confusable.

Example 3.11. Let r = 010201, x = 01102021020120111, and y = 00101002110200120201. Note
that R�3 (x) = R�3 (y) = r . Recall that main(r) = 102,Reg(r) = 0102 and a = 0. Then,

p = Ext(0102,x) = 0110202102, ∗Pref (r ,x) = 01102021, u = x \ ∗Pref (r ,x) = 020120111,

q = Ext(0102,y) = 001010021102, ∗Pref (r ,y) = 0010100211, v = y \ ∗Pref (r ,y) = 0200120201.

Note that R�2 (p) = 0102102 = R�2 (q), and Count(main(r),R�2 (p)) = Count(main(r),R�2 (q)) =
Count(102, 0102102) = 2. Therefore, by Corollary 3.10, we have x andy are confusable if and only
if u andv are confusable. Since R�2 (u) = 0201201 = R�2 (v), Proposition 2.7 implies that u andv
are confusable. Therefore, x and y are confusable.

However, when the number of appearances is not equal, we may modify the proof to obtain the
following corollary.

Corollary 3.12. Suppose that x and y are two words such that r = R�3 (x) = R�3 (y) and r con-

tains at least three distinct symbols. Set p = Ext(Reg(r),x) and q = Ext(Reg(r),y). Suppose further

that Count(main(r),R�2 (p)) < Count(main(r),R�2 (q)). Then x and y are confusable if and only

if Count(rot(main(r)),p) > 0 and x \ ∗Pref (r ,x) and y \ ∗Pref (r ,y) are confusable.

Proof. By Theorem 3.9, it is sufficient to show that Count(rot(main(r)),p) > 0 iff p and q are
confusable. Let R�2 (p) = w (abc)kab and R�2 (q) = w (abc) jab for some k < j.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

Deciding the Confusability of Words under Tandem Repeats in Linear Time 42:11

ALGORITHM 1: Confuse(x ,y)

Input: x ,y ∈ Σ∗q
Output: true if x and y are confusable, false otherwise.

1: r ← R�3 (x)
2: r ′ ← R�3 (y)
3: if r � r′ then

4: return false
5: else

6: return Confuse-Recursion(x ,y,r)

7: procedure Confuse-Recursion(x ,y,r)

8: if r has at most two distinct symbols then

9: return true
10: else

11: Compute main(r) and Reg(r)
12: p ← Ext(Reg(r),x), q ← Ext(Reg(r),y)
13: u ← x \ ∗Pref (r ,x), v ← y \ ∗Pref (r ,y)
14: Cp ← Count(main(r),R�2

(,p)), Cq ← Count(main(r),R�2
(q))

15: r∗ ← r \w (abc)� , where Reg(r) = w (abc)�ab
16: if Cp = Cq then

17: return Confuse-Recursion(u,v,r∗)
18: else if Cp < Cq and Count(rot(main(r)),p) > 0 then

19: return Confuse-Recursion(u,v,r∗)
20: else if Cp < Cq and Count(rot(main(r)),q) > 0 then

21: return Confuse-Recursion(u,v,r∗)
22: else

23: return false

Suppose there exists at least one distinct triplet in p, we set p ′ to be the result of duplication of
the distinct triplet inp as many as j − k times andq′ to beq. ThenR�2 (p ′) = w (abc) jab = R�2 (q′),
and hence by Theorem 3.4, p and q are confusable.

Suppose, however, p and q are confusable. By Theorem 3.4, there exist p ′ and q′ such that

p
∗
==⇒
3d

p ′ and q
∗
==⇒
3d

q′, where R�2 (p ′) = R�2 (q′) = w (abc)дab for some д � j > k . Then there has

to be at least one substring of length three with distinct symbols, or distinct triplet, in p. Since
p = Ext(Reg(r),x), then by definition, the only distinct triplet possible is from the set rot(main(r)).
Therefore, Count(rot(main(r)),p) > 0. �

Example 3.13. Let r and x be as defined in Example 3.11. We consider another word
y ′ = 0010100200120201. As before, note that R�3 (x) = R�3 (y ′) = r . Recall that main(r) =
102,Reg(r) = 0102, and a = 0. Then p, ∗Pref (r ,x) and u are computed as before. In contrast, for
y ′, we have

q′ = Ext(0102,y ′) = 00101002, ∗Pref (r ,y ′) = 001010, v ′ = y ′ \ ∗Pref (r ,y ′) = 0200120201.

Now, R�2 (q′) = 0102, and so, Count(main(r),R�2 (q′)) = 1. Hence, Count(main(r),R�2 (p)) �
Count(main(r),R�2 (q′)). Furthermore, Count(rot(main(r)),q) = Count(rot(102), 00101002) = 0.
Therefore, by Corollary 3.12, we have x and y are not confusable.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

42:12 Y. M. Chee et al.

3.2 Confusability Algorithm

Based on the ideas in the previous subsection, we formally describe our algorithm Confuse in
Algorithm 1 and demonstrate that the running time is linear. In the following analysis, we assume
the definitions in Algorithm 1.

• Main(r) and Reg(r) can be computed in constant time. This is clear from definition.
• The prefixesp andq can be computed in time linear in |p | and |q |, respectively. From Propo-

sition 2.9, we have that D∗�3
(Reg(r)) is a regular language. Since the length of Reg(r) is at

most six, the finite automaton generating the language has a constant number of vertices.
Hence, the longest prefixes ofx andy that are accepted by the finite automaton are precisely
p and q, respectively. In Appendix B, we show that the sum of the lengths of all prefixes
that are computed in all recursive calls is at most 3(|x | + |y |). Therefore, the computation
of all prefixes takes linear time.

