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Burst-Deletion-Correcting Codes for Permutations
and Multipermutations

Yeow Meng Chee , Senior Member, IEEE, San Ling , Tuan Thanh Nguyen ,

Van Khu Vu , Hengjia Wei , and Xiande Zhang

Abstract— Permutation codes and multipermutation codes are
widely studied due to various applications in information theory.
Designing codes correcting deletion errors has been the main
subject of works in the literature and to the best of our
knowledge, there exist only optimal codes capable of correcting
a single deletion in a permutation. In this paper, we construct
several classes of permutation and multipermutation codes that
are capable of correcting a burst deletion of length s ≥ 2, for
both stable and unstable models. Efficient error decoders are
provided to show the correctness of our constructions.

Index Terms— Error-correction codes, flash memories, permu-
tation codes, multipermutation codes.

I. INTRODUCTION

IN THE 1960’s, Slepian [1] proposed using permutation
codes and multipermutation codes for transmission in the

presence of additive white Gaussian noise. In 2000, permuta-
tion codes were suggested as a solution to combat impulse
noise and permanent frequency noise in power grids by
Vinck [2]. Recently, permutation codes have attracted attention
due to their emerging applications in storage systems, such as
flash memories [3]–[6].

Flash memories have become a mature technology for the
nonvolatile storage of information that can be electrically
erased and/or reprogrammed. They are increasingly replacing
hard disks, offering the advantage of speed, noise, power
consumption, and physical reliability. Flash memories store
information in arrays of memory cells, and each cell can store
one or more bits of information. The level of a cell can be
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increased by injecting charge into the cell, and decreased by
removing charge from the cell. While adding charge to a single
cell can be done fast and simple, removing charge from a
single cell is very difficult. It follows from the fact that most
flash memory technologies do not allow a single cell to be
erased. In order to decrease any cell’s level, the whole block
needs to be erased (which means to remove the charge from
all the cells of the block) and then be reprogrammed. There
are two main challenges in flash memories:

(i) Programming cells. It is not easy to program each
cell exactly to its designated level. In fact, the process
of writing a specific level on a cell is designed to
cautiously approach the target level from below so as to
avoid undesired block erasures in case of overshooting.
In order to combat this kind of errors, Jiang et al. [3]
proposed a permutation coded rank modulation scheme.
In this setup, the information is stored in the form of
ranking of the cells’ charges rather than in term of
the absolute values of the charges. More specifically,
information is written in blocks of n cells, and each
block stores a permutation of length n. For example,
the relative values of the charge levels in Figure 1 give
the permutation (1, 2, 3, 6, 4, 5). This simple coding
framework may eliminate the problem of cell block
erasures as well as potential cell overshooting issues [4].
For instance, while all absolute values are prone to
errors caused by charge leakage, the relative ordering
of the quantitative data may remain unchanged. After
the work of [3], the permutation coded rank modulation
scheme has been extended to tolerate other kinds of
errors [4], [5], [7], [8].

(ii) Memory endurance in aging device. As mentioned
above, it is costly to decrease the cell’s level as the whole
block needs to be erased and then be reprogrammed.
Therefore, it is highly desirable to minimize the number
of block erasures. En Gad et al. [9] focused on the
advantages of multipermutations and claimed that the
flexibility could result in better performance. The idea
is still using relative levels of the cells instead of the
absolute levels, but allowing multiple cells to be in the
same relative level. For example, based on the relative
levels of cells in Figure 1, we may partition them into
three groups, where charge level one includes two cell
at the lowest level, charge level two includes those at the
middle level, and charge level three includes two cells
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Fig. 1. Charge levels in a block of six cells in a flash memory.

at the highest level. The information is then stored as a
multipermutation (1, 1, 2, 3, 2, 3). We refer this model
as multipermutation coded rank modulation scheme.

Recently, Gabrys et al. [11] studied deletion errors in per-
mutation coded rank modulation scheme and Sala et al. [12]
investigated deletion errors in multipermutation coded rank
modulation scheme. Such errors occur when cells are cor-
rupted and the charge levels cannot be read correctly. They
provided constructions for permutation codes and multipermu-
tation codes those are capable of correcting a single deletion.
Deletions in permutations were classified in [11] and this
classification was further extended to multipermutations by
Sala et al. [12]. In general, deletions are classified according
to how they affect the information stored in the remaining
cells:

(i) Stable deletion: In such a deletion, the absolute values
of the cells are known.

(ii) Unstable deletion: In such a deletion, only the relative
values of the remaining cells are known.

Gabrys et al. [11] demonstrated that the models of unstable
erasures and stable deletions are equivalent in rank modulation
schemes. Here, the former (unstable erasures) refers to the
event where the charge levels of certain cells are corrupted
and we know their locations. Since unstable erasures happen
in flash memories, we study the equivalent model (stable
deletions) in this work. Gabrys et al. also demonstrated the
importance of unstable deletions models (which they referred
as permutation-invariant) in rank modulation schemes. The
scenario is when deletion errors occur, the reader might
only distinguish the difference in ranking of the remaining
cells rather than their absolute levels. Therefore, the resultant
vector is a permutation. This model was further extended to
multipermutations by Sala et al. [12].

Example 1. Suppose a deletion occurs in the third cell of the
block (1, 2, 3, 6, 4, 5) depicted in Fig. 1. In a stable deletion,
the remaining components of the permutation give the vector
(1, 2, 6, 4, 5), whereas in an unstable deletion, the remaining
components of the permutation give the vector (1, 2, 5, 3, 4).

A permutation or multipermutation that experiences unsta-
ble deletions loses all information on values and locations of
the corrupted cells. Hence, codes capable of correcting unsta-

ble deletions need more constraints than codes for correcting
stable deletions.

Levenshtein [10] used Varshamov-Tenengolts (VT) codes
to constructed perfect permutation codes against a stable
deletion. Recently, Gabrys et al. [11] also used VT codes
to construct asymptotically optimal codes against an unstable
deletion. In multipermutation, while it is trivial to extend the
technique in permutation to construct asymptotically optimal
multipermutation codes correcting a stable deletion, designing
codes correcting an unstable deletion is still a challenging
problem. Sala et al. [12] provided a method to construct
multipermutation codes against an unstable deletion by using
interleaved codes and VT codes. The research on codes
correcting multiple deletions is still very limited.

In this paper, we study the related problem of burst deletions
in rank modulated flash memories, that is, a series of dele-
tions that occur in consecutive cells. The motivation behind
considering burst deletions is that as flash memory scales,
the parasitic capacitance of adjacent cells increases, which can
cause corruptions in a cell to bleed to adjacent cells, through
capacitative coupling [13], [14]. Recently, Han et al. [15]
presented constructions of codes correcting a burst of sta-
ble deletions for permutations and multipermutations. Their
constructions are mainly based on interleaving technique,
and the redundancy of constructed codes grows linearly in
term of the length of codewords. In this work, we show
that we can do much better by improving the redundancy
to be at most 2 log n + O(1), where n is the length of
permutations, for codes correcting a burst of s stable deletions,
where s is any constant. Our technique can be extended to
construct multipermutation codes correcting a burst of stable
deletions with at most 2 log n + O(1) redundancy. In both
models, the gap between our redundancy and optimality is
only log n + O(1). In addition, we construct the first class of
permutation codes that are capable of correcting a burst of s
unstable deletions. Motivated by the work of Sala et al. [12],
we also study multipermutation codes correcting a burst of
s unstable deletions. Our results include bounds on the size
of optimal codes, code constructions, and efficient decoding
algorithms.

The paper is organized as follows. We present notations used
throughout the paper in Section II and review the previous
works in Section III. In Section IV and Section V, we study
stable deletions and present permutation codes and multiper-
mutation codes respectively. Section VI and Section VII are
devoted to unstable deletions. Finally, we conclude the paper
in section VIII with a summary of the main results.

II. DEFINITIONS AND NOTATIONS

In this section, we give necessary definitions and notations.

A. Permutation Codes

For integers a ≤ b, [a, b] denotes the set {a, a + 1, a +
2, . . . , b}. Let n be a positive integer and Sn be the set of all
permutations on the set [1, n].

For a permutation π = (π1, π2, . . . , πn) ∈ Sn and a set of
positions I ⊆ [1, n], define π(I ) = {πi : i ∈ I }. Let X be a
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set of numbers. For a number a, we define a(X) = a − |{x ∈
X : x < a}|.
Example 2. if π = (5, 1, 4, 2, 6, 3) and I = {3, 4}, then
π(I ) = {2, 4}, 5(π(I )) = 5 − 2 = 3, 1(π(I )) = 1 − 0 = 1,
and 6(π(I )) = 6− 2 = 4.

We first define stable and unstable deletions in permutations.

Definition 1. Assume that π = (π1, π2, . . . , πn) ∈ Sn and
I = [i + 1, i + s] ⊆ [1, n] is a set of size s. We say the
permutation π suffers a burst of s stable deletions in I , if it
results in the vector (π1, . . . , πi , πi+s+1, . . . , πn). We use πI

to denote this resultant vector. In general, we use Bs(π) to
denote the set of all vectors of length n − s received as a
result of a burst of s stable deletions in π .

Definition 2. Let π and I be defined as above. We say that
π suffers a burst of s unstable deletions in I , resulting in
the permutation (π̃1, . . . , π̃n−s) ∈ Sn−s , if π̃ j = π j (π(I )) for
1 ≤ j ≤ i and π̃ j = π j+s(π(I )) for i+1 ≤ j ≤ n−s. We use
π↓,I to denote this resultant permutation, and use B↓,s(π) to
denote the set of all permutations in Sn−s received as a result
of a burst of s unstable deletions in π .

