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On the Bringer–Chabanne EPIR protocol
for polynomial evaluation
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Abstract. Extended private information retrieval (EPIR) was defined by Bringer, Cha-
banne, Pointcheval and Tang at CANS 2007 and generalized by Bringer and Chabanne
at AFRICACRYPT 2009. In the generalized setting, EPIR allows a user to evaluate a
function on a database block such that the database can learn neither which function has
been evaluated nor on which block the function has been evaluated and the user learns no
more information on the database blocks except for the expected result. An EPIR protocol
for evaluating polynomials over a finite field L was proposed by Bringer and Chabanne
in [Lecture Notes in Comput. Sci. 5580, Springer (2009), 305–322]. We show that the
protocol does not satisfy the correctness requirement as they have claimed. In particular,
we show that it does not give the user the expected result with large probability if one of
the coefficients of the polynomial to be evaluated is primitive in L and the others belong
to the prime subfield of L.
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1 Introduction

Extended private information retrieval (EPIR) was motivated by privacy-preserv-
ing biometric authentication and formally defined in [6]. It enables a user to pri-
vately evaluate a fixed and public function with two inputs, one chosen block from
a database and one additional string. Two EPIR protocols were proposed in [6].
One is for testing equality and the other is for computing weighted Hamming dis-
tance. As a cryptographic primitive, EPIR has been generalized by [5] in order
to attain more flexibility. In the generalized setting, the function to be evaluated
is neither fixed nor public. Instead, it is chosen from a set of public functions by
the user. A new EPIR protocol in the generalized setting was proposed in [5]. As
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noted in [6], EPIR is indeed a combination of private information retrieval [12]
and general secure two-party computation [18].

Related Work. Private information retrieval (PIR) was introduced by Chor,
Goldreich, Kushilevitz and Sudan in [12]. It allows a user to retrieve a data item
from a database such that the database cannot learn which item the user is inter-
ested in. The requirement on the privacy of the identity of the retrieved data item
is called user privacy. The main measure of the efficiency of a PIR protocol is
its communication complexity, i.e., the total number of bits exchanged by the user
and the database for retrieving a single bit. PIR protocols have been constructed
in both the information-theoretic setting [1–3, 10, 12, 13, 21, 29, 31] and the com-
putational setting [7, 9, 11, 16, 20, 23, 24, 26, 30]. In an information-theoretic PIR
protocol, the database learns absolutely no information on which item the user is
interested in, even if it has unlimited computing power. On the other hand, in
a computational PIR (CPIR) protocol, the identity of the retrieved data item is
not revealed only if the database is polynomial-time and cannot efficiently solve
certain number-theoretic problems, i.e., certain cryptographic assumptions hold.
For example, the PIR protocol of [11] is a two-database CPIR protocol in which
each database cannot figure out which item the user is interested in under the as-
sumption that one way functions exist. EPIR protocols of [5, 6] are mostly close
to the single-database CPIR protocols. The first single-database CPIR protocol
was proposed by Kushilevitz and Ostrovsky in [23]. It achieves the user privacy
under the assumption that deciding quadratic residuosity is hard and has com-
munication complexity O.N c/ for any small constant c > 0, where N is the
size of the database. Subsequently, Cachin, Micali and Stadler [7] constructed a
single-database CPIR protocol of communication complexity O.log8.N // under
the ˆ-hiding assumption. So far, the most efficient single-database CPIR protocol
was obtained by Gentry and Ramzan [16] under the assumption that the decision
subgroup problem is hard. It requires the user to exchange O.kC d/ bits with the
database for retrieving d bits, where k � logN is the security parameter. Other
constructions of single-database CPIR protocols can be found in [9, 20, 24, 30].

PIR does not provide any privacy for the database. Typically, the user may
obtain a large number of data items in an execution of a PIR protocol. In or-
der to prevent the user from obtaining more than one data item in any execu-
tion of a PIR protocol, Gertner et al. [17] introduced the notion of data privacy
and proposed transformations from information-theoretic PIR protocols to the so-
called symmetrically private information retrieval (SPIR) protocols which meet
the data privacy. The SPIR protocols of [17] are in the information-theoretic set-
ting. SPIR can be defined in the computational setting as well. Following the
security definition of general secure two-party and multi-party computation [18],
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in the computational setting, a PIR protocol is said to achieve data privacy if, for
any query, the user cannot tell whether it is interacting with a real-database which
has N data items or a simulator which only knows the retrieved data item. In-
terestingly, single-database SPIR protocols in the computational setting are es-
sentially communication-efficient 1-out-of-N oblivious transfer (OT) protocols
[4,14,19,22,28]. Oblivious transfer [28] is a fundamental cryptographic primitive,
on which any secure two-party and multi-party computation can be built [22] in an
unconditionally secure way. A 1-out-of-N OT allows a receiver Bob to choose one
of the N secrets held by a sender Alice such that Alice learns no information on
Bob’s choice and Bob cannot learn more except the secret he chooses. Naor and
Pinkas [27] proposed transformations from any PIR protocols to SPIR protocols in
the computational setting. Their transformation requires only one execution of a
given PIR protocol and logN executions of a 1-out-of-2 OT protocol. The notion
of EPIR [5, 6] is essentially a generalization of SPIR in the computational setting.

EPIR is also related to selective private function evaluation [8], oblivious poly-
nomial evaluation [27] and private keyword search [15]. A selective private func-
tion evaluation protocol [8] allows a client to privately evaluate a public function
on the inputs held by one or more servers. Comparing with EPIR, the client only
decides on which inputs the public function will be evaluated. An oblivious poly-
nomial evaluation protocol [27] allows a receiver to privately evaluate a polyno-
mial function on his input, where the polynomial is held by a sender. Comparing
with EPIR, the function to be evaluated is not known to the receiver and the input
on which the function is evaluated is not known to the sender. A private keyword
search protocol [15] allows a client to privately search a database with a keyword
such that he learns the associated record if the keyword is contained in the database
and learns nothing otherwise. In a sense, EPIR can also be seen as a generalization
of the above problems.

