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Abstract. The existence of group divisible designs of type g’ with block sizes three and n,
4 < n <10, is completely settled for all values of g and ¢.

1. Introduction

A set system is a pair (X,.o7), where X is a finite set of points and o/ is a set of
subsets of X, called blocks. The set 4 is a set of block sizes for (X, .o7) if |4| € A
for every 4 € /. For a set 4 of block sizes for (X,.o7), if an element k € A" is
superscripted with a x, it indicates that there is exactly one block of size &k in
(X, .o7). We note that if 2" is a set of block sizes for (X,.e7), then any set con-
taining 2 is also a set of block sizes for (X, .o7).

Let (X,.o/) be a set system with set of block sizes 2. If (X,.o/) has the
property that every 2-subset of X appears in precisely one block, it is a pairwise
balanced design (PBD), and is denoted by /#-PBD(|X|). A {k}-PBD(v) is a Steiner
2-design S(2,k,v). An important idea in the study of PBDs is that of closure. Let
B(") denote the set of positive integers v for which there exists a #-PBD(v). The
set B(A") is called the PBD-closure of the set #". A partial design is a set system
(X, o) for which every 2-subset of X is contained in ar most one block.

Let (X,.o/) be a set system, and let ¥ = {G|,...,G,} be a partition of X into
subsets, called groups. The triple (X, ¥, .o/) is a group divisible design (GDD) when
every 2-subset of X not contained in a group appears in exactly one block and
[ANG| < lforall4 € o/ and G € 4. We denote a GDD (X, ¥, /) by #-GDD if
A is the set of block sizes for (X, .o7). The group-type, or simple type, of a GDD
(X,9,.9/) is the multiset [|G| | G € 9]. When more convenient, we use the expo-
nential notation to describe the type of a GDD: A GDD of type ¢g;" ---¢s* is a

* This work was done in 1995 while the authors were graduate students at the University of
Waterloo, Waterloo, Ontario N2L 3G1, Canada
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GDD where there are exactly ¢; groups of size g;, for 1 <i <s. A GDD is uniform
if all its groups have the same size, that is, if it is of type ¢'. A {k}-GDD of type m*
is called a transversal design, and is denoted by TD(k, m).

GDDs and PBDs are intimately related. First, a PBD is a GDD with groups of
size one. On the other hand, a #-GDD of type [g,...,ds] can be viewed as a
H U{g1,...,9s}-PBD(>"1_, g;) by considering the groups of the GDD to be
blocks of the PBD also. Such a GDD can also be used to create a
H U{gi+1,...,9,+1}-PBD(1 + 37, ¢;) by adjoining a new point to each
group, and considering the resulting subsets as blocks. Conversely, a GDD can be
obtained from a PBD by deleting a point.

GDDs play an important role in the construction of many different classes of
combinatorial designs. Consequently, there has been much interest in the con-
struction of rich classes of GDDs. The existence of uniform {3}-GDDs is com-
pletely settled by Hanani [8].

Theorem 1.1 (Hanani). There exists a {3}-GDD of type ¢' if and only if t >3,
g*(5) =0 (mod 3), and g(t — 1) = 0 (mod 2).

This result is extended by Colbourn, Hoffman and Rees [5] who proved the
following.

Theorem 1.2 (Colbourn, Hoffman and Rees). Let g, t, and u be nonnegative inte-
gers. There exists a {3}-GDD of type g'u" if and only if the following conditions are
all satisfied.

1) ifg>0,thent>3, ort=2andu=g,ort=1andu=0, ort=0;

() u<g(t—1)orgt=0;

(iii) g(t = 1) +u =0 (mod 2) or gt = 0;

(iv) gt =0 (mod 2) or u =0;

V) ¢*(3) +gtu=0 (mod 3).

More recently, Colbourn, Cusack and Kreher [4] provided necessary and suffi-
cient conditions for the existence of {3}-GDDs of type ¢'1".

Theorem 1.3 (Colbourn, Cusack and Kreher). Let g, t, and r be positive integers.
Then there exists a {3}-GDD of type g'1" if and only if the following conditions are
all satisfied.

(i ¢g=1 (mod 2);

(i) t+r=1 (mod 2);

(i) ift =1, thenr > g+ 1;

(iv) if t =2, thenr > g;

) ¢*(5) +gtr+ (5) =0 (mod 3).

In this paper, we establish the existence of large classes of GDDs by extending
Hanani’s result in another direction. More specifically, we settle completely the
existence question for (uniform) {3,n}-GDDs of type ¢’, for 4 < n < 10, and all
values of g and ¢. The result is trivial when gt = 0 or ¢ = 1 since there can be no
blocks. When g =1, such a {3,n}-GDD is just a {3,n}-PBD(¢), whose exis-



Uniform Group Divisible Designs with Block Sizes Three and » 423

tence for all n < 10 has been determined [7]. So we assume both g and ¢ to be at
least two.

Main Theorem. Let 4 <n <10, g > 2 and t > 2. There exists a {3,n}-GDD of
type ¢' if and only if the following conditions are all satisfied:

»H >3

(i) ifg*(5) £0 (mod 3) or g(t—1) =1 (mod 2), then t > n;

(i) gt € B({3,n,9});

(iv) gt+1€B({3,n,g+1});

(v) ifn=0or1 (mod 3), then ¢*(}) =0 (mod 3);

(vi) ifn=1 (mod 2), then g(t — 1) =0 (mod 2);

(vii) ifn =2 (mod 6), g*(}) 0 (mod 3),g(t — 1) = 0 (mod 2), then gt > (n+1)
(3n+2)/6;

(viii) if n = 8, then (g,t) # (5,8).

The remainder of this paper proves this theorem. We first examine necessity of
the conditions, which is quite straightforward.

Condition (i) follows from the fact that in a {3,n}-GDD, every block inter-
sects at least three groups. Condition (ii) is an extension of this observation. When
g*(5) #£0 (mod 3) org(t — 1) = 1 (mod 2), there cannot exist a {3}-GDD of type
g'. Therefore, there must be at least one block of size n, and hence there are at
least n groups.

Conditions (iii) and (iv) follow from earlier remarks concerning the relation-
ship between GDDs and PBDs.

For condition (v), observe that the number of 2-subsets contained in each
block is a multiple of three, so the number of 2-subsets not contained in a group
must be a multiple of three. For condition (vi), observe that every point must be in
an even number of 2-subsets that are contained in the blocks. Hence
g(t—1) =0 (mod 2).

For (vii), we must have at least one block of size n, and each point is in an even
number of blocks of size n. The following lemma shows that the fewest number of
blocks of size n that such a configuration can have is n + 1.

Lemma 1.1. Let (X, .o/) be a partial design for which every point is contained in an
even number of blocks and there is a block of size n, then |</| > n+ 1.

Proof. Let 4 be a block of size n. For each x € 4, let %, denote the set of all
blocks, other than A4, that contain x. Since every point is contained in an even
number of blocks, 4, is nonempty for each x € 4. Now, %4, N B, = @ for distinct
points x,x" € 4, for otherwise there would exist a block in addition to 4 that
contains both x and x/, contradicting the fact that (X,.o/) is a partial design.
Hence, Uy %, contains at least n distinct blocks, which together with 4, give
n + 1 blocks. O

However, the number of blocks of size » must not be divisible by three. Hence,
we must have at least n + 2 blocks of size n, forming a partial design. The fol-
lowing result of Mendelsohn and Rees [11] is useful.
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Theorem 1.4 (Mendelsohn and Rees). Let (X, .o7) be a partial design with block size
k, in which there are b blocks. Then letting r = | (b — 1)/k], we have

(1)

It is not difficult to verify that the quantity on the right hand side of inequality (1)
is an increasing function of b. Using Theorem 1.4, we see that the partial design
formed by the blocks of size n must contain at least [(n + 2)(3n — 1)/6] points.
Hence, gt > (n+1)(3n + 2)/6.

