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THE a-ARBORICITY OF COMPLETE UNIFORM HYPERGRAPHS®
J.-C. BERMOND', Y. M. CHEE!, N. COHEN', axp X. ZHANG!

Abstract. o-acyclicity is an important notion in database theory. The a-arboricity of a hypergraph H is
the minimum number of a-acyclic hypergraphs that partition the edge set of H. The a-arboricity of the com-
plete 3-uniform hypergraph is determined completely.
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1. Introduction. There is a natural bijection between database schemas and hy-
pergraphs, where each attribute of a database schema D corresponds to a vertex in a
hypergraph H, and each relation R of attributes in D corresponds to an edge in H.
Many properties of databases have therefore been studied in the context of hyper-
graphs. One such property of databases is the important notion of a-acyclicity. Besides
being a desirable property in the design of databases [2], [3], [8], [9], [10], many NP-hard
problems concerning databases can be solved in polynomial time when restricted to
instances for which the corresponding hypergraphs are a-acyclic [3], [16], [19]. Examples
of such problems include determining global consistency, evaluating conjunctive
queries, and computing joins or projections of joins.

When faced with such computationally intractable problems on a general database
schema, it is natural to decompose it into a-acyclic instances on which efficient algo-
rithms can be applied. This has motivated some recent studies on the a-arboricity of
hypergraphs, the minimum number of a-acyclic hypergraphs into which the edges of
a given hypergraph can be partitioned [4], [14], [17].

In this paper, we give a general construction for partitioning complete uniform hy-
pergraphs into a-acyclic hypergraphs based on Steiner systems, and we completely de-
termine the a-arboricity of complete 3-uniform hypergraphs.

2. Preliminaries. We assume familiarity with basic concepts and notions in graph
theory.

Let n be a positive integer. The set {1, ..., n} is denoted by [n]. Disjoint union of
sets is denoted by LI. We use LI in place of U when we want to emphasize the disjointness
of the sets involved in a union.

*Received by the editors August 20, 2010; accepted for publication (in revised form) March 8, 2011;
published electronically June 27, 2011.

http://www.siam.org/journals/sidma,/25-2/80603.html

Project MASCOTTE, I3S (CNRS-UNS) and INRIA Sophia-Antipolis, 2004 Route des Lucioles, F 06902
Sophia-Antipolis, France (jean-claude.bermond@sophia.inria.fr), nathann.cohen@sophia.inria.fr. The re-
search of N. Cohen is partially supported by the ANR Blanc AGAPE and ANR Blanc International-Taiwan
GRATEL.

Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological
University, Singapore 637371 (ymchee@ntu.edu.sg, xiandezhang@ntu.edu.sg). The research of Y.M. Chee is
supported in part by the National Research Foundation of Singapore under research grant NRF-CRP2-2007-
03 and by the Nanyang Technological University under research grant M58110040. The research of X. Zhang is
partially supported by the National Research Foundation of Singapore under research grant NRF-CRP2-
2007-03.

600

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



THE a-ARBORICITY OF COMPLETE UNIFORM HYPERGRAPHS 601

For X a finite set and k a nonnegative integer, the set of all k-subsets of X is denoted
(4); that is, (1) = {K C X:|K| = k}. A hypergraph is a pair H = (X, A), where X is a
finite set and A C 2¥. The elements of X are called vertices and the elements of A are
called edges. The order of H is the number of vertices in X, and the size of H is the
number of edges in A. If A C (%), then H is said to be k-uniform. A 2-uniform hyper-

graph is just the usual notion of a graph. The complete k-uniform hypergraph (X, (),f )) of

order n is denoted K ;’“). A hypergraph is empty if it has no edges. The degree of a vertex v
is the number of edges containing v.

A Steiner system S(t,k,n) is a k-uniform hypergraph (X,.A) such that every
T € (%) is contained in exactly one edge in A.

A group divisible design k-GDD is a triple (X, G, A), where (X, A) is a k-uniform
hypergraph, G = { Gy, ..., G,;} is a partition of X into parts Gj, i € [t], called groups,
such that every T’ € () not contained in a group is contained in exactly one edge in A,
and every T € ()2( ) contained in a group is not contained in any edge in .A. The type of a

k-GDD (X, G, A) is the multiset [|Gy], ..., |G,|]. The exponential notation g ... g% is
used to denote the multiset where element g; has multiplicity ¢;, 7 € [s].

