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Abstract. α-acyclicity is an important notion in database theory. The α-arboricity of a hypergraphH is
the minimum number of α-acyclic hypergraphs that partition the edge set of H. The α-arboricity of the com-
plete 3-uniform hypergraph is determined completely.
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1. Introduction. There is a natural bijection between database schemas and hy-
pergraphs, where each attribute of a database schema D corresponds to a vertex in a
hypergraph H, and each relation R of attributes in D corresponds to an edge in H.
Many properties of databases have therefore been studied in the context of hyper-
graphs. One such property of databases is the important notion of α-acyclicity. Besides
being a desirable property in the design of databases [2], [3], [8], [9], [10], many NP-hard
problems concerning databases can be solved in polynomial time when restricted to
instances for which the corresponding hypergraphs are α-acyclic [3], [16], [19]. Examples
of such problems include determining global consistency, evaluating conjunctive
queries, and computing joins or projections of joins.

When faced with such computationally intractable problems on a general database
schema, it is natural to decompose it into α-acyclic instances on which efficient algo-
rithms can be applied. This has motivated some recent studies on the α-arboricity of
hypergraphs, the minimum number of α-acyclic hypergraphs into which the edges of
a given hypergraph can be partitioned [4], [14], [17].

In this paper, we give a general construction for partitioning complete uniform hy-
pergraphs into α-acyclic hypergraphs based on Steiner systems, and we completely de-
termine the α-arboricity of complete 3-uniform hypergraphs.

2. Preliminaries. We assume familiarity with basic concepts and notions in graph
theory.

Let n be a positive integer. The set f1; : : : ; ng is denoted by ½n�. Disjoint union of
sets is denoted by ⊔. We use ⊔ in place of ∪ when we want to emphasize the disjointness
of the sets involved in a union.
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For X a finite set and k a nonnegative integer, the set of all k-subsets of X is denoted
ðXk Þ; that is, ðXk Þ ¼ fK ⊆ X∶jK j ¼ kg. A hypergraph is a pair H ¼ ðX;AÞ, where X is a
finite set and A ⊆ 2X . The elements of X are called vertices and the elements of A are
called edges. The order of H is the number of vertices in X , and the size of H is the
number of edges in A. If A ⊆ ðXk Þ, then H is said to be k-uniform. A 2-uniform hyper-
graph is just the usual notion of a graph. The complete k-uniform hypergraph ðX; ðXk ÞÞ of
order n is denotedK

ðkÞ
n . A hypergraph is empty if it has no edges. The degree of a vertex v

is the number of edges containing v.
A Steiner system Sðt; k; nÞ is a k-uniform hypergraph ðX;AÞ such that every

T ∈ ðXt Þ is contained in exactly one edge in A.
A group divisible design k-GDD is a triple ðX;G;AÞ, where ðX;AÞ is a k-uniform

hypergraph, G ¼ fG1; : : : ; Gtg is a partition of X into parts Gi, i ∈ ½t�, called groups,
such that every T ∈ ðX2 Þ not contained in a group is contained in exactly one edge in A,
and every T ∈ ðX2 Þ contained in a group is not contained in any edge in A. The type of a

k-GDD ðX;G;AÞ is the multiset ½jG1j; : : : ; jGtj�. The exponential notation gt11 : : : gtss is
used to denote the multiset where element gi has multiplicity ti, i ∈ ½s�.

We require the following result from Colbourn, Hoffman, and Rees [5] on the ex-
istence of 3-GDDs.

THEOREM 2.1. Let g, t, and u be nonnegative integers. There exists a 3-GDD of type
gtu1 if and only if the following conditions are all satisfied:

(i) if g > 0, then t ≥ 3, or t ¼ 2 and u ¼ g, or t ¼ 1 and u ¼ 0, or t ¼ 0;
(ii) u ≤ gðt− 1Þ or gt ¼ 0;
(iii) gðt− 1Þ þ u≡ 0 ðmod 2Þ or gt ¼ 0;
(iv) gt≡ 0 ðmod 2Þ or u ¼ 0;
(v) g2ðt2Þ þ gtu≡ 0 ðmod 3Þ.

2.1. Graphs of hypergraphs. Given a hypergraph H, we may define the follow-
ing graphs on H.

DEFINITION 2.2. Let H ¼ ðX;AÞ be a hypergraph. The line graph of H is the graph
LðHÞ ¼ ðV; EÞ, where V ¼ A and E ¼ ffA;Bg ⊆ ðV2 Þ∶A ∩ B ≠ ∅g.