Results. The protocol described in [5, Section 4.3] will be our main topic in
this paper and termed as Bringer–Chabanne EPIR protocol from now on. It was
claimed [5] that the protocol enables a user to privately evaluate any polynomial
F.t/ 2 LŒt� on a chosen database block Ri , where L D GF.pn/ is the field
extension of degree n of the prime field K D GF.p/. We study the correctness of
the Bringer–Chabanne EPIR protocol and show that it may fail frequently.

In particular, we show that, by executing the protocol, the user with input
.F.t/; i/ 2 LŒt� � ŒN � does not learn the expected result (i.e., F.Ri /) with a
large probability if F.t/ 2 P , where P is defined as follows:
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P D
°
f .t/ D

dX
kD0

fkt
k
W 9 0 � l � d such that

fl 2 L is of order pn
� 1 and fk 2 K for every k ¤ l

±
:

Methodology. Our argument is by contradiction. To simplify the argument, we
first give a restricted version of the Bringer–Chabanne EPIR protocol. In the re-
stricted version, the database is deterministic and has only one block, i.e., N D 1.
We note that if the Bringer–Chabanne EPIR protocol satisfies the correctness re-
quirement, then so does the restricted version. We then show that the restricted
version does not satisfy the correctness requirement if the polynomial to be eval-
uated is in P . This result allows us to conclude that the Bringer–Chabanne EPIR
protocol does not satisfy the correctness requirement as [5] has claimed.

Organization. The remainder of this paper is organized as follows. In Section 2,
we recall the definition and security model of EPIR [5]. In Section 3, we recall
the Bringer–Chabanne EPIR protocol. In Section 4, we give a restricted version
of the Bringer–Chabanne EPIR protocol and show that the restricted version fails
frequently if the polynomial to be evaluated is in P . Section 5 summarizes the
results of the paper.

2 Preliminaries

2.1 Definition

Following the definition of [5], a single-database EPIR protocol is a protocol be-
tween a database DB who has N blocks .R1; : : : ; RN / 2 .¹0; 1º

l1/N and a user
U who wants to evaluate F.Ri / for a function F 2 F and an index i 2 ŒN �,
where F is a set of functions from ¹0; 1ºl1 to ¹0; 1º� and public. Such a protocol
allows U to learn F.Ri / but no more information on the database blocks while
DB learns no information on .F; i/.

The above definition of EPIR is a generalization of [6] and provides the user
with more flexibility of choosing the function F from a large set F . In the context
of this definition, the EPIR for testing equality [6] has

F D
®

IsEqual.�; X/ W X 2 ¹0; 1ºl1
¯
;

where

IsEqual.Ri ; X/ D

´
1 if Ri D X ,
0 otherwise.
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The EPIR for computing weighted Hamming distance [6] has

F D
®
dw.�; X/ W X 2 ¹0; 1º

l1 ; w 2 Nl1
¯
;

where

dw.Ri ; X/ D

l1X
jD1

wj � .R
.j /
i ˚X .j //:

(For every j 2 Œl1�, R
.j /
i and X .j / are the j -th bits of Ri and X , respectively.)

2.2 Security model

As in [5, 6], we denote by retrieve.F; i/ the query made by a user with input
.F; i/ 2 F � ŒN �. Without further notice, algorithms are assumed to be poly-
nomial-time.

If an algorithm A runs in k stages, then we shall write A D .A1;A2; : : : ;Ak/.
The security is evaluated by an experiment between an attacker and a challenger,
where the challenger simulates the protocol executions and answers the attacker’s
oracle queries. For A a probabilistic algorithm, we denote by A.O; retrieve/ the
action to run A with access to any polynomial number of retrieve queries generated
or answered (depending on the position of the attacker) by the oracle O. A function
� W Z! R is said to be negligible if for any polynomial P , there is an integer NP

such that �.n/ � 1=P.n/ for every n � NP . If �.n/ is negligible, then 1� �.n/ is
said to be overwhelming.

Correctness. An EPIR protocol is said to be correct if any query retrieve.F; i/
returns the correct value of F.Ri / with an overwhelming probability when U and
DB follow the protocol specification.

User Privacy. Informally, an EPIR protocol is said to respect user privacy if for
any query retrieve.F; i/, DB learns no information on .F; i/. Formally, an EPIR
protocol is said to respect user privacy if any attacker A D .A1;A2;A3;A4/,
acting as a malicious database, has only a negligible advantage jPrŒb0 D b�� 1

2
j in

the following experiment:

Expuser-privacy
Aˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌

.R1; : : : ; RN /  A1.1
l/

1 � i0; i1 � N IF0; F1 2 F  A2.ChallengerI retrieve/

b  ¹0; 1º

;  A3.ChallengerI retrieve.Fb; ib//

b0  A4.ChallengerI retrieve/
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Database Privacy. Informally, an EPIR protocol is said to respect database pri-
vacy if a malicious user U cannot learn more information than F 0.Ri 0/ for some
.F 0; i 0/ 2 F � ŒN � via a query retrieve. This intuitive description can be formal-
ized via simulation principle by saying that the user U cannot determine whether
he is interacting with a simulator which takes only .i 0; F 0.Ri 0// as input, or with
DB. We denote by �0 the database DB. Formally, an EPIR protocol is said
to respect database privacy if there is a simulator �1, which receives an auxiliary
input .i 0; F 0.Ri 0// from a hypothetical oracle O for every query retrieve, such that
any attacker A D .A1;A2/, acting as a malicious user, has only a negligible
advantage jPrŒb0 D b� � 1

2
j in the following experiment:

Expdatabase-privacy
Aˇ̌̌̌

ˇ̌̌ b  ¹0; 1º

.R1; : : : ; RN /  A1.1
l/

b0  A2.�bI retrieve/

We remark that the hypothetical oracle O is assumed to have unlimited comput-
ing resources, and �1 always learns exactly the input related to the request made
by the attacker.