We now treat the nonexistence of a {3,8}-GDD of type 5%. In a {3,8}-GDD
(X,.o7) of type 58, there are bg = 1 (mod 3) blocks of size eight, and each point
lies on an odd number rg of blocks of size eight. Since there are five points in each
group, and rg is odd, the number bg of blocks of size eight must be odd. Therefore,
bs =1 (mod 6), and bg > 7. If there are more than ten blocks of size eight, then
by Theorem 1.4, there must be at least 41 points. So we only have to consider the
case when bg = 7.

Suppose there are seven blocks of size eight.Then there are eight points, each
of which lies on precisely three blocks of size eight. Consider the dual incidence
structure of these seven blocks; let %/ be the set of blocks of size eight and for each
point x € X that lies in more than one block of size eight, let B, be the set of blocks
containing x. Since any two blocks intersect in at most one point, the dual
structure (%, U,ex{B}) is a partial design, with seven points and eight blocks of
size three. This is impossible. If there are ten blocks of size eight, then there are 20
points, each of which lies on exactly three blocks of size eight. The dual incidence
structure of these ten blocks is a partial design with ten points and 20 blocks of
size three. This is again impossible.

This completes the proof of necessity for the conditions in the Main Theorem.
The necessary conditions for the existence of {3,n}-GDDs of type ¢’ forn =1 or
3 (mod 6) is identical to the necessary conditions for the existence of {3}-GDDs
of type ¢'. Since all {3}-GDDs of type ¢’ satisfying these necessary conditions
exist by Theorem 1.1, we do not need to consider the cases » = 7 and 9 here.

2. Recursive Constructions

We prove sufficiency for the conditions in the Main Theorem by developing a set
of recursive constructions which we present in this section. First, we require some
definitions.

A parallel class in a GDD is a set of disjoint blocks that contain each point of
the GDD exactly once. A GDD is resolvable if all of its blocks can be partitioned
into parallel classes.

Let (X, .o/) be a set system with set of block sizes 4", let ¥ = {G|,..., G} be a
partition of X into groups, and let # = {H, ..., H,} be a set of pairwise disjoint
subsets of X, called holes, with the property that H; C G;, for 1 <i<s. The
quadruple (X, #,9,.o/) is an incomplete group divisible design (1IGDD), denoted
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A"-1GDD, if any 2-subset of X not contained in a group or U{_,H; appears in
precisely one block. The type of an IGDD is the multiset [(|G\],|H)]), ...,
(|G|, |Hs])]- As usual, when it is more convenient, we use the exponential notation
to represent the type of an IGDD. An incomplete transversal design (ITD),
TD(k,m)—TD(k, k) is a {k}-IGDD of type (m, h)*. By considering each point on a
fixed block of a TD(k,m) as a hole of size one, we see that the existence of a
TD(k, m) implies the existence of a TD(k, m)—TD(k, 1).

We now present the tools of this paper. The main recursion we use is Wilson’s
Fundamental Construction (WFC) for GDDs [14].

Theorem 2.1 (WFC). Let (X,9,.</) be a (master) GDD, where 4 = {Gy, ..., G;s}.
Let w:X — Zsy be a weight function. Suppose that for each block
A={x,...,x} € o, there exists an (ingredient) #'-GDD of type [®(x)),...,
o(xx)]. Then there exists a A -GDD of type [y . ©(x), ..., > g ©X)].

The following Wilson-style theorem for IGDDs follows easily from the proof
for Theorem 2.1 [14].

Theorem 2.2. Let (X, #,9,.</) be a (master) IGDD, where 9 = {Gy,...,Gs} and
H ={H,...,H}. Let o : X — Z>( be a weight function. Suppose that for each
block A ={x1,...,x¢} € o/, there exists an (ingredient) H-GDD of type
[w(x1),...,0(x)]. Then there exists a H-IGDD of type [(3.cq @(x),
Srett @), o (Ve @), ey, 0(x))]

IGDDs are useful because of a construction known as “filling in holes”. If we
have an Z-IGDD (X, #,%,.«/) of type [(g1,h1),---,(gs,hs)] and a #-GDD
(UpewH, H,B) of type [hi,..., k], then (X, 9,/ UZR) is a (# U.L)-GDD of
type [gh o 7g.c]-

We also employ a further construction, similar in spirit to [5, Lemma 1.13,
pp.78].

Lemma 2.1. Let (X,9,%) be a {3}-GDD of type [g1,...,9s]. Let t > 3. If there
exist (ingredients) {3,n}-GDDs of type ¢ for all i = 1,...,s, then there exists a
{3,n}-GDD of type |X["

Proof. We form the required GDD on points X X Z,. For each block {x, y,z}, we
place on {x,y,z} x Z, a TD(3,t) missing a parallel class (whose existence is
equivalent to that of idempotent Latin squares), so that the groups align on
{x} x2Z,, {y}x2,, and {z} x Z,, and the missing parallel class aligns on
{x,y,z} x {i} for i € Z,.

Then for each group G, we place on G x Z; a {3,n}-GDD of type |G|z, so that
the groups align on G x {i} for i € Z,. O

Another useful construction is the following.

Lemma 2.2. If there exists a {3}-GDD of type ¢' with a parallel class, then there
exists a {3,9}-GDD of type 393
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Proof. Take the groups as blocks, and the blocks in a parallel class as groups. []

One source of {3}-GDDs with parallel classes is the class of resolvable uni-
form {3}-GDDs, whose existence has been settled by Rees [12].

Theorem 2.3 (Rees). There exists a resolvable {3}-GDD of type ¢' if and only if
g(t—1) =0 (mod 2), gt =0 (mod 3), and (g,t) € {(2,3),(2,6),(6,3)}.

The following results on the existence of transversal designs (see, for example,
[1]), and on PBD-closures due to Gronau, Mullin, and Pietsch [7], are used
without explicit reference throughout §4.

Theorem 2.4. Let TD(k) denote the set of positive integers m such that there exists a
TD(k,m). Then, we have

(i) TD(3) = Z.;

(i) 7D(4) = 7.0\ {2,6);

(iii) 7D(5) 2 Z-0 \ {2,3,6,10};

(iv) TD(6) D Z-o \ {2,3,4,6, 10, 14, 18,22};

(v) TD(8) D Z-o\ {2,3,4,5,6,10,12, 14,15, 18,20,21,22, 24,26, 28, 30, 33, 34,
35,36,38,39,42, 44,46, 48, 51,52, 54, 55, 58, 60, 62, 66, 68, 74,751}

Theorem 2.5. We have the following PBD-closures:

() B({3,4)) = {v=0,1 (mod 3)}\ {6}:

(i) B({3,5}) = {v=1 (mod 2)}:

(i) B({3,6})={v=0,1 (mod 2)}\ {4, 10, 12,22},

(iv) B({3,8}) =7Z-¢\{2,4,5,6,10,11,12,14 16,17, 18,20,23,26,28,29, 30,
34,35, 36,38};

(v) B({3,10}) ={v=0,1 (mod 3)}\ {4,6,12,16,18,22,24,34,36,42};

(vi) B({3,5,8}) =7Z-9\{2,4,6,10,12, 14,16, 18,20, 26,28, 30,34},

(vii) B({3,4,5,8}) = Z.o\ {2,6};

(viii) B({3,5,6,8,10}) = Z-o \ {2,4,12,14,20}.

3. Some {3}-GDDs of Miscellaneous Types

Let v and & be positive integers such that v > k. We call v k-good if there exists a
{3}-GDD of type [g1,...,gs) such that >}, g; = v, g; > k, and g; = k (mod 2) for
1 <i<s. Itis not hard to see that if v is k-good, then v = k (mod 2). The spec-
trum of k-good integers, denoted Spec(k), is the set of integers that are k-good. In
this section, we completely determine the spectrum of k-good integers for
k €{2,3,4,5}. These results are used in the next section for determining the
existence of some uniform {3,n}-GDDs.
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Lemma 3.1. Spec(5) ={v=1 (mod 2) | v > 27} U {15}.

