THE α-ARBORICITY OF COMPLETE UNIFORM HYPERGRAPHS*

J.-C. BERMOND ${ }^{\dagger}$, Y. M. CHEE ${ }^{\ddagger}$, N. COHEN ${ }^{\dagger}$, and X. ZHANG ${ }^{\ddagger}$

Abstract

The α-arboricity of a hypergraph \mathcal{H} is the minimum number of α-acyclic hypergraphs that partition the edge set of \mathcal{H}. The α-arboricity of the complete 3-uniform hypergraph is determined completely.

Key words. $\boldsymbol{\alpha}$-arboricity, acyclic hypergraph, decomposition, Steiner system
AMS subject classifications. 05B07, 05C35
DOI. 10.1137/100806035

1. Introduction. There is a natural bijection between database schemas and hypergraphs, where each attribute of a database schema D corresponds to a vertex in a hypergraph \mathcal{H}, and each relation R of attributes in D corresponds to an edge in \mathcal{H}. Many properties of databases have therefore been studied in the context of hypergraphs. One such property of databases is the important notion of α-acyclicity. Besides being a desirable property in the design of databases [2], [3], [8], [9], [10], many NP-hard problems concerning databases can be solved in polynomial time when restricted to instances for which the corresponding hypergraphs are α-acyclic [3], [16], [19]. Examples of such problems include determining global consistency, evaluating conjunctive queries, and computing joins or projections of joins.

When faced with such computationally intractable problems on a general database schema, it is natural to decompose it into α-acyclic instances on which efficient algorithms can be applied. This has motivated some recent studies on the α-arboricity of hypergraphs, the minimum number of α-acyclic hypergraphs into which the edges of a given hypergraph can be partitioned [4], [14], [17].

In this paper, we give a general construction for partitioning complete uniform hypergraphs into α-acyclic hypergraphs based on Steiner systems, and we completely determine the α-arboricity of complete 3 -uniform hypergraphs.
2. Preliminaries. We assume familiarity with basic concepts and notions in graph theory.

Let n be a positive integer. The set $\{1, \ldots, n\}$ is denoted by $[n]$. Disjoint union of sets is denoted by \sqcup. We use \sqcup in place of \cup when we want to emphasize the disjointness of the sets involved in a union.

[^0]For X a finite set and k a nonnegative integer, the set of all k-subsets of X is denoted $\binom{X}{k}$; that is, $\binom{X}{k}=\{K \subseteq X:|K|=k\}$. A hypergraph is a pair $\mathcal{H}=(X, \mathcal{A})$, where X is a finite set and $\mathcal{A} \subseteq 2^{X}$. The elements of X are called vertices and the elements of \mathcal{A} are called edges. The order of \mathcal{H} is the number of vertices in X, and the size of \mathcal{H} is the number of edges in \mathcal{A}. If $\mathcal{A} \subseteq\binom{X}{k}$, then \mathcal{H} is said to be k-uniform. A 2-uniform hypergraph is just the usual notion of a graph. The complete k-uniform hypergraph $\left(X,\binom{X}{k}\right)$ of order n is denoted $K_{n}^{(k)}$. A hypergraph is empty if it has no edges. The degree of a vertex v is the number of edges containing v.

A Steiner system $S(t, k, n)$ is a k-uniform hypergraph (X, \mathcal{A}) such that every $T \in\binom{X}{t}$ is contained in exactly one edge in \mathcal{A}.

A group divisible design k-GDD is a triple $(X, \mathcal{G}, \mathcal{A})$, where (X, \mathcal{A}) is a k-uniform hypergraph, $\mathcal{G}=\left\{G_{1}, \ldots, G_{t}\right\}$ is a partition of X into parts $G_{i}, i \in[t]$, called groups, such that every $T \in\binom{X}{2}$ not contained in a group is contained in exactly one edge in \mathcal{A}, and every $T \in\binom{X}{2}$ contained in a group is not contained in any edge in \mathcal{A}. The type of a k-GDD $(X, \mathcal{G}, \mathcal{A})$ is the multiset $\left[\left|G_{1}\right|, \ldots,\left|G_{t}\right|\right]$. The exponential notation $g_{1}^{t_{1}} \ldots g_{s}^{t_{s}}$ is used to denote the multiset where element g_{i} has multiplicity $t_{i}, i \in[s]$.

We require the following result from Colbourn, Hoffman, and Rees [5] on the existence of 3-GDDs.

Theorem 2.1. Let g, t, and u be nonnegative integers. There exists a 3-GDD of type $g^{t} u^{1}$ if and only if the following conditions are all satisfied:
(i) if $g>0$, then $t \geq 3$, or $t=2$ and $u=g$, or $t=1$ and $u=0$, or $t=0$;
(ii) $u \leq g(t-1)$ or $g t=0$;
(iii) $g(t-1)+u \equiv 0(\bmod 2)$ or $g t=0$;
(iv) $g t \equiv 0(\bmod 2)$ or $u=0$;
(v) $g^{2}\binom{t}{2}+g t u \equiv 0(\bmod 3)$.
2.1. Graphs of hypergraphs. Given a hypergraph \mathcal{H}, we may define the following graphs on \mathcal{H}.

Definition 2.2. Let $\mathcal{H}=(X, \mathcal{A})$ be a hypergraph. The line graph of \mathcal{H} is the graph $L(\mathcal{H})=(V, \mathcal{E})$, where $V=\mathcal{A}$ and $\mathcal{E}=\left\{\{A, B\} \subseteq\binom{V}{2}: A \cap B \neq \varnothing\right\}$.

Definition 2.3. Let $\mathcal{H}=(X, \mathcal{A})$ be a hypergraph. The primal graph or 2 -section of \mathcal{H} is the graph $G(\mathcal{H})=(X, \mathcal{E})$ such that $\{x, y\} \in \mathcal{E}$ if and only if $\{x, y\} \subset A$ for some $A \in \mathcal{A}$.

A hypergraph \mathcal{H} is conformal if for every clique K in $G(\mathcal{H})$, there is an edge in \mathcal{H} that contains K. A hypergraph \mathcal{H} is chordal if $G(\mathcal{H})$ is chordal, that is, every cycle of length at least four in $G(\mathcal{H})$ contains two nonconsecutive vertices that are adjacent.
2.2. Acyclic hypergraphs. Graham [11], and independently, Yu and Ozsoyoglu [20], [21], defined an acyclicity property (which has come to be known as α-acyclicity) for hypergraphs in the context of database theory, via a transformation now known as the $G Y O$ reduction. Given a hypergraph $\mathcal{H}=(X, \mathcal{A})$, the GYO reduction applies the following operations repeatedly to \mathcal{H} until none can be applied:
(i) If a vertex $x \in X$ has degree 1 , then delete x from the edge containing it.
(ii) If $A, B \in \mathcal{A}$ are distinct edges such that $A \subseteq B$, then delete A from \mathcal{A}.
(iii) If $A \in \mathcal{A}$ is empty, that is, $A=\varnothing$, then delete A from \mathcal{A}.