• In the recursive calls, the root r ∗ can be computed in constant time. As mentioned earlier,
the first step is to compute the roots of x andy in linear time. When the roots are equal to r
and certain conditions are met, we make the recursive call Confuse-Recursion. If the roots
are recomputed for the shorter words u and v , then the overall running time for Confuse
is quadratic. To avoid this, we observe that the roots for the shorter words are always equal
and in fact, the common root r ∗ of u and v may be easily inferred from r . More precisely,
if Reg(r) = w (abc)�ab, then r ∗ = r \w (abc)� .

• In the recursive calls, determining r has at most two symbols can be done in constant time. If
r has length at least four, then r necessarily has at least three distinct symbols. Otherwise,
it contradicts the fact that r is irreducible. Therefore, it suffices to check if the first four
symbols r contain three distinct symbols.

In summary, from the above observations, we conclude that the running time isO (max{|x |, |y |}).

4 �3-TANDEM-DUPLICATION CODES

We use insights gained from the previous section to construct (n,�3;q)-TD codes. Motivated by
the concept of roots, we consider a �3-irreducible word r , and we say that a (n,�3;q)-TD code C
is an (n,�3;r)-TD code if all words in C belong to D∗�3

(r).

For r ∈ Irr�3 (i,q) with i � n, suppose that C (n,r) is an (n,�3;r)-TD code. Then Proposition 2.7
implies that

⋃
r ∈Irr�3 (i,q), i�n C (n,r) is an (n,�3;q)-TD code. Trivially, {ξn−i (r)} is an (n,�3;r)-

TD code for all x ∈ Irr�3 (i,q). Taking the union of these codes, we recover Construction 1.
Therefore, in the rest of this section, our objective is to provide estimates on the size of an

optimal (n,�3;r)-TD code for fixed �3-irreducible word r . To simplify our discussion, we focus
on the case where q = 3 and let T (n) and T (n,r) to denote the sizes of an optimal (n,�3; 3)-TD
code and an optimal (n,�3;r)-TD code, respectively.

Pick x ∈ D∗�3
(r). Using concepts from Section 3, we define the following combinatorial charac-

terisation of x . Set x1 = x and r 1 = r . For i � 2, set x i = x i−1 \ ∗Pref (r i−1,x i−1) and r i = R�3 (x i).
We terminate this recursion when rm+1 has less than three distinct symbols. If rm is the last root
to have three distinct symbols, then we say that r hasm regions and for 1 � i �m, define

pi = Ext(Reg(r i),x i), t i = main(r i), ci = Count(t i ,R�2 (pi)), and δi =

{
+, if Count(rot(t i),pi) > 0,

−, otherwise.

For the word x , we define its label by Label(x) = (r , (c1,δ1), (c2,δ2), . . . , (cm ,δm)).

Example 4.1. Consider r = 01210. Then r has two regions with t1 = 012 and t2 = 210. Consider
also the words 01210210, 01201210, and 01112110 that belongs to D∗�3

(01210). Then their labels

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

Deciding the Confusability of Words under Tandem Repeats in Linear Time 42:13

are as follows:

Label(01210210) = (01210, (1,+), (2,+)),

Label(01201210) = (01210, (2,+), (1,+)),

Label(01112110) = (01210, (1,−), (1,−)).

Then it follows from Theorem 3.9 and Corollaries 3.10 and 3.12 that 01210210 and 01201210 are
confusable, while 01210210 and 01112110 are not confusable.

More generally, the next proposition is immediate from Theorem 3.9 and Corollaries 3.10 and
3.12.

Proposition 4.2. Let x and y belong to D∗�3
(r). Suppose that

Label(x) �
(
r ,
(
c (x)

1 ,δ
(x)
1

)
,
(
c (x)

2 ,δ
(x)
2

)
, . . . ,

(
c (x)

m ,δ
(x)
m

))
,

Label(y) �
(
r ,
(
c

(y)
1 ,δ

(y)
1

)
,
(
c

(y)
2 ,δ

(y)
2

)
, . . . ,

(
c

(y)
m ,δ

(y)
m

))
.

Then x and y are not �3-confusable if and only if for some 1 � i �m,(
c (x)

i < c
(y)
i and δ (x)

i = −
)

or
(
c (x)

i > c
(y)
i and δ

(y)
i = −

)
.

Immediate from Proposition 4.2 are certain sufficient conditions for two words to be confusable.

Corollary 4.3. Let x ,y ∈ D∗�3
(r) and their labels Label(x) and Label(y) be as defined in Propo-

sition 4.2.

(i) If c (x)
i = c

(y)
i for all i , then x and y are �3-confusable.

(ii) If δ (x)
i = δ

(y)
i = + for all i , then x and y are �3-confusable.

From Corollary 4.3, we use the number of integer solutions to certain equations as an upper
bound for T (n,r). As this combinatorial argument is fairly technical, we state the upper bound
and defer the proof to Appendix C.

Proposition 4.4. Let i � n. Suppose that r ∈ Irr�3 (i, 3) hasm regions. Then,

T (n,r) � U (n, i,m) �
⎧⎪⎨⎪⎩

(
(n−i)/3+m

m

)
−
(

(n−i)/3+m−1
m−1

)
+ 1, if 3 divides n − i,(�(n−i)/3+m

m

)
, otherwise.

4.1 Estimates ofT (|r | + t, r) for 0 � t � 5

Immediate from Proposition 4.4 is that T (|r |,r) = T (|r | + 1,r) = T (|r | + 2,r) = 1. Next, we pro-
vide lower bounds for T (n,r) by constructing (n,�3;r)-TD codes. We first show that there exists
an (n,�3;r)-TD code of size two.