DEFINITION 2.3. Let H ¼ ðX;AÞ be a hypergraph. The primal graph or 2-section of
H is the graph GðHÞ ¼ ðX; EÞ such that fx; yg ∈ E if and only if fx; yg ⊂ A for some
A ∈ A.

A hypergraph H is conformal if for every clique K in GðHÞ, there is an edge in
H that contains K . A hypergraph H is chordal if GðHÞ is chordal, that is, every
cycle of length at least four in GðHÞ contains two nonconsecutive vertices that are
adjacent.

2.2. Acyclic hypergraphs. Graham [11], and independently, Yu and Ozsoyoglu
[20], [21], defined an acyclicity property (which has come to be known as α-acyclicity) for
hypergraphs in the context of database theory, via a transformation now known as the
GYO reduction. Given a hypergraph H ¼ ðX;AÞ, the GYO reduction applies the fol-
lowing operations repeatedly to H until none can be applied:

(i) If a vertex x ∈ X has degree 1, then delete x from the edge containing it.
(ii) If A;B ∈ A are distinct edges such that A ⊆ B, then delete A from A.
(iii) If A ∈ A is empty, that is, A ¼ ∅, then delete A from A.

DEFINITION 2.4. A hypergraph H is α-acyclic if GYO reduction on H results in an
empty hypergraph.
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The notion of α-acyclicity is closely related to conformality and chordality for hy-
pergraphs. Beeri et al. [3] showed what follows.

THEOREM 2.5. H is α-acyclic if and only if H is conformal and chordal.
Let H ¼ ðX;AÞ be a hypergraph. Assign to every edge fA;Bg of LðHÞ the weight

jA ∩ Bj. We denote this weighted line graph of H by L 0ðHÞ. The maximum weight of a
forest in L 0ðHÞ is denoted wðHÞ. Acharya and Las Vergnas [1] introduced the hyper-
graph invariant

μðHÞ ¼
X
A∈A

jAj−
���� [
A∈A

A

����−wðHÞ;

called the cyclomatic number ofH, and they used it to characterize conformal and chor-
dal hypergraphs.

THEOREM 2.6. (Acharya and Las Vergnas [1]). A hypergraphH satisfies μðHÞ ¼ 0 if
and only if H is conformal and chordal.

Theorems 2.5 and 2.6 immediately imply the following.
COROLLARY 2.7. A hypergraph H is α-acyclic if and only if μðHÞ ¼ 0.
Li and Wang [15] were unaware of these connections and rediscovered Corollary 2.7

recently. An easy consequence is that a maximum α-acyclic k-uniform hypergraph of
order n has size n− kþ 1 [18]. Let Lk−1ðHÞ denote the spanning subgraph of L 0ðHÞ
containing only those edges of L 0ðHÞ of weight k− 1. We derive the following charac-
terizations of maximum α-acyclic k-uniform hypergraphs.

COROLLARY 2.8. A k-uniform hypergraph H ¼ ðX;AÞ of order n and size n− kþ 1

is α-acyclic if and only if LðHÞ contains a spanning tree, each edge of which has weight
k− 1 (in other words, Lk−1ðHÞ is connected).

Proof. By Corollary 2.7, we have

wðHÞ ¼
X
A∈A

jAj−
���� [
A∈A

A

����
¼ ðn− kþ 1Þk− n

¼ ðn− kÞðk− 1Þ:

Since every edge in L 0ðHÞ has weight at most k− 1, and a forest of L 0ðHÞ contains at
most n− k edges (and contains exactly n− k edges if and only if the forest is a spanning
tree), the corollary follows. ▯

An α-acyclic decomposition of a hypergraph H ¼ ðX;AÞ is a set of α-acyclic hyper-
graphs fðX;AiÞgci¼1 such that A1; : : : ;Ac partition A; that is, A ¼ ⊔c

i¼1 Ai. The size of
the α-acyclic decomposition is c.

DEFINITION 2.9. The α-arboricity of a hypergraph H, denoted αarbðHÞ, is the mini-
mum size of an α-acyclic decomposition of H.