Definition 2.4. A hypergraph \mathcal{H} is α-acyclic if GYO reduction on \mathcal{H} results in an empty hypergraph.

The notion of α-acyclicity is closely related to conformality and chordality for hypergraphs. Beeri et al. [3] showed what follows.

Theorem 2.5. \mathcal{H} is α-acyclic if and only if \mathcal{H} is conformal and chordal.
Let $\mathcal{H}=(X, \mathcal{A})$ be a hypergraph. Assign to every edge $\{A, B\}$ of $L(\mathcal{H})$ the weight $|A \cap B|$. We denote this weighted line graph of \mathcal{H} by $L^{\prime}(\mathcal{H})$. The maximum weight of a forest in $L^{\prime}(\mathcal{H})$ is denoted $w(\mathcal{H})$. Acharya and Las Vergnas [1] introduced the hypergraph invariant

$$
\mu(\mathcal{H})=\sum_{A \in \mathcal{A}}|A|-\left|\bigcup_{A \in \mathcal{A}} A\right|-w(\mathcal{H})
$$

called the cyclomatic number of \mathcal{H}, and they used it to characterize conformal and chordal hypergraphs.

Theorem 2.6. (Acharya and Las Vergnas [1]). A hypergraph \mathcal{H} satisfies $\mu(\mathcal{H})=0$ if and only if \mathcal{H} is conformal and chordal.

Theorems 2.5 and 2.6 immediately imply the following.
Corollary 2.7. A hypergraph \mathcal{H} is α-acyclic if and only if $\mu(\mathcal{H})=0$.
Li and Wang [15] were unaware of these connections and rediscovered Corollary 2.7 recently. An easy consequence is that a maximum α-acyclic k-uniform hypergraph of order n has size $n-k+1$ [18]. Let $L_{k-1}(\mathcal{H})$ denote the spanning subgraph of $L^{\prime}(\mathcal{H})$ containing only those edges of $L^{\prime}(\mathcal{H})$ of weight $k-1$. We derive the following characterizations of maximum α-acyclic k-uniform hypergraphs.

Corollary 2.8. A k-uniform hypergraph $\mathcal{H}=(X, \mathcal{A})$ of order n and size $n-k+1$ is α-acyclic if and only if $L(\mathcal{H})$ contains a spanning tree, each edge of which has weight $k-1$ (in other words, $L_{k-1}(\mathcal{H})$ is connected).

Proof. By Corollary 2.7, we have

$$
\begin{aligned}
w(\mathcal{H}) & =\sum_{A \in \mathcal{A}}|A|-\left|\bigcup_{A \in \mathcal{A}} A\right| \\
& =(n-k+1) k-n \\
& =(n-k)(k-1)
\end{aligned}
$$

Since every edge in $L^{\prime}(\mathcal{H})$ has weight at most $k-1$, and a forest of $L^{\prime}(\mathcal{H})$ contains at most $n-k$ edges (and contains exactly $n-k$ edges if and only if the forest is a spanning tree), the corollary follows.

An α-acyclic decomposition of a hypergraph $\mathcal{H}=(X, \mathcal{A})$ is a set of α-acyclic hypergraphs $\left\{\left(X, \mathcal{A}_{i}\right)\right\}_{i=1}^{c}$ such that $\mathcal{A}_{1}, \ldots, \mathcal{A}_{c}$ partition \mathcal{A}; that is, $\mathcal{A}=\sqcup_{i=1}^{c} \mathcal{A}_{i}$. The size of the α-acyclic decomposition is c.

Definition 2.9. The α-arboricity of a hypergraph \mathcal{H}, denoted $\alpha \operatorname{arb}(\mathcal{H})$, is the minimum size of an α-acyclic decomposition of \mathcal{H}.
3. Previous work. Trivially, $\alpha \operatorname{arb}\left(K_{n}^{(1)}\right)=\alpha \operatorname{arb}\left(K_{n}^{(n)}\right)=1$, since both $K_{n}^{(1)}$ and $K_{n}^{(n)}$ are α-acyclic. It is also known that $\alpha \operatorname{arb}\left(K_{n}^{(2)}\right)=\alpha \operatorname{arb}\left(K_{n}^{(n-1)}\right)=\lceil n / 2\rceil$ (see, for example, [4]). Li [14] also showed that $\alpha \operatorname{arb}\left(K_{n}^{(n-2)}\right)=\lceil n(n-1) / 6\rceil$. In general, Li [14] showed that

$$
\begin{equation*}
\left\lceil\frac{1}{k}\binom{n}{k-1}\right\rceil \leq \alpha \operatorname{arb}\left(K_{n}^{(k)}\right) \leq \frac{1}{2}\binom{n+1}{k-1} \tag{3.1}
\end{equation*}
$$

The upper and lower bounds in (3.1) differ by approximately a factor of $k / 2$. Wang [17] conjectured the lower bound to be the true value of $\alpha \operatorname{arb}\left(K_{n}^{(k)}\right)$.

Conjecture 3.1. $\alpha \operatorname{arb}\left(K_{n}^{(k)}\right)=\left\lceil\frac{1}{k}\binom{n}{k-1}\right\rceil$.
Recently, Chee et al. [4] showed that Conjecture 3.1 holds when $k=n-3$, so that Conjecture 3.1 is now known to hold for all n when $k=1,2, n-3, n-2, n-1, n$. Chee et al. [4] also showed that Conjecture 3.1 holds whenever there exists a Steiner system $S(n-k, n-k+1, n)$ and that Conjecture 3.1 holds in an asymptotic sense when k is large enough. More precisely, the following was obtained.

Theorem 3.2. (Chee et al. [4]). Let δ be a positive constant. Then for $k=n-$ $O\left(\log ^{1-\delta} n\right)$, we have

$$
\alpha \operatorname{arb}\left(K_{n}^{(k)}\right)=(1+o(1)) \frac{1}{k}\binom{n}{k-1}
$$

where the $o(1)$ is in n.
4. Decompositions based on Steiner systems. First, note that the cardinality of the Steiner system $S(k-1, k, n)$ is precisely $\frac{1}{k}\binom{n}{k-1}$, i.e., when such a system exists, the lower bound given by (3.1). Therefore, the idea of our construction consists in using the blocks of a $S(k-1, k, n)$ as centers of our partitions of $K_{n}^{(k)}$ into α-acyclic hypergraphs. Each of these hypergraphs is based on a center C (in this case a block from the Steiner system) to which are added $n-3$ edges, each of which intersect the center on $k-1$ vertices (we name these hypergraphs star-shaped). The reader may find it helpful to consult Figure 4.1, which illustrates the following proof for $n=7$ and $k=3$, using the Steiner triple system $S(2,3,7)\left(\mathbb{Z}_{7}, \mathcal{A}\right)$ with $\mathcal{A}=\left\{\{i, i+1, i+3\}: i \in \mathbb{Z}_{7}\right\}$.