Construction 2. Let r ∈ Irr�3 (i, 3) for some i � 4. Set

C2 �
⎧⎪⎪⎨⎪⎪⎩
{r1r2r3r1r2r3r4 · · · ri , r1r2r2r3r3r4r4 · · · ri }, if r1 � r3,

{r1r2r1r4r2r1r4r5 · · · ri , r1r2r1r1r4r4r5r5 · · · ri }, if r1 = r3 and i � 5,
{r1r2r1r4r2r1r4, r1r2r1r1r4r4r4}, if r1 = r3 and i = 4.

Then C2 is an (i + 3,�3;r)-TD code of size two. By Proposition 4.4, C2 is optimal.

Proof. Let C2 = {x ,y} and the labels of the words be as given in Proposition 4.2. Observe that

in all cases, (c (x)
1 ,δ

(x)
1) = (2,+) and (c

(y)
1 ,δ

(y)
1) = (1,−). Proposition 4.2 then implies that x and y

are not confusable. �
Following the above construction, we have an improvement to Construction 1.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

42:14 Y. M. Chee et al.

Corollary 4.5. For n � 6, we have that

T (n) �
∑

1�i�3, or
n−2�i�n

Irr�3 (i, 3) + 2

n−3∑
i=4

Irr�3 (i, 3).

Construction 2 also implies thatT (|r | + 3,r) = 2 for all irreducible words r . When n ∈ {|r | + 4,
|r | + 5}, Proposition 4.4 states thatT (n,r) �m + 1, wherem is the number of regions for r . How-
ever, the upper bound can be reduced to a constant independent ofm and we do this by analysing
the possible labels of words in a tandem-duplication code.

Proposition 4.6. T (|r | + 4,r) � 4.

Proof. Let T (|r | + 4,r) = b, and suppose that C (|r | + 4,r) is the (|r | + 4,�3;r)-TD code with
size b. Let C (|r | + 4,r) = {x1,x2, . . . ,xb }. Let

Label(x i) �
(
r ,
(
c (x i)

1 ,δ (x i)
1

)
,
(
c (x i)

2 ,δ (x i)
2

)
, . . . ,

(
c (x i)

m ,δ (x i)
m

))
.

Note that there can only be at most one word, x i ∈ C (|r | + 4,r), such that c (x i)
t = 1 for all 1 �

t �m. We also know that c (x i)
t � 2 for all 1 � i � b, 1 � t �m. Otherwise, the length of x i is be

at least |r | + 6. Furthermore, for each x i ∈ C (|r | + 4,r), there can only be at most one 1 � t �m,

such that c (x i)
t = 2. So, we can define C′(|r | + 4,r) = {x1,x2, . . . ,xb′ }, where b ′ � b, to be the

subset of C (|r | + 4,r) such that for all 1 � i � b ′, c (x i)
t = 2 for exactly one t �m, and conclude

that b � 1 + b ′.

We say that x i loses to x j if there exists 1 � t �m, such that c (x i)
t < c

(x j)
t and δ (x i)

t = −. Note
that in C′(|r | + 4,r), for any distinct pair 1 � i < j � b ′, eitherx i loses tox j orx j loses tox i . Hence,
in total, there is at least b ′(b ′ − 1)/2 losses in C′(|r | + 4,r). Suppose that for some 1 � t �m,

we have c (x i)
t = 2, then there can only be at most one 1 � t ′ �m, t ′ � t , such that δ (x i)

t ′ = −. Oth-
erwise, the length of x i is be at least |r | + 5. And since for distinct i, j � b ′, we can never have

c (x i)
t = c

(x j)
t = 2. This implies that for each word x i ∈ C′(|r | + 4,r), the word x i can only lose at

most once to another word in C′(|r | + 4,r). Therefore, there are at most b ′ losses in C′(|r | + 4,r).
Hence, we have the inequality b ′(b ′ − 1)/2 � b ′, which implies that b ′ � 3, and therefore b � 4.

We conclude the proof with the labels of a possible set of four words in C (|r | + 4,r):

Label(x1) = (r , (2,+), (1,−), (1,+)),

Label(x2) = (r , (1,+), (2,+), (1,−)),

Label(x3) = (r , (1,−), (1,+)), (2,+),

Label(x4) = (r , (1,−), (1,−), (1,−)). �

Corollary 4.7. T (|r | + 5,r) � 6.

Proof. Following the proof of Proposition 4.6, there are at least b ′(b ′ − 1)/2 losses in C′(|r | +
5,r). And for each word in C′(|r | + 5,r), it can have at most two losses. Hence, we have
b ′(b ′ − 1)/2 � 2b ′, and so T (|r | + 5,r) = b � 1 + b ′ � 1 + 5 = 6.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

Deciding the Confusability of Words under Tandem Repeats in Linear Time 42:15

As before, we provide the labels of a possible set of six words in C (|r | + 5,r):

Label(x1) = (r , (2,+), (1,−), (1,−), (1,+), (1,+)),

Label(x2) = (r , (1,+), (2,+), (1,−), (1,−), (1,+)),

Label(x3) = (r , (1,+), (1,+)), (2,+), (1,−), (1,−),

Label(x4) = (r , (1,−), (1,+), (1,+), (2,+), (1,−)),

Label(x5) = (r , (1,−), (1,−), (1,+), (1,+), (2,+)),

Label(x6) = (r , (1,−), (1,−), (1,−), (1,−), (1,−)). �

4.2 Exact Value ofT (n, r) When the Number of Regions is Exactly One

Proposition 4.2 suggests that we examine code constructions according to the number of regions
of r . When |r | � 2, the number of regions is zero and henceT (n,r) = 1. We consider the smallest

nontrivial case where r has exactly one region. Without loss of generality, assume that r ∈ R �
{012, 0120, 01201, 1012, 10120, 101201, 0121, 01202, 012010, 10121, 101202, 1012010}, and so, t1 =

012.