Proof. Let m > 2. Take a TD(5,2m + 1) and assign weight three to each of the
points in four of its groups. Assign weights in {1, 3,5,7} to each of the points in
the remaining group. Apply WFC to obtain a {3}-GDD of type (6m + 3)*u!,
where u is odd, and 2m + 1 <u < 7(2m + 1). The required ingredients exist by
Theorem 1.2. This proves that for any odd v > 65, v is 5-good. For v <59,
membership of v in Spec(5) can be determined from [3]. For v = 61 and 63, note
that there exist {3}-GDDs of types 9°7' and 97 (Theorem 1.2). OJ

Lemma 3.2. Spec(4) ={v=0 (mod 2) | v> 16} U {12}.

Proof. Letm >3, m # 6. Take a TD(4, m) and assign weight two to each point in
three of its groups. Assign weights in {0,2,4} to each of the points in the re-
maining group so that the sum of the weights of the points in this group is at least
four. Apply WFC to obtain a {3}-GDD of type (2m)*u, where u is even, and
4 < u < 4m. The required ingredients exist by Theorem 1.2. This proves that for
any even v > 22, v is 4-good. For v < 20, membership of v in Spec(4) can be
determined from [3]. O

Lemma 3.3. Spec(3) ={v=1 (mod 2) | v > 15} U{9}.

Proof. Trivially, we have Spec(5) C Spec(3). For v <25, membership of v in
Spec(3) can be determined from [3]. O

Lemma 3.4. Spec(2) = {v =0 (mod 2) | v > 6} U {2}.

Proof. Trivially, we have Spec(4) C Spec(2). For v < 14, membership of v in
Spec(2) can be determined from [3]. O

4. Sufficiency

This section is devoted to proving the sufficiency o the conditions in the
MainTheorem. In what follows, it is implicitly assumed that ¢ > 3, wherever it
occurs.

4.1. Small Ingredients

We first give some small uniform {3,n}-GDDs that are needed for the recursive
constructions. To obtain these GDDs, we use a variant of Stinson’s hill-climbing
algorithm [13]. Our algorithm is similar to that described in [3], except that in
addition to specifying the groups, we have to specify a set of blocks of size n, so
that the leave can be partitioned into triangles. We list in Table 1 the parameters
of the GDDs that are constructed by this algorithm. We do not list the blocks for
these GDDs here as they exhibit no particular structure and are space consuming.
Details on how to find the blocks for these GDDs can be found in the Appendix.

Lemma 4.1. All uniform {3,n}-GDDs of types listed in Table 1 exist.
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Table 1. Some small uniform {3,n}-GDDs

n Type
4 A L KA O
6 510 512 522 710 712 722 1110 1112 1122 1310
1312 1322
8 20 23 26 229 32 235 38 241 14 18
20 26 28 30 34 411 14 17 20 26
32 38 10 11 12 5]4 16 17 18 20
22 24 26 32 538 544 10 11 12 14
716 717 718 720 723 726 728 729 730 7'34
735 7?6 738 811 814 817 910 912 1011 1014

2512
2. 3
10 316 318 320 322 3 4 326 3 2 334 336 338
42 44 56 62 10 12 16 18 22 24
34 36 42 10 12 16 18 22 24 34
36 42 12 14 1]10 1112 1116 1118 1122 1124

4.2. The Case n=4

We show that conditions (i) and (v) of the Main Theorem suffice to ensure the
existence of {3,4}-GDDs of type ¢'.

4.2.1. t =2 (mod 3)
We must have g = 0 (mod 3).

Lemma 4.2. There exists a {3,4}-GDD of type 3' for all t =2 (mod 3).

Proof. First note that the existence of {3,4}-GDDs of types 3° and 3% can be
established by deleting a point from Steiner systems S(2,4,16) and S(2,4,25),
respectively. For all # = 2 (mod 3), r € B({3,4,5,8}). So there exists a {3,4,5,8}-
GDD of type 17. Assign weight three to each point of this GDD and apply WFC.
The required ingredients exist by Theorem 1.1 and the note above. O

Lemma 4.3. Let t =2 (mod 3). Then there exists a {3,4}-GDD of type ¢' for all
g =0 (mod 3).
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Proof. For any g ¢ {6, 18}, assign weight g/3 to each point of a {3,4}-GDD of
type 3’, whose existence is guaranteed by Lemma 4.2. Apply WFC to obtain a
{3,4}-GDD of type ¢'. The required ingredients exist by Theorem 2.4. For
the cases g € {6, 18}, Theorem 1.1 gives {3}-GDDs of types 6’ and 18’ for all
t> 3. O

4.22. t=0or 1 (mod 3)
All values of g are admissible here.

Lemma 4.4. Lett =0 or 1 (mod 3), ¢t # 6. Then there exists a {3,4}-GDD of type
g' for all g > 2.

Proof. Since t € B({3,4}), there exists a {3,4}-GDD of type 1’. Assign weight g,
g & {2, 6}, to every point of this GDD and apply WFC to obtain a {3,4}-GDD of
type ¢'. The required ingredients exist by Theorem 2.4. When g € {2, 6}, Theorem
1.1 gives {3}-GDDs of types 2’ and 6'. O

Lemma 4.5. Leta > 0 and 0 < w < 6a. If there exist a TD(6,m + 1)—TD(6,a) and
a {3,4}-GDD of type w®, then there exists a {3,4}-GDD of type (3m +w)°.

Proof. Take a TD(6,m + 1)—TD(6,a) and assign weight three to each point not
in the holes. Arbitrarily assign a weight in {0, ..., 6} to each point in the holes so
that the weight for each hole is w (the weight of a hole is the sum of the weights of
its points). Apply Theorem 2.2 with ingredients {3,4}-GDDs of type 3°u!,
0 < u < 6, which can be constructed by taking a Kirkman triple system of order
15 (which has seven parallel classes), and adjoining u new points, each to a
different parallel class. This gives a {3,4}-IGDD of type (3m + w, w)°. Now fill in
the holes with a {3,4}-GDD of type w®. m

Lemma 4.6. There exists a {3,4}-GDD of type ¢° for all g > 2.

Proof. When m & {2,3,4,6,10, 14, 18,22}, there exists a TD(6,m)—TD(6, 1). By
Theorem 1.1 and Lemma 4.1, there exists a {3,4}-GDD of type w® for
we {2,3,4,5,6}. Apply Lemma 4.5 to obtain a {3,4}-GDD of type
(3(m—1)+w)®. This gives {3,4}-GDDs of type ¢°® for all g> 14,
g & {19,31,43,55,67,127}. For g < 13 and g = 19, the existence of {3,4}-GDDs
of type ¢° is handled by Theorem 1.1 and Lemma 4.1, and the constructions below
handle all remaining values of g. The required ITDs all exist [2]. Apply Lemma 4.5
to a TD(6,m)—TD(6,h) with a {3,4}-GDD of type w® for (m,h,w)e€
{(10,2,7),(15,2,4),(19,2,4), (23,4,10), (43,2,4)} to obtain a {3,4}-GDD of
type g° for g € {31,43,55,67,127}. 0

4.3. The Case n=>5

We show that conditions (i) and (vi) of the Main Theorem suffice to ensure the
existence of {3,5}-GDDs of type ¢°.
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4.3.1. t=1 (mod 2)
All values of g are admissible here.

Lemma 4.7. Let t =1 (mod 2). Then there exists a {3,5}-GDD of type ¢' for all
g & {2,10}.

Proof. Since t € B({3,5}) [15], there exists a {3,5}-GDD of type 1’. For any
g ¢ {2,3,6,10}, assign weight g to each point of this GDD and apply WFC to
obtain a {3,5}-GDD of type ¢'. The required ingredients exist by Theorem 2.4.
{3}-GDDs of types 3" and 6 exist for all # =1 (mod 2) by Theorem 1.1. O

Lemma 4.8. There exist {3,5}-GDDs of types 2" and 10" for all t > 3.

Proof. When t =0 or 1 (mod 3), Theorem 1.1 gives {3}-GDDs of type 2'. When
t =2 (mod 3), ¢ € B({3,5}) [6]. In this case we take a {3,5*}-PBD(2¢+ 1) and
delete a point not on the unique block of size five to obtain a {3,5}-GDD of type
2!, To obtain a {3,5}-GDD of type 10’, assign weight five to each point of a
{3,5}-GDD of type 2 and apply Wilson’s Fundamental Construction. The re-
quired ingredients exist by Theorem 2.4. O

4.3.2. t=0 (mod 2)
We must have g = 0 (mod 2).