3 Bringer–Chabanne EPIR protocol

The EPIR protocols for testing equality and computing weighted Hamming dis-
tance of [6] are based on a pre-processing technique. Specifically, the user sends
an encryption of its input .F; i/ to DB, who then computes a temporary database
which contains an encryption of F.Ri /. Finally, the user executes a single-data-
base CPIR protocol with DB to retrieve the encryption of F.Ri /. This technique
does not allow the evaluation of generic functions and incurs heavy computa-
tion during the computation of the temporary database. The Bringer–Chabanne
EPIR protocol aims to avoid these deficiencies. It is based on ElGamal encryption
schemes over the multiplicative groups of finite fields.

3.1 ElGamal encryption scheme

Let p be a prime and K D GF.p/ be the finite field of order p. Let L D GF.pn/

be the finite field of order pn and G D L� be its multiplicative group of order
q D pn � 1 for an integer n � 2. Let g be a generator of G. The ElGamal
encryption scheme over G is a triplet of algorithms … D .Gen;Enc;Dec/ with
Gen, Enc, Dec as follows:
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(i) Gen is a key generation algorithm which takes as input a security parameter
1k and proceeds as follows:

� generates the parameters p; n; q and g;

� picks x  Zq and computes y D gx;

� outputs pk D .q; g; y/ as the public key and sk D x as the secret key.

(ii) Enc is an encryption algorithm which takes as input a plaintextm 2 G, picks
r  Zq and outputs c D .gr ; yrm/ as the ciphertext.

(iii) Dec is a decryption algorithm which takes as input a ciphertext c D .c1; c2/ 2

G2 and outputs c2 � c
�x
1 .

3.2 Requirements on database blocks and functions

Following the notation in Section 3.1, let ˛ 2 L be a primitive element of the field
extension L=K. Then there is a polynomial G.t/ 2 KŒt� of degree < n such that
G.˛/ D g. Let x 2 Zq and Y.t/ 2 KŒt� be the polynomial of degree < n such
that Y.˛/ D y D gx .

For the Bringer–Chabanne EPIR protocol to be correct, it is required in [5] that
for every j 2 ŒN �, the database block Rj should belong to D, where

D D ¹ˇ 2 G W Y.ˇ/ D G.ˇ/x and G.ˇ/ ¤ 0º:

The function to be evaluated by U can be any polynomial over L, i.e., F D LŒt�.

3.3 Bringer–Chabanne EPIR protocol

Figure 1 is the Bringer–Chabanne EPIR protocol, where most notation is adopted
from Sections 3.1 and 3.2. The authors of the protocol expect to embed the de-
scription of the polynomial F.t/ 2 LŒt� chosen by U into an ElGamal ciphertext
such that it can be evaluated by DB in an oblivious way.

The correctness of the Bringer–Chabanne EPIR protocol was claimed in [5] as
follows.

Claim 3.1 ([5, Section 4.4]). A query (say retrieve.F; i/) gives the expected result
(i.e., F.Ri /) as soon as there is no index j for which one of the values G.Rj /

or Y.Rj / is zero, which may occur only with a negligible probability in practice,
leading to the correctness of the EPIR protocol.
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(i) U: Generates an ElGamal key pair .pk; sk/, where pk D .q; g; y/; y D

gx , and sk D x is randomly chosen from Zq . U also sends pk to let DB

the possibility to verify the validity of pk as an ElGamal public key. In
practice, the validity of pk can be certified by a TTP, and the same pk can
be used by the user for all his queries.

(ii) U: For any polynomial function F W GF.pn/ ! GF.pn/ and any index
1 � i � N , computes C1; : : : ; CN and sends them to DB where

� Ci D Enc.F.˛/C r/ D .G.˛/ri ; Y.˛/ri .F.˛/C r//, and
� Cj D Enc.1/ D .G.˛/rj ; Y.˛/rj / for all j ¤ i ,

with randomly chosen r 2 GF.p/, rj 2 Zq (1 � j � N ). Each Cj can
be written as Cj D .Vj .˛/;Wj .˛// where Vj and Wj are polynomial over
GF.p/ of degree at most n � 1.

(iii) DB: After reception of the Cj , checks that they are nontrivial ElGamal
ciphertexts and computes Cj .Rj / D .Vj .Rj /;Wj .Rj // by replacing each
occurrence of ˛ (resp. ˛l for all power l < n) with Rj (resp. with Rl

j ).

(iv) DB: Performs the product of all the Cj together with a random encryp-
tion of 1, say Enc.1/ D .gr 0 ; yr 0/, sends Enc.1/ �

QN
jD1 Cj .Rj / D�

gr 0
QN

jD1G.Rj /
rj ; yr 0

�QN
jD1 Y.Rj /

rj
�
.F.Ri /C r/

�
to U.

(v) U: Outputs Dec.sk;Enc.1/
QN

jD1 Cj .Rj // � r as F.Ri /.

Figure 1. Bringer–Chabanne EPIR protocol.

