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a b s t r a c t

The arboricity of a hypergraph H is the minimum number of acyclic hypergraphs that
partition H . The determination of the arboricity of hypergraphs is a problem motivated
by database theory. The exact arboricity of the complete k-uniform hypergraph of order
n is previously known only for k ∈ {1, 2, n − 2, n − 1, n}. The arboricity of the complete
k-uniform hypergraph of order n is determined asymptotically when k = n − O(log1−δ n),
δ positive, and determined exactly when k = n − 3. This proves a conjecture of Wang
(2008) [20] in the asymptotic sense.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Acyclic hypergraphs were introduced as a hypergraph analogue of trees in graphs (see Berge [3]). Besides being
mathematically interesting, acyclic hypergraphs feature prominently in the study of problems in database theory and
constraint satisfaction. There is a natural bijection between database schemas and hypergraphs, where each attribute of
a database schema D corresponds to a vertex in a hypergraph H and each relation R of attributes in D corresponds to an
edge in H .

Acyclic database schemas (which correspond to acyclic hypergraphs) were first studied by Beeri et al. [1]. This natural
class of database schemas has been shown to possess important and desirable properties [1,9,8,2,7]. Acyclic hypergraphs
have since become objects of study by many researchers. One of the primary reasons for the desirability of acyclicity in
database schemas is that there are important problems that are NP-hard on general database schemas but which becomes
polynomial-time solvable when restricted to acyclic instances. Examples of such problems include the following.

(i) Determining global consistency [2].
(ii) Evaluating conjunctive queries [22].
(iii) Computing joins or projections of joins [22].

Furthermore, acyclic database schemas can be recognized in linear time [18].
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It is therefore natural to decompose an instance into acyclic instances. This has motivated some recent study into the
arboricity of a hypergraph (the minimum number of acyclic hypergraphs into which the edges of the given hypergraph can
be partitioned).

Themain contributions of this paper are the asymptotic determination of the arboricity of complete uniformhypergraphs
with large edge size, and the exact determination of the arboricity of an infinite family of complete uniform hypergraphs.

2. Mathematical preliminaries

Let n be a positive integer. The set {1, . . . , n} is denoted [n].
For X a finite set and k a nonnegative integer, the set of all k-subsets of X is denoted by


X
k


, that is,

X
k


= {K ⊆ X : |K | = k}.

A hypergraph is a pair H = (X, A), where X is a finite set, and A ⊆ 2X . The elements of X are called vertices and the
elements of A are called edges. The order of H is the number of vertices in X , and the size of H is the number of edges in
A. If A ⊆


X
k


, then (X, A) is said to be k-uniform. Note that our usual notion of a graph is equivalent to the notion of a

2-uniform hypergraph. The complete k-uniform hypergraph

X,


X
k


of order n is denoted K (k)

n . A hypergraph is empty if it
has no edges. The degree of a vertex v is the number of edges containing v.

There are many definitions for the acyclicity of a hypergraph (see [2]). The definition we use here is based on the Graham
reduction [10], described below.

LetH = (X, A) be a given hypergraph.Graham’s algorithm applies the following operations repeatedly toH until neither
can be applied:
(a) If a vertex x ∈ X has degree one, then delete x from the edge containing it.
(b) If A, B ∈ A are distinct edges such that A ⊆ B, then delete A from A.
(c) If A ∈ A is empty, then delete A from A.

The resulting hypergraph H ′ is said to be Graham-reduced, and is called the Graham reduction of H .

Definition 2.1. A hypergraph is acyclic if its Graham reduction is empty.

Example 2.1. Let H = (X, A) be the hypergraph such that

X = {1, 2, 3, 4, 5, 6},
A = {{1, 2, 3}, {3, 4, 5}, {1, 5, 6}, {1, 3, 5}}.

We apply operations (a) and (b) repeatedly. The vertices 2, 4, 6 each has degree one and hence can be deleted. We are
therefore left with edges {1, 3},{3, 5},{1, 5},{1, 3, 5}. The edges {1, 3},{3, 5},{1, 5} can be deleted since each is a subset of the
edge {1, 3, 5}. We are then left with the edge {1, 3, 5}. Now observe that vertices 1, 3, 5 can be deleted since each of them
has degree one. The Graham reduction of H is therefore empty. Consequently, H is acyclic.

