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Abstract. The existence of group divisible designs of type gt with block sizes three and n,
4 � n � 10, is completely settled for all values of g and t.

1. Introduction

A set system is a pair ðX ;AÞ, where X is a finite set of points and A is a set of
subsets of X , called blocks. The set K is a set of block sizes for ðX ;AÞ if jAj 2 K
for every A 2 A. For a set K of block sizes for ðX ;AÞ, if an element k 2 K is
superscripted with a �, it indicates that there is exactly one block of size k in
ðX ;AÞ. We note that if K is a set of block sizes for ðX ;AÞ, then any set con-
taining K is also a set of block sizes for ðX ;AÞ.

Let ðX ;AÞ be a set system with set of block sizes K. If ðX ;AÞ has the
property that every 2-subset of X appears in precisely one block, it is a pairwise
balanced design (PBD), and is denoted by K-PBDðjX jÞ. A fkg-PBDðvÞ is a Steiner
2-design Sð2; k; vÞ. An important idea in the study of PBDs is that of closure. Let
BðKÞ denote the set of positive integers v for which there exists a K-PBDðvÞ. The
set BðKÞ is called the PBD-closure of the set K. A partial design is a set system
ðX ;AÞ for which every 2-subset of X is contained in at most one block.

Let ðX ;AÞ be a set system, and let G ¼ fG1; . . . ;Gsg be a partition of X into
subsets, called groups. The triple ðX ;G;AÞ is a group divisible design (GDD) when
every 2-subset of X not contained in a group appears in exactly one block and
jA \ Gj � 1 for all A 2 A and G 2 G. We denote a GDD ðX ;G;AÞ by K-GDD if
K is the set of block sizes for ðX ;AÞ. The group-type, or simple type, of a GDD
ðX ;G;AÞ is the multiset ½jGj j G 2 G�. When more convenient, we use the expo-
nential notation to describe the type of a GDD: A GDD of type g1

t1 
 
 
 gs
t2 is a
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GDD where there are exactly ti groups of size gi, for 1 � i � s. A GDD is uniform
if all its groups have the same size, that is, if it is of type gt. A fkg-GDD of type mk

is called a transversal design, and is denoted by TDðk;mÞ.
GDDs and PBDs are intimately related. First, a PBD is a GDD with groups of

size one. On the other hand, a K-GDD of type ½g1; . . . ; gs� can be viewed as a
K [ fg1; . . . ; gsg-PBDð

Ps
i¼1 giÞ by considering the groups of the GDD to be

blocks of the PBD also. Such a GDD can also be used to create a
K [ fg1 þ 1; . . . ; gs þ 1g-PBDð1 þ

Ps
i¼1 giÞ by adjoining a new point to each

group, and considering the resulting subsets as blocks. Conversely, a GDD can be
obtained from a PBD by deleting a point.

GDDs play an important role in the construction of many different classes of
combinatorial designs. Consequently, there has been much interest in the con-
struction of rich classes of GDDs. The existence of uniform f3g-GDDs is com-
pletely settled by Hanani [8].

Theorem 1.1 (Hanani). There exists a f3g-GDD of type gt if and only if t � 3,
g2 t

2

� �
� 0 ðmod 3Þ, and gðt � 1Þ � 0 ðmod 2Þ.

This result is extended by Colbourn, Hoffman and Rees [5] who proved the
following.

Theorem 1.2 (Colbourn, Hoffman and Rees). Let g, t, and u be nonnegative inte-
gers. There exists a f3g-GDD of type gtu1 if and only if the following conditions are
all satisfied:

(i) if g > 0, then t � 3, or t ¼ 2 and u ¼ g, or t ¼ 1 and u ¼ 0, or t ¼ 0;
(ii) u � gðt � 1Þ or gt ¼ 0;
(iii) gðt � 1Þ þ u � 0 ðmod 2Þ or gt ¼ 0;
(iv) gt � 0 ðmod 2Þ or u ¼ 0;
(v) g2 t

2

� �
þ gtu � 0 ðmod 3Þ.

More recently, Colbourn, Cusack and Kreher [4] provided necessary and suffi-
cient conditions for the existence of f3g-GDDs of type gt1r.