Example 3. Let π = (2, 1, 3, 5, 6, 4) and I = {3, 4}. If π
suffers a burst of stable deletions in I , we have the resultant
vector πI = (2, 1, 6, 4). On the other hand, if π suffers a
burst of unstable deletions in I , then the resultant vector is a
permutation, which is π↓,I = (2, 1, 4, 3).

Definition 3. A permutation code C ⊆ Sn is called an s-PBSD
(or s-PBUD) code if it can correct a burst of exactly s
stable (or unstable) deletions, that is, for distinct π1, π2 ∈ C,
we should have Bs(π1)∩Bs(π2) = ∅ (or B↓,s(π1)∩B↓,s(π2) =
∅). Similarly, C is called an ≤s-PBSD (or ≤s-PBUD) code if it
can correct a burst of at most s stable (or unstable) deletions,
that is, for distinct π1, π2 ∈ C, we should have Bk(π1) ∩
Bk(π2) = ∅ (or B↓,k(π1) ∩ B↓,k(π2) = ∅) for any k ≤ s.

B. Multipermutation Codes

For a positive integer n and a vector r = (r1, r2, . . . , rm)
with n = ∑m

i=1 ri and ri ≥ 1, which we call multiplicity
vector, we use M(n, r) to denote the multiset

{1, . . . , 1︸ ︷︷ ︸
r1

, 2, . . . , 2︸ ︷︷ ︸
r2

, . . . , m, . . . , m︸ ︷︷ ︸
rm

}.

A multipermutation ρ = (ρ1, . . . , ρn) is an arrangement of the
elements of that multiset. For example, (3, 3, 2, 1, 2, 1, 2, 1)
is a multipermutation of {1, 1, 1, 2, 2, 2, 3, 3}. We denote the
set of all multipermutations on the multiset M(n, r) as Sr

n .
If r1 = r2 = · · · = rm = r , the multiset and the corresponding
multipermutations are called regular. For simplicity, in this
paper, we only discuss regular multipermutations. Our results
for regular multipermutations can be easily generalized to non-
regular multipermutations.

As we see from Figure 1, each possible ranking of cell
charge levels (over a block of cells) yields a single permu-
tation. In multipermutation coded rank modulation scheme,
such permutation will be encoded as a multipermutation

based on a multiplicity vector r. For example, the per-
mutation (5, 3, 2, 6, 4, 1) is encoded as multipermutation
(3, 2, 1, 3, 2, 1) when the multiplicity vector is r = (2, 2, 2).
In general, we derive the multipermutation as follows.

Definition 4. Given a permutation π ∈ Sn , and a multiplicity
vector r = (r1, . . . , rm), where n =∑m

i=1 ri , the multipermu-
tation representing π based on r, denoted by mr

π , is derived
in the following way:

mr
π(i) = j if

j−1∑
k=1

rk + 1 ≤ π(i) ≤
j∑

k=1

rk, i ∈ [n].

When the multipermutation is regular, that is r1 = · · · = rm ,
we have

mr
π (i) = j if ( j − 1)r + 1 ≤ π(i) ≤ jr, i ∈ [n].

There are several permutations that can be represented by a
particular multipermutation. For example, besides the permuta-
tion (5, 3, 2, 6, 4, 1), the permutation (6, 4, 2, 5, 3, 1) can also
be represented by multipermutation (3, 2, 1, 3, 2, 1) based on
the multiplicity vector r = (2, 2, 2). In fact, if the multiplicity
vector r = (r1, r2, . . . , rm), there are overall r1!r2! · · · rm ! such
permutations. For a multipermutation ρ ∈ Sr

n , we use Rr(ρ )
to denote the set of permutations that can be represented by
ρ based on the multiplicity vector r, mathematically

Rr(ρ ) = {π ∈ Sn : mr
π = ρ }.

In multipermutation coded rank scheme, we assume that the
storage system works directly on multipermutations. In such
a scheme, data is encoded as multipermutations and the
decoder will read out the multipermutation resulting from a
block of cells, regardless of the underlying permutation. Next,
we define a burst of stable deletions and unstable deletions in
multipermutations.

Definition 5. Given a positive integer n and a multiplicity
vector r = (r1, r2, . . . , rm), where n = ∑m

i=1 ri , assume that
ρ = (ρ1, ρ2, . . . , ρn) ∈ Sr

n and I = [i + 1, i + s] ⊆ [1, n]
is a set of size s. We say the multipermutation ρ suffers a
burst of s stable deletions in I , if it results in the vector ρI =
(ρ1, . . . , ρi , ρi+s+1, . . . , ρn). Let Bs(ρ ) denote the set of all
vectors of length n − s received as a result of a burst of s
stable deletions in ρ .

For example, let ρ = (3, 3, 1, 2, 2, 1, 2, 1) ∈ S(3,3,2)
8 and

I = {2, 3, 4}. If ρ suffers a burst of stable deletions in I , then
it results in ρI = (3, 2, 1, 2, 1).

Now we define a burst of unstable deletions in multipermu-
tations.

Definition 6. Suppose we have two multipermutations, ρ ∈ Sr
n

and ρ̃ ∈ S r̃
n−s , where r̃ = (r̃1, . . . , r̃m) with 0 ≤ r̃i ≤ ri for

i ∈ [1, m]. Let I = [i + 1, i + s] ⊆ [1, n]. Then we say ρ
suffers a burst of s unstable deletions in I and results in ρ̃ if
there exists π ∈ Rr(ρ ) and π̃ ∈ Rr̃(ρ̃ ) such that π̃ = π↓,I .

Example 4. Let n = 6, r = (2, 2, 2), and assume that the
multipermutation ρ = (2, 2, 1, 1, 3, 3) ∈ Sr

6 has a burst of
two unstable deletions in I = {2, 3}. Then ρ may result in
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ρ̃ ′ = (2, 1, 3, 2) since π ′ = (3, 4, 1, 2, 6, 5) ∈ Rr(ρ ), π̃ ′ =
(2, 1, 4, 3) ∈ R(1,2,1)(ρ̃

′) and π̃ ′ = π ′↓,I ; by definition, ρ may
also result in ρ̃ ′′ = (2, 2, 3, 3) since π ′′ = (3, 4, 2, 1, 5, 6) ∈
Rr(ρ ), π̃ ′ = (2, 1, 3, 4) ∈ R(0,2,2)(ρ̃

′′) and π̃ ′′ = π ′′↓,I .
In fact, we may have seven possible vectors as below.

ρ ′ ∈{(1, 1, 3, 3), (2, 1, 3, 3), (1, 1, 2, 2),

(2, 1, 2, 3), (2, 1, 3, 2), (1, 1, 2, 3), (1, 1, 3, 2)}.
From Example 4, we see that there may be more than

one possible resulting vectors ρ̃ received from the unstable
deletions of ρ in the same set of positions, since there are
many choices of π , π̃ and r̃. Given a multiplicity vector
r = (r1, . . . , rm), let �s(r) be the set of all possible vectors
r̃ = (r̃1, . . . , r̃m) satisfying 0 ≤ r̃i ≤ ri for 1 ≤ i ≤ m and∑m

i=1 r̃i = n− s. Then the set of all possible resulting vectors
received from a burst of s unstable deletions of ρ , denoted by
B↓,s(ρ ), can be formulated as follows:

B↓,s(ρ ) =
⋃

r̃∈�s(r)

{mr̃
π̃ : π̃ ∈ B↓,s(π) for some π ∈ Rr(ρ )}.

We now have a formal definition for multipermutation codes
correcting a burst of stable (or unstable) deletions.

Definition 7. A multipermutation code C ⊆ Sr
n is called an

s-MBSD (or s-MBUD) code if it can correct a burst of exactly
s stable (or unstable) deletions. In other words, for distinct
ρ1, ρ2 ∈ C, we have Bs(ρ1) ∩ Bs(ρ2) = ∅ (or B↓,s(ρ1) ∩
B↓,s(ρ2) = ∅). Similarly, C is called an ≤s-MBSD (or ≤s-
MBUD) code if it can correct a burst of at most s stable (or
unstable) deletions. In other words, for distinct ρ1, ρ2 ∈ C,
we have Bk(ρ1) ∩ Bk(ρ2) = ∅ (or B↓,k(ρ1) ∩ B↓,k(ρ2) = ∅)
for any k ≤ s.

Throughout this paper, when n = st for appropriate
integers s and t , a permutation (or multipermutation) c =
(c1, c2, . . . , cn) is written as an array⎡

⎢⎢⎢⎣
c1 cs+1 · · · c( j−1)s+1 · · · c(t−1)s+1
c2 cs+2 · · · c( j−1)s+2 · · · c(t−1)s+2
...

...
. . .

...
. . .

...
cs c2s · · · c js · · · cn

⎤
⎥⎥⎥⎦ .

Hence, we may speak of an s× t permutation (or multipermu-
tation), and refer to rows or columns of an s × t permutation
(or multipermutation). The i th row of an s× t permutation (or
multipermutation) c is denoted by

c(s,i) = (ci , cs+i , . . . , cn−s+i ), and

the j th column of c is denoted by

c(s, j ) = (c( j−1)s+1, c( j−1)s+2, . . . , c js).