4 On the incorrectness of the Bringer–Chabanne EPIR protocol

In this section, we show that the Bringer–Chabanne EPIR protocol does not satisfy
the correctness requirement defined in Section 2.2. To simplify the argument, we
give a restricted version of the Bringer–Chabanne EPIR protocol in which DB

is deterministic and N D 1. The restricted version satisfies the correctness re-
quirement as long as the Bringer–Chabanne EPIR protocol satisfies the correctness
requirement. Then we turn to study the incorrectness of the restricted version.

4.1 Restricted version

At step (iv) of the Bringer–Chabanne EPIR protocol, DB is randomizing the
product

QN
jD1 Cj .Rj / and sending Enc.1/�

QN
jD1 Cj .Rj / to the user. We note that

the user could have computed the same output if DB merely sends
QN

jD1 Cj .Rj /.
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(i) U: Generates an ElGamal key pair .pk; sk/, where pk D .q; g; y/, y D
gx , and sk D x is randomly chosen from Zq . U also sends pk to let DB

the possibility to verify the validity of pk as an ElGamal public key. In
practice, the validity of pk can be certified by a TTP, and the same pk can
be used by the user for all his queries.

(ii) U: For any polynomial function F W GF.pn/ ! GF.pn/, computes C D
Enc.F.˛/ C r/ D .G.˛/s; Y.˛/s.F.˛/ C r// and sends it to DB where
r 2 GF.p/, s 2 Zq are randomly chosen. The ciphertext C can be written
as C D .V .˛/;W.˛// where V and W are polynomials over GF.p/ of
degree at most n � 1.

(iii) DB: After reception of C , checks that it is a nontrivial ElGamal ciphertext
and computes C.R/ D .V .R/;W.R// by replacing each occurrence of ˛
(resp. ˛l for all power l < n) with R (resp. with Rl ).

(iv) DB: Sends C.R/ to U.

(v) U: Outputs Dec.sk; C.R// � r as F.R/.

Figure 2. A restricted version of the Bringer–Chabanne EPIR protocol.

Therefore, we can safely modify step (iv) of the Bringer–Chabanne EPIR protocol
such that DB merely sends

QN
jD1 Cj .Rj / to U with no impact on the correct-

ness of the protocol. Let i D N D 1. Then we have the restricted version (see
Figure 2).

Clearly, if Claim 3.1 holds, then we have:

Claim 4.1. A query (say retrieve.F; 1/) in an execution of the restricted version
gives U the expected result (i.e., F.R/) for any R 2 G satisfying Y.R/ D G.R/x

and G.R/ ¤ 0.

4.2 Counterexample

By a counterexample we show that Claim 4.1 does not hold. Let p D 2, n D 3,
K D GF.2/, L D GF.23/ and G D L�. Let ˛ D g 2 G be a generator of G with
minimal polynomial Ming.t/ D t3 C t C 1 2 KŒt�. Figure 3 is an execution of
the restricted version which does not give U the expected result.
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(i) U: Picks a private key sk D x D 6 2 Z7, sets y D g2 C 1 and pk D
.7; g; y/. .pk; sk/ is a pair of public and private keys for the ElGamal
encryption scheme over group G. U sends pk to DB such that DB can
verify the validity of pk as an ElGamal public key. Clearly, g D G.˛/ and
y D Y.˛/ for polynomials G.t/ D t , Y.t/ D t2 C 1 2 KŒt� of degree less
than 3. The field elements R 2 L which satisfy equality Y.R/ D G.R/x

are g; g2 and g2 C g.

(ii) U: For a polynomial function F.t/ D g 2 LŒt�, takes s D 6 2 Z7,
r D 1 2 K and computes the ciphertext C D Enc.F.˛/ C r/ D

.G.˛/s; Y.˛/s.F.˛/Cr// D .g6; .g2C1/6.gC1// D .g2C1; g2Cg/ and
sends it to DB. Clearly, we have that V.t/ D t2 C 1 and W.t/ D t2 C t .

(iii) DB: Sets the database block to be R D g2 C g 2 G. After receiving
the ciphertext C D .g2 C 1; g2 C g/ from U, DB checks that C is a
nontrivial ElGamal ciphertext and computes C.R/ D .V .R/;W.R// D

.R2 C 1;R2 C R/ D .g C 1; g2/ by replacing each occurrence of ˛ (resp.
˛l for all power l < n) with R (resp. with Rl ).

(iv) DB: Sends C.R/ D .g C 1; g2/ to U.

(v) U: Outputs Dec.sk; C.R//� r D g2 C g as F.R/, which is absurd (since
F.R/ D g).

Figure 3. An execution of the restricted version.

4.3 Failure probability

We have seen that the restricted version may not give U the expected result in
Section 4.2. However, given the counterexample, we cannot conclude that the
Bringer–Chabanne EPIR protocol does not satisfy the correctness requirement de-
fined in Section 2.2. In fact, an EPIR protocol is said to be correct as long as
it always gives U the expected result for any fixed input .F.t/; i/ 2 LŒt� � Œn�
except with a negligible probability. In other words, as a collection of probabilis-
tic algorithms, an EPIR protocol is allowed to fail with a negligible probability.
Therefore, to show that the Bringer–Chabanne EPIR protocol does not satisfy the
correctness requirement, it is necessary to compute the failure probability of the
protocol, i.e., the probability that the protocol does not give U the expected result.