3. Previous work. Trivially, αarbðK ð1Þ
n Þ ¼ αarbðK ðnÞ

n Þ ¼ 1, since both K
ð1Þ
n and

K
ðnÞ
n are α-acyclic. It is also known that αarbðK ð2Þ

n Þ ¼ αarbðK ðn−1Þ
n Þ ¼ dn∕ 2e (see, for

example, [4]). Li [14] also showed that αarbðK ðn−2Þ
n Þ ¼ dnðn− 1Þ ∕ 6e. In general, Li

[14] showed that
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�
1

k

�
n

k− 1

��
≤ αarbðK ðkÞ

n Þ ≤ 1

2

�
nþ 1
k− 1

�
:ð3:1Þ

The upper and lower bounds in (3.1) differ by approximately a factor of k ∕ 2. Wang [17]

conjectured the lower bound to be the true value of αarbðK ðkÞ
n Þ.

CONJECTURE 3.1. αarbðK ðkÞ
n Þ ¼ d1k ð n

k−1Þe.
Recently, Chee et al. [4] showed that Conjecture 3.1 holds when k ¼ n− 3, so that

Conjecture 3.1 is now known to hold for all n when k ¼ 1, 2, n− 3, n− 2, n− 1, n. Chee
et al. [4] also showed that Conjecture 3.1 holds whenever there exists a Steiner system
Sðn− k; n− kþ 1; nÞ and that Conjecture 3.1 holds in an asymptotic sense when k is
large enough. More precisely, the following was obtained.

THEOREM 3.2. (Chee et al. [4]). Let δ be a positive constant. Then for k ¼ n−
Oðlog1−δ nÞ, we have

αarbðK ðkÞ
n Þ ¼ ð1þ oð1ÞÞ 1

k

�
n

k− 1

�
;

where the oð1Þ is in n.

4. Decompositions based on Steiner systems. First, note that the cardinality
of the Steiner system Sðk− 1; k; nÞ is precisely 1

k ð n
k−1Þ, i.e., when such a system exists, the

lower bound given by (3.1). Therefore, the idea of our construction consists in using the

blocks of a Sðk− 1; k; nÞ as centers of our partitions of K ðkÞ
n into α-acyclic hypergraphs.

Each of these hypergraphs is based on a center C (in this case a block from the Steiner
system) to which are added n− 3 edges, each of which intersect the center on k− 1
vertices (we name these hypergraphs star-shaped). The reader may find it helpful to
consult Figure 4.1, which illustrates the following proof for n ¼ 7 and k ¼ 3, using
the Steiner triple system Sð2; 3; 7Þ ðZ7;AÞ with A ¼ ffi; iþ 1; iþ 3g∶i ∈ Z7g.

THEOREM 4.1. If there exists an Sðk− 1; k; nÞ, then αarbðK ðkÞ
n Þ ¼ 1

k ð n
k−1Þ.

FIG. 4.1. Case n ¼ 7, k ¼ 3.

THE α-ARBORICITY OF COMPLETE UNIFORM HYPERGRAPHS 603

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Proof. Let k and n be positive integers, 2 ≤ k ≤ n. Let ðX;AÞ be an Sðk− 1; k; nÞ.
Define a bipartite graph G with bipartition V ðGÞ ¼ P ⊔ Q, where P ¼
fðA; xÞ∶A ∈ A and x ∈ X \ Ag and Q ¼ ðXk Þ \ A so that vertex ðA; xÞ ∈ P is adjacent
to vertex K ∈ Q if and only if K ⊂ A ∪ fxg. Thus, the neighborhood of vertex ðA; xÞ ∈
P is the set NðA; xÞ ¼ fðA ∪ fxgÞ \ fug∶u ∈ Ag, and the neighborhood of vertex K ∈ Q
is the set NðKÞ ¼ fðA; xÞ∶x ∈ K;A ∈ A andK \ fxg ⊂ Ag. Evidently, jNðA; xÞj ¼ k for
all ðA; xÞ ∈ P. To see that jNðKÞj ¼ k for all K ∈ Q, note that each of the k ðk− 1Þ-
subsets of K is contained in exactly one A ∈ A, since ðX;AÞ is an Sðk− 1; k; nÞ. It
follows that jN ðA; xÞj ¼ jNðKÞj ¼ k and G is k-regular. Hence, G has a perfect match-
ing M .