Example 2.2. Let H = (X, A) be the hypergraph such that

X = {1, 2, 3, 4},
A = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}.

The Graham reduction of H is the hypergraph itself since neither operations (a) nor (b) can be applied. H is therefore not
acyclic.

Note that acyclicity of hypergraphs coincides with our usual notion of acyclicity in graphs when the hypergraphs under
consideration are ordinary graphs.

The following result on the maximum size of a k-uniform acyclic hypergraph is known.

Proposition 2.1 (Wang and Li [21]). A maximum k-uniform acyclic hypergraph of order n has size n − k + 1.

An acyclic decomposition of a hypergraph H = (X, A) is a set of acyclic hypergraphs {(X, Ai)}
c
i=1 such that the following

conditions hold:
(i) Ai ⊆ A for all i ∈ [c].
(ii) Ai ∩ Aj = ∅ for all distinct i, j ∈ [c].
(iii) ∪

c
i=1 Ai = A.

The size of the acyclic decomposition is c , the number of acyclic hypergraphs in the decomposition.

Definition 2.2. The arboricity of a hypergraph H , denoted arb(H), is the minimum size of an acyclic decomposition of H .
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3. Previous and related work

Trivially, arb(K (1)
n ) = arb(K (n)

n ) = 1, since both K (1)
n and K (n)

n are acyclic.
Determining arb(K (2)

n ) is closely related to the classical problem of determining σ(Kn), the spanning tree packing number
of the complete graph Kn (see [16]). First note that arb(K (2)

n ) ≥ ⌈n/2⌉ since a maximum acyclic graph is a spanning tree and
has size n − 1. When n is even, Kn has a decomposition into n/2 Hamiltonian paths, and hence arb(K (2)

n ) = σ(Kn) = n/2
in this case. When n is odd, consider a decomposition of Kn−1 into (n − 1)/2 Hamiltonian paths. Now add a new vertex v
and from each Hamiltonian path of the decomposition add an edge from a distinct vertex to v. The remaining edges from
vertices not already connected to v form a star. This gives a decomposition of Kn into (n+ 1)/2 acyclic graphs ((n− 1)/2 of
which are spanning trees and one of which is a star of size (n − 1)/2). It follows that arb(K (2)

n ) ≤ ⌈n/2⌉, and consequently
arb(K (2)

n ) = ⌈n/2⌉.
It is also easy to see that arb(K (n−1)

n ) = ⌈n/2⌉ since any set of at most two edges in K (n−1)
n is acyclic.

Li [13] proved that arb(K (n−2)
n ) = ⌈n(n − 1)/6⌉.

The value of arb(K (k)
n ) is unknown for all other k.

The known results on arb(K (k)
n ) led Wang [20, ch. 10] to make the following conjecture.

Conjecture 3.1.

arb(K (k)
n ) =


1
k


n

k − 1


.

Li [13] proved that
1
k


n

k − 1


≤ arb(K (k)

n ) ≤
1
2


n + 1
k − 1


. (1)

The upper and lower bounds in (1) are approximately a factor of k/2 apart.
By substituting n − k for k and simplifying, Conjecture 3.1 can be stated equivalently as.

Conjecture 3.2.

arb(K (n−k)
n ) =


1

k + 1

n
k


. (2)

In the next section, we prove Conjecture 3.2 in the asymptotic sense, if k = O(log1−δ n), δ a positive constant, by showing
that under this condition, we have

arb(K (n−k)
n ) = (1 + o(1))

1
k + 1

n
k


.

4. An asymptotic result

A k-uniform hypergraph (X, A) of size c is called a delta-system ∆(p, k, c) if there is a set F , called the center, such that
|F | = p and Ai ∩ Aj = F for all distinct Ai, Aj ∈ A.

Proposition 4.1. A delta-system ∆(p, k, c) is acyclic.

Proof. Let (X, A) be a delta-system ∆(p, k, c) with center F . Then for each edge A ∈ A, each of the vertices in A \ F is
contained in no other edge, for otherwise there would exist some other edge whose intersection with A is not F . We can
therefore apply operation (a) of Graham’s algorithm to remove the vertices in A \ F , for each edge A ∈ A. What remains is a
set of edges, each of which is F . Applying operation (b) of Graham’s algorithm now gives an empty hypergraph. �

The following is immediate from Proposition 2.1 and Proposition 4.1.