Theorem 4.1. If there exists an $S(k-1, k, n)$, then $\alpha \operatorname{arb}\left(K_{n}^{(k)}\right)=\frac{1}{k}\binom{n}{k-1}$.

Fig. 4.1. Case $n=7, k=3$.

Proof. Let k and n be positive integers, $2 \leq k \leq n$. Let (X, \mathcal{A}) be an $S(k-1, k, n)$. Define a bipartite graph G with bipartition $V(G)=P \sqcup Q$, where $P=$ $\{(A, x): A \in \mathcal{A}$ and $x \in X \backslash A\}$ and $Q=\binom{X}{k} \backslash \mathcal{A}$ so that vertex $(A, x) \in P$ is adjacent to vertex $K \in Q$ if and only if $K \subset A \cup\{x\}$. Thus, the neighborhood of vertex $(A, x) \in$ P is the set $N(A, x)=\{(A \cup\{x\}) \backslash\{u\}: u \in A\}$, and the neighborhood of vertex $K \in Q$ is the set $N(K)=\{(A, x): x \in K, A \in \mathcal{A}$ and $K \backslash\{x\} \subset A\}$. Evidently, $|N(A, x)|=k$ for all $(A, x) \in P$. To see that $|N(K)|=k$ for all $K \in Q$, note that each of the $k(k-1)$ subsets of K is contained in exactly one $A \in \mathcal{A}$, since (X, \mathcal{A}) is an $S(k-1, k, n)$. It follows that $|N(A, x)|=|N(K)|=k$ and G is k-regular. Hence, G has a perfect matching M.

Now, for each $A \in \mathcal{A}$, let us define the k-uniform hypergraph $\mathcal{H}_{A}=\left(X, \mathcal{B}_{A}\right)$, where $\mathcal{B}_{A}=\{A\} \cup\{K \in Q:\{(A, x), K\} \in M$ for some $x \in X \backslash A\}$. It is easy to check that $\binom{X}{k}=\mathrm{\sqcup}_{A \in \mathcal{A}} \mathcal{B}_{A}$. We claim that, in fact, the set of hypergraphs $\left\{\mathcal{H}_{A}\right\}_{A \in \mathcal{A}}$ is an α-acyclic decomposition of $\left(X,\binom{X}{k}\right)$. To see this, note that \mathcal{H}_{A} has order n and size $n-k+1$, and observe that each edge in $\mathcal{B}_{A} \backslash\{A\}$ intersects A in exactly $k-1$ vertices. Hence, $L_{k-1}\left(\mathcal{H}_{A}\right)$ is connected. It follows from Corollary 2.8 that \mathcal{H}_{A} is α-acyclic. The size of the α-acyclic decomposition $\left\{\mathcal{H}_{A}\right\}_{A \in \mathcal{A}}$ is the size of an $S(k-1, k, n)$, which is precisely $\frac{1}{k}\binom{n}{k-1}$.

Corollary 4.2. We have $\alpha \operatorname{arb}\left(K_{n}^{(k)}\right)=\frac{1}{k}\binom{n}{k-1}$ whenever any one of the following conditions holds:
(i) $k=2$ and $n \equiv 0(\bmod 2)$, or
(ii) $k=3$ and $n \equiv 1,3(\bmod 6)$, or
(iii) $k=4$ and $n \equiv 2,4(\bmod 6)$, or
(iv) $k=5$ and $n \in\{11,23,35,47,71,83,107,131\}$, or
(v) $k=6$ and $n \in\{12,24,36,48,72,84,108,132\}$.

Proof. For (i), note that an $S(1,2, n)$ is a perfect matching in the complete graph K_{n}, and hence exists if and only if n is even. For (ii), an $S(2,3, n)$ is a Steiner triple system and exists if and only if $n \equiv 1$ or $3(\bmod 6)$ (see, for example, [7]). For (iii), an $S(3,4, n)$ is a Steiner quadruple system, existence for which was settled by Hanani [13], who showed that $n \equiv 2$ or $4(\bmod 6)$ is necessary and sufficient. For (iv)-(v), see [12], [6] for existence results.
5. $\boldsymbol{\alpha}$-arboricity of $\boldsymbol{K}_{\boldsymbol{n}}^{(\mathbf{3})}$. We determine $\alpha \operatorname{arb}\left(K_{n}^{(3)}\right)$ completely in this section. Corollary 4.2 determined $\alpha \operatorname{arb}\left(K_{n}^{(3)}\right)$ for all $n \equiv 1,3(\bmod 6)$, so we focus on the remaining cases of $n \equiv 0,2,4,5(\bmod 6)$ here.
5.1. The case $\boldsymbol{n} \equiv \mathbf{0}, \mathbf{4}(\bmod 6)$. In this subsection, $n \equiv 0,4(\bmod 6), n \geq 4$.

Let $X=Y \sqcup Z$, where $|Y|=n-3$ and $Z=\left\{\infty_{1}, \infty_{2}, \infty_{3}\right\}$. Let (Y, \mathcal{A}) be an $S(2,3, n-3)$.

Our proof here is similar to the one given previously. Our classes, however, are now of two different kinds: not only do we need our former star-shaped hypergraphs whose centers belong to a Steiner triple system on Y, but also classes whose centers are two triples $\left\{y, \infty_{1}, \infty_{2}\right\}$ and $\left\{y, \infty_{1}, \infty_{3}\right\}$ (intersecting on y, ∞_{1}) for all $y \in Y$. As previously, any edge of our α-acyclic hypergraphs intersects at least one edge of its center on exactly two vertices. The decomposition is completed by another star-shaped class containing the triples $\left\{y, \infty_{2}, \infty_{3}\right\}$, where $y \in X \backslash\left\{\infty_{2}, \infty_{3}\right\}$.