We require the following result from Colbourn, Hoffman, and Rees [5] on the ex-
istence of 3-GDDs.

THEOREM 2.1. Let g, t, and u be nonnegative integers. There exists a 3-GDD of type
gtul if and only if the following conditions are all satisfied:

(i) ifg>0,thent>3,ort=2andu=g, ort=1and u=0, ort =0;
(i) u < g(t—1) or gt =0;
(ii) g(t—1)+u=0(mod2) or gt =0;
iv) gt=0(mod2) or u=0;
) 7

(v
(v) ¢*(4) + gtu =0 (mod 3).

2.1. Graphs of hypergraphs. Given a hypergraph H, we may define the follow-
ing graphs on H.

DeriNiTION 2.2. Let H = (X, A) be a hypergraph. The line graph of H is the graph
L(H) = (V.£E), where V= A and &€= {{A. B} C (}): AN B# @}.

DermNiTION 2.3. Let H = (X, A) be a hypergraph. The primal graph or 2-section of
H is the graph G(H) = (X, &) such that {z,y} € & if and only if {z,y} C A for some
Ae A

A hypergraph H is conformal if for every clique K in G(H), there is an edge in
‘H that contains K. A hypergraph H is chordal if G(H) is chordal, that is, every
cycle of length at least four in G(H) contains two nonconsecutive vertices that are
adjacent.

2.2. Acyclic hypergraphs. Graham [11], and independently, Yu and Ozsoyoglu
[20], [21], defined an acyclicity property (which has come to be known as a-acyclicity) for
hypergraphs in the context of database theory, via a transformation now known as the
GYO reduction. Given a hypergraph H = (X, .A), the GYO reduction applies the fol-
lowing operations repeatedly to H until none can be applied:

(i) If a vertex x € X has degree 1, then delete z from the edge containing it.
(ii) If A, B € A are distinct edges such that A C B, then delete A from A.
(iii) If A € A is empty, that is, A = @, then delete A from A.

DermiTionN 2.4. A hypergraph ‘H is a-acyclic if GYO reduction on H results in an

empty hypergraph.
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602 J.-C. BERMOND, Y. M. CHEE, N. COHEN, AND X. ZHANG

The notion of a-acyclicity is closely related to conformality and chordality for hy-
pergraphs. Beeri et al. [3] showed what follows.

TaEOREM 2.5. H is a-acyclic if and only if H is conformal and chordal.

Let H = (X, .A) be a hypergraph. Assign to every edge {4, B} of L(H) the weight
|A N B|. We denote this weighted line graph of H by L'(H). The maximum weight of a
forest in L'(H) is denoted w(H). Acharya and Las Vergnas [1] introduced the hyper-
graph invariant

:ZM‘_

Ae A

4

AcA

—w(H

called the cyclomatic number of H, and they used it to characterize conformal and chor-
dal hypergraphs.

THEOREM 2.6. (Acharya and Las Vergnas [1]). A hypergraph H satisfies u(H) = 0 if
and only if H is conformal and chordal.

Theorems 2.5 and 2.6 immediately imply the following.

CoroLLARY 2.7. A hypergraph H is a-acyclic if and only if u(H) = 0.

Li and Wang [15] were unaware of these connections and rediscovered Corollary 2.7
recently. An easy consequence is that a maximum o-acyclic k-uniform hypergraph of
order n has size n — k+ 1 [18]. Let L; ;(H) denote the spanning subgraph of L'(H)
containing only those edges of L'(H) of weight k£ — 1. We derive the following charac-
terizations of maximum o-acyclic k-uniform hypergraphs.

CoroLLARY 2.8. A k-uniform hypergraph H = (X, A) of order n and sizen — k+ 1
is a-acyclic if and only if L(H) contains a spanning tree, each edge of which has weight
k—1 (in other words, L,_,(H) is connected).

Proof. By Corollary 2.7, we have

H) =" J4| -

U]

AecA AecA
=(n—-—k+1)k—
=(n—k)(k—1).