Theorem 1.3 (Colbourn, Cusack and Kreher). Let g, t, and r be positive integers.
Then there exists a f3g-GDD of type gt1r if and only if the following conditions are
all satisfied:

(i) g � 1 ðmod 2Þ;
(ii) t þ r � 1 ðmod 2Þ;
(iii) if t ¼ 1, then r � g þ 1;
(iv) if t ¼ 2, then r � g;
(v) g2 t

2

� �
þ gtr þ r

2

� �
� 0 ðmod 3Þ.

In this paper, we establish the existence of large classes of GDDs by extending
Hanani’s result in another direction. More specifically, we settle completely the
existence question for (uniform) f3; ng-GDDs of type gt, for 4 � n � 10, and all
values of g and t. The result is trivial when gt ¼ 0 or t ¼ 1 since there can be no
blocks. When g ¼ 1, such a f3; ng-GDD is just a f3; ng-PBDðtÞ, whose exis-
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tence for all n � 10 has been determined [7]. So we assume both g and t to be at
least two.

Main Theorem. Let 4 � n � 10, g � 2 and t � 2. There exists a f3; ng-GDD of
type gt if and only if the following conditions are all satisfied:

(i) t � 3;
(ii) if g2 t

2

� �
6� 0 ðmod 3Þ or gðt � 1Þ � 1 ðmod 2Þ, then t � n;

(iii) gt 2 Bðf3; n; ggÞ;
(iv) gt þ 1 2 Bðf3; n; g þ 1gÞ;
(v) if n � 0 or 1 ðmod 3Þ, then g2 t

2

� �
� 0 ðmod 3Þ;

(vi) if n � 1 ðmod 2Þ, then gðt � 1Þ � 0 ðmod 2Þ;
(vii) if n � 2 ðmod 6Þ, g2 t

2

� �
6� 0 ðmod 3Þ, gðt � 1Þ � 0 ðmod 2Þ, then gt � ðn þ 1Þ

ð3n þ 2Þ=6;
(viii) if n ¼ 8, then ðg; tÞ 6¼ ð5; 8Þ.

The remainder of this paper proves this theorem. We first examine necessity of
the conditions, which is quite straightforward.

Condition (i) follows from the fact that in a f3; ng-GDD, every block inter-
sects at least three groups. Condition (ii) is an extension of this observation. When
g2 t

2

� �
6� 0 ðmod 3Þ or gðt � 1Þ � 1 ðmod 2Þ, there cannot exist a f3g-GDD of type

gt. Therefore, there must be at least one block of size n, and hence there are at
least n groups.

Conditions (iii) and (iv) follow from earlier remarks concerning the relation-
ship between GDDs and PBDs.

For condition (v), observe that the number of 2-subsets contained in each
block is a multiple of three, so the number of 2-subsets not contained in a group
must be a multiple of three. For condition (vi), observe that every point must be in
an even number of 2-subsets that are contained in the blocks. Hence
gðt � 1Þ � 0 ðmod 2Þ.

For (vii), we must have at least one block of size n, and each point is in an even
number of blocks of size n. The following lemma shows that the fewest number of
blocks of size n that such a configuration can have is n þ 1.

Lemma 1.1. Let ðX ;AÞ be a partial design for which every point is contained in an
even number of blocks and there is a block of size n, then jAj � n þ 1.

Proof. Let A be a block of size n. For each x 2 A, let Bx denote the set of all
blocks, other than A, that contain x. Since every point is contained in an even
number of blocks, Bx is nonempty for each x 2 A. Now, Bx \Bx0 ¼ ; for distinct
points x; x0 2 A, for otherwise there would exist a block in addition to A that
contains both x and x0, contradicting the fact that ðX ;AÞ is a partial design.
Hence, [x2ABx contains at least n distinct blocks, which together with A, give
n þ 1 blocks. (

However, the number of blocks of size n must not be divisible by three. Hence,
we must have at least n þ 2 blocks of size n, forming a partial design. The fol-
lowing result of Mendelsohn and Rees [11] is useful.
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Theorem 1.4 (Mendelsohn and Rees). Let ðX ;AÞ be a partial design with block size
k, in which there are b blocks. Then letting r ¼ bðb � 1Þ=kc, we have

jX j � bð2rk � b þ 1Þ
rðr þ 1Þ : ð1Þ

It is not difficult to verify that the quantity on the right hand side of inequality (1)
is an increasing function of b. Using Theorem 1.4, we see that the partial design
formed by the blocks of size n must contain at least dðn þ 2Þð3n � 1Þ=6e points.
Hence, gt � ðn þ 1Þð3n þ 2Þ=6.