In this section, we study the failure probability of the restricted version. We
show, through experimental results, that the restricted version does fail with large
probability for certain choices of F.t/ (e.g., F.t/ D g).
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From now on, we fix p D 2 to be the characteristic of all related finite fields.
However, we stress that our methodology is applicable to any characteristic p.
Following the notation of Sections 3.1 and 3.2, let K D GF.2/ and L D GF.2n/

be the extension of K of degree n for an integer n � 2. Let G D L� be the
multiplicative group of L of order q D 2n � 1 and g be a generator of G. Without
loss of generality, we suppose ˛ D g. Then G.t/ D t 2 KŒt� is the polynomial of
degree less than n such that G.˛/ D g. For every x 2 Zq , let Y.t/ 2 KŒt� be the
polynomial of degree less than n such that Y.˛/ D y D gx . We define

D.t/ D G.t/x C Y.t/ D tx C Y.t/ 2 KŒt�:

Then the set of database blocks which satisfy the requirements imposed by Claim
4.1 (or in Section 3.2) is

Dn;g;x D ¹ˇ 2 G W D.ˇ/ D 0º:

We say that an execution of the restricted version is parameterized by .n; g; x; F;
s; r; R/ if x 2 Zq is the private key, F.t/ 2 LŒt� the polynomial to be evaluated,
s 2 Zq and r 2 K the randomness used at step (ii) of the restricted version,
and R 2 Dn;g;x the database block held by DB. Let V.t/;W.t/ 2 KŒt� be the
polynomials of degree less than n such that V.g/ D gs andW.g/ D ys.F.g/Cr/.
Then the execution of the restricted version parameterized by .n; g; x; F; s; r; R/
gives U the expected result if and only if V.R/ ¤ 0 and E.R/ D 0, where

E.t/ D W.t/C V.t/x.F.t/C r/: (4.1)

For an execution of the restricted version parameterized by .n; g; x; F; s; r; R/, we
define

Hx;s;r;F;R D

´
1 if V.R/ ¤ 0 and E.R/ D 0,
0 otherwise.

Then the execution fails if and only if Hx;s;r;F;R D 0. Therefore, the probability
that an execution of the restricted version fails when x 2 Zq is the private key and
F.t/ 2 LŒt� is the polynomial chosen by U is exactly

�.n; g; x; F / D Pr
�
s  Zq; r  K;R Dn;g;x W Hx;s;r;F;R D 0

�
:

Since s; r and R are uniformly distributed, we have that

�.n; g; x; F / D

P
s2Zq

P
r2K

P
R2Dn;g;x

.1 �Hx;s;r;F;R/

2q � jDn;g;xj
: (4.2)
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n Ming.t/ �.n; g; g/ n Ming.t/ �.n; g; g/

2 t2 C t C 1 0.61111 6 t6C t4C t3C tC1 0.87719
3 t3 C t C 1 0.74271 7 t7 C t C 1 0.87895
4 t4 C t C 1 0.81537 8 t8Ct4Ct3Ct2C1 0.89809
5 t5 C t2 C 1 0.83630 9 t9 C t4 C 1 0.90358

Table 1. Failure probability.

The probability that the restricted version fails when F.t/ 2 LŒt� is the polynomial
chosen by U is exactly

�.n; g; F / D
1

q

X
x2Zq

�.n; g; x; F /: (4.3)

The probabilities �.n; g; F / for 2 � n � 9 and F.t/ D g are quite large and
enumerated in Table 1.

4.4 Bringer–Chabanne EPIR protocol fails frequently when F.t/ D g

In this section, we show that the restricted version fails with large probability when
F.t/ D g. Specifically, for every integer n � 2, we give a lower bound on
�.n; g; g/.

We follow the notation in Section 4.3. For every j 2 Zq , we call the set
C D ¹j � 2k mod q W k D 0; 1; 2; : : :º a cyclotomic coset mod q. By default, C is
represented by the smallest number u 2 C and denoted as

Cu D
®
j � 2k mod q W k D 0; 1; 2; : : :

¯
:

The number u is called the coset representative of C. Clearly, all distinct cy-
clotomic cosets mod q are pairwise disjoint and form a partition of Zq , that is,
Zq D

S
u2U Cu, where U is the set of coset representatives of all distinct cyclo-

tomic cosets mod q. For every positive integer d , we denote byN2.d/ the number
of monic irreducible polynomials of degree d in KŒt�.

Lemma 4.2 (Lidl and Niederreiter [25]). The following statements hold:

(i) For every u 2 U , the cardinality of Cu is a divisor of n.

(ii) For every positive integer d jn, the number of cyclotomic cosets mod q of
cardinality d is N2.d/.

(iii) For every integer d � 2, we have that N2.d/ �
1
d
.2d � 2/.
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For every u 2 U , we denote by

Du D
®
gj
W j 2 Cu

¯
the set of field elements in L which share the same minimal polynomial over K
with gu. For every x 2 Zq , it is clear that there is a subset Ux � U of coset
representatives such that

Dn;g;x D

[
u2Ux

Du: (4.4)

Lemma 4.3. For every x 2 Zq , we have that 1 2 Ux .

Proof. It follows from the fact that D.t/ 2 KŒt� and D.g/ D 0.

Due to (4.1), E.t/ is determined by the parameters g 2 G, x 2 Zq , F.t/ 2
LŒt�, s 2 Zq and r 2 K. The next lemma shows that E.t/ and D.t/ only share a
very small number of roots in L when F.t/ D g.

Lemma 4.4. Suppose F.t/ D g. Then for every x 2 Zq , u 2 Ux , s 2 Zq and
r 2 K, either V.ˇ/ D 0 for every ˇ 2 Du or E.t/ has at most one root in Du.

Proof. If V.gu/ D 0, then V.g2j �u/ D V.gu/2
j

D 0 for any j 2 N, that is,
V.ˇ/ D 0 for every ˇ 2 Du. Otherwise, we show that E.t/ has at most one root
in Du. Due to (4.1), we have that

E.t/ D W.t/C V.t/x.g C r/:

Suppose that E.t/ has two different roots in Du, say gu�2j

and gu�2k

, where 0 �
j < k < n. Then

W.gu�2j

/C V.gu�2j

/x.g C r/ D 0 D W.gu�2k

/C V.gu�2k

/x.g C r/:

It follows that

.g C r/2
n�j

D .W.gu/=V .gu/x/2
n

D .g C r/2
n�k

:

Since r 2 K, the above equality implies g2n�j

D g2n�k

. Since g is primitive, we
have .2n�1/j.2n�j�2n�k/. It follows that nj.k�j /, which is a contradiction.