Observation 1. A burst of length s deletions in an s × t
permutation (or similarly multipermutation) deletes exactly
one symbol from each row and affects at most two adjacent
columns.

Definition 8. For two vectors u = (u1, u2, . . . , um) and v =
(v1, v2, . . . , vn), the concatenation of u and v is the vector
u||v = (u1, u2, . . . , um , v1, v2, . . . .vn).

III. PREVIOUS WORKS

We now review the previous works on deletion-correcting
codes. Deletions in q-ary codes were defined in [16], [17].
In such models, the deletions do not affect the value of
remaining symbols. Therefore, we refer deletions in q-ary as
stable deletions.

A. To Combat a Single Stable Deletion

For a positive integer a ∈ Zn+1, let

Ca(n) =
{

u ∈ {0, 1}n :
n∑

i=1

iui ≡ a (mod n + 1)

}
,

where ui is the i th component of u. Then Ca(n) are the
family of binary codes known as the Varshamov-Tenengolts
(VT) codes [16]. These codes are capable of correcting a single
stable deletion. It is known that the choice a = 0 maximizes
the cardinality of the codes.

As in [17], the signature of u = (u1, u2, . . . , un) ∈ [1, q]n
is the binary vector α(u) = (α(u1), . . . , α(un−1)) of length
n − 1, where α(ui ) = 1 if ui+1 ≥ ui , and 0 otherwise, for
all i ∈ [1, n − 1]. For example, if u = (1, 2, 1, 3, 2, 3), then
α(u) = (1, 0, 1, 0, 1). Levenshteı̆n [10] showed that

Pa(n) = {π ∈ Sn : α(π) ∈ Ca(n − 1)}
is a permutation code that is capable of correcting a single
stable deletion. Since the union of these codes over a ∈ Zn is
exactly Sn , one of them has size at least n!/n = (n − 1)!.

Tenengolts [17] also generalized the binary VT codes to
nonbinary ones. For any a ∈ Zn and b ∈ Zq , let

Ca,b(n; q) =
{

u ∈ [1, q]n : α(u) ∈ Ca(n − 1)

and
n∑

i=1

ui ≡ b (mod q)

}
.

The codes Ca,b(n; q) are capable of correcting a single stable
deletion, and one of them has size at least qn−1/n.

B. To Combat a Single Unstable Deletion

For a permutation π = (π1, π2, . . . , πn) ∈ Sn , its inverse
is the permutation π−1 = (π−1

1 , π−1
2 , . . . , π−1

n ), where π−1
i

is the location of i in π . Gabrys et al. [11] constructed
asymptotically optimal permutation codes that can correct a
single unstable deletion as follows. Given a, b ∈ Zn , let

Ca,b(n)=
{
π ∈Sn : α(π)∈Ca(n−1) and α(π−1)∈Cb(n−1)

}
.

An efficient decoding algorithm was given by
Gabrys et al. [11].

Sala et al. [12] provided a method to correct unstable
deletion in multipermutations by using interleaved codes and
VT codes. They focused on regular multipermutations, i.e.
r1 = r2 = · · · = rm = r . Given a ∈ Zn+1, they defined
a code Cr

a(n), which can correct a single unstable deletion,
as follows.

Cr
a(n) ={
ρ = (ρ1, . . . , ρn) ∈ Sr

n : ρi ≡ 0 (mod 2) for i ∈
[
1,

n

2

]
,
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ρi ≡ 1 (mod 2) for i ∈
[n

2
+ 1, n

]
,

n∑
i=2

iα(ρi−1)+ 1 ≡ a

(mod n + 1), and
∣∣∣ρ (n

2

)
− ρ

(n

2
+ 1

)∣∣∣ ≥ 3

}
.

C. To Combat a Burst of Stable Deletions

Han et al. [15] presented constructions of codes correcting
a burst of stable deletions for permutations and multipermu-
tations. Their constructions are mainly based on interleaving
technique. Specifically, for code length n = st , they partitioned
a set of n symbols into s groups each of t symbols, and
constructed codes that can correct a stable deletion over the
set of t symbols in each group, which is similar to the work
of Levenshteı̆n [10]. The resultant interleaved code is capable
of correcting a burst of s stable deletions. Since in each group
the code correcting one stable deletion has size (t − 1)!, such
code has size at least ((t − 1)!)s .

D. Our Main Idea and Contribution

One may improve this lower bound by applying the tech-
nique proposed by Schoeny et al. [18], in which a new class
of codes was introduced and can correct single deletion if
the deletion is within P consecutive positions. For example,
in permutations, we take the first row of an s × (n/s)
permutation to be from a nonbinary VT code (so we only
take the codewords that have different components). Then the
position of the deletion in the first row can be determined
exactly. Thus deletions in the remaining (s − 1) rows are
known to be within two consecutive positions. To recover these
deletions, one can set up the constraint for sum of symbols in
each row to find the deleted symbols and then use the codes
from [18] to determine their positions. However, this incurs
huge redundancy when n is large. Actually, we need roughly
2 log n bits of redundancy to correct the deletion in the first
row and log n bits for each of the remaining (s − 1) rows.
Hence, the redundancy is approximately (s+ 1) log n+ O(1).

In this paper, we provide constructions for permutations
and multipermutations, which improve the redundancy from
(s + 1) log n + O(1) to at most 2 log n + O(1). In our
constructions, like before we first use a non-binary VT code
to determine the exact location of the deletion in the first row.
From Observation 1, the burst of deletions spans at most two
adjacent columns, and we can determine their position from
the location of the deletion in the first row. Therefore, we only
need to determine the overall ordering of the remaining deleted
symbols. To overcome this problem, we use two functions
p and μ to map every two adjacent columns to a symbol
of the set [1, (2s)!] to record the ordering. Then we set up
constraints for the sum of these symbols so that one can
recover the ordering. Note that the redundancy for this step
only depends on s instead of n. Our constructions reduce the
total redundancy from (s + 1) log n + O(1) to 2 log n + O(1).
The permutation projection function p and the permutation
rank function μ are defined below.

Definition 9. For an integer vector of length n, u =
(u1, u2, . . . , un), the permutation projection of u, denoted by

p(u), is a permutation in Sn where:

p(u)i =|{ j : u j <ui , 1 ≤ j ≤ n}|+|{ j : u j =ui , 1 ≤ j ≤ i}|.
Observe that p(u) is a permutation that records the ordering

of the symbols in u, and it is well-defined for vectors of
different or repeated symbols. When u is a vector of different
symbols, i.e. ui �= u j for i �= j , the term |{ j : u j = ui , 1 ≤
j ≤ i}| = 0. On the other hand, when u contains repeated
symbols, we rank the order of such symbols as an increasing
order according to their appearances in u.

Example 5. Let u = (6, 2, 5, 1, 8, 4) and v =
(1, 2, 4, 5, 8, 10). Then p(u) = (5, 2, 4, 1, 6, 3) and p(v) =
(1, 2, 3, 4, 5, 6). Let u′ = (1, 1, 2, 2, 1, 2) and v′ =
(1, 1, 1, 2, 2, 2). Then p(u′) = (1, 2, 4, 5, 3, 6), p(v′) =
(1, 2, 3, 4, 5, 6).

Definition 10. Let � : Sn → [1, n!] be a bijection such
that �(π) is the lexicographic rank of π in Sn . Let u =
(u1, u2, . . . , un) be an integer vector of length n. We define the
permutation rank of u, denoted by μ(u) = �(p(u)) ∈ [1, n!].
Example 6. Let u = (1, 1, 2, 2, 1, 2) and v =
(1, 2, 1, 2, 1, 2). The permutation projections of u, v are
p(u) = (1, 2, 4, 5, 3, 6), p(v) = (1, 4, 2, 5, 3, 6).

Observation 2. From μ(u) and the set {ui : 1 ≤ i ≤ m},
we can determine the sequence u exactly. For example, if
m = 4 and μ(u) = 2, then p(u) = (1, 2, 4, 3). Furthermore,
if {u1, u2, u3, u4} = {1, 3, 4, 5}, then u = (1, 3, 5, 4). When u
contains repeated symbols, sometimes we don’t have a valid
u given the value p(u) and the set of symbols.

Example 7. Let μ(u) = 2 and we know the set of symbols
in u is {1, 1, 2, 2, 2, 3}. From μ(u) = 2 and n = 6, we have
p(u) = (1, 2, 3, 4, 6, 5). We then get u = (1, 1, 2, 2, 3, 2).
However, if the set of symbols in u is {1, 1, 2, 2, 3, 3},
then there does not exist a vector u such that p(u) =
(1, 2, 3, 4, 6, 5).

We now present our construction for permutation codes
correcting a single burst of s stable deletions.

IV. PERMUTATION CODES CORRECTING A BURST OF

STABLE DELETIONS

A. Upper Bound

Let APBSD(n, s) denote the maximum size of an s-PBSD
code in Sn . As defined earlier, for a permutation π in Sn ,
Bs(π) is the set of all vectors of length n − s received as
a result of a burst of s stable deletions in π . Let Bs(Sn) =⋃

π∈Sn
Bs(π).

A code C is an s-PBSD permutation code if and only if for
distinct π1, π2 ∈ C, we have Bs(π1)∩Bs(π2) = ∅. It is easy to
see that for each permutation π , we have |Bs(π)| = n− s+1.
We also have |Bs(Sn)| = n!/s!, since Bs(Sn) is the set of
all sequences consisting of n − s distinct symbols from an
alphabet of size n. Consequently, we have the following.