Construction 3. For r ∈ R and � � 1, define the words x (r , �) and z (r , �) with the following

rule.

r x (r , �) z (r , �) r x (r , �) z (r , �)

012 0(112200)�−1112 (012)� 1012 10(112200)�−1112 1(012)�

0120 0(112200)�−111220 (012)�0 10120 10(112200)�−111220 1(012)�0

01201 0(112200)�−11122001 (012)�01 101201 10(112200)�−11122001 1(012)�01

0121 0(112200)�−11121 (012)�1 10121 10(112200)�−11121 1(012)�1

01202 0(112200)�−1112202 (012)�02 101202 10(112200)�−1112202 1(012)�02

012010 0(112200)�−111220010 (012)�010 1012010 10(112200)�−111220010 1(012)�010

For r ∈ R and n � |x (r , 2) |, set �z = �(n − |r |)/3 + 1 and

Cr (n) �
{
ξn−|x (r , �) | (x (r , �)) : |x (r , �) | � n

}
∪
{
ξn−|z (r , �z) | (z (r , �z))

}
.

Then Cr (n) is an (n,�3;r)-TD code. Furthermore, Cr (n) in optimal. Therefore, if we setn2 = |x (r , 2) |,
then we have

T (n,r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⌊
n−n2

6

⌋
+ 3, if n � n2,

2, if n2 > n � |r | + 3,
1, if |r | + 3 > n � |r |,
0, otherwise.

Proof. Let X =
{
ξn−|x (r , �) | (x (r , �)) : |x (r , �) | � n

}
and M � 2 is the biggest integer that

satisfies |x (r ,M)) | � n. Observe that for all � � 1, we have Label(x (r , �)) = (r , (�,−)) and
Label(z (r , �)) = (r , (�,+)). Furthermore, the length of x (r , �) is at least 6(� − 1) + |r | + 1. There-
fore, we have 6(M − 1) + |r | + 1 � |x (r ,M) | � n. So, �z = �(n − |r |)/3 + 1 � �(6M − 5)/3 + 1 �
M + 1 for M � 2.

Hence, for any word x in X, we have that Label(x) = (r , (�′,−)) with 1 � �′ � M < �z . There-
fore, Proposition 4.2 implies that x and z (r , �z) are not confusable. Also, Corollary 4.3(ii) implies
that x and x ′ are not confusable for x ,x ′ ∈ X. Therefore, Cr (n) is an (n,�3;r)-TD code.

To demonstrate optimality, we observe that for y ∈ D∗�3
(r), if Label(y) = (�,−), then |y | �

|x (r , �) |. Similarly, if Label(y) = (�,+), then |y | � |z (r , �) |. Suppose that there is an (n,�3;r)-
TD code C′ with size M + 2. We know from Corollary 4.3(ii) that there is at most one codeword

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

42:16 Y. M. Chee et al.

in C′ whose label δ1 is +. So, there are at least M + 1 codewords in C′ whose label δ1 are −. Fur-
thermore, Corollary 4.3(i), implies that no two codewords whose label δ1 are −, have the same
label c1. Therefore there exists a y ∈ C′ whose label is (c1,−) with c1 � M + 1. This implies that
n = |y | � |x (r ,M + 1) |, which contradictsM being the biggest integer that satisfies |x (r ,M)) | � n.

Finally, the values of T (n,r) follow from straightforward computations. �
Hence, the value ofT (n,r) is completely determined whenever r has at most one region. Com-

bining this result with Proposition 4.4, we have the following theorem.

Theorem 4.8. Let I (i,m) denote the number of irreducible words in Irr�3 (i, 3) with exactly m
regions1, and U (n, i,m) be as defined in Proposition 4.4. Then,

T (n) �
∑
r ∈R

T (n,r) +
n∑

i=5

i∑
m=2

I (i,m)U (n, i,m). (1)

4.3 Estimates ofT (n) for n � 30

In addition to the above constructions, we construct tandem-duplication codes for small lengths
by searching for them exhaustively. Specifically, fix r ∈ Irr�3 (i, 3) and n � i , we construct the
graph G (n,r), whose vertices correspond to the set of all labels of descendants of r of length n, or
{L : L = Label(x) and x ∈ Σn

3 ∩ D∗�3
(r)}. Two vertices or labels L1 and L2 are connected in G (n,r)

if and only if the words whose labels are L1 and L2 are not �3-confusable. Hence, a clique of size
M in the graph G (n,r) correspond to an (n,�3;r)-TD code of size M andT (n,r) is the maximum
size of a clique in G (n,r).

We use the exact algorithm MaxCliqueDyn [8] to determine the maximum size of the clique in
these graph G (n,r) for n � 20. SinceT (n) =

∑
r ∈Irr�3 (i,3), i�n T (n,r), we tabulate the resultsT (n)

in Table 1.

Remark 3.

• Such a method to computeT (n,r) is only possible because we have developed the algorithm
to determine confusability in Section 3. Prior to this work, the necessary conditions for �3-
confusability was not known and hence, methods to compute T (n,r) were not available.

• For a fixed length and root, even though the set of descendants is huge, the set of all labels
are significantly smaller. Hence, the task of computing maximum cliques remains feasible.
More concretely, when n = 20, the order of the largest graph G (20,r) is 366, despite the fact
that the average size2 of Σ20

3 ∩ D∗�3
(r) is 320/27,687 ≈ 125,935.