We define the bipartite graph Γ with bipartition $V(\Gamma)=P \sqcup Q$, where

$$
\begin{aligned}
P & =\left(\bigcup_{A \in \mathcal{A}}\{(A, x): x \in X \backslash A\}\right) \cup\left(\bigcup_{y \in Y}\left\{\left(\left\{y, \infty_{1}, \infty_{2}\right\},\left\{y, \infty_{1}, \infty_{3}\right\}, z\right): z \in Y \backslash\{y\}\right\}\right), \\
Q & =\binom{X}{3} \backslash\left(\mathcal{A} \cup\left\{\left\{y, \infty_{1}, \infty_{2}\right\},\left\{y, \infty_{1}, \infty_{3}\right\},\left\{y, \infty_{2}, \infty_{3}\right\}: y \in Y\right\} \cup\{Z\}\right)
\end{aligned}
$$

with adjacency of vertices in Γ as follows:
(i) Vertex $(\{a, b, c\}, x) \in P$ is adjacent to vertices $\{a, b, x\},\{a, c, x\},\{b, c, x\}$ $\in Q$.
(ii) Vertex $\left(\left\{y, \infty_{1}, \infty_{2}\right\},\left\{y, \infty_{1}, \infty_{3}\right\}, z\right) \in P$ is adjacent to vertices $\left\{y, z, \infty_{h}\right\}$ $\in Q, h \in[3]$.
Every vertex in P being of degree 3, let us prove the same holds for the vertices of Q. For any pair of vertices $u, v \in Y$, we name $A_{u v}$ the unique triple of \mathcal{A} containing both u and v.
(i) $\{a, b, c\} \subseteq Y$ is adjacent to $\left(A_{a b}, c\right),\left(A_{b c}, a\right)$, and $\left(A_{a c}, b\right)$.
(ii) $\left\{a, b, \infty_{h}\right\} \in Q$ is adjacent to $\left(A_{a b}, \infty_{h}\right),\left(\left\{b, \infty_{1}, \infty_{2}\right\},\left\{b, \infty_{1}, \infty_{3}\right\}, a\right)$, and $\left(\left\{a, \infty_{1}, \infty_{2}\right\},\left\{a, \infty_{1}, \infty_{3}\right\}, b\right)$.
Hence, Γ is 3 -regular and consequently has a perfect matching M.
For each $A \in \mathcal{A}$, let us define the 3 -uniform hypergraph $\mathcal{H}_{A}=\left(X, \mathcal{B}_{A}\right)$, where

$$
\mathcal{B}_{A}=\{A\} \cup\{T \in Q:\{(A, x), T\} \in M \text { for some } x \in X \backslash A\} .
$$

Then \mathcal{H}_{A} is of order n and size $n-2$. Each edge in $\mathcal{B}_{A} \backslash\{A\}$ intersects A in exactly two vertices. Hence, $L_{2}\left(\mathcal{H}_{A}\right)$ is connected. It follows from Corollary 2.8 that \mathcal{H}_{A} is α-acyclic.

In addition, for each $y \in Y$, define the 3 -uniform hypergraph $\mathcal{H}_{y}=\left(X, \mathcal{B}_{y}\right)$, where

$$
\begin{aligned}
\mathcal{B}_{y}= & \left\{\left\{y, \infty_{1}, \infty_{2}\right\},\left\{y, \infty_{1}, \infty_{3}\right\}\right\} \\
& \cup\left\{T \in Q:\left\{\left(\left\{y, \infty_{1}, \infty_{2}\right\},\left\{y, \infty_{1}, \infty_{3}\right\}, z\right), T\right\} \in M \text { for some } z \in Y \backslash\{y\}\right\} .
\end{aligned}
$$

Then \mathcal{H}_{y} is of order n and size $n-2$. In $L_{2}\left(\mathcal{H}_{y}\right)$, the vertex $\left\{y, \infty_{1}, \infty_{2}\right\}$ is adjacent to $\left\{y, \infty_{1}, \infty_{3}\right\}$, and each vertex in $\mathcal{B}_{y} \backslash\left\{\left\{y, \infty_{1}, \infty_{2}\right\},\left\{y, \infty_{1}, \infty_{3}\right\}\right\}$ is adjacent to one of the vertices $\left\{y, \infty_{1}, \infty_{2}\right\}$ or $\left\{y, \infty_{1}, \infty_{3}\right\}$. Hence, $L_{2}\left(\mathcal{H}_{y}\right)$ is connected. It follows from Corollary 2.8 that \mathcal{H}_{y} is α-acyclic.

Finally, define the 3 -uniform hypergraph $\mathcal{H}=(X, \mathcal{B})$, where $\mathcal{B}=\left\{\left\{y, \infty_{2}, \infty_{3}\right\}\right.$: $\left.y \in X \backslash\left\{\infty_{2}, \infty_{3}\right\}\right\}$. Note that \mathcal{H} is α-acyclic, since it GYO-reduces to an empty hypergraph.

Now, we have

$$
\binom{X}{3}=\left(\bigsqcup_{A \in \mathcal{A}} \mathcal{B}_{A}\right) \bigsqcup\left(\bigsqcup_{y \in Y} \mathcal{B}_{y}\right) \bigsqcup \mathcal{B}
$$

so that $\left\{\mathcal{H}_{A}\right\}_{A \in \mathcal{A}} \cup\left\{\mathcal{H}_{y}\right\}_{y \in Y} \cup\{\mathcal{H}\}$ is an α-acyclic decomposition of $K_{n}^{(3)}$. The size of this decomposition is

$$
\frac{(n-3)(n-4)}{6}+(n-3)+1=\frac{n(n-1)}{6} \text {, }
$$

which matches the lower bound in (3.1). This gives the following result.
Proposition 5.1. $\alpha \operatorname{arb}\left(K_{n}^{(3)}\right)=n(n-1) / 6$ for all $n \equiv 0,4(\bmod 6)$.
5.2. The case $\boldsymbol{n} \equiv \mathbf{5}(\bmod 6)$. In this subsection, $n \equiv 5(\bmod 6), n \geq 5$. Write $n=6 k+5$. Let $X=Y \sqcup\left\{\infty_{1}, \infty_{2}\right\}$, where $|Y|=6 k+3$, and let $(Y, \mathcal{G}, \mathcal{A})$ be a 3 -GDD of type $3^{2 k+1}$, which exists by Theorem 2.1. Our construction is still based on star-shaped hypergraphs centered on the triples of the 3-GDD, but this time we will need to define centers consisting of three triples, pairwise intersecting on two elements. Also, for numerical reasons, $2 k+1$ of our classes are of order only $n-2$ and size $n-4$.