Theorem 1. Let n > s be positive integers. Then

APBSD(n, s) ≤ n!
s!(n − s + 1)

.
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B. A Construction of s-PBSD Codes

We assume that n = st , where s ≥ 2 and t is even.

Construction 1. Let a ∈ Zt , b ∈ Zn, and c, d ∈ Z(2s)!. Let
Cs(n; a, b, c, d) be the set of all s × t permutations π ∈ Sn

such that the following holds:

(i) The first row π(s,1) of π satisfies π(s,1) ∈ Ca,b(t; n).
(ii) Pairs of adjacent columns of π satisfy the conditions

(1)
∑t/2

j=1 μ(π(s,2 j−1)||π(s,2 j )) ≡ c (mod (2s)!), and

(2)
∑t/2−1

j=1 μ(π(s,2 j )||π(s,2 j+1)) ≡ d (mod (2s)!).
Theorem 2. The permutation code Cs(n; a, b, c, d) from Con-
struction 1 is an s-PBSD code over Sn.

Proof: We establish the theorem by giving a decoding
algorithm for Cs(n; a, b, c, d) that recovers from a burst of
exactly s stable deletions.

Suppose a burst of s stable deletion occurs in a code-
word π = (π1, π2, . . . , πn) ∈ Cs(n; a, b, c, d), giving π̃ =
(π̃1, π̃2, . . . , π̃(t−1)s). Let ρ = (π̃1, π̃s+1, . . . , π̃(t−2)s+1), and
γ j = (π̃( j−1)s+1, π̃( j−1)s+2, . . . , π̃ j s), for 1 ≤ j ≤ t−1. So ρ
is the first row of the received codeword and γ j is the j th
column. Since the first row of π is a codeword of a single
deletion correcting code by construction, we can recover the
first row of π from ρ. From the recovered row, we can also
determine exactly where the deletion has taken place since all
entries of the row are distinct.

Suppose the deletion in the first row of π occured at position
( j1 − 1)s + 1, where 2 ≤ j1 ≤ t − 1. Then we have

(i) π(s, j ) = γ j for 1 ≤ j < j1 − 1, and
(ii) π(s, j ) = γ j−1 for j1 + 1 ≤ j ≤ t ,

since the s deletions are adjacent and occur across at most
two adjacent columns, π(s, j1−1) and π(s, j1), of π . This leaves
two columns π(s, j1−1) and π(s, j1) to recover. The symbols
appearing in these two columns can be deduced from the
other columns as the burst deletion is stable. Knowing the
ordering of these symbols in π(s, j1−1)||π(s, j1) would enable
us to recover π(s, j1−1) and π(s, j1). This ordering is precisely
encoded in μ(π(s, j1−1)||π(s, j1)), which can be computed as
follows:
when j1 is even,

μ(π(s, j1−1)||π(s, j1)) ≡
c −

∑
j∈[1,t/2]\{ j1/2}

μ(π(s,2 j−1)||π(s,2 j )) (mod (2s)!) and

when j1 is odd and j1 �= 1,

μ(π(s, j1−1)||π(s, j1)) ≡
d −

∑
j∈[1,t/2−1]\{( j1−1)/2}

μ(π(s,2 j )||π(s,2 j+1)) (mod (2s)!).

When j1 = 1, all the s deletions occur in the first column of
π , and can be recovered with knowledge of μ(π(s,1)||π(s,2)),
which can be computed using condition (1).

Corollary 1. There exists an s-PBSD code of size at least
s

((2s)!)2 ·
n!
n2 .

Proof: We have ∪a∈Zt ,b∈Zn,c,d∈Z(2s)!Cs(n; a, b, c, d) = Sn ,
where t = n

s . There exist a, b, c, and d such that the size of
Cs(n; a, b, c, d) is at least as large as the average.

Remark 1. When s is fixed, our construction forms a family
of s-PBSD codes whose size is at least 	(n!/n2) while
the upper bound, according to Theorem 1, is 
(n!/n). The
redundancy of our codes is at most 2 log n + O(1). It is
easy to see that the decoding algorithm runs in time linear
in the length of permutation. In addition, the constant term
in the lower bound from Corollary 1, which is

s

((2s)!)2 ,

can be improved in several cases. Specifically, when s = 2,
we modify Construction 1 to obtain a family of codes with size
at least n!/n2, instead of n!/(288n2) (refer to Subsection IV-D,
Corollary 3).

C. A Construction of ≤s-PBSD Codes

In this subsection, we consider the problem of correcting
a burst of at most s stable deletions. For general s, one
can take the intersection of a family of Ci (n; ai , bi , ci , di ),
where 2 ≤ i ≤ s, together with Pa1(n) to construct an
≤s-PBSD permutation code. Such a code has size at least

s!n!∏s
i=2((2i)!)2 n2s−1 . Below, we show that we can do a little

better. Assume that i | n for all 1 ≤ i ≤ s, and n = 2ts for
some even integer t .

Construction 2. Let c, d ∈ Z(4s)!, and let a = (ai)
s
i=1 and

b = (b j )
s
j=2 be two sequences of nonnegative integers such

that ai ∈ Zn/ i , for i = 1, 2, . . . , s, and b j ∈ Zn, for j =
2, 3, . . . , s. Let Cs(n; a, b, c, d) be the set of all permutations
π ∈ Sn such that the following holds:

(i) π ∈ Pa1(n).
(ii) When π is viewed as an i × (n/ i) permutation, its first

row π(i,1) belongs to Cai ,bi (n/ i ; n), for i = 2, 3, . . . , s.
(iii) When viewed as a 2s× t permutation, pairs of adjacent

columns of π satisfy the conditions

(1)
∑t/2

j=1 μ(π(2s,2 j−1)||π(2s,2 j )) ≡ c (mod (4s)!),
and

(2)
∑t/2−1

j=1 μ(π(2s,2 j )||π(2s,2 j+1)) ≡ d (mod (4s)!).
Theorem 3. The permutation code Cs(n; a, b, c, d) from Con-
struction 2 is an ≤s-PBSD code.

Proof: We establish the theorem by giving a decoding
algorithm for Cs(n; a, b, c, d) that recovers from a burst of at
most s stable deletions.

Suppose a stable burst deletion of length k ≤ s occurs in
a codeword π = (π1, π2, . . . , πn) ∈ Cs(n; a, b, c, d), giving
π̃ = (π̃1, π̃2, . . . , π̃n−k). The value of k can be determined
from the length of π̃ .

If k = 1, we can recover π since π ∈ Pa1(n).
If k ≥ 2, we view π as an k×(n/k) permutation and recover

the first row of π and the location of the deletion as in the
proof of Theorem 2. Suppose π j1k+1 (in the first row of π)
is deleted. Since the k deletions are adjacent, we necessarily
have

(i) πi = π̃i , for 1 ≤ i ≤ j1k − k + 1; and
(ii) πi = π̃i−k , for j1k + k + 1 ≤ i ≤ n.
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It remains to determine the sequence π( j1−1)k+2, π( j1−1)k+2,
. . . , π( j1+1)k of length 2k − 1. To do this, we view π as a
2s× (n/2s) permutation. Then the sequence to be determined
spans at most two adjacent columns of π and can be recovered
as in the proof of Theorem 2.

If j1 = 0, the deletions occur in the first k positions. So the
sequence to be determined spans the first column of the 2s ×
(n/2s) permutation π and still can be recovered as in the proof
of Theorem 2.

Corollary 2. There exists an ≤s-PBSD code of size at least
s!

((4s)!)2 ·
n!

n2s−1 .

In general, when s is fixed, our construction forms a family
of ≤s-PBSD codes whose size is at least 	(n!/n2s−1). The

constant term, which is
s!

((4s)!)2 , can be improved in several

cases. In the next subsection, we show the improvement when
s = 2.

D. A Major Improvement When s = 2

Definition 11. For a vector u = (u1, u2, . . . , un), let β(u) be
the number of inversions in the vector, so

β(u) = |(ui , u j ), i < j : ui > u j |.
Example 8. Let u = (1, 3, 3, 2) and v = (3, 2, 4, 1). We have
β(u) = 2, β(v) = 4.

Recall that when s = 2 and n = 2t for some integer t ,
a permutation π = (π1, π2, . . . , πn) is also written as the
array [

π1 π3 · · · π2i−1 · · · πn−1
π2 π4 · · · π2i · · · πn

]
.

Construction 3. Let a ∈ Zt , b ∈ Zn, and c ∈ Z2. Let
C2(n; a, b, c) be the set of all 2 × t permutations π ∈ Sn

such that the following holds:

(i) The first row π(2,1) of π is a codeword (with different
components) of nonbinary VT-code as defined in Sub-
section III-A, that is,

π(2,1) ∈ Ca,b(t; n).

(ii) The second row π(2,2) = (π2, π4, . . . , πn) of π satisfies
the condition

β(π(2,2)) ≡ c (mod 2)

Theorem 4. The permutation code C2(n; a, b, c) from Con-
struction 3 is a 2-PBSD code over Sn.

Proof: We establish the theorem by giving a decoding
algorithm for C2(n; a, b, c) that recovers a burst of two stable
deletions.