Finally, we develop recursive constructions in the following proposition.

Proposition 4.9. Let r = r1r2 · · · ri ∈ Irr�3 (i, 3). Then the following holds:

T (n,r) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T (n − 1,r \ r1), if r1 = r3,
max{2T (n − 4,r \ r1), 3T (n − 8,r \ r1)}, if r1 � r3, r1 � r4,
max{2T (n − 5,r \ r1r2), 3T (n − 10,r \ r1r2)}, if r1 � r3, r1 = r4, r2 � r5,
max{2T (n − 6,r \ r1r2r3), 3T (n − 12,r \ r1r2r3)}, if r1 � r3, r1 = r4, r2 = r5.

Furthermore, T (n,r) � T (n − 1,r) and T (n,r) = T (n,rR), where zR denotes the reverse of word z.

Proof. First consider r1 = r3. Suppose that D is an (n − 1,�3;r \ r1)-TD code. To construct a
code of length n, we simply prepend the prefix r1 to all words inD. For convenience, given a set of

1We provide a formula in Appendix D.
2The number of �3-irreducible ternary words of length at most 20 is 27,687.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

Deciding the Confusability of Words under Tandem Repeats in Linear Time 42:17

Table 1. Lower, Upper Bounds and Exact Values for T (n)

Length Constr. 1 This article Equation (1) Prop. 2.11 Length Constr. 1 This article Equation (1) Prop. 2.11

1 3 3 3 3 16 5,985 10,641 12,267 15,495

2 9 9 9 9 17 8,781 16,287 19,479 25,077

3 21 21 21 21 18 12,879 25,005 30,957 40,581

4 39 39 39 39 19 18,885 38,223 49,245 65,667

5 69 69 69 69 20 27,687 57,957 78,417 106,257

6 111 117 117 117 21 40,587 83,619 125,001 171,933

7 171 195 195 195 22 59,493 116,145 199,467 278,199

8 261 315 315 321 23 87,201 166,761 318,621 450,141

9 393 495 495 525 24 127,809 249,159 509,457 728,349

10 585 777 777 855 25 187,323 375,129 815,361 1,178,499

11 867 1,221 1,227 1,389 26 274,545 558,573 1,306,107 1,906,857

12 1,281 1,887 1,941 2,253 27 402,375 813,771 2,093,967 3,085,365

13 1,887 2,913 3,075 3,651 28 589,719 1,164,309 3,359,685 4,992,231

14 2,775 4,527 4,875 5,913 29 864,285 1,675,935 5,394,369 8,077,605

15 4,077 6,969 7,731 9,573 30 1,266,681 2,464,419 8,667,075 13,069,845

The columns labelled Construction 1 and Proposition 2.11 correspond to the previous known lower and upper bounds

for T (n), respectively. The column labelled “This article” summarizes the best lower bounds that arise from this work,

while the column labelled Equation (1) give the upper bound that result from Theorem 4.8. Optimal values of T (n) are

highlighted in bold.

words X and a word p, we use pX to denote the set {px : x ∈ X}. When p = p is of length one, we
simply write pX. Using this notation, we set C = r1D. We then apply Proposition 4.2 and verify
that C is an (n,�3;r)-TD code whose size is given by |D|.

Next, consider r1 � r3 and r1 � r4. Set r ′ = r \ r1 and suppose that D is an (n − 4,�3;r ′)-TD
code. Let D1 = r1r2r2r2D and D2 = r1r2r3r1D, and so, D1 ∪ D2 ⊆ D∗�3

(r) ∩ Σn
3 .

For x ∈ D, let Label(x) = (r ′, (c1,δ1), . . . , (cm ,δm)). Then, we have that

Label(r1r2r2r2x) = (r , (1,−), (c1,δ1), . . . , (cm ,δm)),

Label(r1r2r3r1x) = (r , (2,+), (c1,δ1), . . . , (cm ,δm)).

Proposition 4.2 implies that r1r2r2r2x and r1r2r3r1x are not confusable. We can similarly check that
any pair of distinct words in D1 ∪ D2 are not confusable.

For the remaining cases, we choose the short code D and prepend D according to the rules
below.

Conditions for r Short Code D (n,�3;r)-TD code
r1 = r3 (n − 1,�3;r \ r1)-TD code r1

r1 � r3, r1 � r4 (n − 4,�3;r \ r1)-TD code r1r2r2r2D
∪ r1r2r3r1D

r1 � r3, r1 � r4 (n − 8,�3;r \ r1)-TD code r1r2r2r2r2r2r2r2D
∪ r1r2r2r3r3r1r1r2D
∪ r1r2r3r1r2r3r1r2D

r1 � r3, r1 = r4, r2 � r5 (n − 5,�3;r \ r1r2)-TD code r1r2r2r2r3D
∪ r1r2r3r1r2D

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

42:18 Y. M. Chee et al.

Conditions for r Short Code D (n,�3;r)-TD code
r1 � r3, r1 = r4, r2 � r5 (n − 10,�3;r \ r1r2)-TD code r1r2r2r3r3r3r3r3r3r3D

∪ r1r2r2r3r3r1r1r2r2r3D
∪ r1r2r3r1r2r3r1r2r3r3D

r1 � r3, r1 = r4, r2 = r5 (n − 6,�3;r \ r1r2r3)-TD code r1r2r2r3r3r1D
∪ r1r2r3r1r2r3D

r1 � r3, r1 = r4, r2 = r5 (n − 12,�3;r \ r1r2r3)-TD code r1r2r2r3r3r1r1r1r1r1r1r1D
∪ r1r2r2r3r3r1r1r2r2r3r3r1D
∪ r1r2r3r1r2r3r1r2r3r1r1r1D

To show that T (n,r) � T (n − 1,r), let D be an (n − 1,�3;r)-TD code. Then C = {ξ1 (x) : x ∈
D} is an (n,�3;r)-TD code.