Lemma 4.9. Let g =0 (mod 2). Then there exists a {3,5}-GDD of type ¢" for all
t>3.

Proof. Lemma 4.8 shows the existence of {3, 5}-GDDs of type 2 for all # > 3. For
g & {4,6,12,20}, assign weight g/2 to each point of this GDD and apply Wilson’s
Fundamental Construction to obtain a {3,5}-GDD of type ¢’. The required in-
gredients exist by Theorem 2.4. For g € {6, 12}, there exists a {3}-GDD of type ¢’
for all > 3 by Theorem 1.1. For g = 4, we assign weight two to each point of a
{3,5}-GDD of type 2" and apply Wilson’s Fundamental Construction to obtain
a{3,5}-GDD of type 4'. The required ingredients exist by Lemma 4.8. To obtain a
{3,5}-GDD of type 207, assign weight five to each point of a {3,5}-GDD of type
4" and apply WFC. The required ingredients exist by Theorem 2.4. O

44. The Case n =6

We show that conditions (i), (ii) and (v) of the Main Theorem suffice for the
existence of {3,6}-GDDs of type ¢'.

44.1. t=0o0r 1 (mod 3)
All values of g are admissible here.

Lemma 4.10. Lett =0o0r 1 (mod 3), ¢t & {4,10,12,22}. Then there exists a {3,6}-
GDD of type ¢' for all g > 2.
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Proof. Since t € B({3,6}), there exists a {3,6}-GDD of type 1°. For
g ¢Z1{2,3,4,6,10, 14,18, 22,42}, assign weight g to each point of this GDD and
apply WFC to obtain a {3,6}-GDD of type ¢'. The required ingredients exist by
Theorem 2.4. Theorem 1.1 gives {3}-GDDs of type ¢’ for all g = 0 (mod 2) when
t =0 or | (mod 3). This covers the cases g € {2,4,6,10,14,18,22,42}. The case
g =3 and ¢t > 5 is covered by Lemma 4.16. Theorem 1.1 gives the existence of a
{3}-GDD of type 3°. ]

It remains to consider {3,6}-GDDs of type ¢’ for t € {4,10,12,22}.
Lemma 4.11. There exists a {3,6}-GDD of type g* if and only if g = 0 (mod 2).

Proof. If g =1 (mod 2), condition (ii) of the Main Theorem is violated. When
g =0 (mod 2), there exists a {3}-GDD of type g* by Theorem 1.1. O

Lemma 4.12. There exists a {3,6}-GDD of type g'° for all g > 2.

Proof. When g = 0 (mod 2), the existence of {3,6}-GDDs of type ¢'° is handled
by Theorem 1.1. When g = 1 (mod 2), the existence of {3,6}-GDDs of type g'°
for g € {5,7,11,13} is handled by Lemma 4.1. For g = 3, existence is handled by
Lemma 4.15. A {3,6}-GDD of type 9'° can be constructed by taking a {3,6}-
GDD of type 3! assign weight three to each point, and apply WFC. The required
ingredients exist by Lemma 4.10. For the remaining values of g, we proceed by
induction and assume that {3,6}-GDDs of type ¢g'* exist for all odd g < k, where
k> 13. Let g =k + 2. Then ¢ is 3-good. Take a {3}-GDD of type [g1, ..., ds],
where >}, ¢9; =9, and g; > 3 for 1 <i <s. Apply Lemma 2.1 to this GDD to
obtain a {3,6}-GDD of type ¢g'°. The required ingredients exist by the induction
hypothesis. O

The proof for the following lemmas mimic that for Lemma 4.12.

Lemma 4.13. There exists a {3,6}-GDD of type g'* for all g > 2.

Lemma 4.14. There exists a {3,6}-GDD of type g* for all g > 2.

44.2. t =2 (mod 3)
We must have g =0 (mod 3). We begin with the construction of some small
ingredients.

Lemma 4.15. There exists a {3,6}-GDD of type 3' for t € {6,8,10,12,14,20}.

Proof. For t =6, it is known that there is a TD(3,6) with a parallel class [2].
Apply Lemma 2.2 to obtain a {3,6}-GDD of type 3°. For ¢ € {8,10, 12, 14,20},
there exist resolvable {3}-GDDs of type 6/ by Theorem 2.3. Apply Lemma 2.2
to obtain {3,6}-GDDs of type 3'. O

Lemma 4.16. There exists a {3,6}-GDD of type 3' for all t > 5.
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Proof. Let t ¢ {2,4,12,14,20}. Then ¢ <€ B({3,5,6,8,10}). So there exists a
{3,5,6,8,10}-GDD of type 1. Assign weight three to each point of this GDD and
apply WFC to obtain a {3,6}-GDD of type 3'. The required ingredients exist by
Theorem 1.1 and Lemma 4.15. When ¢ € {12, 14,20}, existence of the GDDs is
settled by Lemma 4.15. O

Lemma 4.17. Let g =0 (mod 3). Then there exists a {3,6}-GDD of type ¢' for all
t>5.

Proof. When g =0 (mod 6), Theorem 1.1 gives a {3}-GDD of type ¢’ for all
t > 3. When g = 3 (mod 6), assign weight g/3 to each point of a {3,6}-GDD of
type 3" (which exists by Lemma 4.16) and apply WFC to obtain a {3,6}-GDD of
type ¢'. The required ingredients exist by Theorem 2.4 and Lemma 4.10. O

4.5. The Case n =8

This is the most difficult case. We begin with the construction of {3,8}-GDDs of
type ¢' for g € {2,3,4,5}. The following results on PBD-closure are useful.

Lemma 4.18. {v =2 (mod 3) | v > 44} C B({3,4,6,20,23,29}).

Proof. In [3], {3}-GDDs of types 20'46,231124,20110'4%,23'7%33,20'1036!, and
29'1%%  were shown to exist. Since 7,10 € B({3,4}), this gives
{44,47,50,53,56,59} C B({3,4,6,20,23,29}). Theorem 1.2 gives {3}-GDDs of
types 620" and 622! for all ¢ > 6. This shows 6¢+4 20 € B({3,6,20}) and
6t + 23 € B({3,23}) for all ¢+ > 6. The result then follows. O

Lemma 4.19. {v =0 (mod 2)|v > 34}\{38,44} C B({3,10,12, 14, 16, 18,20}).

Proof. Theorem 1.2 provides the existence of a {3}-GDD of type 12/u! for all
t >3andu € {10,12, 14,16, 18,20}. This gives a {3,10,12, 14,16, 18,20}-PBD(v)
for all even v > 46. For v = 36,42, view a TD(3,12) and TD(3,14) as PBDs.
Adjoin a new point to the groups of a TD(3,11) and TD(3,13) to get the
appropriate PBDs on 34 and 40 points, respectively. O

Lemma 4.20. There exists a {3,8}-GDD of type 2" if and only if t & {2,5,8,
11,14,17}.

Proof. Theorem 1.1 settles the case when #+ = 0 or 1 (mod 3). Hence we deal only
with the case t =2 (mod 3). If 7 < 44, ¢t ¢ {5,8,11,14,17}, the existence of a
{3,8}-GDD of type 2’ is given by Lemma 4.1. When ¢ > 44, there exists a
{3,4,6,20,23,29}-GDD of type 1’ by Lemma 4.18. Assign weight two to each
point of this GDD and apply WFC to obtain a {3,8}-GDD of type 2'. The
required ingredients exist by Lemma 4.1. Nonexistence of the remaining GDDs is
handled by the necessary conditions of the Main Theorem. O

Lemma 4.21. There exists a {3,8}-GDD of type 3' if and only if
t&{2,4,6,10,12}.
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Proof. First note that the existence of {3,8}-GDDs of types 3% and 3'® follows
from Lemma 2.2 and Theorem 2.3. For ¢ € {14,18,20,26,28, 30,34}, the exis-
tence of a {3,8}-GDD of type 3’ is provided by Lemma 4.1. Let
t¢{4,6,10,12,14,16,18,20,26,28,30,34}. Then ¢ € B({3,5,8}). Hence, there
exists a {3, 5,8}-GDD of type 1'. Assign weight three to each point of this GDD
and apply WFC to obtain a {3,8}-GDD of type 3. The required ingredients exist
by Theorem 1.1 and the note above. Nonexistence of the remaining GDDs is
handled by the necessary conditions of the Main Theorem. O

Lemma 4.22. There exists a {3,8}-GDD of type 4" if and only if t & {2,5,8}.