Suppose that two deletions occur in a codeword
π = (π1, π2, . . . , πn) ∈ C2(n; a, b, c), giving π̃ =
(π̃1, π̃2, . . . , π̃2t−2). Let ρ = (π̃1, π̃3, . . . , π̃2t−3), and γ j =
(π̃2 j−1, π̃2 j ), for 1 ≤ j ≤ t − 1. So ρ is the first row of the
received codeword and γ j is the j th column. Since the first

row of π is a codeword of a single deletion correcting code
by construction, we can recover the first row of π from ρ.
From the recovered row, we can also determine exactly where
the deletion has taken place since all entries of the row are
distinct.

Suppose the deletion in the first row of π occured at
position (2 j1 − 1), in other words, ρ2 j1−1 was deleted, where
2 ≤ j1 ≤ t − 1. Assume that the other deleted symbol is x .
Since 2 deletions are adjacent and occur across at most two
adjacent columns, π(s, j1−1) and π(s, j1), of π . If j1 = 1, we can
conclude that two deletions occurred at the first column and
x = π2. If j1 ≥ 2, we then have

(i) πi = π̃i for all 1 ≤ i ≤ 2 j1 − 3, and
(ii) πi = π̃i−2 for all 2 j1 + 1 ≤ i ≤ n.

Hence, we have two possible choices for second row of
original permutation as follows

(i) π2,2= A � (π̃2, . . . , π̃2 j1−4, π̃2 j1−2, x, π̃2 j1, . . . , π̃2t−2),
or

(ii) π2,2= B � (π̃2, . . . , π̃2 j1−4, x, π̃2 j1−2, π̃2 j1, . . . , π̃2t−2).
The second constraint β(π(2,2)) ≡ c (mod 2) helps us dis-
tinguish these two cases, since the values of β(A) and β(B)
differ by one.

Corollary 3. There exists a 2-PBSD code of size at least
n!
n2 .

Proof: We have ∪a∈Zt ,b∈Zn,c∈Z2C2(n; a, b, c) = Sn ,
where t = n/2. There exist a, b, and c such that the size
of Cs(n; a, b, c) is at least as large as the average.

When s = 2, the intersection of Pa(n) and the code from
Corollary 3 gives a ≤2-PBSD code.

Theorem 5. There exists an ≤2-PBSD code of size at least
n!/n3.

Remark 2. When s = 2, from Corollary 1, the 2-PBSD
code from Construction 1 has size at least n!/(288n2). This
lower bound is improved to n!/n2 from Corollary 3. Similarly,
when s = 2, from Corollary 2, the ≤2-PBSD code from
Construction 2 has size at least n!/(812851200n3). Theorem 5
improves this lower bound to at least n!/n3.

V. MULTIPERMUTATION CODES CORRECTING A BURST OF

STABLE DELETIONS

A. The Difference Between Permutations and
Multipermutations

Recall that to construct permutation codes correcting a
burst of s deletions, we write any permutation of length n
as an s × t array and use the fact that a burst of deletions
spans at most two columns in this array. We then use the
VT constraint (refer to Construction 1) for the first row of
the array in order to find the location of deleted symbol in
the first row, which consequently helps us identify the two
columns where the burst of deletions occurs. However, for
multipermutations, due to the multiplicity of the symbols,
we can only locate the deletions within at most r+1 columns.
So we treat the multipermutation as an s(r + 1)× t array and
encode the columns. As in Construction 1, we make use of
the permutation projection function and the permutation rank
function to encode the columns.
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B. Code Construction for s-MBSD Codes

Construction 4. Given n = rm = (r + 1)st, t even. Let a ∈
Z(r+1)t , b ∈ Zm, and c, d ∈ Z(2s(r+1))!. Let Cs(n; r, a, b, c, d)
be the set of all regular multipermutations ρ ∈ Sr

n such that
the following holds:

(i) When we view ρ as an s × (r + 1)t array, the first row
of ρ satisfies ρ(s,1) ∈ Ca,b((r + 1)t;m).

(ii) When we view ρ as an s(r + 1)× t array, the pairs of
adjacent columns satisfy

(1)
∑t/2

i=1 μ(ρ (s(r+1),2i−1)||ρ (s(r+1),2i)) ≡
c (mod (2s(r + 1))!), and

(2)
∑t/2−1

i=1 μ(ρ (s(r+1),2i)||ρ (s(r+1),2i+1)) ≡
d (mod (2s(r + 1))!).

Theorem 6. The multipermutation code Cs(n; r, a, b, c, d)
from Construction 4 is a regular s-MBSD code over Sr

n .

Proof: We prove the correctness of the theorem by
providing a decoding algorithm for Cs(n; r, a, b, c, d)
that recovers from a burst of exactly s stable
deletions.

Suppose a burst of s stable deletions occurs in a code-
word ρ = (ρ1, ρ2, . . . , ρn) in Cs(n; r, a, b, c, d), giving ρ̃ =
(ρ̃1, ρ̃2, . . . , ρ̃n−s ). Let ρ = (ρ̃1, ρ̃s+1, . . . , ρ̃((r+1)t−2)s+1).
So ρ is the first row of the received word when we view
it as an s × (r + 1)t array. Since the first row of ρ is a
codeword of a single-deletion-correcting code by construction,
we can recover the first row of ρ from ρ. Notice that the
deleted symbol belongs to a run of length at most r . From
the recovered row, we can determine the run of the deleted
symbol. We now view ρ as an s(r + 1)× t array and observe
that the run of deleted symbols spans at most two adjacent
columns of this array. We then use the second constraint to
recover the burst of deletions as in the proof of Theorem 2.

Corollary 4. There exists a regular s-MBSD code of size at
least

s

((2s(r + 1))!)2 ·
1

n2 ·
n!

(r !)m
.

If m is a fraction of n, in other words, r is a constant and
very small compared to the length of the codeword n, then the
first term in the formula of Corollary 4,

s

((2s(r + 1))!)2 is a

constant, and the rate of constructed codes are asymptotically
optimal. Our constructed codes have size 	(1/n2) as much
as the size of Sr

n for fixed s.
To construct codes of general multipermutations, i.e. where

r = (r1, r2, . . . , rm). We choose rmax = maxi∈[1,m] ri and
follow Construction 4 by replacing r by rmax. The following
result is immediate.

Corollary 5. There exists an s-MBSD code in Sr
n of size at

least

s

((2s(rmax + 1))!)2 ·
1

n2 ·
n!

(r1!)(r2!) · · · (rm !) .

VI. PERMUTATION CODES CORRECTING A BURST OF

UNSTABLE DELETIONS

This section serves to deal with permutation codes correct-
ing unstable deletions.

A. An Upper Bound

Let APBUD(n, s) be the maximum size of an s-PBUD code
in Sn . We abbreviate APBUD(n, 1) to APBUD(n). Gabrys et
al. [11] gave the following upper bound.

Lemma 1 (Gabrys et al. [11]). For any positive � < 1,
there exists an N� such that for all n ≥ N� , APBUD(n) ≤

n!
n(n−log n) (1+ �).

Gabrys et al. [11] constructed a class of 1-PBUD codes
of size at least n!/n2, which are asymptotically optimal with
respect to this upper bound.

We first present an upper bound for APBUD(n, s). Assume
that n = t · s. Let π = (π1, π2, . . . , πn) ∈ Sn . A consecutive
run of π is a substring of maximal length in π that contains
consecutively valued symbols, increasing or decreasing. Let
R(π) be the number of consecutive runs in π . For example,
π = (5, 1, 2, 4, 3, 6) has four consecutive runs (5), (1, 2),
(4, 3) and (6). It is proved that |B↓,1(π)| = R(π) [11].

Lemma 2. Let n, s and t be positive integers such that n = st.
For any permutation π ∈ Sn, we have

|B↓,s(π)| ≥ 1+
s∑

i=1

(|B↓,1(pi )| − 1)

= 1+
s∑

i=1

(R(pi )− 1),

where pi = p(π(s,i)).

Proof: We prove it by showing a procedure to build the
set B↓,s(π).

Recall that Bs(π) is the set of all vectors obtained as a result
of a burst of s stable deletions in π . Let B̃↓,s(π) = {p(u) :
u ∈ Bs(π)} be the multiset of all permutations. Here we say
multiset since there may exist two different vectors u giving
the same p(u). Observe that the cardinality |Bs(π)| = n −
s+1 = |B̃↓,s(π)|, and the set B↓,s(π) is just the collection of
distinct elements in B̃↓,s(π). We define the similar multiset for
pi , the permutation projection of the i th row of π when viewed
as an s× t matrix, that is B̃↓,1(pi ) = {p(u) : u ∈ B1(pi )}, and
we have |B1(pi )| = t = |B̃↓,1(pi )| for all i ∈ [1, s]. Moreover,

s∑
i=1

|B̃↓,1(pi )| = t · s = n.

Hence,

|B̃↓,s(π)| = n − s + 1 = 1+
s∑

i=1

(|B̃↓,1(pi )| − 1). (1)

Let ui = (π1, . . . , πi−1, πi+s , . . . , πn), i ∈ [1, n − s + 1].
We start with i = 1 and consider the element p(ui ) in
the multi-set B̃↓,s(π). Let i0, k1 be such that i = i0 +
k1 · s. We observe that if there is an index j , where
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i < j ≤ n − s + 1 such that p(ui ) = p(u j ), then the i0th
row of π have (pi0 )↓,{k1} = (pi0 )↓,{k2} for some k2 satisfying
j ≤ i0 + k2 · s ≤ j + s − 1. In this case, we delete the
element p(ui ) from the multi-set B̃↓,s(π) and the element
(pi0 )↓,{k1} from the multi-set B̃↓,1(pi0 ), then increase i by one.
Otherwise, we just increase i by one and repeat this process.
The procedure ends when i = n − s + 1.