We now treat the nonexistence of a f3; 8g-GDD of type 58. In a f3; 8g-GDD
ðX ;AÞ of type 58, there are b8 � 1 ðmod 3Þ blocks of size eight, and each point
lies on an odd number r8 of blocks of size eight. Since there are five points in each
group, and r8 is odd, the number b8 of blocks of size eight must be odd. Therefore,
b8 � 1 ðmod 6Þ, and b8 � 7. If there are more than ten blocks of size eight, then
by Theorem 1.4, there must be at least 41 points. So we only have to consider the
case when b8 ¼ 7.

Suppose there are seven blocks of size eight.Then there are eight points, each
of which lies on precisely three blocks of size eight. Consider the dual incidence
structure of these seven blocks; let Y be the set of blocks of size eight and for each
point x 2 X that lies in more than one block of size eight, let Bx be the set of blocks
containing x. Since any two blocks intersect in at most one point, the dual
structure ðY;[x2XfBxgÞ is a partial design, with seven points and eight blocks of
size three. This is impossible. If there are ten blocks of size eight, then there are 20
points, each of which lies on exactly three blocks of size eight. The dual incidence
structure of these ten blocks is a partial design with ten points and 20 blocks of
size three. This is again impossible.

This completes the proof of necessity for the conditions in the Main Theorem.
The necessary conditions for the existence of f3; ng-GDDs of type gt for n � 1 or
3 ðmod 6Þ is identical to the necessary conditions for the existence of f3g-GDDs
of type gt. Since all f3g-GDDs of type gt satisfying these necessary conditions
exist by Theorem 1.1, we do not need to consider the cases n ¼ 7 and 9 here.

2. Recursive Constructions

We prove sufficiency for the conditions in the Main Theorem by developing a set
of recursive constructions which we present in this section. First, we require some
definitions.

A parallel class in a GDD is a set of disjoint blocks that contain each point of
the GDD exactly once. A GDD is resolvable if all of its blocks can be partitioned
into parallel classes.

Let ðX ;AÞ be a set system with set of block sizes K, let G ¼ fG1; . . . ;Gsg be a
partition of X into groups, and let H ¼ fH1; . . . ;Hsg be a set of pairwise disjoint
subsets of X , called holes, with the property that Hi � Gi, for 1 � i � s. The
quadruple ðX ;H;G;AÞ is an incomplete group divisible design (IGDD), denoted
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K-IGDD, if any 2-subset of X not contained in a group or [s
i¼1Hi appears in

precisely one block. The type of an IGDD is the multiset ½ðjG1j; jH1jÞ; . . . ;
ðjGsj; jHsjÞ�. As usual, when it is more convenient, we use the exponential notation
to represent the type of an IGDD. An incomplete transversal design (ITD),
TDðk;mÞ�TDðk; hÞ is a fkg-IGDD of type ðm; hÞk. By considering each point on a
fixed block of a TDðk;mÞ as a hole of size one, we see that the existence of a
TDðk;mÞ implies the existence of a TDðk;mÞ�TDðk; 1Þ.

We now present the tools of this paper. The main recursion we use is Wilson’s
Fundamental Construction (WFC) for GDDs [14].

Theorem 2.1 (WFC). Let ðX ;G;AÞ be a (master) GDD, where G ¼ fG1; . . . ;Gsg.
Let x : X ! Z�0 be a weight function. Suppose that for each block
A ¼ fx1; . . . ; xkg 2 A, there exists an (ingredient) K-GDD of type ½xðx1Þ; . . . ;
xðxkÞ�. Then there exists a K-GDD of type ½

P
x2G1

xðxÞ; . . . ;
P

x2Gs
xðxÞ�.