Proof. The existence of a {3,8}-GDD of type 4/ exists for all t =0 or 1 (mod 3)
by Theorem 1.1. For ¢t =5 (mod 6), first note that there exist {3,8}-GDDs of
types 4'! and 4'7 by Lemma 4.1. If ¢ > 23, then ¢ € B({3, 11*}) [10]. Hence, there
exists a {3,11}-GDD of type 1’. Assign weight four to each point of this GDD
and apply WFC to obtain a {3,8}-GDD of type 4’. The required ingredients exist
by Theorem 1.1 and the note above. We now deal with the remaining case when
t =2 (mod 6). Lemma 4.1 gives the existence of {3,8}-GDDs of type 4’ for
t € {14,20,26,32,38}. We proceed by unduction on ¢, assuming that all {3,8}-

GDDs of type 4 exist for t < k, where k>38,and ¢t #2,5,8. Lett = k + 6. Then
there exists a {3}-GDD of type (ﬂ) 14! by Theorem 1.2. View this GDD as a
{3,14,54}-GDD of type 1. Assign weight four to each point of this GDD
andapply WEFC to obtain a {3,8}-GDD of type 4’. The required ingredients exist
by Theorem 1.1, the note above, and the induction hypothesis. Nonexistence of
the remaining GDDs is handled by the necessary conditions of the Main
Theorem. O

Lemma 4.23. There exists a {3,8}-GDD of type 5' if and only if t & {2,4,5,6,8}.

Proof. The case t =1 or 3 (mod 6) is handled by Theorem 1.1. Existence of
{3,8}-GDDs of types 5! and 5'7 is provided by Lemma 4.1. When ¢t = 5 (mod 6),
t > 23, we have t € B({3,11*}) [10]. Hence, there exists a {3, 11}-GDD of type 1".
Assign weight five to each point of this GDD and apply WFC to obtain a {3, 8}-
GDD of type 5'. The required ingredients exist by Theorem 2.4 and Lemma 4.1.
This settles the case when 7 is odd. Lemma 4.1 gives the existence of {3, 8}-GDDs
of type 5" for ¢ € {10, 12, 14,16, 18,20,22,24,26,32,38,44}. When ¢ is even and
t >34, t ¢ {38,44}, there exists a {3,10,12,14,16,18,20}-GDD of type 1’ by
Lemma 4.19. Assign weight five to each point of this GDD and apply WFC to
obtain a {3,8}-GDD of type 5'. The required ingredients exist by Theorem 2.4
and Lemma 4.1. Nonexistence of the remaining GDDs is handled by the necessary
conditions of the Main Theorem. O

At this point, we need only consider the existence of {3,8}-GDDs of type ¢’
for g > 6.

Lemma 4.24. Let a > 0 and 0 < w < a. If there exist a TD(8,m + a)-TD(8, a) and
a {3,8}-GDD of type w®, then there exists a {3,8}-GDD of type (m + w)®.
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Proof. Take a TD(8,m + a)—TD(8, a) and remove a — w points from each hole to
obtain a {7, 8}-IGDD of type (m, w)®. Fill in the holes of this IGDD with a {3, 8}-
GDD of type w® and replace each block of size seven by the blocks of a Steiner
system S(2,3,7). O

Lemma 4.25. There exists a {3,8}-GDD of type g% for all g > 6.

Proof. Lemma 4.24 implies the existence of {3,8}-GDDs of types (m — 1) and
m®, whenever a TD(8,m) exists. It follows that if g ¢& {14,20,21,33,34,
35,38,51,54,57}, then there exists a {3,8}-GDD of type g%. The existence of
{3,8}-GDDs of types 14% and 20 follows from Lemma 4.1. For g € {21,33,
34,35,38,51,54,74}, apply Lemma 2.1 with {3}-GDDs of types 12!, 133,
10183,17'1'8 8163,1°1,2416°, and 14'10%, all of which exist by Theorem 1.2. []

Lemma 4.26. Let t € B({3,8}). Then there exists a {3,8}-GDD of type ¢' for all
g=>6.

Proof. Take a {3,8}-GDD of type 1’. Assign weight g to each point of this GDD
and apply WFC to obtain a {3,8}-GDD of type ¢'. The required ingredients exist
by Theorem 2.4 and Lemma 4.25. O

It remains to deal with those cases when 7 &€ B({3, 8}).

Lemma 4.27. Lett € {4,6}. Then there exists a {3,8}-GDD of type ¢" if and only if
g =0 (mod 2).

Proof. If g =1 (mod 2), condition (ii) of the Main Theorem is violated. When
g =0 (mod 2), there exists a {3}-GDD of type ¢’ by Theorem 1.1. O

Lemma 4.28. There exists a {3,8}-GDD of type g° if and only if g =0 (mod 3).

Proof. 1f g # 0 (mod 3), condition (ii) of the Main Theorem is violated. When
g =0 (mod 3), there exists a {3}-GDD of type g°> by Theorem 1.1. O

Lemma 4.29. Let t € {10,12}. Then there exists a {3,8}-GDD of type g" for all
g=>6.

Proof. If g =0 (mod 2), there exists a {3}-GDD of type ¢’ by Theorem 1.1. If
g =1 (mod 2) and g < 25, g ¢ {15,21}, existence is handled by Lemma 4.1. To
obtain a {3,8}-GDD of type ¢’ for g € {15,21}, we assign weight three to each
point of a {3,8}-GDD of type (g/3)"" and (g/3)"* and apply WFC. The required
ingredients exist by Lemma 4.21. For g > 27, we proceed by induction, assuming
that there exist {3,8}-GDDs of type ¢’ for all g < k, where k > 25. Let g = k + 2.
Then g is 5-good. Take a {3}-GDD of type [gi,...,gs], where > ; , g; = g, and
gi > 5for 1 <i<s. Apply Lemma 2.1 to this GDD to obtain a {3,8}-GDD of
type ¢g'. The required ingredients exist by the induction hypothesis. O
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Lemma 4.30. Let ¢t € {11,14,17}. Then there exists a {3,8}-GDD of type ¢' for all
g=>6.

Proof. For g € {7,8,10,11,12,13, 14}, the result follows from Lemma 4.1. For
g = 6, the result follows from Theorem 1.1. For g =9, the result follows by
assigning weight three to each point of a {3,8}-GDD of type 3’ and applying
WEFC. The required master and ingredients exist by Lemma 4.21. For the
remaining odd (even, respectively) values of g, note that g is 3-good (4-good,
respectively) and mimic the proof of Lemma 4.29. O

Lemma 4.31. Lett € {16,18,20,23,26,28,29,30,34,35,36,38}. Then there exists
a {3,8}-GDD of type ¢’ for all g > 6.

Proof. Lemma 4.1 gives the existence of {3,8}-GDDs of type ¢' for
g € {7,11,13}. For the remaining odd (even, respectively) values of g, note that g
is 3-good (2-good, respectively) and mimic the proof of Lemma 4.29. O

4.6. The Case n=10

The case for even g is easily handled.

Lemma 4.32. Let g =0 (mod 6). Then there exists a {3,10}-GDD of type ¢' for all
t>3.

Proof. Follows from Theorem 1.1. O

Lemma 4.33. Let g =2 or 4 (mod 6). Then there exists a {3,10}-GDD of type ¢" if
and only if t =0 or 1 (mod 3).

Proof. Condition (v) of the Main Theorem is violated if = 2 (mod 3). If t = 0 or
1 (mod 3), there exists a {3}-GDD of type g' by Theorem 1.1. O

We now focus on the case g = 1 (mod 2).