Suppose $\mathcal{G}=\left\{G_{1}, \ldots, G_{2 k+1}\right\}$, where $G_{i}=\left\{g_{i, 1}, g_{i, 2}, g_{i, 3}\right\}, i \in[2 k+1]$. To keep our expressions succinct, we let

$$
T_{i, j, j^{\prime}}^{h}=\left\{g_{i, j}, g_{i, j^{\prime}}, \infty_{h}\right\}
$$

for $i \in[2 k+1], 1 \leq j<j^{\prime} \leq 3$ and $h \in[2]$ and

$$
G_{i, j}=\left\{g_{i, j}, \infty_{1}, \infty_{2}\right\}
$$

for $i \in[2 k+1]$ and $j \in[3]$.
Define the bipartite graph Γ with bipartition $V(\Gamma)=P \sqcup Q$, where

$$
\begin{aligned}
P= & \left(\bigcup_{A \in \mathcal{A}}\{(A, x): x \in X \backslash A\}\right) \cup\left(\bigcup_{G \in \mathcal{G}}\{(G, x): x \in Y \backslash G\}\right) \\
& \cup\left(\bigcup_{i=1}^{2 k+1}\left\{\left(T_{i, 1,2}^{1}, T_{i, 1,3}^{1}, G_{i, 1}, x\right): x \in Y \backslash G_{i}\right\}\right) \\
& \cup\left(\bigcup_{i=1}^{2 k+1}\left\{\left(T_{i, 1,2}^{2}, T_{i, 2,3}^{2}, G_{i, 2}, x\right): x \in Y \backslash G_{i}\right\}\right), \\
Q= & \binom{X}{3} \backslash\left(\mathcal{A} \cup \mathcal{G} \cup \bigcup_{\substack{i, h \\
j<j^{\prime}}}\left\{T_{i, j, j^{\prime}}^{h}, T_{i, j, j^{\prime}}^{h}, T_{i, j, j^{\prime}}^{h}\right\} \cup \bigcup_{i, j} G_{i, j}\right)
\end{aligned}
$$

with adjacency of vertices in Γ as follows:
(i) Vertex $(\{a, b, c\}, x) \in P \quad$ is adjacent to vertices $\{a, b, x\},\{a, c, x\}$, $\{b, c, x\} \in Q$.
(ii) Vertex $\left(T_{i, 1,2}^{1}, T_{i, 1,3}^{1}, G_{i, 1}, x\right) \in P$ is adjacent to vertices $\left\{g_{i, \ell}, \infty_{1}, x\right\} \in$ $Q, \ell \in[3]$.
(iii) Vertex $\left(T_{i, 1,2}^{2}, T_{i, 2,3}^{2}, G_{i, 2}, x\right) \in P$ is adjacent to vertices $\left\{g_{i, \ell}, \infty_{2}, x\right\} \in$ $Q, \ell \in[3]$.
Every vertex in P being of degree 3 , let us prove the same holds for the vertices of Q. For all $u, v \in Y$, we name $A_{u v}$ the unique triple of $\mathcal{A} \cup \mathcal{G}$ containing both u and v.
(i) $\{a, b, c\} \subseteq Y$ is adjacent to $\left(A_{a b}, c\right),\left(A_{b c}, a\right)$, and $\left(A_{a c}, b\right)$.
(ii) $\left\{a, b, \infty_{1}\right\} \in Q$, where $a \in G_{i}$ and $b \in G_{i^{\prime}}$ with $i \neq i^{\prime}$, is adjacent to $\left(A_{a b}, \infty_{1}\right),\left(T_{i, 1,2}^{1}, T_{i, 1,2}^{1}, G_{i, 1}, b\right)$, and $\left(T_{i^{\prime}, 1,2}^{1}, T_{i^{\prime}, 1,3}^{1}, G_{i^{\prime}, 1}, a\right)$.
(iii) $\left\{a, b, \infty_{2}\right\} \in Q$, where $a \in G_{i}$ and $b \in G_{i^{\prime}}$ with $i \neq i^{\prime}$, is adjacent to $\left(A_{a b}, \infty_{2}\right),\left(T_{i, 1,2}^{2}, T_{i, 2,3}^{2}, G_{i, 2}, b\right)$, and $\left(T_{i^{\prime}, 1,2}^{2}, T_{i^{\prime}, 2,3}^{2}, G_{i^{\prime}, 2}, a\right)$.
Hence, Γ is 3-regular and consequently has a perfect matching M.
For each $A \in \mathcal{A}$, let us define the 3-uniform hypergraph $\mathcal{H}_{A}=\left(X, \mathcal{B}_{A}\right)$, where

$$
\mathcal{B}_{A}=\{A\} \cup\{T \in Q:\{(A, x), T\} \in M \text { for some } x \in X \backslash A\} .
$$

Then \mathcal{H}_{A} is of order n and size $n-2$. Each edge in $\mathcal{B}_{A} \backslash\{A\}$ intersects A in exactly two vertices. Hence, $L_{2}\left(\mathcal{H}_{A}\right)$ is connected. It follows from Corollary 2.8 that \mathcal{H}_{A} is α-acyclic.

In addition, for each $G \in \mathcal{G}$, define the 3-uniform hypergraph $\mathcal{H}_{G}=\left(Y, \mathcal{B}_{G}\right)$, where $\mathcal{B}_{G}=\{G\} \cup\{T \in Q:\{(G, x), T\} \in M$ for some $x \in Y \backslash G\}$. Then \mathcal{H}_{G} is of order $n-2$ and size $n-4$. By the same reason as for $\mathcal{H}_{A}, \mathcal{H}_{G}$ is α-acyclic.

Furthermore, for each $i \in[2 k+1]$, define the 3-uniform hypergraphs $\mathcal{H}_{i}=\left(X, \mathcal{B}_{i}\right)$ and $\mathcal{H}_{i}^{\prime}=\left(X, \mathcal{B}_{i}^{\prime}\right)$, where

$$
\begin{aligned}
\mathcal{B}_{i}= & \left\{T_{i, 1,2}^{1}, T_{i, 1,3}^{1}, G_{i, 1}\right\} \cup\left\{T \in Q:\left\{\left(T_{i, 1,2}^{1}, T_{i, 1,3}^{1}, G_{i, 1}, x\right), T\right\} \in M\right. \text { for some } \\
& \left.x \in Y \backslash G_{i}\right\}, \\
\mathcal{B}_{i}^{\prime}= & \left\{T_{i, 1,2}^{2}, T_{i, 2,3}^{2}, G_{i, 2}\right\} \cup\left\{T \in Q:\left\{\left(T_{i, 1,2}^{2}, T_{i, 2,3}^{2}, G_{i, 2}, x\right), T\right\} \in M\right. \text { for some } \\
& \left.x \in Y \backslash G_{i}\right\} .
\end{aligned}
$$