Since every edge in L'(H) has weight at most k£ — 1, and a forest of L'(H) contains at
most n — k edges (and contains exactly n — k edges if and only if the forest is a spanning
tree), the corollary follows. |

An a-acyclic decomposition of a hypergraph H = (X, A) is a set of a-acyclic hyper-
graphs {(X, A;)}¢_, such that A, ..., A, partition A; that is, A = u¢ ;| A,. The size of
the a-acyclic decompomtlon is c.

DErINITION 2.9. The a-arboricity of a hypergraph H, denoted aarb(H), is the mini-
mum size of an a-acyclic decomposition of H.

3. Previous work. Trivially, aarb( () ) = aarb( >) = 1 since both KV »’ and
K" are o acyclic. Tt is also known that ocarb( K ) = b( )) = [n/2] (see, for
example, [4]). Li [14] also showed that aarb(K), (n- 2)) = [n(n— 1)/6]. In general, Li
[14] showed that
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THE a-ARBORICITY OF COMPLETE UNIFORM HYPERGRAPHS 603

(3.1) E(kﬁlﬂ gaarb(Kgp)S%(Zi_i).

The upper and lower bounds in (3.1) differ by approximately a factor of k /2. Wang [17]

conjectured the lower bound to be the true value of aarb(K 2’”).

CoNJeCTURE 3.1. aarb(K\) = [+ D1

Recently, Chee et al. [4] showed that Conjecture 3.1 holds when k = n — 3, so that
Conjecture 3.1 is now known to hold for all n when £ = 1,2, n — 3, n — 2, n — 1, n. Chee
et al. [4] also showed that Conjecture 3.1 holds whenever there exists a Steiner system
S(n—k,n—k+1,n) and that Conjecture 3.1 holds in an asymptotic sense when k is
large enough. More precisely, the following was obtained.

THEOREM 3.2. (Chee et al. [4]). Let 8 be a positive constant. Then for k= n—

O(log' =% n), we have
M)y _ 1(fn
aarb(K;") = (1 + 0(1))k (k— 1),

where the o(1) is in n.

4. Decompositions based on Steiner systems. First, note that the cardinality
of the Steiner system S(k — 1, k, n) is precisely% (1) i.e., when such a system exists, the
lower bound given by (3.1). Therefore, the idea of our construction consists in using the
blocks of a S(k — 1, k, n) as centers of our partitions of K Sbk) into a-acyclic hypergraphs.
Each of these hypergraphs is based on a center C (in this case a block from the Steiner
system) to which are added n — 3 edges, each of which intersect the center on k — 1
vertices (we name these hypergraphs star-shaped). The reader may find it helpful to
consult Figure 4.1, which illustrates the following proof for n =7 and k = 3, using
the Steiner triple system S(2,3,7) (Z7, A) with A= {{i,i+1,i+3}:i € Z;}.

TureoreM 4.1. If there exists an S(k—1,k, n), then ocarb(K(nk)) =1(")-

({3,4,6},5)
({3,4,6},2)
({3,4,6},1)
({3,4,6},0)
({0,2,6},5)
({0,2,6},4)
({0,2,6},3)
({0,2,6},1)
({0,4,5},6)
({0,4,5},3)
({0,4,5},2)
({0,4,5},1)
({0,1,3},6)
({0,1,3},5)
({0,1,3},4)
({0,1,3},2)
({2,3,5},6)
({2,3,5},4)
({2,3,5},1) <
({2,3,5},0)
({1,5,6},4) =~
({1,5,6},3) —
({1,5,6},2)
({1,5,6},0)
({1,2,4},6)
({1,2,4},5) ~
({1,2,4},3) =
({1,2,4},0)

Fic. 4.1. Casen=17, k= 3.
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Proof. Let k and n be positive integers, 2 < k < n. Let (X, A) be an S(k — 1, &, n).
Define a bipartite graph G with bipartition V(G)=PuU @, where P =
{(A.2):A € Aandz € X\ A} and Q= () \ A so that vertex (4,z) € P is adjacent
to vertex K € @ if and only if K C A U {z}. Thus, the neighborhood of vertex (A, z) €
Pistheset N(A,z) = {(AU {z})\ {u}:u € A}, and the neighborhood of vertex K € Q
istheset N(K) ={(A,z):z€ K, A € Aand K\ {z} C A}. Evidently, |N(4, z)| = k for
all (4,z) € P. To see that |[N(K)| =k for all K € @, note that each of the &k (k— 1)-
subsets of K is contained in exactly one A € A, since (X, A) is an S(k—1,k n). It
follows that |N (A, z)| = |[N(K)| = k and G is k-regular. Hence, G has a perfect match-
ing M.