The following lemma gives a lower bound on �.n; g; x; g/ for any private key
x 2 Zq .
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Lemma 4.5. For every x 2 Zq , we have that

�.n; g; x; g/ � 1 �
jUxj

jDn;g;xj
:

Proof. Due to (4.2) and (4.4), we have that

�.n; g; x; g/ D

P
s2Zq

P
r2K

P
R2Dn;g;x

.1 �Hx;s;r;g;R/

2q � jDn;g;xj

D

P
s2Zq

P
r2K

P
u2Ux

P
R2Du

.1 �Hx;s;r;g;R/

2q � jDn;g;xj
:

Let s 2 Zq and r 2 K be arbitrary. Due to Lemma 4.4, for every u 2 Ux , either
V.ˇ/ D 0 for every ˇ 2 Du, or E.t/ has at most one root in Du. It follows thatX

R2Du

.1 �Hx;s;r;g;R/ � jCuj � 1:

Therefore,

�.n; g; x; g/ �

P
s2Zq

P
r2K

P
u2Ux

.jCuj � 1/

2q � jDn;g;xj
D 1 �

jUxj

jDn;g;xj
:

We want to bound �.n; g; x; g/ for various settings of n and x. As the first case,
we suppose that n is prime.

Lemma 4.6. If n is prime, then �.n; g; x; g/ > 1 � 2
n

for every x 2 Zq .

Proof. Due to Lemma 4.2, jCuj divides n for every x 2 Zq and u 2 Ux . Since n
is prime, we have that jCuj D 1 or n.

(i) If jUxj D 1, then Ux D ¹1º due to Lemma 4.3. It is obvious that jC1j D n.
By Lemma 4.5, we have

�.n; g; x; g/ � 1 �
jUxj

jDn;g;xj
D 1 �

1

n
> 1 �

2

n
:

(ii) If jUxj > 1 and 0 2 Ux , then we have

�.n; g; x; g/ � 1 �
jUxj

jDn;g;xj
D 1 �

jUxj

1C n.jUxj � 1/
> 1 �

2

n
:
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(iii) If jUxj > 1 and 0 … Ux , then we have

�.n; g; x; g/ � 1 �
jUxj

jDn;g;xj
D 1 �

jUxj

n � jUxj
D 1 �

1

n
> 1 �

2

n
:

Below we lower bound �.n; g; x; g/ for any integer n � 2 and private key
x 2 Zq . For any positive integer d jn, we set

�x;d D
ˇ̌
¹u W u 2 Ux and Cu is of cardinality dº

ˇ̌
:

Due to Lemma 4.3 and the requirements on database block R (imposed by Claim
4.1), �x D .�x;d / belongs to the set

‰n D
®
z D .zd /d jn W 0 � z1 � 1I 1 � zn � N2.n/I

0 � zd � N2.d/ for d jn; 1 < d < n
¯
;

where the coordinates of �x and z are indexed by positive divisors of n. Due to
Lemma 4.5, we have that

�.n; g; x; g/ � 1 �
jUxj

jDn;g;xj
D 1 �

P
d jn �x;dP

d jn d�x;d

: (4.5)

We turn to upper bound the function

 n.z/ D

P
d jn zdP

d jn dzd

on ‰n. Because this is relatively hard, we upper bound the function

�n.z/ D

Pn
dD1 zdPn

dD1 dzd

;

where z D .z1; : : : ; zn/ is taken from the set

ˆn D
®
z D .z1; : : : ; zn/ W 0 � z1 � 1I 1 � zn � N2.n/I

0 � zd � N2.d/ for 1 < d < n
¯
:

Let !.n/ be the maximum value of �n.z/ on ˆn, i.e.,

!.n/ D max¹�n.z/ W z 2 ˆnº:

Lemma 4.7. For every x 2 Zq , we have that �.n; g; x; g/ � 1 � !.n/.
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Proof. Clearly,

!.n/ D max¹�n.z/ W z 2 ˆnº � max¹ n.z/ W z 2 ‰nº �  n.�x/:

Due to (4.5), we have that �.n; g; x; g/ � 1 �  n.�x/ � 1 � !.n/ for every
x 2 Zq .

Due to Lemma 4.7, it is sufficient to upper bound !.n/.

Lemma 4.8. Suppose that !.n/ D �n.�/ for � D .�1; : : : ; �n/ 2 ˆn. Then �1 D
�n D 1. Furthermore, if n � 3, then there is an integer 1 < h < n such that
�d D N2.d/ for every integer 1 < d � h and �d D 0 for every integer h < d < n.

Proof. It is trivial to verify that �1 D �2 D 1 for n D 2. Let n � 3.

(i) For every .0; z2; : : : ; zn/; .1; z2; : : : ; zn/ 2 ˆn, it is easy to see that

�n.0; z2; : : : ; zn/ � �n.1; z2; : : : ; zn/ < 0;

which implies that �1 D 1.

(ii) For every .1; z2; : : : ; zn�1; zn/; .1; z2; : : : ; zn�1; 1/ 2 ˆn (where zn > 1), it
is easy to see that

�n.1; z2; : : : ; zn�1; zn/ � �n.1; z2; : : : ; zn�1; 1/ < 0;

which implies that �n D 1.