Corollary 4.1. A delta-system ∆(k − 1, k, n − k + 1) is a maximum k-uniform acyclic hypergraph of order n.

Definition 4.1. Let H = (X, A) be a hypergraph. The supplement of H , denoted H s, is the hypergraph (X, B), where
B = {X \ A : A ∈ A}.

Note that (H s)s = H .

Theorem 4.1. Let H = (X, A) be a k-uniform hypergraph of order n. Then H is a delta-system ∆(k − 1, k, n − k + 1) if and
only if the edges of H s induce a K (n−k)

n−k+1.
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Proof. First note that since H is k-uniform, H s is n − k-uniform. Next, observe that the only degree zero vertices in H s

are those that appear in every edge of H . In particular, the set of degree zero vertices in H s is precisely F , the center of H .
Hence, the edges of H s induce a subgraph of order n − k + 1.

Finally, observe that the edge containing x ∈ X \ F in H gives rise to the edge X \ (F ∪ {x}) in H s, and vice versa. This
completes the proof. �

We now establish an asymptotically exact value for arb(K (n−k)
n ), when k = O(log1−δ n), δ a positive constant. First, we

require some concepts and results from combinatorial design theory.

Definition 4.2. A t-(v, k, 1) packing is a k-uniform hypergraph (X, A) of order v such that every t-subset of X is contained
in at most one edge of A.

Given t , k, and v, the determination of D(t, k, v), themaximum size of a t-(v, k, 1) packing, constitutes a central problem
in combinatorial design theory, as well as in coding theory [15]. It is easy to see that D(t, k, v) ≤


v

t


/


k
t


. Rödl [17] was

the first to show that this upper bound can be attained asymptotically. Let ϵt,k(v) be the fraction of t-subsets not contained

in any edges of a t-(v, k, 1) packing of maximum size. In other words, D(t, k, v) = (1 − ϵt,k(n))


v

t


/


k
t


.

Theorem 4.2 (Rödl [17]). For fixed t and k, we have limv→∞ ϵt,k(v) = 0.

The best current bound on ϵt,k(v) is by Vu [19], who showed that

ϵt,k(v) = O(v−β logγ v), (3)

where β = 1/(


k
t


− 1), and γ > 0 is a constant.

Let (X, A) be a k-(n, k + 1, 1) packing of maximum size, so that |A| = (1 − ϵk,k+1(n)) 1
k+1

 n
k


. The number of k-subsets

of X not contained in any edges of A is ϵk,k+1(n)
 n
k


. Now, for each edge A ∈ A, let BA be the set of all k-subsets of A, that is,

BA =


A
k


. Further, let B ′ be the set of all k-subsets of X not contained in any edges of A. Let B = (∪A∈A BA) ∪ (∪B∈B′{B}).

Then B =


X
k


, since every k-subset of X is either contained in BA for exactly one A ∈ A, or is contained in B ′. Consider

the supplement H s
= (X, C) of the complete k-uniform hypergraph H = (X, B) of order n. It is clear that H s is a

complete (n − k)-uniform hypergraph of order n. Since {BA}A∈A together with {{B}}B∈B′ partition the edge set of B, then
their supplements also partition the edge set of C. We now examine the structure of the supplement of (X, BA) for A ∈ A,
and (X, {B}) for B ∈ B ′. Observe that, ignoring the degree zero vertices, (X, BA) is a K (k)

k+1. Applying Theorem 4.1 shows that
its supplement is a delta-system ∆(n − k − 1, n − k, k + 1), which is acyclic by Corollary 4.1. The supplement of (X, {B})
contains just a single edge, and is therefore also acyclic. The supplements of (X, BA) and (X, {B}), where A ∈ A and B ∈ B ′,
is therefore an acyclic decomposition of H s. The size of this acyclic decomposition is

|A| + |B ′
| = (1 − ϵk,k+1(n))

1
k + 1

n
k


+ ϵk,k+1(n)

n
k


= (1 + kϵk,k+1(n))

1
k + 1

n
k


.