The following Wilson-style theorem for IGDDs follows easily from the proof
for Theorem 2.1 [14].

Theorem 2.2. Let ðX ;H;G;AÞ be a (master) IGDD, where G ¼ fG1; . . . ;Gsg and
H ¼ fH1; . . . ;Hsg. Let x : X ! Z�0 be a weight function. Suppose that for each
block A ¼ fx1; . . . ; xkg 2 A, there exists an (ingredient) K-GDD of type
½xðx1Þ; . . . ;xðxkÞ�. Then there exists a K-IGDD of type ½ð

P
x2G1

xðxÞ;P
x2H1

xðxÞÞ; . . . ; ð
P

x2Gs
xðxÞ;

P
x2Hs

xðxÞÞ�.

IGDDs are useful because of a construction known as ‘‘filling in holes’’. If we
have an L-IGDD ðX ;H;G;AÞ of type ½ðg1; h1Þ; . . . ; ðgs; hsÞ� and a K-GDD
ð[H2HH ;H;BÞ of type ½h1; . . . ; hs�, then ðX ;G;A [BÞ is a ðK [LÞ-GDD of
type ½g1; . . . ; gs�.

We also employ a further construction, similar in spirit to [5, Lemma 1.13,
pp.78].

Lemma 2.1. Let ðX ;G;BÞ be a f3g-GDD of type ½g1; . . . ; gs�. Let t � 3. If there
exist (ingredients) f3; ng-GDDs of type gt

i for all i ¼ 1; . . . ; s, then there exists a
f3; ng-GDD of type jX jt.

Proof. We form the required GDD on points X � Zt. For each block fx; y; zg, we
place on fx; y; zg � Zt a TDð3; tÞ missing a parallel class (whose existence is
equivalent to that of idempotent Latin squares), so that the groups align on
fxg � Zt, fyg � Zt, and fzg � Zt, and the missing parallel class aligns on
fx; y; zg � fig for i 2 Zt.

Then for each group G, we place on G � Zt a f3; ng-GDD of type jGjt, so that
the groups align on G � fig for i 2 Zt. (

Another useful construction is the following.

Lemma 2.2. If there exists a f3g-GDD of type gt with a parallel class, then there
exists a f3; gg-GDD of type 3gt=3.
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Proof. Take the groups as blocks, and the blocks in a parallel class as groups. (

One source of f3g-GDDs with parallel classes is the class of resolvable uni-
form f3g-GDDs, whose existence has been settled by Rees [12].

Theorem 2.3 (Rees). There exists a resolvable f3g-GDD of type gt if and only if
gðt � 1Þ � 0 ðmod 2Þ, gt � 0 ðmod 3Þ, and ðg; tÞ 62 fð2; 3Þ; ð2; 6Þ; ð6; 3Þg.

The following results on the existence of transversal designs (see, for example,
[1]), and on PBD-closures due to Gronau, Mullin, and Pietsch [7], are used
without explicit reference throughout x4.

Theorem 2.4. Let TDðkÞ denote the set of positive integers m such that there exists a
TDðk;mÞ. Then, we have

(i) TDð3Þ ¼ Z>0;
(ii) TDð4Þ ¼ Z>0 n f2; 6g;
(iii) TDð5Þ � Z>0 n f2; 3; 6; 10g;
(iv) TDð6Þ � Z>0 n f2; 3; 4; 6; 10; 14; 18; 22g;
(v) TDð8Þ � Z>0 n f2; 3; 4; 5; 6; 10; 12; 14; 15; 18; 20; 21; 22; 24; 26; 28; 30; 33; 34;

35; 36; 38; 39; 42; 44; 46; 48; 51; 52; 54; 55; 58; 60; 62; 66; 68; 74; 75g.