To show that T (n,r) = T (n,rR), let D be an (n,�3;r)-TD code. Then C = {xR : x ∈ D} is an
(n,�3;rR)-TD code. �

Using Proposition 4.9 with Constructions 2 and 3 and the values computed by MaxCliqueDyn, we
derive lower bounds for T (n) for 21 � n � 30. The results are summarized in Table 1. In addition
to the lower bounds for the code sizeT (n), we also compare the upper bounds in Proposition 2.11
and (1). Observe that (1) is tight up to lengths at most ten and the constructions in this article
improve the rates3 for Construction 1 by as much as 6.74%.

5 DISCUSSION

We studied the problem of determining the �k-confusability of two words. Combining the results
of this article, we have linear-time algorithms to solve the confusability problem for k ∈ {1, 2, 3}.

It remains open whether there exist efficient algorithms to determine �4-confusability. One
key obstacle is the fact that Proposition 2.7(iii) does not hold for k = 4. In particular, there exists x
and y such that R�4 (x) � R�4 (y), but x and y are �4-confusable. An example is provided by Jain
et al. [7], where x = 012 and y = 0121012 belongs to Irr�4 (3), but 012101212 is a common descen-
dant of x and y.

Another approach is to consider the intersection of the descendant cones D∗�4
(x) ∩ D�4 (y) as

formal languages. Unfortunately, Leupold et al. [11] demonstrated that while the language D∗�4
(x)

is context free for all x , the language is not regular in general. However, given two context free
languages L1 and L2, determining whether L1 ∩ L2 is empty is an undecidable problem (see, for
example, Sipser [16, Exercise 5.32]). While this does not imply that the confusability problem is
undecidable, we nevertheless conjecture that it is undecidable for k � 4.

APPENDICES

A COMPUTING THE ROOT IN LINEAR TIME

We formally describe linear-time algorithms to compute all �k-roots for a word for k ∈ {2, 3}.
Given any x ∈ Σ∗q , since the root set of x has size exactly one by Proposition 2.6, it suffices to find

one r ∈ Irr�k (q) so that r
∗
===⇒
�k

x . Lemma 3.3 then implies that we may reorder the duplications

and assume that the tandem duplications are performed in decreasing lengths.

3The rate of a code C of length n is given by (log3 |C |)/n.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

Deciding the Confusability of Words under Tandem Repeats in Linear Time 42:19

Therefore, to compute r , we simply remove duplicates in increasing length. Formally, given a
word of the form uvvw where |v | = k ′, we say thatv is a k ′-duplicate. Removing the k ′-duplicate

v yields the word uvw . Therefore, to compute �2-root, we simply remove all 1-duplicates from
x and then all 2-duplicates from the result. If we want to compute �3-root, then we remove all
3-duplicates from the �2-root.

A formal description of the algorithm in Algorithm 2. Since removing all k ′-duplicates may be
performed in linear time, the algorithms run in linear-time.

ALGORITHM 2: Finding the �k-root

1: procedure Find-�2-Root(x)

Input: x ∈ Σ∗q
Output: r , where R�2 (x) = {r }.

2: r ← x
3: Remove all 1-duplicates in r using RemoveDuplicates(r , 1)
4: Remove all 2-duplicates in r using RemoveDuplicates(r , 2)

5: procedure Find-�3-Root(x)

Input: x ∈ Σ∗q
Output: r , where R�2 (x) = {r }.

6: r ← x
7: Remove all 1-duplicates in r using RemoveDuplicates(r , 1)
8: Remove all 2-duplicates in r using RemoveDuplicates(r , 2)
9: Remove all 3-duplicates in r using RemoveDuplicates(r , 3)

10: procedure RemoveDuplicates(r ,k)

11: while i + 2k − 1 � |r | do

12: if the substring of length k starting at index i is equal to the substring of length k starting at

index i + k then

13: Remove the substring of length k starting at index i
14: else

15: i ← i + 1

B ON THE SUM OF LENGTHS OF ALL PREFIXES

Recall in Section 3.2, the running time of Algorithm 1 is linear in the sum of the lengths of all
prefixes that are computed in all recursive calls. Therefore, if this sum is linear in the lengths of
the original words, then Algorithm 1 runs in linear time. Specifically, we establish the following
proposition.

Proposition B.1. Let x ∈ Σm
q . Let p1,p2, . . . ,ps be all extended regions of r in x computed in

Line 12 of Algorithm 1. Then
∑s

i=1 |pi | � 3m.

Proof. Let x = x1x2 · · · xm . To establish the proposition, it suffices to show that each symbol x j

with 1 � j �m appears4 in at most three extended regions pi ,pi+1,pi+2 for some 1 � i � s − 2.
Let i be the smallest index such that x j appears in the extended region pi and letui be the suffix

of x computed in Line 13 of Algorithm 1 in the same recursive call. Note that pi+1 is a prefix of ui

and ui+1 is a proper suffix of ui . If x j is still in pi+1, which is a prefix of ui , then x j must belong

4In this proof, when we refer to a symbol x j , we refer specifically to the symbol at index j . More formally, we may rewrite

the word x as (x1, 1) (x2, 2) · · · (xm, m).

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

42:20 Y. M. Chee et al.

to the overlapping substring of pi and ui (see Figure 1). Suppose that r i is the current root and

Reg(r i) = w (abc)�ab. Then the overlapping substring is of the form abt for some t � 1, and we
have the following cases.