When the above procedure ends, it returns the set B↓,s(π),
which consists of all distinct elements in B̃↓,s(π). Simul-
taneously, we also obtain s multi-sets B̂↓,1(pi ) ⊂ B̃↓,1(pi )
for 1 ≤ i ≤ s. However, the procedure does not guarantee
that B̂↓,1(pi ) is a set. We only know |B↓,1(pi )| ≤ |B̂↓,1(pi )|.
Further, each time we delete an element in B̃↓,s(π), we also
delete an element in B̃↓,1(pi ) for some i . Hence, from (1),
we have

|B↓,s(π)| = 1+
s∑

i=1

(|B̂↓,1(pi )| − 1).

Since |B↓,1(pi )| ≤ |B̂↓,1(pi )|, we obtain

|B↓,s(π)| ≥ 1+
s∑

i=1

(|B↓,1(pi )| − 1).

Then the proof follows from the fact that |B↓,1(pi )| = R(pi ).

The following result is useful in the estimate of
APBUD(n, s).

Lemma 3 (Gabrys et al. [11]). The number of permutations
in Sn with at most n − log n consecutive runs is at most
n!(n−log n)2

(log n)! .

We are now ready to provide an upper bound for the
maximum size of a permutation code correcting a burst of
s unstable deletions.

Theorem 7. Let s be a fixed positive integer. For any positive
� < 1, there exists an N� such that for all n ≥ N� and n = s ·t ,

APBUD(n, s) ≤ (1+ �)
(n − s)!

s(t − log t)
.

Proof: Suppose that C ⊆ Sn is an s-PBUD code. Let
C1 = {π ∈ C : |B↓,1(pi )| > t − log t for all i ∈ [1, s]} and
C2 = C \ C1. Since B↓,s(π) ⊆ Sn−s , by Lemma 2, we have
|C1|(s(t − log t)+ 1) ≤ (n − s)!. Hence,

|C1| ≤ (n − s)!
s(t − log t)

. (2)

Now we estimate the size of C2. For each π ∈ C2, there
exists at least one i such that |B↓,1(pi )| ≤ t − log t . We have
s choices for such i , and for each chosen i , there are at most
t !(t−log t)2

(log t)! ways to choose pi by Lemma 3. To simplify the
computation, we assume that there is no constraint on the
symbols in the remaining s − 1 rows. Now given pi in π ,
let π̃ ∈ B↓,s(π) ⊆ Sn−s be some permutation by suffering a
burst of s unstable deletions. Then there are

(n−s
t−1

)
possibilities

of corresponding t − 1 symbols in π̃ (deduced from pi ), and
(n−t−s+1)! choices for the remaining (n−t−s+1) symbols
in π̃ . Since C2 is an s-PBUD code, each π̃ is obtained from

at most one π ∈ C2. So we have
(n−s

t−1

)
(n − t − s + 1)! ways

to choose the remaining s − 1 rows of π . Therefore,

|C2| ≤ s · t !(t − log t)2

(log t)! ·
(

n − s

t − 1

)
(n − t − s + 1)! (3)

≤ st · (t − log t)2 · (n − s)!
(log t)! . (4)

From (2) and (4), we get

|C| = |C1| + |C2|
≤ (n − s)!

s(t − log t)
+ st · (t − log t)2 · (n − s)!

(log t)!
≤ (n − s)!

s(t − log t)
(1+ s2 · t · (t − log t)3

(log t)! ).

Since limt→∞ s2·t ·(t−log t)3

(log t)! = 0 for fixed s, there exists an
N� such that for all n ≥ N� and n = s · t ,

APBUD(n, s) ≤ (1+ �)
(n − s)!

s(t − log t)
.

The theorem is proved.
Note that when s = 1, the upper bound for APBUD(n, s)

in Theorem 7 is exactly the same as the upper bound for
APBUD(n) provided by Gabrys et al. [11] (refer to Lemma 1).

B. Code Constructions

In this subsection, we apply the permutation interleaving
method to construct s-PBUD codes for s ≥ 2.

Definition 12. For vectors τ i = (τ i
1, τ

i
2, . . . , τ

i
t ) , i ∈

[1, s], of length t , the interleaved vector u = τ 1 ◦ τ 2 ◦
· · · ◦ τ s is obtained by alternatively placing the elements of
τ 1, τ 2, . . . , τ s in order. That is

u j = τ i
� j/s�, j ∈ [1, st]

where i ≡ j mod s. If we view u as an s × t array, then τ i is
just the i th row of u. For a class of s codes Ci , i ∈ [1, s] of
same length, the interleaved code

C1 ◦ C2 ◦ · · · ◦ Cs = {τ 1 ◦ τ 2 ◦ · · · ◦ τ s : τ i ∈ Ci , i ∈ [1, s]}.
For any integer a, a vector τ = (τ1, τ2, . . . , τt ) and a code

C, define τ + a = (τ1 + a, τ2 + a, . . . , τt + a) and C + a =
{τ + a : τ ∈ C}.

Since the decoding algorithm for our codes is rather com-
plex for general s, we first consider the case s = 2 to explain
the idea. To simplify notations, we assume that n is even.

Theorem 8. Let t ≥ 3 and n = 2t . Suppose that for each
i ∈ {1, 2}, Ci ⊆ St is a 1-PBUD code. Then the interleaved
code C = C1 ◦ (C2 + t) is a �2-PBUD code in Sn.

Proof: Suppose we receive a permutation π̃ ∈ Sn−k ,
1 ≤ k ≤ 2. We want to find the unique permutation
π = τ ◦ (υ + t) ∈ C such that π̃ is obtained from π through
a burst of at most two unstable deletions.

If k = 1, that is, π̃ ∈ Sn−1, then we know that only one
symbol is deleted from π . Let f1 be the subsequence of π̃ with
values from [1, t − 1], which is a permutation in St−1. Note
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that f1 is obtained from τ by experiencing a single unstable
deletion, thus we can recover τ from f1 since C1 is a 1-PBUD
code. Let f2 be the subsequence of π̃ with values from [t +
1, n − 1], which is a permutation over [t + 1, n − 1]. Note
that values in f2 are originally from υ+ t before the unstable
deletion. Thus f2− t is a permutation in St−1 obtained from υ
by experiencing a single unstable deletion. Note that f2− t =
π̃↓,I , where I = {i ∈ [1, n − 1] : π̃i ≤ t}. Since C2 is a
1-PBUD code, we can recover υ from f2. Hence π is the
interleaved vector τ ◦ (υ + t) determined uniquely.

If k = 2, that is, the permutation π̃ has length n − 2, then
we know that there are exactly two symbols deleted. Since
the deletions are adjacent, by definition of C, there is exactly
one deleted symbol from τ and υ + t . Now we de-interleave
permutation π̃ . Let f1 = π̃(2,1) and f2 = π̃(2,2). Then it must
be the case that f1 ∈ St−1 and f2 is a permutation over
[t, n − 2]. Similarly, we can recover τ and υ from f1 and
f2 − (t − 1) respectively, where f2 − (t − 1) is actually π̃↓,I

with I = {i ∈ [1, n − 2] : π̃i ≤ t − 1}. Thus π = τ ◦ (υ + t)
is uniquely determined.

Therefore, the interleaved code C = C1◦(C2+t) is a 2-PBUD
code in Sn .

We are now ready to give the decoding algorithm for the
codes in Theorem 8.

Algorithm 1 Sn−k → Sn, 2 ≥ k ≥ 1
Require: t ≥ 3, n = 2t, π̃ = (π̃1, π̃2 . . . , π̃n−k)
Ensure: π = (π1, π2, . . . , πn) ∈ C

t ′ ←− n − k − t + 1
f1 ←− subsequence of π̃ with entries from [1, t − 1]
τ ←− correcting f1 by a decoder of C1
f2 ←− subsequence of π̃ with entries from [t ′ + 1, n− k]
υ ←− correcting f2 − t ′ by a decoder of C2
π ←− τ ◦ (υ + t)

We illustrate the preceding algorithm with the following
example.

Example 9. Let t = 4 and n = 8. Suppose that τ =
(2, 1, 4, 3) ∈ C1 and υ = (1, 3, 4, 2) ∈ C2. Then π =
τ ◦ (υ + t) = (2, 5, 1, 7, 4, 8, 3, 6) ∈ C.

If only one symbol 4 is deleted from π , then
π̃ = (2, 4, 1, 6, 7, 3, 5) is received. By Algorithm 1, t ′ = 4,
f1 = (2, 1, 3), and f2 = (6, 7, 5). From f1 and f2 − 4 =
(2, 3, 1), we can recover τ = (2, 1, 4, 3) and υ = (1, 3, 4, 2)
by the decoders of C1 and C2 in [11], respectively. Hence
π = τ ◦ (υ + t) is determined in this case.

If two adjacent symbols 7 and 4 are deleted, then
π̃ = (2, 4, 1, 6, 3, 5) is received. By Algorithm 1, t ′ = 3, f1 =
(2, 1, 3), and f2 = (4, 6, 5). From f1 and f2 − 3 = (1, 3, 2),
again we can recover τ = (2, 1, 4, 3) and υ = (1, 3, 4, 2) by
the decoders of C1 and C2. Hence π = τ ◦ (υ + t) is also
uniquely determined in this case.