From (3), we have

kϵk,k+1(n) = O

k logγ n
n1/k


,

for some positive constant γ . Thus, limn→∞ kϵk,k+1(n) = 0 when k = O(log1−δ n), for any constant δ > 0.
We summarize the above discussions as:

Theorem 4.3. Let δ be a positive constant. Then for k = O(log1−δ n), we have

arb(K (n−k)
n ) = (1 + o(1))

1
k + 1

n
k


.

If in a t-(v, k, 1) packing (X, A), every t-subset of X is contained in exactly one (instead of at most one) edge of A, the
packing is known as a Steiner system, and is denoted S(t, k, v). Whenever an S(k, k+1, n) exists, then the discussions above
show that K (n−k)

n has an acyclic decomposition into delta-systems ∆(n − k − 1, n − k, k + 1), which are maximum acyclic
hypergraphs, so that we have.
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Theorem 4.4. Let k < n be positive integers. If there exists a Steiner system S(k, k + 1, n), then

arb(K (n−k)
n ) =

1
k + 1

n
k


.

Corollary 4.2. When any one of the conditions

(i) k = 1 and n ≡ 0 (mod 2),
(ii) k = 2 and n ≡ 1 or 3 (mod 6),
(iii) k = 3 and n ≡ 2 or 4 (mod 6),
(iv) k = 4 and n ∈ {11, 23, 35, 47, 71, 83, 107, 131},
(v) k = 5 and n ∈ {12, 24, 36, 48, 72, 84, 108, 132},

is satisfied, we have

arb(K (n−k)
n ) =

1
k + 1

n
k


.

Proof. For (i), note that an S(1, 2, n) is a perfect matching in the complete graph Kn, and hence exists if and only if n is
even. For (ii), an S(2, 3, n) is a Steiner triple system and exists if and only if n ≡ 1 or 3 (mod 6) (see, for example, [6]). For
(iii), an S(3, 4, n) is a Steiner quadruple system, existence for which was settled by Hanani [12], who showed that n ≡ 2 or
4 (mod 6) is necessary and sufficient. For (iv)–(v), see [11,5] for existence results. �

5. Arboricity of K (n−3)
n

The purpose of this section is to determine the exact value of arb(K (n−3)
n ) completely. Corollary 4.2(iii) already gives

arb(K (n−3)
n ) =

n(n − 1)(n − 2)
24

when n ≡ 2 or 4 (mod 6), so we focus on the remaining cases of n ≡ 0, 1, 3 or 5 (mod 6).
We need more combinatorial constructs.

Definition 5.1. Let t , k, m, and v be nonnegative integers. A (t, k) candelabra system of order v is a quadruple (X, S, G, A)
that satisfies the following properties:

(i) (X, A) is a k-uniform hypergraph of order v.
(ii) S ⊆ X , called the stem.
(iii) G = {G1, . . . ,Gm} is a partition of X \ S (elements of G are called groups).
(iv) Every t-subset T ⊆ X with |T ∩ (S ∪ Gi)| < t for all i ∈ [m] is contained in exactly one edge of A, and no t-subsets of

S ∪ Gi, for any i ∈ [m], is contained in an edge of A.

The type of a (t, k) candelabra system (X, S, G, A) is the multiset [|G| : G ∈ G]. For convenience, the type is often written
with the exponential notation so that the type g s1

1 g s2
2 . . . g sr

r is taken to mean that there are si groups of size gi, for i ∈ [r]. A
(t, k) candelabra system of type g s1

1 g s2
2 . . . g sr

r with a stem of size s is denoted by (t, k)-CS(g s1
1 g s2

2 . . . g st
t : s), and has order∑t

i=1 gisi + s.
Mills [14] constructed an infinite class of (3,4) candelabra systems.

Proposition 5.1 (Mills [14]). For all m ≥ 0, there exists a (3,4)-CS(6m
: 0) of order 6m.

5.1. The case n ≡ 0 (mod 6)

We begin by showing that arb(K (3)
6 ) = 5. Consider the complete 3-uniform hypergraph


X,


X
3


, where X = [6]. Let

A1 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}},
A2 = {{1, 2, 5}, {1, 2, 6}, {1, 5, 6}, {2, 5, 6}},
A3 = {{3, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}},
A4 = {{1, 3, 5}, {2, 3, 5}, {2, 3, 6}, {2, 4, 6}},
A5 = {{1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {2, 4, 5}}.