Lemma 4.34. There exists a {3,10}-GDD of type g'° for all g =1 (mod 2).

Proof. The case g =3 follows from Lemma 2.2 and Theorem 2.3. Lemma 4.1
settles the cases g € {5,7, 11, 13}. The remaining values of g are 3-good. The result
then follows by induction using Lemma 2.1. O

Lemma 4.35. Let t € B({3,10}). Then there exists a {3,10}-GDD of type ¢' for all
g =1 (mod 2).

Proof. Take a {3,10}-GDD of type 1’ and assign weight g to each of the points.
Apply WFC to obtain a {3,10}-GDD of type ¢g'. The required ingredients exist by
Theorem 2.4 and Lemma 4.34. O]
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Lemma 4.36. Let t € {4,6}. Then there exists a {3,10}-GDD of type ¢' if and only
if g=0 (mod 2).

Proof. If g =1 (mod 2), condition (ii) of the Main Theorem is violated. Existence
follows from Lemmas 4.32 and 4.33. O

Lemma 4.37. There exists a {3,10}-GDD of type g'* for all g = 1 (mod 2), except
when g = 3.

Proof. First note that condition (iii) of the Main Theorem excludes the existence
of a {3,10}-GDD of type 3'?, since 36¢ B({3,10}) by Theorem 2.5.

Lemma 4.1 gives the existence of {3,10}-GDDs of type g¢'*> when
g€{57,9,11,13,17, 19,23,25}. For g € {15,21}, take a {3,10}-GDD of type
(9/3)", which exists by Lemma 4.1, and assign weight three to each of its points.
Apply WFC to obtain a {3,10}-GDD of type g'?. The required ingredients exist
by Theorem 1.1 and Lemma 4.35. If g > 27, then g is 5-good. Straightforward
induction using Lemma 2.1 establishes the required result. O

Lemma 4.38. Let t € {16,18,22,24,34,36,42}. Then there exists a {3,10}-GDD
of type ¢' for all g =1 (mod 2).

Proof. The case g € {3,5,7,11,13} is handled by Lemma 4.1. For the remaining
odd values of g, note that g is 3-good and proceed by induction using
Lemma 2.1. O]

It remains to consider those values of # =2 (mod 3). Condition (v) of the
Main Theorem requires that g = 0 (mod 3) in this case.

Lemma 4.39. {v =2 (mod 6)|v > 50}\{56,62} C B({3,10, 16, 18, 20,26, 32}).

Proof. Theorem 1.2 provides the existence of a {3}-GDD of type 18! for all
t>3 and u € {20,26,32}. This gives a {3,10,16,18,20,26,32}-PBD(v) for
v =2 (mod 6), v > 74. For v € {50, 68}, note that there exist {3}-GDDs of types
20'10° and 20'16* by Theorem 1.2. O

Lemma 4.40. There exists a {3,10}-GDD of type 3' for all t =2 (mod 3),
t ¢ {2,8,14}.

Proof. The case t =5 (mod 6) is handled by Theorem 1.1. If # =2 (mod 6),
t > 50 and ¢ & {56, 62}, there exists a {3, 10, 16, 18,20, 26,32}-GDD of type 1’ by
Lemma 4.39. Assign weight three to each point of this GDD and apply WFC to
obtain a {3,10}-GDD of type 3'. The required ingredients exist by Lemma 4.1
and Lemma 4.34. The remaining values of ¢ are handled by Lemma 4.1. O

Lemma 4.41. Lett =2 (mod 3), ¢ & {2,8,14}. Then there exists a {3,10}-GDD of
type ¢' for all g = 0 (mod 3).
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Proof. Take a {3,10}-GDD of type 3’ (which exists by Lemma 4.40) and assign
weight g/3 to each of its points. Apply WFC to obtain a {3, 10}-GDD of type ¢'.
The required ingredients exist by Theorem 2.4 and Lemma 4.34. O

Lemma 4.42. There exists a {3,10}-GDD of type g® if and only if g = 0 (mod 6).

Proof. 1f g # 0 (mod 6), then conditions (ii) of the Main Theorem is violated. If
g =0 (mod 6), then the existence of a {3}-GDD of type ¢® is provided by The-
orem 1.1. O

Lemma 4.43. There exists a {3,10}-GDD of type g'* if and only if g = 0 (mod 3),
g #3.

Proof. If g =0 (mod 6), there exists a {3}-GDD of type g'* by Theorem 1.1.
When ¢ =3 (mod 6), there exists a {3,10}-GDD of type g¢'* for
g €{9,15,21,33,39} by Lemma 4.1. Theorem 1.2 gives the existence of a {3}-
GDD of type 97u' for all » > 2 and u € {9,15,21}. Apply Lemma 2.1 to this
GDD to obtain a {3,10}-GDD of type g'* for all g > 45. The result for the case
g = 27 follows from the existence of a {3}-GDD of type 9°. The nonexistence of a
{3,10}-GDD of type 3'* is handled by the conditions of the Main Theorem. []

5. Conclusion

The Main Theorem given in this paper is an extension of the results of Hanani [8]
concerning uniform GDDs with block size three, as well as the results of Gronau,
Mullin and Pietsch [7] on the existence of PBDs with block sizes three and n,
4 < n < 10. It also dictates when the complete multipartite graph with equal-sized
partitions has an edge decomposition into K3’s and K,,’s, 4 < n < 10, thus ex-
tending also some results in graph decompositions [9].

N
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Fig. 1. Prestructure P(s,m)

m lines

|
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Fig. 2. Prestructure Q(s, m)
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Appendix
A Some Small Uniform {3, n}-GDDs

In this appendix, we give details on the computational procedures we employed to
construct those GDDs given in Lemma 4.1.

P(int s, int m, int n, int g, int t)

int a{100][50], block([100][10], i, j, k, ok, r;

b,
for (i = 0; 1 < t; i++)
for (j = 0; j < g; j++)
alil[j] = jrt+i+1;

af0] (0] = O;
for (b = 0; b < a; b++) {

k = 0;
block[b] [k++] = 1;
for (j = 0; j < g; j*++) {
for (i = 0; i < t; i++) {
if ((ali)[32%t '= 1) && alil(j1) {
block[b] [k++] = ali][j];
alilfjl = 0;

if (k == n)
break;

if (k == n)
break;
}
}

for (b = s; b < s+m; b++) {
k = 0;

pd <t i)
=0; 1 < k; r++)
((ali1[j1-block[b] [r]1)¥%t == 0) {
ok = 0;

if (alil[j] && ok) {
block(b] [k++] = alil[j];
ali][j] = 0;

}
if (k == n)
break;

if (k == n)
break;

}
}

for (b = 0; b < s+m; b++) {
for (k = 0; k < n; k++)
printf(’’%d’’, block[bl[k]);
printf(’’\n’’);

Fig. 3. C-function for generating P(s,m)
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Let (X,9,./) be a {3,n}-GDD of type ¢'. We call the set {4 € o7 | |4]| = n}
the prestructure of the GDD. Given a prestructure, a set of blocks of size three
(triples) can be added to complete it to a GDD. The heuristic we used to complete
the prestructure is similar to the hill-climbing heuristic used in [7]. In what fol-
lows, we give a prestructure for each GDD listed in Table 1. The point set X is
assumed to be {1,...,g¢}. Unless otherwise specified, the groups are
{jt +i|0 <j<g}, for 1 <i<t Sowelist only the blocks of size n. We also omit
listing the triples here since they exhibit no particular structure and are space
consuming. Moreover, the triples can be easily found using a simple hill-climbing
heuristic. For space efficiency, we also represent all the integers a,a + 1,...,b by
a—b.

The intersection pattern of the blocks in many of the prestructures have one of
the forms shown in Figures 1 and 2. The blocks in the prestructures of the form
P(s,m) are generated by calling the C-function presented in Figure 3. We are not
able to find such succinct description for the blocks in Q(s,m), and we content
ourselves by exhibiting explicitly the blocks in the prestructure in this case. We use
the notation rQ(s, m) for r disjoint copies of Q(s, m).