Theorem 2.5. We have the following PBD-closures:

(i) Bðf3; 4gÞ ¼ fv � 0; 1 ðmod 3Þg n f6g;
(ii) Bðf3; 5gÞ ¼ fv � 1 ðmod 2Þg;
(iii) Bðf3; 6gÞ ¼ fv � 0; 1 ðmod 2Þg n f4; 10; 12; 22g;
(iv) Bðf3; 8gÞ ¼ Z>0 n f2; 4; 5; 6; 10; 11; 12; 14; 16; 17; 18; 20; 23; 26; 28; 29; 30;

34; 35; 36; 38g;
(v) Bðf3; 10gÞ ¼ fv � 0; 1 ðmod 3Þg n f4; 6; 12; 16; 18; 22; 24; 34; 36; 42g;
(vi) Bðf3; 5; 8gÞ ¼ Z>0 n f2; 4; 6; 10; 12; 14; 16; 18; 20; 26; 28; 30; 34g;
(vii) Bðf3; 4; 5; 8gÞ ¼ Z>0 n f2; 6g;
(viii) Bðf3; 5; 6; 8; 10gÞ ¼ Z>0 n f2; 4; 12; 14; 20g.

3. Some f3g-GDDs of Miscellaneous Types

Let v and k be positive integers such that v � k. We call v k-good if there exists a
f3g-GDD of type ½g1; . . . ; gs� such that

Ps
i¼1 gi ¼ v, gi � k, and gi � k ðmod 2Þ for

1 � i � s. It is not hard to see that if v is k-good, then v � k ðmod 2Þ. The spec-
trum of k-good integers, denoted SpecðkÞ, is the set of integers that are k-good. In
this section, we completely determine the spectrum of k-good integers for
k 2 f2; 3; 4; 5g. These results are used in the next section for determining the
existence of some uniform f3; ng-GDDs.
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Lemma 3.1. Specð5Þ ¼ fv � 1 ðmod 2Þ j v � 27g [ f15g.

Proof. Let m � 2. Take a TDð5; 2m þ 1Þ and assign weight three to each of the
points in four of its groups. Assign weights in f1; 3; 5; 7g to each of the points in
the remaining group. Apply WFC to obtain a f3g-GDD of type ð6m þ 3Þ4u1,
where u is odd, and 2m þ 1 � u � 7ð2m þ 1Þ. The required ingredients exist by
Theorem 1.2. This proves that for any odd v � 65, v is 5-good. For v � 59,
membership of v in Spec(5) can be determined from [3]. For v ¼ 61 and 63, note
that there exist f3g-GDDs of types 9671 and 97 (Theorem 1.2). (

Lemma 3.2. Specð4Þ ¼ fv � 0 ðmod 2Þ j v � 16g [ f12g.

Proof. Let m � 3, m 6¼ 6. Take a TDð4;mÞ and assign weight two to each point in
three of its groups. Assign weights in f0; 2; 4g to each of the points in the re-
maining group so that the sum of the weights of the points in this group is at least
four. Apply WFC to obtain a f3g-GDD of type ð2mÞ3u, where u is even, and
4 � u � 4m. The required ingredients exist by Theorem 1.2. This proves that for
any even v � 22, v is 4-good. For v � 20, membership of v in Spec(4) can be
determined from [3]. (

Lemma 3.3. Specð3Þ ¼ fv � 1 ðmod 2Þ j v � 15g [ f9g.

Proof. Trivially, we have Specð5Þ � Specð3Þ. For v � 25, membership of v in
Spec(3) can be determined from [3]. (

Lemma 3.4. Specð2Þ ¼ fv � 0 ðmod 2Þ j v � 6g [ f2g.

Proof. Trivially, we have Specð4Þ � Specð2Þ. For v � 14, membership of v in
Spec(2) can be determined from [3]. (

4. Sufficiency

This section is devoted to proving the sufficiency o the conditions in the
MainTheorem. In what follows, it is implicitly assumed that t � 3, wherever it
occurs.

4.1. Small Ingredients

We first give some small uniform f3; ng-GDDs that are needed for the recursive
constructions. To obtain these GDDs, we use a variant of Stinson’s hill-climbing
algorithm [13]. Our algorithm is similar to that described in [3], except that in
addition to specifying the groups, we have to specify a set of blocks of size n, so
that the leave can be partitioned into triangles. We list in Table 1 the parameters
of the GDDs that are constructed by this algorithm. We do not list the blocks for
these GDDs here as they exhibit no particular structure and are space consuming.
Details on how to find the blocks for these GDDs can be found in the Appendix.