Now, for each A € A, let us define the k-uniform hypergraph H, = (X, B,), where
By={A}}U{K € Q:{(4,2), K} € Mfor somez € X\ A}. Tt is easy to check that
()k() =Ll e B4. We claim that, in fact, the set of hypergraphs {H ,} 4c4 is an a-acyclic
decomposition of (X, ()). To see this, note that H 4 has order n and size n — k + 1, and
observe that each edge in B, \{A} intersects A in exactly k— 1 vertices. Hence,
L,_1(H,) is connected. It follows from Corollary 2.8 that H, is a-acyclic. The size
of the a-acyclic decomposition {H 4} 4 4 is the size of an S(k — 1, k, n), which is precisely

G- O

CoroLLARY 4.2. We have otarb(Kglk)) =2(,",) whenever any one of the following
conditions holds:
(i) k=2 and n=0(mod2), or
(ii) 3 and n=1,3(mod6), or
(iii) 4 and n=2,4(mod6), or
) 5
6

(iv and n € {11,23,35,47,71,83,107, 131}, or
v) and n € {12,24,36,48,72, 84,108, 132}.
Proof. For (i), note that an S(1,2, n) is a perfect matching in the complete graph

k
k
k
k

K ,, and hence exists if and only if n is even. For (ii), an S(2,3,n) is a Steiner triple
system and exists if and only if n=1 or 3 (mod6) (see, for example, [7]). For (iii),
an 5(3,4,n) is a Steiner quadruple system, existence for which was settled by Hanani
[13], who showed that n =2 or 4 (mod 6) is necessary and sufficient. For (iv)—(v), see
[12], [6] for existence results. O

5. a-arboricity of Kfls). We determine aarb(K 5;”) completely in this section.
Corollary 4.2 determined avarb(K 513)) for all n =1, 3 (mod 6), so we focus on the remain-
ing cases of n=0,2,4,5 (mod 6) here.

5.1. The case n = 0,4 (mod 6). In this subsection, n = 0,4 (mod6), n > 4.

Let X=YUuZ, where |Y|=n—-3 and Z = {co0;,009,003}. Let (Y, A) be
an S(2,3,n—3).

Our proof here is similar to the one given previously. Our classes, however, are now
of two different kinds: not only do we need our former star-shaped hypergraphs whose
centers belong to a Steiner triple system on Y, but also classes whose centers are two
triples {y, 00, 005 } and {y, 001, 003} (intersecting on y, 0o, ) for all y € Y. As previously,
any edge of our a-acyclic hypergraphs intersects at least one edge of its center on exactly
two vertices. The decomposition is completed by another star-shaped class containing
the triples {y, 00, 003}, where y € X \ {00y, 003}.

We define the bipartite graph I with bipartition V(I') = P U @, where
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P=(Utoiee xia) u (Utnoo oo (noo ok iz € YA ),

AcA yeyY

X
Q=(3)NAUH%mhmﬂ&%whmﬁ&ym%wﬁweYMHZD

with adjacency of vertices in I' as follows:
(i) Vertex ({a,b,c},z) € P is adjacent to vertices {a, b, z},{a, c, z}, {b, ¢, z}
€ Q.
(ii) Vertex ({y, 001,009}, {y, 001,003}, 2) € P is adjacent to vertices {y, z, 0o, }
€Q, hel3.
Every vertex in P being of degree 3, let us prove the same holds for the vertices of Q.
For any pair of vertices u, v € Y, we name A,, the unique triple of A containing both
v and v.
(i) {a,b,c} C Y is adjacent to (Ay, ¢), (Ay., a), and (A, b).
(i) {a,b,00,} € Q is adjacent to (A, 00p), ({b,001,005},{b, 001,003}, a),
and ({a, 001,009}, {a, 001,003}, b).
Hence, I' is 3-regular and consequently has a perfect matching M.
For each A € A, let us define the 3-uniform hypergraph H, = (X, By), where

By={AYU{T € Q:{(A,x), T} € Mfor somez € X\ A}.