Now, for each A ∈ A, let us define the k-uniform hypergraph HA ¼ ðX;BAÞ, where
BA ¼ fAg ∪ fK ∈ Q∶fðA; xÞ; Kg ∈ M for some x ∈ X \ Ag. It is easy to check that
ðXk Þ ¼⊔A∈A BA. We claim that, in fact, the set of hypergraphs fHAgA∈A is an α-acyclic
decomposition of ðX; ðXk ÞÞ. To see this, note thatHA has order n and size n− kþ 1, and
observe that each edge in BA \ fAg intersects A in exactly k− 1 vertices. Hence,
Lk−1ðHAÞ is connected. It follows from Corollary 2.8 that HA is α-acyclic. The size
of the α-acyclic decomposition fHAgA∈A is the size of an Sðk− 1; k; nÞ, which is precisely
1
k ð n

k−1Þ. ▯
COROLLARY 4.2. We have αarbðK ðkÞ

n Þ ¼ 1
k ð n

k−1Þ whenever any one of the following
conditions holds:

(i) k ¼ 2 and n≡ 0 ðmod 2Þ, or
(ii) k ¼ 3 and n≡ 1; 3 ðmod 6Þ, or
(iii) k ¼ 4 and n≡ 2; 4 ðmod 6Þ, or
(iv) k ¼ 5 and n ∈ f11; 23; 35; 47; 71; 83; 107; 131g, or
(v) k ¼ 6 and n ∈ f12; 24; 36; 48; 72; 84; 108; 132g.

Proof. For (i), note that an Sð1; 2; nÞ is a perfect matching in the complete graph
Kn, and hence exists if and only if n is even. For (ii), an Sð2; 3; nÞ is a Steiner triple
system and exists if and only if n≡ 1 or 3 ðmod 6Þ (see, for example, [7]). For (iii),
an Sð3; 4; nÞ is a Steiner quadruple system, existence for which was settled by Hanani
[13], who showed that n≡ 2 or 4 ðmod 6Þ is necessary and sufficient. For (iv)–(v), see
[12], [6] for existence results. ▯

5. α-arboricity of K�3�
n . We determine αarbðK ð3Þ

n Þ completely in this section.
Corollary 4.2 determined αarbðK ð3Þ

n Þ for all n≡ 1; 3 ðmod 6Þ, so we focus on the remain-
ing cases of n≡ 0; 2; 4; 5 ðmod 6Þ here.

5.1. The case n≡ 0;4 �mod6�. In this subsection, n≡ 0; 4 ðmod 6Þ, n ≥ 4.
Let X ¼ Y ⊔ Z , where jY j ¼ n− 3 and Z ¼ f∞1;∞2;∞3g. Let ðY;AÞ be

an Sð2; 3; n− 3Þ.
Our proof here is similar to the one given previously. Our classes, however, are now

of two different kinds: not only do we need our former star-shaped hypergraphs whose
centers belong to a Steiner triple system on Y , but also classes whose centers are two
triples fy;∞1;∞2g and fy;∞1;∞3g (intersecting on y,∞1) for all y ∈ Y . As previously,
any edge of our α-acyclic hypergraphs intersects at least one edge of its center on exactly
two vertices. The decomposition is completed by another star-shaped class containing
the triples fy;∞2;∞3g, where y ∈ X \ f∞2;∞3g.

We define the bipartite graph Γ with bipartition V ðΓÞ ¼ P ⊔ Q, where
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P ¼
�[

A∈A
fðA; xÞ∶x ∈ X \ Ag

�
∪
�[

y∈Y
fðfy;∞1;∞2g; fy;∞1;∞3g; zÞ∶z ∈ Y \ fygg

�
;

Q ¼
�
X

3

�
\ ðA ∪ ffy;∞1;∞2g; fy;∞1;∞3g; fy;∞2;∞3g∶y ∈ Yg ∪ fZgÞ

with adjacency of vertices in Γ as follows:
(i) Vertex ðfa; b; cg; xÞ ∈ P is adjacent to vertices fa; b; xg; fa; c; xg; fb; c; xg

∈ Q.
(ii) Vertex ðfy;∞1;∞2g; fy;∞1;∞3g; zÞ ∈ P is adjacent to vertices fy; z;∞hg

∈ Q, h ∈ ½3�.
Every vertex in P being of degree 3, let us prove the same holds for the vertices ofQ.

For any pair of vertices u, v ∈ Y , we name Auv the unique triple of A containing both
u and v.

(i) fa; b; cg ⊆ Y is adjacent to ðAab; cÞ, ðAbc; aÞ, and ðAac; bÞ.
(ii) fa; b;∞hg ∈ Q is adjacent to ðAab;∞hÞ, ðfb;∞1;∞2g; fb;∞1;∞3g; aÞ,

and ðfa;∞1;∞2g; fa;∞1;∞3g; bÞ.
Hence, Γ is 3-regular and consequently has a perfect matching M .