(iii) Suppose 0 < �h < N2.h/ for some integer 1 < h < n. Let

C1 D

h�1X
dD1

�d ; C2 D

nX
dDhC1

�d ; C3 D

h�1X
dD1

d�d ; C4 D

nX
dDhC1

d�d :

Then due to the maximality of !.n/, we have

0 � �n.�1; : : : ; �h C 1; : : : ; �n/ � �n.�/

D
C3 C C4 � hC1 � hC2

.C3 C h.�h C 1/C C4/.C3 C h�h C C4/

and

0 � �n.�1; : : : ; �h � 1; : : : ; �n/ � �n.�/

D
�C3 � C4 C hC1 C hC2

.C3 C h.�h � 1/C C4/.C3 C h�h C C4/
:
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The above inequalities imply that C3 C C4 D hC1 C hC2. Hence, we have

h D

Pn
dD1 d�dPn
dD1 �d

D
1

!.n/
:

(iv) We claim that �a D N2.a/ for every 1 < a < h. Otherwise, by (iii), we have
that �a D 0 and

!.n/ < �n.�1; : : : ; �a C 1; : : : ; �h � 1; : : : ; �n/;

which is a contradiction.

(v) We claim that �b D 0 for every h < b < n. Otherwise, by (iii), we have that
�b D N2.b/ and

!.n/ < �n.�1; : : : ; �h C 1; : : : ; �b � 1; : : : ; �n/;

which is a contradiction.

(vi) Finally, we show that !.n/ D �n.1;N2.2/; : : : ; N2.h/; 0; : : : ; 0; 1/. Due to
(iii), (iv) and (v), we have that

� D .1;N2.2/; : : : ; N2.h � 1/; �h; 0; : : : ; 0; 1/;

where 0 < �h < N2.h/. Since

�n.�/ D !.n/ � �n.1;N2.2/; : : : ; N2.h � 1/; 0; 0; : : : ; 0; 1/;

we have
hC1 � C3 � n � h:

If hC1 � C3 < n � h, then

!.n/ < �n.1;N2.2/; : : : ; N2.h/; 0; : : : ; 0; 1/;

which is a contradiction. Therefore, hC1 �C3 D n� h.Then it is not hard to
verify that

!.n/ D �n.�/ D �n.1;N2.2/; : : : ; N2.h/; 0; : : : ; 0; 1/:

Therefore, we could have taken � D .1;N2.2/; : : : ; N2.h/; 0; : : : ; 0; 1/.
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Due to Lemma 4.8, for every integer n � 3, there is at least one integer h with
1 < h < n such that

!.n/ D �n.1;N2.2/; : : : ; N2.h/; 0; : : : ; 0; 1/: (4.6)

Note that the integer h may be not unique. For every integer n � 3, we define

h.n/ D min
®
h W !.n/ D �n.1;N2.2/; : : : ; N2.h/; 0; : : : ; 0; 1/;

where 1 < h < n
¯

(4.7)

to be the smallest integer 1 < h < n such that (4.6) holds. The next lemma shows
that h.n/ is an increasing function of n.

Lemma 4.9. We have that h.nC 1/ � h.n/ for every integer n � 3.

Proof. Due to the definition of h.�/ by (4.7), it is not hard to see that

�n.1;N2.2/; : : : ; N2.l � 1/;N2.l/; 0; : : : ; 0; 1/

> �n.1;N2.2/; : : : ; N2.l � 1/; 0; 0; : : : ; 0; 1/

for every integer 2 � l � h.n/. Equivalently, we have that

1

l
>

Pl�1
dD2N2.d/C 2Pl�1

dD2 dN2.d/C nC 1
(4.8)

for every integer 2 � l � h.n/. Due to (4.8), it is not hard to verify that

�nC1.1;N2.2/; : : : ; N2.l � 1/;N2.l/; 0; : : : ; 0; 1/

> �nC1.1;N2.2/; : : : ; N2.l � 1/; 0; 0; : : : ; 0; 1/ (4.9)

for every integer 2 � l � h.n/. In particular, (4.9) holds for l D h.n/. This
implies that h.nC 1/ � h.n/.

On the other hand, !.n/ is a decreasing function of n:

Lemma 4.10. We have that !.nC 1/ < !.n/ for every integer n � 3.
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Proof. By Lemma 4.9, we have that h.nC 1/ � h.n/. If h.nC 1/ D h.n/, then

!.nC 1/ D

Ph.nC1/

dD2
N2.d/C 2Ph.nC1/

dD2
dN2.d/C nC 2

D

Ph.n/

dD2
N2.d/C 2Ph.n/

dD2
dN2.d/C nC 2

<

Ph.n/

dD2
N2.d/C 2Ph.n/

dD2
dN2.d/C nC 1

D !.n/:

If h.nC 1/ > h.n/, then

!.n/ D

Ph.n/

dD2
N2.d/C 2Ph.n/

dD2
dN2.d/C nC 1

�
1

h.n/C 1
�

1

h.nC 1/

>

Ph.nC1/

dD2
N2.d/C 2Ph.nC1/

dD2
dN2.d/C nC 2

D !.nC 1/;

where the first and the third inequality follow from the definition of h.�/ by (4.7).

We enumerate the values of h.n/ and !.n/ for some integers n in Table 2.

Lemma 4.11. For every integer n � 7, we have that !.n/ � 5
nC9

.

Proof. Due to Table 2 and Lemma 4.9, we have that h.n/ � 3 for every integer
n � 7. It follows that !.n/ � �n.1; 1; 2; 0; : : : ; 0; 1/ D 5=.nC 9/.

At last, we have the following theorem.