Now we generalize the interleaving method in Theorem 8
to construct s-PBUD codes. We sketch the main idea of the
decoding algorithm first. In Theorem 9, the code is constructed
by interleaving s 1-PBUD codes. Suppose there is a burst

of k unstable deletions in codeword c ∈ Sn , and we receive
a permutation π ∈ Sn−k with k < s. The main task is to
find an appropriate permutation π ′ ∈ Sn−s which is obtained
from π by experiencing a burst of s − k unstable deletions,
and in such a way that π ′ is simultaneously obtained from
the original permutation c by suffering a burst of s unstable
deletions. Hence we can recover c by correcting the de-
interleaved components of π ′. Note that values from [1, t−1]
and [n − k − t + 2, n − k] in π are originally from [1, t]
and [n − t + 1, n] in c, which are periodically placed in
c, respectively. The permutation π ′ is obtained by carefully
checking the change of placement of these values in π .

Theorem 9. Let t, s ≥ 3 and n = st. For each i ∈ [1, s], let
Ci be a 1-PBUD code over [1, t]. Then the interleaved code
C = C1 ◦ (C2 + t) ◦ · · · ◦ (Ci + (i − 1)t) ◦ · · · ◦ (Cs + (s − 1)t)
is an �s-PBUD code over [1, n].

Proof: Suppose that a codeword c = τ 1◦(τ 2+t)◦· · ·◦(τ i+
(i−1)t)◦· · ·◦(τ s+(s−1)t) ∈ C, where τ i ∈ Ci for i ∈ [1, s],
suffers a burst of unstable deletions and a permutation
π = (π1, . . . , πn−k) ∈ Sn−k is received. We show that c is
uniquely identifiable from π as follows. Let Pi = [(i − 1)t +
1, i t] for each i ∈ [1, s].

Case 1 (k = s): In this case, exactly one symbol in each
Pi is deleted from c since the unstable deletions are adjacent.
By de-interleaving the permutation π , we have fi = π(s,i)
for each i ∈ [1, s]. Then τ i is uniquely determined from
the permutation fi − (i − 1)(t − 1) by a decoder of Ci and
consequently c is recovered. Note that fi − (i − 1)(t − 1) is
actually p(π(s,i)).

Case 2 (k < s): In this case, we will get π ′ = π↓,I for
some positions set I of size s− k and then apply Case 1 with
π ′ to recover c. Since there is a burst of k (< s) unstable
deletions from c, there is at most one symbol in each Pi that
is deleted from c. We consider the positions of symbols from
[1, t − 1] in π , since they are originally from [1, t] in c. Now
collect these (t − 1) positions of symbols from [1, t − 1] in
π , and denote them by ki , i ∈ [1, t − 1] such that ki < ki+1.
Note that in the original permutation c, each ki = (i−1)s+1,
i ∈ [1, t − 1] and ki+1 − ki = s. But in π , they maybe not
anymore due to the deletion errors. Define kt := n−k+1 and
let d j = k j+1 − k j , j ∈ [1, t − 1]. We will roughly determine
the place of the k unstable deletions happened in c based on
the first abnormal value ki and the unique abnormal value d j .
Note that k1 ≤ s + 1.

Suppose 1 < k1 ≤ s. Then the deleted locations are among
the positions [1, s] in c. Let π ′ = π↓,[1,s−k].

Suppose k1 = s + 1. Then there must be a unique j ∈
[1, t − 1] such that d j = s − k, and for all i ∈ [1, t − 1] \ { j},
di = s. Let π ′ = π↓,[k j ,k j+1−1].

Suppose k1 = 1. There are only two possible cases: (1)
there is a unique j ∈ [1, t − 1] such that d j = s − k; (2)
there is a unique j ∈ [1, t − 1] such that d j = 2s − k.
If (1) happens, let π ′ = π↓,[k j ,k j+1−1]. If (2) happens, let
R = [k j , k j+1 − 1]. Note that |R| = 2s − k and a burst
of unstable deletions have occurred in some positions from
R in π . Now we need to check the positions hi of values
from [n − k − t + 2, n − k] in π such that hi < hi+1,
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i ∈ [1, t − 1]. By similarly considering differences between
hi and hi+1, we can recover c for almost all cases except one
case where a set R′ = [h j , h j+1 − 1] of 2s − k positions in
π is found for correction. Let D = R ∩ R′, then errors occur
in D. Suppose |D| < s, then let π ′ = π↓,[k j ,h j+1] if h j < k j

and π ′ = π↓,[h j+1,k j+1−1] if h j > k j . It comes to the worst
case if |D| > s. In this case, h j = k j−1 and h j+1 = k j+1−1.
We split it in two cases further.

Case 2a (k = 1): If πk j+1−s ∈ P1, then we know that an
error has occurred in a position from [k j , h j+1 − s] in π . Let
π ′ = π↓,[k j ,h j+1−s]. If not, let π ′ = π↓,[k j+s,h j+1].

Case 2b (1 < k < s): We know that πk j ∈ P1. If for all
i ∈ [1, s − 1], πk j+i ∈ Pi ∪ Pi+1, then let π ′ = π↓,[k j+s,h j+1].
Otherwise, find the smallest index i ∈ [1, s − 1] such that
πk j+i �∈ (Pi ∪ Pi+1). Let π ′ = π↓,[k j+i,k j+i+s−k−1].

Therefore, the interleaved code C is an �s-PBUD code over
[1, n].

We only present an algorithm of computing π ′ from π when
k < s as Case 2 in the proof of Theorem 9. Once π ′ is
computed, it is easy to recover the codeword c by applying
Case 1.

Algorithm 2 Sn−k → Sn−s , s > k ≥ 1
Require: t ≥ 3, n = st, π = (π1, π2 . . . , πn−k)
Ensure: π ′ = (π ′1, π ′2, . . . , π ′n−s )

t ′ ←− n − k − t + 2
k j ←− positions of entries [1, t − 1] in π , j ∈ [1, t − 1]
h j ←− positions of entries [t ′, n − k] in π , j ∈ [1, t − 1]
kt ←− n − k + 1; k0 ←− 1
for j ∈ [0, t − 1] do

d j ←− k j+1 − k j

if d j = s − k then
return π ′ ←− π↓,[k j ,k j+1−1]

else if d j = 2s − k then
a←− k j , b←− k j+1

for j ∈ [1, t − 1] do
if a < h j < a + s − 1 then

return π ′ ←− π↓,[a,h j ]
else if h j = a + s − 1 then

return π ′ ←− π↓,[h j+1,b−1]
if k = 1 then

if πb−s ≤ t then
return π ′ ←− π↓,[a,b−s−1]

else
return π ′ ←− π↓,[a+s,b−1]

if k > 1 then
for i ∈ [1, s − 1] do

if πa+i �∈ [(i − 1)t + 1, (i + 1)t] then
return π ′ ←− π↓,[a+i,a+i+s−k−1]

return π ′ ←− π↓,[a+s,b−1]

Now we give an example to illustrate Case 2b, which is the
worst case in the proof of Theorem 9.

Example 10. Let t = 5, s = 3 and n = 15. Then
P1 = [1, 5], P2 = [6, 10] and P3 = [11, 15]. Suppose
that τ 1 = (3, 1, 2, 5, 4) ∈ C1, τ 2 = (2, 5, 1, 4, 3) ∈

C2 and τ 3 = (4, 2, 5, 1, 3) ∈ C3. Then c =
(3, 7, 14, 1, 10, 12, 2, 6, 15, 5, 9, 11, 4, 8, 13) ∈ C.

Let k = 2. Suppose the two adjacent symbols 12 and 2
are deleted, then π = (2, 6, 12, 1, 9, 5, 13, 4, 8, 10, 3, 7, 11)
is received. By checking the positions of values from [1, 4]
and [10, 13] in π , we have R = [4, 7] and R′ = [3, 6].
That is a = k j = 4, b = 8 in Algorithm 2, and there
is no h j in [a, a + s − 1] = [4, 6]. Since the smallest
index i ∈ [1, 2] such that πk j+i �∈ (Pi ∪ Pi+1) is 2, π ′ =
(2, 5, 11, 1, 8, 12, 4, 7, 9, 3, 6, 10) = π↓,{6}. De-interleaving
π ′, we have f1 = (2, 1, 4, 3), f2 = (5, 8, 7, 6) and f3 =
(11, 12, 9, 10). Thus τ i , i = 1, 2, 3 can be recovered from f1,
f2 − 4 = (1, 4, 3, 2) and f3 − 8 = (3, 4, 1, 2) by decoders of
Ci respectively, and consequently c is uniquely determined.

Remark 3. The code we construct in Theorem 9 has size at
least

(
(n/s)!
(n/s)2

)s
. Although this is not optimal with respect to the

upper bound we derive in Theorem 7, its rate is asymptotically

s ln (n/s)! − 2s ln (n/s)

ln n! ∼ (n − 2s) ln n + O(n)

n ln n + O(n)
∼ 1,

for fixed s.

VII. MULTIPERMUTATION CODES CORRECTING A BURST

OF UNSTABLE DELETIONS

In this section, we present our method to construct multiper-
mutation codes over Sr

n that can correct a burst of s unstable
deletions. We first consider the case of regular multipermuta-
tions and s ≤ r .