For each A ∈ A, let us define the 3-uniform hypergraph HA ¼ ðX;BAÞ, where

BA ¼ fAg ∪ fT ∈ Q∶fðA; xÞ; Tg ∈ M for some x ∈ X \ Ag:

Then HA is of order n and size n− 2. Each edge in BA \ fAg intersects A in exactly two
vertices. Hence, L2ðHAÞ is connected. It follows from Corollary 2.8 that HA is α-acyclic.

In addition, for each y ∈ Y , define the 3-uniform hypergraph Hy ¼ ðX;ByÞ, where

By ¼ ffy;∞1;∞2g; fy;∞1;∞3gg
∪ fT ∈ Q∶fðfy;∞1;∞2g; fy;∞1;∞3g; zÞ; Tg ∈ M for some z ∈ Y \ fygg:

Then Hy is of order n and size n− 2. In L2ðHyÞ, the vertex fy;∞1;∞2g is adjacent to
fy;∞1;∞3g, and each vertex in By \ ffy;∞1;∞2g; fy;∞1;∞3gg is adjacent to one of
the vertices fy;∞1;∞2g or fy;∞1;∞3g. Hence, L2ðHyÞ is connected. It follows from
Corollary 2.8 that Hy is α-acyclic.

Finally, define the 3-uniform hypergraph H ¼ ðX;BÞ, where B ¼ ffy;∞2;∞3g∶
y ∈ X \ f∞2;∞3gg. Note that H is α-acyclic, since it GYO-reduces to an empty
hypergraph.

Now, we have

�
X
3

�
¼
 G

A∈A
BA

!G G
y∈Y

By

!G
B

so that fHAgA∈A ∪ fHygy∈Y ∪ fHg is an α-acyclic decomposition of K ð3Þ
n . The size of

this decomposition is

ðn− 3Þðn− 4Þ
6

þ ðn− 3Þ þ 1 ¼ nðn− 1Þ
6

;

which matches the lower bound in (3.1). This gives the following result.
PROPOSITION 5.1. αarbðK ð3Þ

n Þ ¼ nðn− 1Þ ∕ 6 for all n≡ 0; 4 ðmod 6Þ.

THE α-ARBORICITY OF COMPLETE UNIFORM HYPERGRAPHS 605

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



5.2. The case n≡ 5 �mod6�. In this subsection, n≡ 5 ðmod 6Þ, n ≥ 5. Write
n ¼ 6kþ 5. Let X ¼ Y ⊔ f∞1;∞2g, where jY j ¼ 6kþ 3, and let ðY;G;AÞ be a
3-GDD of type 32kþ1, which exists by Theorem 2.1. Our construction is still based
on star-shaped hypergraphs centered on the triples of the 3-GDD, but this time we will
need to define centers consisting of three triples, pairwise intersecting on two elements.
Also, for numerical reasons, 2kþ 1 of our classes are of order only n− 2 and size n− 4.

Suppose G ¼ fG1; : : : ; G2kþ1g, where Gi ¼ fgi;1; gi;2; gi;3g, i ∈ ½2kþ 1�. To keep our
expressions succinct, we let

Th
i;j;j 0 ¼ fgi;j; gi;j 0 ;∞hg

for i ∈ ½2kþ 1�, 1 ≤ j < j 0 ≤ 3 and h ∈ ½2� and

Gi;j ¼ fgi;j;∞1;∞2g

for i ∈ ½2kþ 1� and j ∈ ½3�.
Define the bipartite graph Γ with bipartition V ðΓÞ ¼ P ⊔ Q, where

P ¼
0
@[

A∈A
fðA; xÞ∶x ∈ X \ Ag

�
∪
�[

G∈G
fðG; xÞ∶x ∈ Y \ Gg

�

∪
�[2kþ1

i¼1

fðT1
i;1;2; T

1
i;1;3; Gi;1; xÞ∶x ∈ Y \ Gig

�

∪
�[2kþ1

i¼1

fðT2
i;1;2; T

2
i;2;3; Gi;2; xÞ∶x ∈ Y \ Gig

�
;

Q ¼
�
X

3

�
\
�
A ∪ G ∪

[
i;h
j<j 0

fTh
i;j;j 0 ; T

h
i;j;j 0 ; T

h
i;j;j  0 g ∪

[
i;j

Gi;j

�

with adjacency of vertices in Γ as follows:
(i) Vertex ðfa; b; cg; xÞ ∈ P is adjacent to vertices fa; b; xg; fa; c; xg;

fb; c; xg ∈ Q.
(ii) Vertex ðT 1

i;1;2; T
1
i;1;3; Gi;1; xÞ ∈ P is adjacent to vertices fgi;l;∞1; xg ∈

Q, l ∈ ½3�.
(iii) Vertex ðT 2

i;1;2; T
2
i;2;3; Gi;2; xÞ ∈ P is adjacent to vertices fgi;l;∞2; xg ∈

Q, l ∈ ½3�.
Every vertex in P being of degree 3, let us prove the same holds for the vertices ofQ.