Al . n=4

We give prestructures of {3,4}-GDDs of types listed in Table 1. For
g €{5,7,11,13,19}, a prestructure for a {3,4}-GDD of type ¢° is P(3,¥).

A2.n=6
We give prestructures of {3,6}-GDDs of types listed in Table I.

Prestructures of {3,6}-GDDs

Type Prestructure Type Prestructure Type Prestructure
10 12 22
NS < B T i)
e (0,10) 2 (3,23) 0 (3,19)
5 P(5,14) 11 P(5,14) 13 P(0,26)
7' P(3,9) 12 P(0,22) 13* P(3,45)
A3. n=38

We give prestructures of {3,8}-GDDs of types listed in Table 1. First, we deal
with the case when g is even.

For r € {20,23,26,29,32,35,38,41}, there exists a {3,8}-PBD(2¢+ 1) with
precisely ten blocks of size eight. These ten blocks of size eight may be taken to be
the following.

(1-7, 40} (815} {7,15,21,27,31,35,37,39}
(8, 16-21, 40} (1,9, 2227} {6,14,20,26,30, 34,36, 38}
(2, 10, 16, 22, 28-31} (3, 11, 17, 23, 32-35} {5,13,19,25,29,33,38,39}

{4,12,18,24,28,32,36,37}
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The existence of such a PBD can be verified by employing the hill-climbing
heuristic on this set of blocks. From this PBD delete a point not on the block of
size eight to obtain a {3,8}-GDD of type 2'.

Let 7 be the set consisting of the following ten blocks of size eight.

{1,5,9,13,17,21,25,29}  {2,6,10,14,28,33,37,41}  {1,7,22,26,30,33, 38,42}
{3,5,11,15,19,23,34,37}  {4,9,22,27,31,34,39,41}  {2,8,11,13,26,35,40,43}
(3.6,12,16,17,27,30.35}  {10,15,20,21,31,36,38,43} {8, 12, 14,19, 25,36,39,42}
{4,7,1

,7,16,20,23,28,29,40}

For g € {4,8,10,14} and ¢t € {11,14,17,20,26,32,38}, let {4 +i| 1 <i <4}
U{d(t+j)+i|1<i<g-—4}, for 0 <j<t be the groups of a {3,8}-GDD of
type ¢'. A prestructure for this GDD is the set .7

For g € {14,20}, let {jg+i| 1 <i<g}, for 0 <j <8, be the groups of a
{3,8}-GDD of type ¢®. Define the 8 x 8 matrix 4 = (a;;), with 0 <i < 8 and
1 <j <8, such that a;; = ig + j. A prestructure for this GDD consists of the 16
blocks defined by each of the columns of 4, as well as each of the generalized main
diagonals of 4.

Forze {11,14,17}, let {12j+i |1 <i < 12}, for 0 < j < ¢, be the groups of a
{3,8}-GDD of type 12’. A prestructure for this GDD consists of the following
nine blocks, which is isomorphic to the triangular scheme.

{1,13,25,37,49,61,73,85} {1,26,38,50,62,74,86,98}  {13,26,51,63,75,87,99, 111}
{25,38,51,76,88,100, 112,124} {5,37,50,63,76,101, 113,125} {6,18,49,62,75,88, 101, 126}
{19,31,61,74,87,100,113,126}  {6,19,43,73,86,99,112,125} {5,18,31,43,85,98,111, 124}

We now settle the case when ¢ is odd.

For t € {I1,17}, let {4j+i|1<i<4}U{4(t+j)+1}, for 0 <j <1, be
thegroups of a {3,8}-GDD of type 5. A prestructure for this GDD is the
set 7.

For g € {7,9,11,13,17,19,23,25}, a prestructure for a {3,8}-GDD of type

g12 has the followmg blocks which is isomorphic to Q(6 3("2 7))
{7,36-42}  {7,71-76,80}  {8,77-79,81-84}  {15,643-49} 22,50-56}  {29,57-63}
{36,64-70}  {7j+i[1<i<8},0<,<4 (8j+i|5<i<12},10 <<

For g¢ge{7,11,13} and ¢e{11,17,23,29,35}, let {4j+i|l <i<4}
U{4(t+j)+i| 1 <i<g—4}, for 0 <j <t be the groups of a {3,8}-GDD of
type ¢g'. A prestructure for this GDD is the set J
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Prestructures of several other GDDs of the form Q(s,m) are given in the next
table.

Type  Prestructure Blocks in prestructure
3 0(3,0) {1-8}, {8-14,16}, {1,16-22}, {1,23-28,30}, {8, 15,37-42},
{16,29,31-36}
3% 20(3,0) {1-8Y +i, {815} +i, {1,15-21} 4+, {1,22-28} + i,
{8,29-35} 4+, {15,36-42} +i, i € {0,42}
5i4 0(5,0) {1,28,30-35}, {1,36-42}, {8,43-49}, {15,50-56},
{22,57-62,70}, {28,63-69}, {7j+i|1<i<8},0<,;<3
7'8 30(3,0) {1-8} +i, {8-15} +i, {1,15-18,20-22} +1,
{1,23-29} 44, {8,19,30-35} +i, {15,36-42} + i, i € {0,42,84}
910 0(3,6)  {1-8}, {815}, {2,15-21}, {2,23-29}, {8,22,30,31,33-35,46},

{15,36-42}, {32,43-45,47-50},
{8j+i|3<i<10},6<;<10

11" 0(5,5) {6,29-35}, {6,57-63}, {8,53,64-67,69,70}, {15,36-42},

{22,43-49}, {29,50-52, 54-56, 68},

{7j+i|1<i<8},0<j<3,
(8j+i|7<i<14},8<;<12

1 O(11,0)  {1,70,72-77}, {1,78-84}, {8,85-91}, {15,92-98}, {22,99-105},

{29,106-112}, {36, 113-119}, {43,120-126}, {50, 127-133},
{57,134-140}, {64, 141-146, 154}, {70, 147153},

{7j+i|1<i<85,0<;<9

11 20(4,4)  {1-8} +i, {815} +i, {15-22} + i, {1,22-28} + i, {1,50-56} + i,
{8,29-35} 414, {15,36-42} +i, {22,43-49} +i,i € {0,56}
118 30(3,3) {1-8} 44, {8-15} +4,{1,15-18,20-22} + 4, {1,23-29} + 4,
{8,19,30-35} +1i, {15,36-42} + i, i € {0,42,84}
130 0(7,4) {1,43-49}, {1,92-98}, {8,50-56}, {15,57-63}, {22,64-70},

{29,71-77}, {36,78-84}, {43,85-91},
{7j+i|1<i<8,0<j<5,
{8j+i|3<i<10},12<,<15
17" 0(11,2) {1,70,72-77}, {1,134-140}, {8, 141147}, {15,78-84},
{22,85-91}, {29,92,94-98,150}, {36,99-105}, {43,106-112},
{50,113-119}, {57,120-126}, {64,127-133},
{70,148, 149, 151155},
{93,156-162}, {163-170}, {7j+i| 1 <i<8},0<;<9
2310 0(5,20) {6,29-35}, {6,57-63}, {8,51,64-67,69,70}, {15,36-42},
{22,43-49}, {29, 50, 52-56, 68},
{7j+i[1<i<8},0</<3,
{8j+i|7<i<14},8<,<27
2510 0(7,19) {1,43-49}, {1,64,85-90}, {8,71,92-97}, {15,78-84},
{22,73-77,91,98}, {29, 5056}, {36,57-63}, {43,65-70,72},
{7j+i|1<i<8},0<;<5
{8j4+i|3<i<10},12<,<30
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The following are prestructures of the form P(s,m).