It is easy to verify that the supplement of (X, Ai), i ∈ [5], is acyclic. Hence, these supplements give an acyclic decomposition
of


X,


X
3


, proving arb(K (3)

6 ) = 5.
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Now, let n ≡ 0 (mod 6) and let (X, S, G, A) be a (3,4)-CS(6n/6
: 0) of order n, which exists by Proposition 5.1. Any

3-subset of X not contained in a group is contained in exactly one edge of A. The number of such 3-subsets isn
3


−

n
6


6
3


.

Since each edge contains four 3-subsets, we have

|A| =
1
4

n
3


−

n
6


6
3


=

1
4

n
3


−

5n
6

.

If we let BA =


A
3


for A ∈ A and for each group G ∈ G, we let BG(i) ⊆


G
3


that is isomorphic to Ai, i ∈ [5], then the

supplements of (X, BA), A ∈ A, and (X, BG(i)), G ∈ G, i ∈ [5] form an acyclic decomposition of the hypergraph

X,


X

n−3


.

The size of this acyclic decomposition is

|A| + 5|G| =
1
4

n
3


.

Consequently, we have.

Proposition 5.2. When n ≡ 0 (mod 6), arb(K (n−3)
n ) =

1
4

 n
3


.

5.2. The case n ≡ 1 (mod 2)

Given a finite set X and a partition V = {V1, . . . , Vr} of X (that is, ∪i∈[r] Vi = X and Vi ∩ Vj = ∅ for distinct i, j ∈ [r]), a
set Y ⊆ X with the property that |Y ∩ Vi| ≤ 1 for all i ∈ [r] is called a transversal of X with respect to V .

A k-uniform r-partite hypergraph is a k-uniform hypergraph H = (X, A) with a partition G = {G1, . . . ,Gr} of X into r
parts Gi, such that for any A ∈ A, A is a transversal of X with respect to G. If A is the set of all transversals of X with respect
to G, then (X, A) is called complete. The complete k-uniform r-partite hypergraph, where each part has size m, is denoted
by K (k)

r(m).

Lemma 5.1. Let H be a K (3)
3(2). Then arb(H s) = 2.

Proof. Consider the complete 3-uniform tripartite hypergraph H = ([6], A), with tripartition G = {{i, i + 3} : i ∈ [3]},
and let

A1 = {{1, 2, 3}, {3, 4, 5}, {2, 3, 4}, {4, 5, 6}},
A2 = {{1, 3, 5}, {1, 5, 6}, {2, 4, 6}, {1, 2, 6}}.

The supplements of ([6], A1) and ([6], A2) are each acyclic, and they decompose H s.

Lemma 5.2. For n ∈ {7, 9}, arb(K (n−3)
n ) = ⌈

1
4

 n
3


⌉.

Proof. For n = 7, let H =


X,


X
3


, where X = [7], and let

A1 = {{1, 2, 7}, {1, 3, 7}, {2, 3, 7}},
A2 = {{1, 4, 7}, {1, 5, 7}, {2, 4, 7}, {1, 2, 5}},
A3 = {{1, 6, 7}, {2, 5, 7}, {2, 6, 7}, {1, 3, 6}},
A4 = {{3, 4, 7}, {3, 5, 7}, {4, 5, 7}, {3, 4, 5}},
A5 = {{3, 6, 7}, {4, 6, 7}, {1, 2, 3}, {2, 3, 6}},
A6 = {{5, 6, 7}, {1, 2, 4}, {1, 2, 6}, {1, 5, 6}},
A7 = {{1, 3, 4}, {1, 3, 5}, {1, 4, 6}, {2, 4, 6}},
A8 = {{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {4, 5, 6}},
A9 = {{2, 4, 5}, {2, 5, 6}, {3, 4, 6}, {3, 5, 6}}.

The supplements of ([7], Ai), i ∈ [9], are each acyclic, and they decompose H s
= K (4)

7 .
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For n = 9, let H =


X,


X
3


, where X = [9]. The supplements of ([9], π j(Bi)), for i ∈ [3] and j ∈ [7], where

B1 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 5}, {2, 4, 5}},
B2 = {{1, 2, 5}, {1, 2, 8}, {1, 3, 8}, {2, 5, 9}},
B3 = {{1, 2, 9}, {1, 3, 9}, {1, 4, 8}, {4, 8, 9}},

and π is the permutation (1 2 . . . 7)(8)(9), are each acyclic and they decompose H s
= K (6)

9 . �

Lemma 5.3. Let H = (X, A), where (X, S, G, A) is a (3,3)-CS(22
: 1). Then arb(H s) = 2.