Then \mathcal{H}_{i} and \mathcal{H}_{i}^{\prime} are each of order n and size $n-2$. In $L_{2}\left(\mathcal{H}_{i}\right)$ (respectively, $L_{2}\left(\mathcal{H}_{i}^{\prime}\right)$), the vertex $T_{i, 1,2}^{1}$ (respectively, $T_{i, 1,2}^{2}$) is adjacent to vertices $T_{i, 1,3}^{1}$ and $G_{i, 1}$ (respectively, $T_{i, 2,3}^{2}$ and $G_{i, 2}$), and each vertex in $\mathcal{B}_{i} \backslash\left\{T_{i, 1,2}^{1}, T_{i, 1,3}^{1}, G_{i, 1}\right\}$ (respectively, $\mathcal{B}_{i}^{\prime} \backslash$ $\left.\left\{T_{i, 1,2}^{2}, T_{i, 2,3}^{2}, G_{i, 2}\right\}\right)$ is adjacent to at least one of the vertices $T_{i, 1,2}^{1}, T_{i, 1,3}^{1}, G_{i, 1}$ (respectively, $\left.T_{i, 1,2}^{2}, T_{i, 2,3}^{2}, G_{i, 2}\right)$. Hence, $L_{2}\left(\mathcal{H}_{i}\right)$ (respectively, $\left.L_{2}\left(\mathcal{H}_{i}^{\prime}\right)\right)$ is connected. It follows from Corollary 2.8 that \mathcal{H}_{i} (respectively, \mathcal{H}_{i}^{\prime}) is α-acyclic.

Finally, define the 3 -uniform hypergraph $\mathcal{H}=(X, \mathcal{B})$, where

$$
\mathcal{B}=\bigcup_{i=1}^{2 k+1}\left\{T_{i, 1,3}^{2}, T_{i, 2,3}^{1}, G_{i, 3}\right\}
$$

It is easy to see that \mathcal{H} is α-acyclic.
Now, we have

$$
\binom{X}{3}=\left(\bigsqcup_{A \in \mathcal{A}} \mathcal{B}_{A}\right) \bigsqcup\left(\bigsqcup_{G \in \mathcal{G}} \mathcal{B}_{G}\right) \bigsqcup\left(\bigsqcup_{i=1}^{2 k+1} \mathcal{B}_{i}\right) \bigsqcup\left(\bigsqcup_{i=1}^{2 k+1} \mathcal{B}_{i}^{\prime}\right) \bigsqcup \mathcal{B}
$$

so that $\left\{\mathcal{H}_{A}\right\}_{A \in \mathcal{A}} \cup\left\{\mathcal{H}_{G}\right\}_{G \in \mathcal{G}} \cup\left\{H_{i}\right\}_{i \in[2 k+1]} \cup\left\{H_{i}{ }^{\prime}\right\}_{i \in[2 k+1]} \cup\{\mathcal{H}\}$ is an α-acyclic decomposition of $K_{n}^{(3)}$. The size of this decomposition is

$$
3\binom{2 k+1}{2}+(2 k+1)+(2 k+1)+(2 k+1)+1=6 k^{2}+9 k+4=\left\lceil\frac{n(n-1)}{6}\right\rceil
$$

which matches the lower bound in (3.1). This gives the following result.
Proposition 5.2. $\alpha \operatorname{arb}\left(K_{n}^{(3)}\right)=\lceil n(n-1) / 6\rceil$ for all $n \equiv 5(\bmod 6)$.
5.3. The case $\boldsymbol{n} \equiv \mathbf{2}(\boldsymbol{\operatorname { m o d } 6})$. We treat the remaining case of $n \equiv 2(\bmod 6)$.

Lemma 5.3. $\alpha \operatorname{arb}\left(K_{8}^{(3)}\right)=10$.
Proof. The lower bound in (3.1) showed that $\alpha \operatorname{arb}\left(K_{8}^{(3)}\right) \geq 10$. We construct an α-acyclic decomposition meeting this lower bound.

Consider the $S(2,3,7)\left(\mathbb{Z}_{7}, \mathcal{A}\right)$, with $\mathcal{A}=\left\{\{i, i+1, i+3\}: i \in \mathbb{Z}_{7}\right\}$. Let $\left\{\mathcal{H}_{A}\right\}_{A \in \mathcal{A}}$ be the α-acyclic decomposition of $\left(\mathbb{Z}_{7},\binom{\mathbb{Z}_{7}}{3}\right)$ produced by the construction of section 4 . We use this to construct an α-acyclic decomposition of $K_{8}^{(3)}$ as follows. Let $X=\mathbb{Z}_{7} \sqcup$ $\{\infty\}$, and let

$$
\begin{aligned}
\mathcal{B}_{1} & =\left\{\{i, i+1, \infty\}: i \in \mathbb{Z}_{7} \backslash\{0\}\right\}, \\
\mathcal{B}_{2} & =\left\{\{i, i+3, \infty\}: i \in \mathbb{Z}_{7} \backslash\{1\}\right\}, \\
\mathcal{B}_{3} & =\left\{\{i+1, i+3, \infty\}: i \in \mathbb{Z}_{7} \backslash\{2\}\right\}, \\
\mathcal{B}_{4} & =E\left(\mathcal{H}_{\{0,1,3\}}\right) \cup\{\{0,1, \infty\}\}, \\
\mathcal{B}_{5} & =E\left(\mathcal{H}_{\{1,2,4\}}\right) \cup\{\{1,4, \infty\}\}, \\
\mathcal{B}_{6} & =E\left(\mathcal{H}_{\{2,3,5\}}\right) \cup\{\{3,5, \infty\}\} .
\end{aligned}
$$

Then $\left\{\left(X, \mathcal{B}_{i}\right)\right\}_{i \in[6]} \cup\left\{\mathcal{H}_{\{3,4,6\}}, \mathcal{H}_{\{0,4,5\}}, \mathcal{H}_{\{1,5,6\}}, \mathcal{H}_{\{0,2,6\}}\right\}$ is an α-acyclic decomposition of $\left(X,\binom{X}{3}\right)$ of size 10 .

Henceforth, in what follows, let $n \equiv 2(\bmod 6), n \geq 14$. Write $n=6 k+2$. Let $X=Y \sqcup\{\infty\}$, where $|Y|=6 k+1$, and let $(Y, \mathcal{G}, \mathcal{A})$ be a 3 -GDD of type $3^{2 k} 1^{1}$, which exists by Theorem 2.1. Here again, we use star-shaped hypergraphs centered on the triples of \mathcal{A}, but also classes whose centers consist of two triples intersecting in two elements. They will be completed with a last star-shaped class of order $2 k+2$ and size $2 k$ (in order to reach the bound).