For all u; v ∈ Y , we name Auv the unique triple of A ∪ G containing both u and v.
(i) fa; b; cg ⊆ Y is adjacent to ðAab; cÞ, ðAbc; aÞ, and ðAac; bÞ.
(ii) fa; b;∞1g ∈ Q, where a ∈ Gi and b ∈ Gi 0 with i ≠ i  0, is adjacent to

ðAab;∞1Þ, ðT 1
i;1;2; T

1
i;1;2; Gi;1; bÞ, and ðT 1

i 0;1;2; T
1
i 0;1;3; Gi 0;1; aÞ.

(iii) fa; b;∞2g ∈ Q, where a ∈ Gi and b ∈ Gi 0 with i ≠ i  0, is adjacent to
ðAab;∞2Þ, ðT 2

i;1;2; T
2
i;2;3; Gi;2; bÞ, and ðT 2

i 0;1;2; T
2
i 0;2;3; Gi 0;2; aÞ.

Hence, Γ is 3-regular and consequently has a perfect matching M .
For each A ∈ A, let us define the 3-uniform hypergraph HA ¼ ðX;BAÞ, where

BA ¼ fAg ∪ fT ∈ Q∶fðA; xÞ; Tg ∈ M for some x ∈ X \ Ag:
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Then HA is of order n and size n− 2. Each edge in BA \ fAg intersects A in exactly two
vertices. Hence, L2ðHAÞ is connected. It follows from Corollary 2.8 that HA is α-acyclic.

In addition, for each G ∈ G, define the 3-uniform hypergraph HG ¼ ðY;BGÞ, where
BG ¼ fGg ∪ fT ∈ Q∶fðG; xÞ; Tg ∈ M for some x ∈ Y \ Gg. Then HG is of order n− 2
and size n− 4. By the same reason as for HA, HG is α-acyclic.

Furthermore, for each i ∈ ½2kþ 1�, define the 3-uniform hypergraphs Hi ¼ ðX;BiÞ
and H 0

i ¼ ðX;B 0
iÞ, where

Bi ¼ fT 1
i;1;2; T

1
i;1;3; Gi;1g ∪ fT ∈ Q∶fðT 1

i;1;2; T
1
i;1;3; Gi;1; xÞ; Tg ∈ M for some

x ∈ Y \ Gig;
Bi

 0 ¼ fT2
i;1;2; T

2
i;2;3; Gi;2g ∪ fT ∈ Q∶fðT 2

i;1;2; T
2
i;2;3; Gi;2; xÞ; Tg ∈ M for some

x ∈ Y \ Gig:

ThenHi andH 0
i are each of order n and size n− 2. In L2ðHiÞ (respectively, L2ðH  0

iÞ), the
vertex T1

i;1;2 (respectively, T 2
i;1;2) is adjacent to vertices T 1

i;1;3 and Gi;1 (respectively,
T 2

i;2;3 and Gi;2), and each vertex in Bi \ fT 1
i;1;2; T

1
i;1;3; Gi;1g (respectively, B 0

i \
fT 2

i;1;2; T
2
i;2;3; Gi;2g) is adjacent to at least one of the vertices T1

i;1;2, T
1
i;1;3, Gi;1 (respec-

tively, T 2
i;1;2, T

2
i;2;3, Gi;2). Hence, L2ðHiÞ (respectively, L2ðH  0

iÞ) is connected. It follows
from Corollary 2.8 that Hi (respectively, H  0

i) is α-acyclic.
Finally, define the 3-uniform hypergraph H ¼ ðX;BÞ, where

B ¼
[2kþ1

i¼1

fT2
i;1;3; T

1
i;2;3; Gi;3g:

It is easy to see that H is α-acyclic.
Now, we have

�
X
3

�
¼
�G

A∈A
BA

�G�G
G∈G

BG

�G�G2kþ1

i¼1

Bi

�G�G2kþ1

i¼1

Bi
 0
�G

B

so that fHAgA∈A ∪ fHGgG∈G ∪ fHigi∈½2kþ1� ∪ fHi
 0gi∈½2kþ1� ∪ fHg is an α-acyclic decom-

position of K ð3Þ
n . The size of this decomposition is

3

�
2kþ 1

2

�
þ ð2kþ 1Þ þ ð2kþ 1Þ þ ð2kþ 1Þ þ 1 ¼ 6k2 þ 9kþ 4 ¼

�
nðn− 1Þ

6

�
;

which matches the lower bound in (3.1). This gives the following result.
PROPOSITION 5.2. αarbðK ð3Þ

n Þ ¼ dnðn− 1Þ ∕ 6e for all n≡ 5 ðmod 6Þ.
5.3. The case n≡ 2 �mod6�. We treat the remaining case of n≡ 2 ðmod 6Þ.
LEMMA 5.3. αarbðK ð3Þ

8 Þ ¼ 10.
Proof. The lower bound in (3.1) showed that αarbðK ð3Þ

8 Þ ≥ 10. We construct an
α-acyclic decomposition meeting this lower bound.

Consider the Sð2; 3; 7Þ ðZ7;AÞ, withA ¼ ffi; iþ 1; iþ 3g∶i ∈ Z7g. Let fHAgA∈A be
the α-acyclic decomposition of ðZ7; ðZ7

3 ÞÞ produced by the construction of section 4. We
use this to construct an α-acyclic decomposition of K

ð3Þ
8 as follows. Let X ¼ Z7 ⊔

f∞g, and let
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B1 ¼ ffi; iþ 1;∞g∶i ∈ Z7 \ f0gg;
B2 ¼ ffi; iþ 3;∞g∶i ∈ Z7 \ f1gg;
B3 ¼ ffiþ 1; iþ 3;∞g∶i ∈ Z7 \ f2gg;
B4 ¼ EðHf0;1;3gÞ ∪ ff0; 1;∞gg;
B5 ¼ EðHf1;2;4gÞ ∪ ff1; 4;∞gg;
B6 ¼ EðHf2;3;5gÞ ∪ ff3; 5;∞gg:

Then fðX;BiÞgi∈½6� ∪ fHf3;4;6g;Hf0;4;5g;Hf1;5;6g;Hf0;2;6gg is an α-acyclic decomposition of

ðX; ðX3 ÞÞ of size 10. ▯
Henceforth, in what follows, let n≡ 2 ðmod 6Þ, n ≥ 14. Write n ¼ 6kþ 2. Let

X ¼ Y ⊔ f∞g, where jY j ¼ 6kþ 1, and let ðY;G;AÞ be a 3-GDD of type 32k11, which
exists by Theorem 2.1. Here again, we use star-shaped hypergraphs centered on the tri-
ples of A, but also classes whose centers consist of two triples intersecting in two ele-
ments. They will be completed with a last star-shaped class of order 2kþ 2 and size 2k
(in order to reach the bound).

Suppose G ¼ fG1; : : : ; G2k; fggg, where Gi ¼ fgi;1; gi;2; gi;3g, i ∈ ½2k�. To keep our
expressions succinct, we let

G  0
i ¼ fgi;1; gi;2;∞g;

G  0  0
i ¼ fgi;1; gi;3;∞g;

G  0  0  0
i ¼ fgi;2; gi;3;∞g

for i ∈ ½2k�. Define the bipartite graph Γ with bipartition V ðΓÞ ¼ P ⊔ Q, where

P ¼
 [

A∈A
fðA; xÞ∶x ∈ X \ Ag

!
∪

 [2k
i¼1

fðGi;G
 0 0
i ; xÞ∶x ∈ Y \ Gig

!

∪

 [2k
i¼1

fðG  0
i; G

 0 0  0
i ; xÞ∶x ∈ Y \ Gig

!
∪ fGi∶i ∈ ½2k�g;

Q ¼
�
X

3

�
\ ðA ∪ G ∪ fG  0

i; G
 0 0
i ; G

 0 0 0
i ∶i ∈ ½2k�gÞ

with adjacency of vertices in Γ as follows:
(i) Vertex ðfa; b; cg; xÞ ∈ P is adjacent to vertices fa; b; xg; fa; c; xg;

fb; c; xg ∈ Q.

(ii) Vertex ðGi;G
 0 0
i ; xÞ ∈ P is adjacent to vertices fgi;1; gi;2; xg; fgi;1; gi;3; xg;

fgi;2; gi;3; xg ∈ Q.