Proof. Take X = [5], S = {5}, and G = {{i, i + 2} : i ∈ [2]}. Then A can be partitioned into

A1 = {{1, 2, 3}, {1, 2, 5}, {1, 4, 5}, {2, 3, 4}}, and
A2 = {{1, 2, 4}, {1, 3, 4}, {2, 3, 5}, {3, 4, 5}}.

Since the supplements of (X, A1) and (X, A2) are each acyclic, the lemma follows. �

Proposition 5.3. When n ≡ 1 (mod 2), arb(K (n−3)
n ) = ⌈

1
4

 n
3


⌉.

Proof. First note that the proposition holds for n ∈ {1, 3, 5, 7, 9} (it is trivial for n ∈ {1, 3}; n = 5 follows from our
knowledge of arb(K (2)

n ); n ∈ {7, 9} follows from Lemma 5.2).
For n ≥ 11, write n = 8r + u, where 1 ≤ u ≤ 7. Let X = ([r] × [4] × [2]) ∪ S, where

S =


{∞}, if u = 1
{∞} ∪ ([(u − 1)/2] × [2]), otherwise.

Let Y = ([r] × [4]) ∪ S ′, where

S ′
=


∅, if u = 1
[(u − 1)/2], otherwise,

and let (Y , A) and (Y , B) be hypergraphs K (2)
4r+(u−1)/2 and K (3)

4r+(u−1)/2, respectively.
The following acyclic decompositions are required:

(i) For each i ∈ [r], let Xi = ({i} × [4] × [2]) ∪ {∞}. An acyclic decomposition {(Xi, Ai(1)), (Xi, Ai(2)), . . . , (Xi, Ai(21))}
of K (6)

9 on vertex set Xi exists by Lemma 5.2.
(ii) An acyclic decomposition


(S, A0(1)), (S, A0(2)), . . . ,


S, A0

 1
4

 u
3


of K (u−3)

u on vertex set S exists.

(iii) For each T ∈


Y
3


not contained in S ′ or {i}× [4], i ∈ [4], an acyclic decomposition {(T ×[2], BT (1)), (T ×[2], BT (2))}

of K (3)
3(2) on vertex set T × [2] with tripartition {{x} × [2] : x ∈ T } exists by Lemma 5.1.

(iv) For each P ∈


Y
2


not contained in S ′ or {i} × [4], i ∈ [4], an acyclic decomposition {(P × [2], CP(1)), (P × [2], CP(2))}

of (P × [2], C), where (P × [2], {∞}, {{x} × [2] : x ∈ P}, C) is a (k, k)-CS(22
: 1) exists by Lemma 5.3.

Let H be the set of hypergraphs
(i) (X, Ai(j)), for i ∈ [r] and j ∈ [21],
(ii) (X, A0(i)), for i ∈ [⌈

1
4

 u
3


⌉],

(iii) (X, BT (i)), for T ∈


Y
3


\


S
3


∪


∪i∈[r]


{i}×[4]

3


and i ∈ [2],

(iv) (X, CP(i)), for P ∈


Y
2


\


S
2


∪


∪i∈[r]


{i}×[4]

2


and i ∈ [2].

It is easy to check that the set {H s
: H ∈ H} is an acyclic decomposition of


X,


X

n−3


. The size of this acyclic decomposition

is

21r +


1
4

u
3


+ 2


4r +

u−1
2

3


+


4r +

u−1
2

2


− 4r −

 u−1
2

3


− 6r −

 u−1
2

2


=


1
4

n
3


. �

6. Conclusion

In this paper, techniques from combinatorial design theory are used to study the arboricity of complete uniform
hypergraphs. As a result, the arboricity of the complete k-uniform hypergraph of order n is determined asymptotically
when k = n − O(log1−δ n), δ positive, and determined exactly when k = n − 3. This proves a conjecture of Wang [20]
in the asymptotic sense.
Note: Bermond et al. [4] have recently determined that arb(K (3)

n ) = ⌈n(n − 1)/6⌉, for all n ≥ 3.
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