Suppose $\mathcal{G}=\left\{G_{1}, \ldots, G_{2 k},\{g\}\right\}$, where $G_{i}=\left\{g_{i, 1}, g_{i, 2}, g_{i, 3}\right\}, i \in[2 k]$. To keep our expressions succinct, we let

$$
\begin{aligned}
G_{i}^{\prime} & =\left\{g_{i, 1}, g_{i, 2}, \infty\right\}, \\
G_{i}^{\prime \prime} & =\left\{g_{i, 1}, g_{i, 3}, \infty\right\}, \\
G_{i}^{\prime \prime \prime} & =\left\{g_{i, 2}, g_{i, 3}, \infty\right\}
\end{aligned}
$$

for $i \in[2 k]$. Define the bipartite graph Γ with bipartition $V(\Gamma)=P \sqcup Q$, where

$$
\begin{aligned}
P & =\left(\bigcup_{A \in \mathcal{A}}\{(A, x): x \in X \backslash A\}\right) \cup\left(\bigcup_{i=1}^{2 k}\left\{\left(G_{i}, G_{i}^{\prime \prime}, x\right): x \in Y \backslash G_{i}\right\}\right) \\
& \cup\left(\bigcup_{i=1}^{2 k}\left\{\left(G_{i}^{\prime}, G_{i}^{\prime \prime \prime}, x\right): x \in Y \backslash G_{i}\right\}\right) \cup\left\{G_{i}: i \in[2 k]\right\}, \\
Q & =\binom{X}{3} \backslash\left(\mathcal{A} \cup \mathcal{G} \cup\left\{G_{i}^{\prime}, G_{i}^{\prime \prime}, G_{i}^{\prime \prime \prime}: i \in[2 k]\right\}\right)
\end{aligned}
$$

with adjacency of vertices in Γ as follows:
(i) Vertex $(\{a, b, c\}, x) \in P$ is adjacent to vertices $\{a, b, x\},\{a, c, x\}$, $\{b, c, x\} \in Q$.
(ii) Vertex $\left(G_{i}, G_{i}^{\prime \prime}, x\right) \in P$ is adjacent to vertices $\left\{g_{i, 1}, g_{i, 2}, x\right\},\left\{g_{i, 1}, g_{i, 3}, x\right\}$, $\left\{g_{i, 2}, g_{i, 3}, x\right\} \in Q$.
(iii) Vertex $\left(G_{i}^{\prime}, G_{i}^{\prime \prime \prime}, x\right) \in P$ is adjacent to vertices $\left\{g_{i, 1}, \infty, x\right\},\left\{g_{i, 2}, \infty, x\right\}$, $\left\{g_{i, 3}, \infty, x\right\} \in Q$.
(iv) Vertex $G_{i} \in P$ is adjacent to vertices $\left\{g_{i, j}, g, \infty\right\} \in Q, j \in[3]$.

Every vertex in P being of degree 3 , let us prove the same holds for the vertices of Q. For all $u, v \in Y$, we name $A_{u v}$ the unique triple of \mathcal{A} containing both u and v.
(i) $\{a, b, c\} \subseteq Y$, where a, b, and c belong to three different groups, is adjacent to $\left(A_{a b}, c\right),\left(A_{a c}, b\right)$, and $\left(A_{b c}, a\right)$.
(ii) $\{a, b, c\} \subseteq Y$, where a and b belong to the same group G_{i} and $c \notin G_{i}$, is adjacent to $\left(A_{a c}, b\right),\left(A_{b c}, a\right)$, and $\left(G_{i}, G_{i}^{\prime \prime}, c\right)$.
(iii) $\left\{g_{i, j}, g_{i^{\prime}, j^{\prime}}, \infty\right\} \in Q$ (hence $\left.i \neq i^{\prime}\right)$ is adjacent to $\left(A_{g_{i, j} g_{i^{\prime}, j^{\prime}}}, \infty\right),\left(G_{i}^{\prime}, G_{i}^{\prime \prime \prime}, g_{i^{\prime}, j^{\prime}}\right)$, and $\left(G_{i^{\prime}}^{\prime}, G_{i^{\prime}}^{\prime \prime \prime}, g_{i, j}\right)$.
(iv) $\left\{g_{i, j}, g, \infty\right\}$ is adjacent to $\left(A_{g_{i, j}}, \infty\right), G_{i}$, and $\left(G_{i}^{\prime}, G_{i}^{\prime \prime \prime}, g\right)$.

Hence, Γ is 3 -regular and consequently has a perfect matching M.
For each $A \in \mathcal{A}$, let us define the 3 -uniform hypergraph $\mathcal{H}_{A}=\left(X, \mathcal{B}_{A}\right)$, where

$$
\mathcal{B}_{A}=\{A\} \cup\{T \in Q:\{(A, x), T\} \in M \text { for some } x \in X \backslash A\}
$$

Then \mathcal{H}_{A} is of order n and size $n-2$. Each edge in $\mathcal{B}_{A} \backslash\{A\}$ intersects A in exactly two vertices. Hence, $L_{2}\left(\mathcal{H}_{A}\right)$ is connected. It follows from Corollary 2.8 that \mathcal{H}_{A} is α-acyclic.

In addition, for each $i \in[2 k]$, define the 3-uniform hypergraphs $\mathcal{H}_{i}=\left(X, \mathcal{B}_{i}\right)$ and $\mathcal{H}_{i}^{\prime}=\left(X, \mathcal{B}_{i}^{\prime}\right)$, where

$$
\begin{gathered}
\mathcal{B}_{i}=\left\{G_{i}, G_{i}^{\prime \prime}\right\} \cup\left\{T \in Q:\left\{\left(G_{i}, G_{i}^{\prime \prime}, x\right), T\right\} \in M \text { for some } x \in Y \backslash G_{i}\right\} \\
\mathcal{B}_{i}^{\prime}=\left\{G_{i}^{\prime}, G_{i}^{\prime \prime \prime}\right\} \cup\left\{T \in Q:\left\{\left(G_{i}^{\prime}, G_{i}^{\prime \prime \prime}, x\right), T\right\} \in M \text { for some } x \in Y \backslash G_{i}\right\}
\end{gathered}
$$

Then \mathcal{H}_{i} and \mathcal{H}_{i}^{\prime} are each of order n and size $n-2$. By the same reason as for $\mathcal{H}_{A}, \mathcal{H}_{i}$ and \mathcal{H}_{i}^{\prime} are α-acyclic.