Prestructures of {3,8}-GDDs

Type Prestructure Type Prestructure Type Prestructure
3% P(7,5) 7% P(19,6) 113 P(23,32)
5!8 P(7,5) 7% P(21,6) 1316 P(9,18)
520 P(5,8) 7% P(7,20) 1318 P(7,23)
522 (11,4) 73 P(3,27) 13% P(13,21)
5% P(0,15) 7% P(13,20) 1326 P(7,36)

32 P(17,5) 7% P(7,27) 13% P(21,27)
538 P(11,14) 11%° P(5,23) 1330 P(19,32)
54 P(5,23) 11% P(11,26) 13 P(15,42)

10 PG,@ 1% P(5,34) 13% P(13,47)
7' P(7,6) 11%° P(7,35) 13% P(19,45)
7' P(9,6) 1 P(11,37) 1910 P(3,21)
7% P(13,6) 11% P(13,38)

Prestructures for the remaining GDDs do not have one of the forms P(s,m) or
QO(s,m), and are presented in the next table. In each case, the groups of the GDD
are taken tobe {jg+i|1<i<g},0<j<t

Type Blocks in prestructure
318 {1,4,7,10,13,16,19,22}, {2,5,8,25,28,31, 34,37}, {3,6,9,40,43,46,49, 52},
{1,5,9,11,14,17,20,23}, {2,6,7,26,29,32,35,38}, {3,4,8,4 4,47,50,53}
(3,5,7,12,15, 18,21, 24}, {2,4,9,27,30,33, 36,39}, {1,6,8,42,45,48, 51, 54)
30 {1,4,7,10,13, 16, 19,22}, {22,25.28,31, 34,37, 40,43}, {2, 5,43, 6 9,52,55,58},
(5.8,11,14,17,20,23,26}, {26,29,32,35,38,41,44,47}, {3,6,7.47,50, 53, 56, 59}

{5,7,27,30,33,36,39,42},{22,26,45,48,51,54,57,60}
{9,12,15,18,21,24,43,47}
3% {1,4,7,10,13,16,19,22}, {22,25,28,31,34,37,40,43}, {2,5,43,46,49, 52, 55, 58}
{5,8,11,14,17,20,23,26}, {26,29,32,35,38,41,44,47}, {3,6,7,47, 50,53, 56,59}
{5,7,27,30,33,36,39,42}, {22,26,45,48,51,54,57,60}
{9,12,15,18,21,24,43,47},
{7,26,61,64,67,70,73,76}, {26,43,62,65,68,71,74,77}
{7,43,63,66,69,72,75,78}
3 4 , 7,10,13,16,19,22}, {22,25,28,31,34,37,40,43}, {2,5,43,46,49, 52,55, 58}
{5,8, ,14 17 20 23 26}, {26, 29 32, 35 38 41 44,473, {3, 6 7, 47,50 53, 56,59},
{5,7,27,30,33,36,39,42},{22,26,45,48,51,54,57,60}
{9,12,15,18,21,24,43,47},
{7,26,61,64,67,70,73,76}, {26,43,62,65,68,71,74,77}
{7,43,63,66,69,72,75,78},
{j+3i|0<i<T7},79<;<8l
519 {1,6,11,16,21,26,31,36}, {1,7,12,17,22,27,41,46}, {1,8,13,18,32,37,42,47}
{2,6,23,28,32,38,41,48}, {2,9,11,19,33,37,43,46}, {2, 14,18,24,27,34,39,44}
{5,6,15,25,27,35,37,50}, {3,20,25,30,32,40,45,46},
{4,10,11,18,25,29,41,49}
,16,21,26,31,36}, {1,7,12,17,41,46,51,56}, {1,22,27,32,37,42,47,52}
,18,23,28,33,57}, {2,13,17,38,43,48, 53, 58}, {4,8,13,19,22,29,34,39}
{6,14,24,40,44,49, 54,59}, {9, 15,17,25,30,35,40,45}
{5, 10,20, 22,40, 50, 55,60}

{1,6,11
{3,6,13




Uniform Group Divisible Designs with Block Sizes Three and » 443

Type Blocks in prestructure

5' {1,6,11,16,21,26,31,36}, {1,41,46,51,56,61,66,71}, {1,7,12,17,22,27,32, 76},
{2,6,37,42,47,52,57,62}, {3,8,11,18,37,67,72, 77},
{13,23,28,33,37,43, 48,80},
{4,6,53,58,63,68,73,78}, {9,14,19,24,29,34, 53,67},
{11,23,39,44,49, 53,59, 64},
{5,10, 15,20, 54,69, 74,79}, {20,25, 30, 35,40, 45, 50, 67},
{20,23,38,55,60,65,70,75}
5% {1,6,11,16,21,26,31,36}, {1,7,12,17,27,41,46}, {1,8,13, 18,32, 37,42,47},
{2,6,23,28,32,38,41,48}, {2,9,11, 19,33, 37,43,46}, {2, 14, 18,24,27,34, 39, 44},
{5,6,15,25,27,35,37,50}, {3,20,25,30,32,40,45,46},
{4,10,11, 18,25,29, 41,49},
{j+5i10<i<7},51<j<55and 91 < ;<95

A4. n=10

We give prestructures of {3, 10}-GDDs of types listed in Table 1. A prestructure
for a {3,10}-GDD of type 5' for ¢ € {10, 12,16, 18,22,24,34,36,42} is P(0,¢/2).
The following blocks constitute a prestructure for a {3,10}-GDD of type 13'2.

{1-10}  {1,11,12,14-20} {1,21-24,26-30} {10,31-33,35-40} {10,41-45,47-50}
{13,51-59}  {25,99-107} {34, 60-68} {46,108, 116}
{10j+i|9<i<18},6<,<8 {10j+i|7<i<16},11<;<14

Prestructures of the form Q(s,m) for several other GDDs are given in the next
table.

Type Prestructure Blocks in prestructure

3% 03,00 {1-10}, {1,11-18,20}, {2,11,19,21-27}, {1,28-36}, {2,37,39-45,47},
{11,38,46,48-54}
3 04,0 {1-10}, {1,11-19}, {11,20-28}, {2,20,29-36}, {1,37-45},
{2,46-49,51-55},
{11,50, 56-58,60-63,68}, {20, 59, 64-67,69-72}
7" 0(3,3) {1-10}, {10-19}, {1,19-24,26-28}, {1,29-33,35, 36, 38,46},
{10,25,39-45,47}, {19,34,37,48,50-54,56}, {49, 55,5760, 62-65},
{61,66-72,74,75}, {73,76-84}
7' 04,4 {1-10}, {1, 11-16, 18-20}, {11,17,21-26,28, 29},
{2,21,27,30-33, 35, 36,38},
{1,34,39-46}, {2,37,47-49, 51,52, 54-56}, {11,50, 53,57, 58, 6064},
{21,59,65-68,70-73}, {69,74-82}, {10j +i|3<i<12},8<,<10
112 04,6) {1-10}, {10-19}, {19-28}, {1,28-36}, {1,64-72}, {10,37-45},
{19,46-54},
{28,55-63}, {10j+i|3<i<12},7<,;<12
17 Q0(3,15)  {1-10}, {10-19}, {1,19-24,26-28}, {1,29-36,38}, {10,25,39-45,47},
{19,37,46,48,50-54,203}, {49,195-202,204}, {10j +i |5 <i < 14},
5<j<I8
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Prestructures for the remaining cases are given below.

Type Prestructure Type Prestructure Type Prestructure Type Prestructure

316 P(3,2) 362 P(5,14) 1'e P(5,13) 13% P(9,23)
320 P(0,6) 10 P(0,7) 118 P(3,17) 13%* P(9,36)
322 P(5,2) 7'8 P(5,8) 1122 P(9,16) 13 P(3,44)
326 P(3,5) 7% P(7,9) 11> P(7,20) 132 P(5,50)
32 p55 7 P34 1% P(3L 154 P0.21)
3 pO2) P PB21) 11 P(5.35) 192 Pp(3,20)

36 P(3,8) 7% P(9,17) 11 P(9,38) 21" P(7,23)
3% P(7,5) 7+ P(7,23) 139 P(0,13) 20 p(5,23)

:j P(5,8) 95 P(3,8) 1312 P(3,18) 251121 P(0,30)
3 P(9,5) 9 P(5,8) 13 P(7,17) T PO.3%)
3% P(3,14) 11 P(0,11) 13% P(5,24) 39! P(5,50)

This completes the construction of all GDDs whose existence is claimed in

Lemma 4.1.
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