Then H 4 is of order n and size n — 2. Each edge in B, \ { A} intersects 4 in exactly two
vertices. Hence, Ly(H 4) is connected. It follows from Corollary 2.8 that H 4 is a-acyclic.
In addition, for each y € Y, define the 3-uniform hypergraph H, = (X, B,), where

By = {{y, 001,003}, {y, 001,003} }
U{T € Q:{({y, 001,009},{y, 001,003}, 2), T} € Mfor some z € Y\ {y}}.

Then H, is of order n and size n — 2. In Ly(H,), the vertex {y, 001,005} is adjacent to
{y, 001,003}, and each vertex in B, \ {{y, 001,005}, {y,001,003}} is adjacent to one of
the vertices {y, 00,005} or {y,00;,003}. Hence, Ly(H,) is connected. It follows from
Corollary 2.8 that 'H, is a-acyclic.

Finally, define the 3-uniform hypergraph H = (X, B), where B = {{y, 00y, 003}:
y € X\ {00y,003}}. Note that H is a-acyclic, since it GYO-reduces to an empty
hypergraph.

Now, we have

(3) - (e u (U= Jus

so that {H}acq U{H,}, oy U {H} is an a-acyclic decomposition of K. The size of

this decomposition is

yeY

~_n(n—1)
+(n—3)+1—T,

(n—3)(n—4)
6

which matches the lower bound in (3.1). This gives the following result.
ProposITION 5.1. aarb(Kf)) =n(n—1)/6 for all n=0,4 (mod 6).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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5.2. The case n =5 (mod6). In this subsection, n=5(mod6), n > 5. Write
n==6k+5 Let X =Y U{oop,005}, where |Y|=6k+3, and let (Y,G, A) be a
3-GDD of type 3?*1, which exists by Theorem 2.1. Our construction is still based
on star-shaped hypergraphs centered on the triples of the 3-GDD, but this time we will
need to define centers consisting of three triples, pairwise intersecting on two elements.
Also, for numerical reasons, 2k + 1 of our classes are of order only n — 2 and size n — 4.

Suppose G = { Gy, ..., Gapi1}, where G; = {g;1, gi2. 9i3}, 1 € [2k + 1]. To keep our
expressions succinct, we let

T? = {gz’.j’ 9ij'>» Ooh}

.5
forie2k+1],1<j<j <3andhe[2] and
Gi,j = {!]7:,]',001,002}

for ¢ € 2k + 1] and j € [3].
Define the bipartite graph I with bipartition V(I') = P U @, where

P= U{(A,a:):xeX\A}) U (U{(G,x):xe Y\G})

AeA Geg

2k+1

U (U {(T}5. TY 5. Giy.2)iz € V' G,;})
i=1
241

U (U (T35, T793, Gig,x)iz € Y\ Gi})7
=1

X
@= ( 3 > \ (“4 WGUTY 0 Tl Ty b U EJJGH)

1./1/
J=J

with adjacency of vertices in I as follows:
(i) Vertex ({a,b,c},2) € P is adjacent to wvertices {a,b,z},{a,c, z},
{b,c,z} € Q.
(i) Vertex (T}, T}14,Giy.2z) € P is adjacent to vertices {g,,,001,2} €
Q, ¢ €3]
(iii) Vertex (T%,,.T%,5.G,0.7) € P is adjacent to vertices {g;,.005, 2} €
Q, ¢ €3
Every vertex in P being of degree 3, let us prove the same holds for the vertices of Q.
For all u,v € Y, we name A,, the unique triple of A U G containing both « and v.
(i) {a,b,c} C Y is adjacent to (Ay, ¢), (A, a), and (A, b).
(i) {a,b,00,} € Q, where a€ G; and b€ Gy with i# 4, is adjacent to
(Agps001), (Tzl',l,Q’ Tzl'.l,z’ Gi1.b), and (Tllqm, T}/,Lg» Gy, a).
(i) {a,b,000} € @, where a € G; and b€ Gy with i# 4, is adjacent to
(Aabv 002)’ (T?,l.? Tz2',2,37 Gi.Qv b)’ and (T?@sz T?’,Q.b” Gi’,Qa a)-
Hence, I' is 3-regular and consequently has a perfect matching M.
For each A € A, let us define the 3-uniform hypergraph H, = (X, By), where