Finally, define the 3 -uniform hypergraph $\mathcal{H}=(X, \mathcal{B})$, where

$$
\mathcal{B}=\bigcup_{i=1}^{2 k}\left\{T \in Q:\left\{G_{i}, T\right\} \in M\right\}
$$

It is easy to see that \mathcal{H} is α-acyclic and has order $2 k+2$ and size $2 k$.
Now, we have

$$
\binom{X}{3}=\left(\bigsqcup_{A \in \mathcal{A}} \mathcal{B}_{A}\right) \bigsqcup\left(\bigsqcup_{i=1}^{2 k} \mathcal{B}_{i}\right) \bigsqcup\left(\bigsqcup_{i=1}^{2 k} \mathcal{B}_{i}^{\prime}\right) \bigsqcup \mathcal{B}
$$

so that $\left\{\mathcal{H}_{A}\right\}_{A \in \mathcal{A}} \cup\left\{\mathcal{H}_{i}\right\}_{i \in[2 k]} \cup\left\{\mathcal{H}_{i}^{\prime}\right\}_{i \in[2 k]} \cup\{\mathcal{H}\}$ is an α-acyclic decomposition of $K_{n}^{(3)}$. The size of this decomposition is

$$
\left(3\binom{2 k}{2}+2 k\right)+2 k+2 k+1=6 k^{2}+3 k+1=\left\lceil\frac{n(n-1)}{6}\right\rceil
$$

which matches the lower bound in (3.1). Together with Lemma 5.3, this gives the following result.

Proposition 5.4. $\alpha \operatorname{arb}\left(K_{n}^{(3)}\right)=\lceil n(n-1) / 6\rceil$ for all $n \equiv 2(\bmod 6), n \geq 8$.
5.4. Summary. Corollary 4.2 (i) and Propositions 5.1, 5.2, and 5.4 combine to give the following theorem.

Theorem 5.5. $\alpha \operatorname{arb}\left(K_{n}^{(3)}\right)=\lceil n(n-1) / 6\rceil$ for all $n \geq 3$.
6. Conclusion. The problem of determining the α-arboricity of hypergraphs is a problem motivated by database theory. In this paper, we continue the study of the α-arboricity of complete uniform hypergraphs. We give a general construction based on Steiner systems and determine completely the value of $\alpha \operatorname{arb}\left(K_{n}^{(3)}\right)$. Previously, $\alpha \operatorname{arb}\left(K_{n}^{(k)}\right)$ was only known for $k=1,2, n-3, n-2, n-1, n$.

Acknowledgment. We thank Dorian Mazauric for his helpful comments and the anonymous referees for useful remarks.

REFERENCES

[1] B. D. Acharya and M. Las Vergnas, Hypergraphs with cyclomatic number zero, triangulated graphs, and an inequality, J. Comb. Theory, Ser. B, 33 (1982), pp. 52-56.
[2] C. Beeri, R. Fagin, D. Maier, A. O. Mendelzon, J. D. Ullman, and M. Yannakakis, Properties of acyclic database schemes, STOC 1981—Proceedings of the 13th Annual ACM Symposium on Theory of Computing, ACM Press, 1981, pp. 355-362.
[3] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, On the desirability of acyclic database schemes, J. Assoc. Comput. Mach., 30 (1983), pp. 479-513.
[4] Y. M. Chee, L. Ji, A. Lim, B. C. Ooi, and A. K. H. Tung, Arboricity: An Acyclic Hypergraph Decomposition Problem Motivated by Database Theory, preprint, 2009.
[5] C. J. Colbourn, D. G. Hoffman, and R. Rees, A new class of group divisible designs with block size three, J. Comb. Theory Ser. A, 59 (1992), pp. 73-89.
[6] C. J. Colbourn and R. Mathon, Steiner systems, The CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz, eds.), CRC Press, Boca Raton, 2nd ed., 2007, pp. 102-110.
[7] C. J. Colbourn and A. Rosa, Triple Systems, Oxford Math. Monogr., Oxford University Press, New York, 1999.
[8] R. Fagin, Degrees of acyclicity for hypergraphs and relational database schemes, J. Assoc. Comput. Mach., 30 (1983), pp. 514-550.
[9] R. Fagin, A. O. Mendelzon, and J. D. Ullman, A simplified universal relation assumption and its properties, ACM Transactions on Database Systems, 7 (1982), pp. 343-360.
[10] N. Goodman and O. Shmueli, Characterizations of Tree Database Schemas, Technical report, Harvard University, Cambridge, Massachusetts, 1981.
[11] M. H. Graham, On the Universal Relation, Technical report, University of Toronto, Toronto, Ontario, Canada, 1979.
[12] M. J. Grannell, T. S. Griggs, and R. A. Mathon, Steiner systems $S(5,6, v)$ with $v=72$ and 84 , Math. Comp., 67 (1998), pp. 357-359, S1-S9.
[13] H. Hanani, On quadruple systems, Canad. J. Math., 12 (1960), pp. 145-157.
[14] H. Li, On Acyclic and Cyclic Hypergraphs, Ph.D. thesis, Institute of Applied Mathematics, Chinese Academy of Science, Beijing, China, 1999.
[15] H. Li and J. Wang, On acyclic and cyclic hypergraphs, J. Syst. Sci. Complex., 15 (2002), pp. 353-362.
[16] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984), pp. 566-579.
[17] J. Wang, The Information Hypergraph Theory, Science Press, Beijing, 2008.
[18] J. Wang and H. Li, Enumeration of maximum acyclic hypergraphs, Acta Math. Appl. Sin., 18 (2002), pp. 215-218.
[19] M. Yannakakis, Algorithms for acyclic database schemes, VLDB 1981—Proceedings of the 7th International Conference on Very Large Data Bases, ACM Press, 1981, pp. 82-94.
[20] C. T. Yu and M. Z. Ozsoyoglu, An algorithm for tree-query membership of a distributed query, COMPSAC '79: Proceedings of the IEEE Computer Software and Applications Conference, IEEE Computer Society, 1979, pp. 306-312.
[21] C. T. Yu and M. Z. Ozsoyoglu, On Determining Tree-query Membership of a Distributed Query, Technical report 80-1, University of Alberta, Edmonton, Canada, 1980.

[^0]: *Received by the editors August 20, 2010; accepted for publication (in revised form) March 8, 2011; published electronically June 27, 2011.
 http://www.siam.org/journals/sidma/25-2/80603.html
 ${ }^{\dagger}$ Project MASCOTTE, I3S (CNRS-UNS) and INRIA Sophia-Antipolis, 2004 Route des Lucioles, F 06902 Sophia-Antipolis, France (jean-claude.bermond@sophia.inria.fr), nathann.cohen@sophia.inria.fr. The research of N. Cohen is partially supported by the ANR Blanc AGAPE and ANR Blanc International-Taiwan GRATEL.
 ${ }^{\ddagger}$ Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (ymchee@ntu.edu.sg, xiandezhang@ntu.edu.sg). The research of Y.M. Chee is supported in part by the National Research Foundation of Singapore under research grant NRF-CRP2-200703 and by the Nanyang Technological University under research grant M58110040. The research of X. Zhang is partially supported by the National Research Foundation of Singapore under research grant NRF-CRP2-2007-03.