• x j = a. Then x j is necessarily the first symbol of ui , and hence the first symbol of pi+1.
Therefore, in the next recursive call, x j is no longer in ui+1,which is a proper suffix of ui

and hence not in pi+2. In other words, x j appears only in pi and pi+1.
• x j = b for some b in the overlapping substring. To get ui+1, at least abt−1 is removed from

the prefix of ui . If exactly abt−1 is removed from the prefix of ui to get ui+1, and x j is the
last b in the overlapping substring of pi and ui , then x j still appears in ui+1 and hence still
appears in pi+2, but not in ui+2. In this case, x j appears in pi , pi+1 and pi+2, but not pi+3.
Otherwise, if x j is not the last b in the overlapping substring of pi and ui , x j is no longer
in ui+1, and hence x j does not appear in pi+2. Hence, in this case, x j appears in pi , pi+1, but
not pi+2.

Therefore, from the two cases above, x j appears in at most three consecutive extended
regions. �

C PROOF OF PROPOSITION 4.4

Let x be a word of length n whose root is r . Suppose that r has length i and m regions and we
set Label(x) = (r , (c1,δ1), (c2,δ2), . . . , (cm ,δm)). To prove Proposition 4.4, we first show certain
properties of the label of x .

Lemma C.1. We have that

i + 3(c1 + c2 + · · · + cm) −m � n. (2)

Proof. Since r
∗
==⇒
�3

x , then by Theorem 3.4, there exists x ′ such that r
∗
==⇒
3d

x ′, and x ′ = R�2 (x).

Let 1 � j �m. Since there are c j distinct triplets in the jth region of R�2 (x), we have to du-
plicate the distinct triplet in the jth region of r by c j − 1 times. Therefore, we have |x ′ | = |r | +∑m

j=1 3(c j − 1) = i + 3(c1 + c2 + · · · cm) −m. Note that since x ′ = R�2 (x), we have |x | � |x ′ |, and

hence it yields Equation (2). �
Lemma C.2. We have that δ1 = δ2 = · · · = δm = +, whenever

i + 3(c1 + c2 + · · · + cm) −m = n. (3)

Proof. Since we know that i + 3(c1 + c2 + · · · cm) −m is the length of x ′ = R�2 (x), and the
equality holds, that means there is no tandem duplication of length at most two in x . Hence,
a distinct triplet must remain in each of the extended regions of r in x and so, δ j = + for all
1 � j �m. �

Finally, we complete the proof of Proposition 4.4.
Proposition 15. Let i � n. Suppose that r ∈ Irr�3 (i, 3) hasm regions. Then,

T (n,r) � U (n, i,m) �
⎧⎪⎨⎪⎩

(
(n−i)/3+m

m

)
−
(

(n−i)/3+m−1
m−1

)
+ 1, if 3 divides n − i,(�(n−i)/3+m

m

)
, otherwise.

Proof. Let C be an (n � 3;r)-TD code. For x ∈ C, set Label(x) = (r , (c1,δ1), (c2,δ2), . . . ,
(cm ,δm)) and so, (c1, c2, . . . , cm) is an integer solution to Equation (2) whose entries are all pos-
itive. Corollary 4.3(i) implies that these integer solutions are distinct for different x chosen from
C. Hence, the number of integer solutions to Equation (2) is an upper bound to the size of C. This

number is well known (see Heubach and Mansour [5]) and is given by
(�(n−i)/3+m

m

)
.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

Deciding the Confusability of Words under Tandem Repeats in Linear Time 42:21

Whenn − i is divisible by three, we improve this upper bound. Observe that the integer solutions
to Equation (3) is a proper subset of Equation (2). Corollary 4.3(ii) then implies that there is at
most one x in C whose label yields a positive integer solution to Equation (3). Since the number of

positive integer solutions to Equation (3) is
(

(n−i)/3+m−1
m−1

)
, we obtain the desired upper bound. �

D NUMBER OF IRREDUCIBLE WORDS WITH CERTAIN NUMBER OF REGIONS

Recall that I (i,m) denote the number of irreducible words in Irr�3 (i, 3) with exactly m regions.
In this Appendix, we derive a recursive formula for I (i,m) that allows us to efficiently compute
Equation (1).

Let Irr(aba, i,m) and Irr(abc, i,m) denote the set of irreducible words of length i with exactly
m regions that have two and three distinct symbols, respectively, in their prefixes of length three.
Let I (aba, i,m) and I (abc, i,m) denote the sizes of Irr(aba, i,m) and Irr(abc, i,m), respectively.

We consider the maps,

Φ1 :Irr(aba, i,m) → Irr(abc, i − 1,m),

Φ2 :Irr(abc, i − 1,m) → Irr(aba, i,m),

Ψ1 :Irr(abc, i,m) → Irr(aba, i − 1,m − 1) ∪ Irr(aba, i − 2,m − 1) ∪ Irr(aba, i − 3,m − 1),

Ψ2 :Irr(aba, i − 1,m − 1) ∪ Irr(aba, i − 2,m − 1) ∪ Irr(aba, i − 3,m − 1) → Irr(abc, i,m),

defined via the following rules. In what follows, we set r = r1r2 · · · r |r | and for distinct elements
r1, r2, set r ∗ to be the unique symbol distinct from r1 and r2:

Φ1 (r) = r \ r1, Φ2 (r) = r2r ,

Ψ1 (r) =
⎧⎪⎪⎨⎪⎪⎩
r \ r1, if r1 � r4,
r \ r1r2, if r1 = r4, r2 � r5,
r \ r1r2r3, if r1 = r4, r2 = r5,

Ψ2 (r) =
⎧⎪⎪⎨⎪⎪⎩
r ∗r , if |r | = i − 1,
r2r
∗r , if |r | = i − 2,

r1r2r
∗r , if |r | = i − 3.