By={4}u{T e Q:{(A,x), T} € Mfor somez € X\ A}.
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Then H 4 is of order n and size n — 2. Each edge in B, \ {A} intersects A4 in exactly two
vertices. Hence, Ly(H 4) is connected. It follows from Corollary 2.8 that H 4 is a-acyclic.
In addition, for each G € G, define the 3-uniform hypergraph Hs = (Y, B¢), where
Be={GtU{T € Q:{(G,z), T} € Mfor somez € Y\ G}. Then H is of order n — 2
and size n — 4. By the same reason as for H,, H¢ is a-acyclic.
Furthermore, for each i € [2k + 1], define the 3-uniform hypergraphs H; = (X, B;)
and H, = (X, B}), where

B ={T}15 Ti15 G} U{T € Q:{(T},5 Tiy3 Giy.2), T} € Mfor some
z€ Y\ G},
= {1315 To3 Gio} U{T € Q:{(T3,1 5 Tia3. Gigo2), T} € M for some
z e Y\ G}

Then H; and H; are each of order n and size n — 2. In Ly(H;) (respectively, L,(H})), the
vertex T, (respectively, T%,,) is adjacent to vertices T}, 5 and G, (respectively,
T2, and G;»), and each vertex in B\{T} , T} 5 G;1} (respectively, Bj\

{12, 22 5- Gi2}) is adjacent to at least one of the vertices T}, ,, T, 5, G;; (respec-
tively, 7%, ,, T2, 4, G;2). Hence, Ly(H,;) (respectively, Ly(H})) is connected. It follows

from Corollary 2.8 that H, (respectively, H}) is a-acyclic.
Finally, define the 3-uniform hypergraph H = (X, B), where

2k+1

B= U {T%.1,3’ Tzl',2,3v Gz‘.3}-
i=1

It is easy to see that H is a-acyclic.
Now, we have

2k+1 2k+1

(3) = Uz (U U (L ) U (L e s
AcA Geg i=1 i=1

sothat {H}aca U{Ha}geg U {H i} icpri U {H bicpprsn) U {H} is an o-acyclic decom-

position of K 55’). The size of this decomposition is

3<2k2+1) FQEFD) kD) Ch ) 1 =6k 49k +4 = PL(n—l)"

which matches the lower bound in (3.1). This gives the following result.
PROPOSITION 5.2. ozarb( ) [n(n—1) /6] for all n="5 (mod6).

5.3. The case n =2 (mod 6). We treat the remaining case of n =2 (mod 6).

Lemma 5.3. aarb(K(g)) = 10.

Proof. The lower bound in (3.1) showed that cvarb(Kj 8 )) > 10. We construct an
a-acyclic decomposition meeting this lower bound.

Consider the $(2,3,7) (Z;, A), with A = {{i,i+ 1,0+ 3}:i € Z;}. Let {H 1} 44 be
the a-acyclic decomposition of (Z, ( 7)) produced by the constructlon of section 4. We
use this to construct an a-acyclic decomp081t10n of K as follows. Let X =Z; U
{o0}, and let
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608 J.-C. BERMOND, Y. M. CHEE, N. COHEN, AND X. ZHANG

By = {{i,i+1,00}:i € Z; \ {0},

By = {{i.i+3,00}1i € Z; \ {1}},

By={{i+1,i+3.,00}:i€Z;\{2}},
= E(H13) U {{0.1,00}},

Bs = E(H{12.4y) U {{1.4,00}},

Bs = E(Ha35,) U {{3,5,00}}.

Then {(X, B;) }icg) U {H (3.4.6)» Hioasy> Hirs6) H{o.26) } 1s an a-acyclic decomposition of
(X.(3)) of size 10. O

Henceforth, in what follows, let n=2(mod6), n > 14. Write n = 6k + 2. Let
X = Y u {oo}, where | Y| = 6k + 1, and let (Y, G, A) be a 3-GDD of type 31!, which
exists by Theorem 2.1. Here again, we use star-shaped hypergraphs centered on the tri-
ples of A, but also classes whose centers consist of two triples intersecting in two ele-
ments. They will be completed with a last star-shaped class of order 2k + 2 and size 2k
(in order to reach the bound).