Theorem 4.12. We have that

�.n; g; g/ �

´
1 � !.n/ if 2 � n � 6 or n � 7 is composite,
1 � 2

n
if n � 7 is prime.
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n h.n/ !.n/ n h.n/ !.n/ n h.n/ !.n/

2 1 0.66667 12 4 0.24242 296 10 0.09996
3 1 0.50000 20 5 0.19718 522 11 0.09089
4 2 0.42857 34 6 0.16547 934 12 0.08332
5 2 0.37500 57 7 0.14236 1681 13 0.07692
6 2 0.33333 98 8 0.12478 3058 14 0.07143
7 3 0.31250 169 9 0.11101 5596 15 0.06667

Table 2. The values of h.n/ and !.n/.

Proof. Table 2 shows that !.n/ � 2=n for every integer 2 � n � 6. Due to
Lemma 4.6 and Lemma 4.7, we have that

�.n; g; x; g/ � max¹1 � 2=n; 1 � !.n/º D 1 � !.n/

for n D 2; 3; 5, and �.n; g; x; g/ � 1 � !.n/ for n D 4; 6. Due to (4.3), we have
that

�.n; g; g/ D
1

q

X
x2Zq

�.n; g; x; g/ � 1 � !.n/:

Due to Lemmas 4.6, 4.7 and 4.11, we have that

�.n; g; x; g/ � max¹1 � 2=n; 1 � !.n/º D 1 � 2=n

if n � 7 is prime and �.n; g; x; g/ � 1�!.n/ if n � 7 is composite. Due to (4.3),
we have that �.n; g; g/ � 1 � 2=n if n � 7 is prime and �.n; g; g/ � 1 � !.n/ if
n � 7 is composite.

By Theorem 4.12, Lemma 4.10 and Table 2, we see that �.n; g; g/ is always
non-negligible. Hence, we have the following theorem.

Theorem 4.13. The restricted version does not satisfy the correctness requirement
if F.t/ D g.

4.5 Extension to a set of polynomials

In this section, we extend Theorem 4.13 to a set of polynomials F.t/ 2 LŒt�.
In particular, we follow the notation in Section 4.4 and show that the restricted
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version does not satisfy the correctness requirement if F.t/ 2 P , where

P D
°
f .t/ D

dX
kD0

fkt
k
W 9 0 � l � d such that

fl 2 L is primitive and fk 2 K for every k ¤ l
±
:

Note that the polynomial F.t/ D g 2 LŒt� we studied in Section 4.4 is in P

and satisfies Lemma 4.4, which is critical for obtaining all subsequent lemmas
and theorems. The next lemma shows that Lemma 4.4 holds for any polynomial
F.t/ 2 P as well.

Lemma 4.14. Let F.t/ 2 P . Then for every x 2 Zq , u 2 Ux , s 2 Zq and r 2 K,
either V.ˇ/ D 0 for every ˇ 2 Du or E.t/ has at most one root in Du.

Proof. If V.gu/ D 0, then V.gu�2j

/ D V.gu/2
j

D 0 for every j 2 N, that is,
V.ˇ/ D 0 for every ˇ 2 Du. Otherwise, we have V.ˇ/ ¤ 0 for every ˇ 2 Du.
Suppose F.t/ D

Pd
kD0 Fkt

k , where Fl 2 L is of order q and Fk 2 K for every
k ¤ l . We show that E.t/ has at most one root in Du, where

E.t/ D W.t/C V.t/x.F.t/C r/:

Suppose E.t/ has two different roots in Du, say gu�2a

and gu�2b

, where 0 � a <
b < n. Then

W.gu�2a

/C V.gu�2a

/x.F.gu�2a

/C r/

D 0 D W.gu�2b

/C V.gu�2b

/x.F.gu�2b

/C r/:

It follows that

.F.gu�2a

/C r/2
n�a

D .F.gu�2b

/C r/2
n�b

: (4.10)

Let c 2 ¹a; bº. Then it is not hard to see that

.F.gu�2c

/C r/2
n�c

D

l�1X
kD0

Fkg
uk
C

dX
kDlC1

Fkg
uk
C F 2n�c

l gul
C r:

Due to (4.10), we have that F 2n�a

l
D F 2n�b

l
. Since Fl 2 L is primitive, we have

.2n � 1/j.2n�a � 2n�b/ and therefore nj.b � a/, which is a contradiction.
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Due to Lemma 4.14, we note that all lemmas and theorems subsequent to
Lemma 4.4 in Section 4.4 can be generalized for any polynomial F.t/ 2 P .
Therefore, we deduce the following result:

Theorem 4.15. The restricted version does not satisfy the correctness requirement
if F.t/ 2 P .

4.6 Extension to any characteristic p > 2

We have stressed in Section 4.3 that our methodology is applicable when the char-
acteristic of all related finite fields is any prime p. For example, it is obvious that
we have an analog of Lemma 4.7 for any characteristic p > 2. Let !p.n/ be an
analog of the function !.n/ when the characteristic of all related finite fields is a
prime p > 2. Then the following theorem holds as well.

Theorem 4.16. We have that �.n; g; g/ � 1 � !p.n/ for every integer n � 2,
where g 2 GF.pn/ is primitive and p is an arbitrary prime number.

It follows that Theorem 4.15 also holds when the characteristic of all related
finite fields is any prime p > 2.

5 Conclusion

In this paper, we show that the Bringer–Chabanne EPIR protocol does not satisfy
the correctness requirement. To simplify the argument, we give a restricted ver-
sion of the Bringer–Chabanne EPIR protocol. If the original protocol satisfies the
correctness requirement, then so does the restricted version. We show that the re-
stricted version fails frequently if the polynomial to be evaluated has some special
property. This allows us to get the expected conclusion, i.e., the Bringer–Chabanne
EPIR protocol does not satisfy the correctness requirement.
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