Then we check that the maps Φ1, Φ2, Ψ1, and Ψ2 are well-defined and Φ1 ◦ Φ2, Φ2 ◦ Φ1, Ψ1 ◦ Ψ2,
and Ψ2 ◦ Ψ1 are identity maps on their respective domains. Therefore, all four maps are bijections,
and we establish the following recursion. Form � 0 and i � 3,

I (aba, i,m) =
⎧⎪⎪⎨⎪⎪⎩
I (abc, i − 1,m), i > 3,
0, if i = 3,m > 0,
6, if i = 3,m = 0.

I (abc, i,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I (aba, i − 1,m − 1) + I (aba, i − 2,m − 1) + I (aba, i − 3,m − 1), if i � 6,m � 1,
0, if i = 5,m > 2,
6, if i = 5,m = 2,
12, if i = 5,m = 1,
0, if i = 4,m > 1,
12, if i = 4,m = 1,
0, if i = 3,m > 1,
6, if i = 3,m = 1,
0, ifm = 0.

Finally, to compute I (i,m), we have that I (i,m) = I (aba, i,m) + I (abc, i,m).

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

42:22 Y. M. Chee et al.

ACKNOWLEDGMENT

We are grateful for an anonymous reviewer who proposed the definition of label given in
Section 4. This definition has led to a more succinct presentation and a spectrum of new results,
including Proposition 4.4 and the computation of the size of optimal codes of lengths up to 20.

REFERENCES

[1] Masanori Arita and Yoshiaki Ohashi. 2004. Secret signatures inside genomic DNA. Biotechnol. Progr. 20, 5 (2004),

1605–1607.

[2] Farzad Farnoud, Moshe Schwartz, and Jehoshua Bruck. 2016. The capacity of string-duplication systems. IEEE Trans.

Info. Theory 62, 2 (2016), 811–824.

[3] John W. Fondon and Harold R. Garner. 2004. Molecular origins of rapid and continuous morphological evolution.

Proc. Natl. Acad. Sci. U.S.A. 101, 52 (2004), 18058–18063.

[4] Dominik Heider and Angelika Barnekow. 2007. DNA-based watermarks using the DNA-Crypt algorithm. BMC

Bioinform. 8, 1 (2007), 176.

[5] Silvia Heubach and Toufik Mansour. 2009. Combinatorics of Compositions and Words. CRC Press.

[6] Siddharth Jain, Farzad Farnoud Hassanzadeh, and Jehoshua Bruck. 2017. Capacity and expressiveness of genomic

tandem duplication. IEEE Trans. Info. Theory 63, 10 (2017), 6129–6138.

[7] Siddharth Jain, Farzad Farnoud, Moshe Schwartz, and Jehoshua Bruck. 2017. Duplication-correcting codes for data

storage in the DNA of living organisms. IEEE Trans. Info. Theory 63, 8 (2017), 4996–5010.

[8] Janez Konc and Dušanka Janezic. 2007. An improved branch and bound algorithm for the maximum clique problem.

Proteins 4, 5 (2007). Retrieved from http://insilab.org/maxclique/.

[9] Eric S. Lander, Lauren M. Linton, Bruce Birren, Chad Nusbaum, Michael C. Zody, Jennifer Baldwin, Keri Devon, Ken

Dewar, Michael Doyle, William FitzHugh et al. 2001. Initial sequencing and analysis of the human genome. Nature

409, 6822 (2001), 860–921.

[10] Peter Leupold, Carlos Martin-Vide, and Victor Mitrana. 2005. Uniformly bounded duplication languages. Discrete

Appl. Math. 146, 3 (2005), 301–310.

[11] Peter Leupold, Victor Mitrana, and José M. Sempere. 2003. Formal languages arising from gene repeated duplication.

In Aspects of Molecular Computing. Springer, 297–308.

[12] Michael Liss, Daniela Daubert, Kathrin Brunner, Kristina Kliche, Ulrich Hammes, Andreas Leiherer, and Ralf Wagner.

2012. Embedding permanent watermarks in synthetic genes. PloS One 7, 8 (2012), e42465.

[13] Nicholas I. Mundy and Andreas J. Helbig. 2004. Origin and evolution of tandem repeats in the mitochondrial DNA

control region of shrikes (Lanius spp.). J. Molec. Evol. 59, 2 (2004), 250–257.

[14] Gonzalo Navarro. 2001. A guided tour to approximate string matching. ACM Comput. Surveys 33, 1 (2001), 31–88.

[15] Seth L. Shipman, Jeff Nivala, Jeffrey D. Macklis, and George M. Church. 2017. CRISPR–Cas encoding of a digital movie

into the genomes of a population of living bacteria. Nature 547, 7663 (2017), 345.

[16] Michael Sipser. 2006. Introduction to the Theory of Computation, vol. 2. Thomson Course Technology, Boston.

[17] Grant R. Sutherland and Robert I. Richards. 1995. Simple tandem DNA repeats and human genetic disease. Proc. Natl.

Acad. Sci. U.S.A. 92, 9 (1995), 3636–3641.

[18] Karen Usdin. 2008. The biological effects of simple tandem repeats: Lessons from the repeat expansion diseases.

Genome Res. 18, 7 (2008), 1011–1019.

Received April 2018; revised May 2019; accepted May 2019

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 42. Publication date: July 2019.

http://insilab.org/maxclique/