Suppose G = { Gy, ..., Gar. {g}}, where G; = {g;1. g:2. i3}, © € [2k]. To keep our
expressions succinct, we let

G = {gi,hgm,oo},
G;l = {gi.lvngoo}’
G{LH = {92‘,2,91,3,00}

for i € [2k]. Define the bipartite graph I' with bipartition V(I') = P U @, where

= (U{(A,a:):xeX\A}) U (U{ G, Gl x)ize Y\GZ-})

AecA

<U{ GGl x):xe Y\ GZ-}) U {G,:i € 2k},
— X A G/ G// G/// Qk
Q(3> (AUGU € [2K))

with adjacency of vertices in I as follows
(i) Vertex ({a,b,c}, )€ is adjacent to vertices {a,b,z},{a,c, 1z},
{b,c,z} € Q.
(i) Vertex (G;, G/,z) € P is adjacent to vertices {g;1. 92,2}, {9i1. 93 2},
{9i2.9i3.2} € Q.
(ii) Vertex (G}, GY',z) € P is adjacent to vertices {g;,00,z},{g;2,00, 2},
{9i3.00.2} € Q.
(iv) Vertex G, € P is adjacent to vertices {g; ;. g.00} € @, j € [3].
Every vertex in P being of degree 3, let us prove the same holds for the vertices of Q.
For all u,v € Y, we name A, the unique triple of .4 containing both u and v.
(i) {a,b,c} C Y, where a, b, and ¢ belong to three different groups, is adjacent
to (Aab’ C), (Aam b), and (Abr:» (I).
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(ii) {a,b,c} C Y, where a and b belong to the same group G; and ¢ ¢ G;, is ad-
jacent to (A, b), (A, @), and (G;, G, ¢).
(iii) {gi;.9s .00} € Q (hence i # i) is adjacent to (Agl.jg,/]/’oo)’ (G G\ g ),
and (G, G, g;;)-
(iv) {9:;, 9,00} is adjacent to (4, .. 00), G, and (G}, G7', g).
Hence, I' is 3-regular and consequently has a perfect matching M.
For each A € A, let us define the 3-uniform hypergraph H, = (X, By), where

By={A}u{T € Q:{(A,z), T} € Mfor somez € X\ A}.

Then H 4 is of order n and size n — 2. Each edge in B4 \ {A} intersects A in exactly two
vertices. Hence, Ly(H 4) is connected. It follows from Corollary 2.8 that H 4 is a-acyclic.

In addition, for each i € [2k], define the 3-uniform hypergraphs H; = (X, B;) and
H, = (X, B]), where

B, ={G,;, G/} U{T € Q:{(G;, G!,z), T} € Mfor somez € Y\ G;},
B, ={G, G'"y u{T € Q:{(G},G/",z), T} € Mfor somez € Y\ G,}.

Then H,; and H/, are each of order n and size n — 2. By the same reason as for H 4, H; and
H); are a-acyclic.
Finally, define the 3-uniform hypergraph H = (X, B), where

B:@{Te Q:{G;, T} € M}.

It is easy to see that H is a-acyclic and has order 2k + 2 and size 2k.
Now, we have

()= (1)U (=)0 (G e

so that {Ha}taca U {Hi}icon U {Hiticpy U {H} is an a-acyclic decomposition of K.
The size of this decomposition is

<3<22k> +2k> L%+ 2%+ 1 =6k +3k+1= F("G_ﬂ

which matches the lower bound in (3.1). Together with Lemma 5.3, this gives the fol-
lowing result.

ProPOSITION 5.4. aarb(Kf)) = [n(n—1) /6] for all n=2(mod6), n > 8.

5.4. Summary. Corollary 4.2 (i) and Propositions 5.1, 5.2, and 5.4 combine to give
the following theorem.
THEOREM 5.5. oearb(Kgf’)) = [n(n—1) /6] for all n > 3.

6. Conclusion. The problem of determining the a-arboricity of hypergraphs is a
problem motivated by database theory. In this paper, we continue the study of the
a-arboricity of complete uniform hypergraphs. We give a general construction based
on Steiner systems and determine completely the value of aarb(K (ng)). Previously,
aarb(Kglk)) was only known for k=1,2, n—3, n—2,n—1, n.
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