Lemma 4.1. All uniform f3; ng-GDDs of types listed in Table 1 exist.
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4.2. The Case n=4

We show that conditions (i) and (v) of the Main Theorem suffice to ensure the
existence of f3; 4g-GDDs of type gt.

4.2.1. t � 2 ðmod 3Þ
We must have g � 0 ðmod 3Þ.

Lemma 4.2. There exists a f3; 4g-GDD of type 3t for all t � 2 ðmod 3Þ.
Proof. First note that the existence of f3; 4g-GDDs of types 35 and 38 can be
established by deleting a point from Steiner systems Sð2; 4; 16Þ and Sð2; 4; 25Þ,
respectively. For all t � 2 ðmod 3Þ, t 2 Bðf3; 4; 5; 8gÞ. So there exists a f3; 4; 5; 8g-
GDD of type 1t. Assign weight three to each point of this GDD and apply WFC.
The required ingredients exist by Theorem 1.1 and the note above. (

Lemma 4.3. Let t � 2 ðmod 3Þ. Then there exists a f3; 4g-GDD of type gt for all
g � 0 ðmod 3Þ.

Table 1. Some small uniform f3; ng-GDDs

n Type

4 36 56 76 96 116 136 196

6 510 512 522 710 712 722 1110 1112 1122 1310

1312 1322

8 220 223 226 229 232 235 238 241 314 318

320 326 328 330 334 411 414 417 420 426

432 438 510 511 512 514 516 517 518 520

522 524 526 532 538 544 710 711 712 714

716 717 718 720 723 726 728 729 730 734

735 736 738 811 814 817 910 912 1011 1014

1017 1110 1111 1112 1114 1116 1117 1118 1120 1123

1126 1128 1129 1130 1134 1135 1136 1138 1211 1214

1217 1310 1311 1312 1314 1316 1317 1318 1320 1323

1326 1328 1329 1330 1334 1335 1336 1338 148 1411

1414 1417 1710 1712 1910 1912 208 2310 2312 2510

2512

10 316 318 320 322 324 326 332 334 336 338

342 344 356 362 510 512 516 518 522 524

534 536 542 710 712 716 718 722 724 734

736 742 912 914 1110 1112 1116 1118 1122 1124

1134 1136 1136 1142 1310 1312 1316 1318 1322 1324

1334 1336 1342 1514 1712 1912 2114 2312 2512 3314

3914
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Proof. For any g 62 f6; 18g, assign weight g=3 to each point of a f3; 4g-GDD of
type 3t, whose existence is guaranteed by Lemma 4.2. Apply WFC to obtain a
f3; 4g-GDD of type gt. The required ingredients exist by Theorem 2.4. For
the cases g 2 f6; 18g, Theorem 1.1 gives f3g-GDDs of types 6t and 18t for all
t � 3. (

4.2.2. t � 0 or 1 ðmod 3Þ
All values of g are admissible here.

Lemma 4.4. Let t � 0 or 1 ðmod 3Þ, t 6¼ 6. Then there exists a f3; 4g-GDD of type
gt for all g � 2.

Proof. Since t 2 Bðf3; 4gÞ, there exists a f3; 4g-GDD of type 1t. Assign weight g,
g 62 f2; 6g, to every point of this GDD and apply WFC to obtain a f3; 4g-GDD of
type gt. The required ingredients exist by Theorem 2.4. When g 2 f2; 6g, Theorem
1.1 gives f3g-GDDs of types 2t and 6t. (

Lemma 4.5. Let a � 0 and 0 � w � 6a. If there exist a TDð6;m þ 1Þ�TDð6; aÞ and
a f3; 4g-GDD of type w6, then there exists a f3; 4g-GDD of type ð3m þ wÞ6.

Proof. Take a TDð6;m þ 1Þ�TDð6; aÞ and assign weight three to each point not
in the holes. Arbitrarily assign a weight in f0; . . . ; 6g to each point in the holes so
that the weight for each hole is w (the weight of a hole is the sum of the weights of
its points). Apply Theorem 2.2 with ingredients f3; 4g-GDDs of type 35u1,
0 � u � 6, which can be constructed by taking a Kirkman triple system of order
15 (which has seven parallel classes), and adjoining u new points, each to a
different parallel class. This gives a f3; 4g-IGDD of type ð3m þ w;wÞ6. Now fill in
the holes with a f3; 4g-GDD of type w6. (

Lemma 4.6. There exists a f3; 4g-GDD of type g6 for all g � 2.