Sala et al. [12] provided a method to combat single unstable
deletion in multipermutations by using interleaved codes and
VT codes. They also provided a method to combat multiple
deletions. However, their method is based on multipermutation
codes of certain Hamming distance. To construct a code that is
capable of correcting at most s deletions, they use interleaved
codes over (s + 1)(2s + 1) + 1 = 
(s2) different congruent
classes. In this section, we give a direct construction, using
only three different congruent classes (mod 3). We can con-
struct multipermutation codes that are capable of correcting
a burst of s unstable deletions. Our method is to convert
unstable deletions to stable deletions and then use the decoding
algorithm for s-MBSD code to recover the original codeword.

Recall that the signature of u = (u1, u2, . . . , un) is the
binary vector α(u) = (α(u1), . . . , α(un−1)) of length n − 1,
where α(ui ) = 1 if ui+1 ≥ ui , and 0 otherwise, for all
i ∈ [1, n − 1].
Construction 5. Given n = rm = (r + 1)st. Assume that
3|(r + 1)t , t is even and s ≤ r . Let a ∈ Z(r+1)t , b ∈
Zm and c, d ∈ Z(2s(r+1))!. Denote k = (r + 1)t/3. Let
Ds(n; r, a, b, c, d) be the set of all regular multipermutations
ρ ∈ Sr

n such that the following holds:

(i) Symbol constraint.

(1) ρi ≡ 0 (mod 3) for i ∈ [1, n/3],
(2) ρi ≡ 1 (mod 3) for i ∈ [n/3+ 1, 2n/3],
(3) ρi ≡ 2 (mod 3) for i ∈ [2n/3+ 1, n],
(4) ρ(k−1)s+1 �= ρks+1 and ρ(2k−1)s+1 �= ρ2ks+1.
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(ii) The first row constraint. When we view ρ as an
s × (r + 1)t array, the first row ρ(s,1) and its signature,
α = (α1, α2, . . . , α(r+1)t−1), satisfy

(1) ρ(s,1) ∈ Ca,b((r + 1)t;m),
(2) (αk−1, αk , αk+1) ∈ {(1, 0, 1), (0, 1, 0)}, and

(α2k−1, α2k , α2k+1) ∈ {(1, 0, 1), (0, 1, 0)}.
(iii) The adjacent columns constraint. When we view ρ as

an s(r + 1) × t array, the pairs of adjacent columns
satisfy

(1)
∑t/2

i=1 μ(ρ (s(r+1),2i−1)||ρ (s(r+1),2i)) ≡
c (mod (2s(r + 1))!),

(2)
∑t/2−1

i=1 μ(ρ (s(r+1),2i)||ρ (s(r+1),2i+1)) ≡
d (mod (2s(r + 1))!).

Theorem 10. The multipermutation code Ds(n; r, a, b, c, d)
from Construction 5 is a regular s-MBUD code over Sr

n .

Proof: We establish the theorem by giving an efficient
decoding algorithm for Ds(n; r, a, b, c, d) that recovers from
a burst of exact s unstable deletions.

Suppose a burst of s unstable deletions occurs in a code-
word ρ = (ρ1, ρ2, . . . , ρn) in Ds(n; r, a, b, c, d), giving
ρ̃ = (ρ̃1, ρ̃2, . . . , ρ̃n−s ). Further suppose a bust of s stable
deletions occurs in the same positions of ρ , giving ρ ′ =
(ρ ′1, ρ ′2, . . . , ρ ′n−s ). Since s ≤ r , ρ̃ can be obtained by
increasing or decreasing the values of each symbol of ρ ′ at
most one, and vice versa. Our strategy is to recover ρ ′ from
ρ̃ and then apply the decoding algorithm for stable deletions
(described in the proof of Theorem 6) on ρ ′ to recover the
codeword ρ .

We first view ρ as an s×3k array, and ρ ′ as an s × (3k − 1)
array. Since the symbols in the first k − 1 columns of ρ ′
come from the first ks symbols of ρ , they belong to the first
congruent class, where the values are congruent to 0 (mod 3).
We then recover these symbols as follows. For i ∈ [1, (k−1)s],

ρ ′i =

⎧⎪⎨
⎪⎩

ρ̃i , if ρ̃i ≡ 0 (mod 3);

ρ̃i − 1, if ρ̃i ≡ 1 (mod 3);

ρ̃i + 1, if ρ̃i ≡ 2 (mod 3).

Similarly, for i ∈ [ks + 1, (2k − 1)s] ∪ [2ks + 1, (3k − 1)s],
the symbols ρ ′i can be recovered in the same way.

Now we need to recover the symbols ρ ′i for i ∈ [(k−1)s+
1, ks] ∪ [(2k − 1)s + 1, 2ks]. Since ρ(s,1) ∈ Ca,b((r + 1)t;m),
using the decoding algorithm of VT codes, we are able to find
the run of α in which the deletion occurs. Suppose that this
run is (α j0, α j0+1, . . . , α j0+�−1). According to the condition
(i i.2) of Construction 5, we proceed in the following cases.

Case 1: j0+�−1 ≤ k−1. Then the s deletions occur in the
first k columns of ρ . It follows that for each i ∈ [(k − 1)s +
1, ks] the symbol ρ ′i belongs to the second congruent class,
and for each i ∈ [(2k − 1)s + 1, 2ks] the symbol ρ ′i belongs
to the third congruent class. Hence we can recover the vector
ρ ′ from ρ̃ and then recover ρ .

Case 2: j0 = k and � = 1. In this case the deletion in the
first row of ρ is either ρ(k−1)s+1 or ρks+1. Since ρ(k−1)s+1 �=
ρks+1, we can distinguish this two subcases.

If ρ(k−1)s+1 is deleted, then all the s deletions occur in the
first k columns of ρ and we can recover ρ the same way as
in Case 1.

If ρks+1 is deleted, then the s deletions occur in the kth and
(k + 1)th columns of ρ . So for each i ∈ [(2k − 1)s + 1, 2ks]
the symbol ρ ′i belongs to the third congruent class and we
can recover these symbols. Now in the s × r t array of ρ ,
we actually already recover all except the kth and (k + 1)th
columns of ρ . These two columns span at most two adjacent
columns in the rs×t array ρ and thus we can use the condition
(i i i) to recover these two columns.

Case 3: k + 1 ≤ j0 and j0 + � − 1 ≤ 2k − 1. Then the s
deletions occur in the second k columns of ρ . It follows that
for each i ∈ [(k − 1)s + 1, ks] the symbol ρ ′i belongs to the
first congruent class, and for each i ∈ [(2k− 1)s+ 1, 2ks] the
symbol ρ ′i belongs to the third congruent class. Hence we can
recover ρ ′ and then ρ .

Case 4: j0 = 2k and � = 1. Then the deletion in the first row
of ρ is either ρ(2k−1)s+1 or ρ2ks+1. We can proceed similarly
as in Case 2.

Case 5: j0 ≥ 2k + 1. This case is similar to Case 1 and
Case 3. We know that the s deletions occur in the last k
columns of ρ and then we can recover ρ ′ and then ρ .

Remark 4. Let us comment on the cardinality of the con-
structed codes Ds(n; r, a, b, c, d). The parameters a, b, c, d
form (r+1)tm((2s(r+1))!)2 cosets among the multipermuta-
tions in Sr

n . On the other hand, the symbol constraints (i)-(2)
and (ii)-(2) cost only a constant redundancy. By placing three
groups of n/3 multipermutation elements in different parts of
each multipermutation, we have (n/3)!3/(r !)m multipermuta-
tions to choose from. Therefore, by the pigeonhole principle,
there exists at least one code with cardinality

|Ds(n; r, a, b, c)| ≥ 1

(r + 1)tm(2s(r + 1)!)2 ·
(
( n

3 )!)3

(r !)m
· O(1)

= sr

n2.(2s(r + 1)!)2 ·
(
( n

3 )!)3
(r !)m

· O(1).

For simplicity, we remove the constant factor at the end of the
formula and use notation � to represent the lower bound.

Corollary 6. There exist a, b, and c such that

|Ds(n; r, a, b, c)| � sr

n((2s(r + 1)!)2 ·
(
( n

3 )!)3

(r !)m
.

To construct codes for general multipermutations, i.e. where
r = (r1, r2, . . . , rm). Let rmax = maxi∈[1,m] ri and rmin =
mini∈[1,m] ri . We follow Construction 5. Our codes can correct
a burst of s unstable deletions where s ≤ rmin. In the third
constraint of the new construction, we view ρ as an srmax× t
instead. The following result is immediate.

Corollary 7. There exists an s-MBUD code of size M where

M � s

n((2s(rmax + 1))!)2 ·
((n/3)!)3

(r1!)(r2!) · · · (rm !) .

We can generalize Construction 5 to the case of s > r .
Previously, when s ≤ r , a burst of s unstable deletions
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increases or decreases the value of those remaining symbols
by at most 1. In general, a burst of s unstable deletions
increases or decreases the value of those remaining symbols by
at most �s/r�. We then divide the set of symbols into different
congruent classes modulo 2�s/r�+ 1 and construct s-MBUD
codes similarly as described in Construction 5.

VIII. CONCLUSION

In this paper, we investigate permutation and multipermuta-
tion codes that are capable of correcting a burst of deletions.
For stable deletion, we construct a family of permutation codes
of size 	(n!/n2) and a family of multipermutation codes
of size 	

(
n!/((r1!)(r2!) . . . (rm !)n2

))
, which have bigger size

than previously known. For unstable deletion, in particular, for
multipermutations, we extend the method in [12] to construct
the first family of codes capable of correcting a burst of unsta-
ble deletions. For all constructions, our decoding algorithms
have linear running time.
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