(iii) Vertex ðG  0
i; G

 0 0 0
i ; xÞ ∈ P is adjacent to vertices fgi;1;∞; xg; fgi;2;∞; xg;

fgi;3;∞; xg ∈ Q.

(iv) Vertex Gi ∈ P is adjacent to vertices fgi;j; g;∞g ∈ Q, j ∈ ½3�.
Every vertex in P being of degree 3, let us prove the same holds for the vertices ofQ.

For all u; v ∈ Y , we name Auv the unique triple of A containing both u and v.
(i) fa; b; cg ⊆ Y , where a, b, and c belong to three different groups, is adjacent

to ðAab; cÞ, ðAac; bÞ, and ðAbc; aÞ.
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(ii) fa; b; cg ⊆ Y , where a and b belong to the same group Gi and c ∈= Gi, is ad-
jacent to ðAac; bÞ, ðAbc; aÞ, and ðGi;G

 0 0
i ; cÞ.

(iii) fgi;j; gi 0;j  0 ;∞g ∈ Q (hence i ≠ i 0) is adjacent to ðAgi;jgi 0 ;j 0 ;∞Þ, ðG  0
i; G

 0 0 0
i ; gi 0;j  0 Þ,

and ðG  0
i 0 ; G

 0 0 0
i 0 ; gi;jÞ.

(iv) fgi;j; g;∞g is adjacent to ðAgi;jg;∞Þ, Gi, and ðG  0
i; G

 0 0  0
i ; gÞ.

Hence, Γ is 3-regular and consequently has a perfect matching M .
For each A ∈ A, let us define the 3-uniform hypergraph HA ¼ ðX;BAÞ, where

BA ¼ fAg ∪ fT ∈ Q∶fðA; xÞ; Tg ∈ M for some x ∈ X \ Ag:

Then HA is of order n and size n− 2. Each edge in BA \ fAg intersects A in exactly two
vertices. Hence, L2ðHAÞ is connected. It follows from Corollary 2.8 that HA is α-acyclic.

In addition, for each i ∈ ½2k�, define the 3-uniform hypergraphs Hi ¼ ðX;BiÞ and
H 0

i ¼ ðX;B 0
iÞ, where

Bi ¼ fGi;G
 0 0
i g ∪ fT ∈ Q∶fðGi;G

 0 0
i ; xÞ; Tg ∈ M for some x ∈ Y \ Gig;

B 0
i ¼ fG  0

i; G
 0 0  0
i g ∪ fT ∈ Q∶fðG  0

i; G
 0 0 0
i ; xÞ; Tg ∈ M for some x ∈ Y \ Gig:

ThenHi andH  0
i are each of order n and size n− 2. By the same reason as forHA,Hi and

H 0
i are α-acyclic.
Finally, define the 3-uniform hypergraph H ¼ ðX;BÞ, where

B ¼
[2k
i¼1

fT ∈ Q∶fGi; Tg ∈ Mg:

It is easy to see that H is α-acyclic and has order 2kþ 2 and size 2k.
Now, we have

�
X
3

�
¼
 G

A∈A
BA

!G G2k
i¼1

Bi

!G G2k
i¼1

B 0
i

!G
B

so that fHAgA∈A ∪ fHigi∈½2k� ∪ fH  0
igi∈½2k� ∪ fHg is an α-acyclic decomposition of K ð3Þ

n .
The size of this decomposition is�

3

�
2k
2

�
þ 2k

�
þ 2kþ 2kþ 1 ¼ 6k2 þ 3kþ 1 ¼

�
nðn− 1Þ

6

�
;

which matches the lower bound in (3.1). Together with Lemma 5.3, this gives the fol-
lowing result.

PROPOSITION 5.4. αarbðK ð3Þ
n Þ ¼ dnðn− 1Þ ∕ 6e for all n≡ 2 ðmod 6Þ, n ≥ 8.

5.4. Summary. Corollary 4.2 (i) and Propositions 5.1, 5.2, and 5.4 combine to give
the following theorem.

THEOREM 5.5. αarbðK ð3Þ
n Þ ¼ dnðn− 1Þ∕ 6e for all n ≥ 3.

6. Conclusion. The problem of determining the α-arboricity of hypergraphs is a
problem motivated by database theory. In this paper, we continue the study of the
α-arboricity of complete uniform hypergraphs. We give a general construction based
on Steiner systems and determine completely the value of αarbðK ð3Þ

n Þ. Previously,
αarbðK ðkÞ

n Þ was only known for k ¼ 1, 2, n− 3, n− 2, n− 1, n.
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