Proof. When m 62 f2; 3; 4; 6; 10; 14; 18; 22g, there exists a TDð6;mÞ�TDð6; 1Þ. By
Theorem 1.1 and Lemma 4.1, there exists a f3; 4g-GDD of type w6 for
w 2 f2; 3; 4; 5; 6g. Apply Lemma 4.5 to obtain a f3; 4g-GDD of type
ð3ðm � 1Þ þ wÞ6. This gives f3; 4g-GDDs of type g6 for all g � 14,
g 62 f19; 31; 43; 55; 67; 127g. For g � 13 and g ¼ 19, the existence of f3; 4g-GDDs
of type g6 is handled by Theorem 1.1 and Lemma 4.1, and the constructions below
handle all remaining values of g. The required ITDs all exist [2]. Apply Lemma 4.5
to a TDð6;mÞ�TDð6; hÞ with a f3; 4g-GDD of type w6 for ðm; h;wÞ 2
fð10; 2; 7Þ; ð15; 2; 4Þ; ð19; 2; 4Þ; ð23; 4; 10Þ; ð43; 2; 4Þg to obtain a f3; 4g-GDD of
type g6 for g 2 f31; 43; 55; 67; 127g. (

4.3. The Case n=5

We show that conditions (i) and (vi) of the Main Theorem suffice to ensure the
existence of f3; 5g-GDDs of type g6.
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4.3.1. t � 1 ðmod 2Þ
All values of g are admissible here.

Lemma 4.7. Let t � 1 ðmod 2Þ. Then there exists a f3; 5g-GDD of type gt for all
g 62 f2; 10g.

Proof. Since t 2 Bðf3; 5gÞ [15], there exists a f3; 5g-GDD of type 1t. For any
g 62 f2; 3; 6; 10g, assign weight g to each point of this GDD and apply WFC to
obtain a f3; 5g-GDD of type gt. The required ingredients exist by Theorem 2.4.
f3g-GDDs of types 3t and 6t exist for all t � 1 ðmod 2Þ by Theorem 1.1. (

Lemma 4.8. There exist f3; 5g-GDDs of types 2t and 10t for all t � 3.

Proof. When t � 0 or 1 ðmod 3Þ, Theorem 1.1 gives f3g-GDDs of type 2t. When
t � 2 ðmod 3Þ, t 2 Bðf3; 5�gÞ [6]. In this case we take a f3; 5�g-PBDð2t þ 1Þ and
delete a point not on the unique block of size five to obtain a f3; 5g-GDD of type
2t. To obtain a f3; 5g-GDD of type 10t, assign weight five to each point of a
f3; 5g-GDD of type 2t and apply Wilson’s Fundamental Construction. The re-
quired ingredients exist by Theorem 2.4. (

4.3.2. t � 0 ðmod 2Þ
We must have g � 0 ðmod 2Þ.

Lemma 4.9. Let g � 0 ðmod 2Þ. Then there exists a f3; 5g-GDD of type gt for all
t � 3.

Proof. Lemma 4.8 shows the existence of f3; 5g-GDDs of type 2t for all t � 3. For
g 62 f4; 6; 12; 20g, assign weight g=2 to each point of this GDD and apply Wilson’s
Fundamental Construction to obtain a f3; 5g-GDD of type gt. The required in-
gredients exist by Theorem 2.4. For g 2 f6; 12g, there exists a f3g-GDD of type gt

for all t � 3 by Theorem 1.1. For g ¼ 4, we assign weight two to each point of a
f3; 5g-GDD of type 2t and apply Wilson’s Fundamental Construction to obtain
af3; 5g-GDD of type 4t. The required ingredients exist by Lemma 4.8. To obtain a
f3; 5g-GDD of type 20t, assign weight five to each point of a f3; 5g-GDD of type
4t and apply WFC. The required ingredients exist by Theorem 2.4. (

4.4. The Case n ¼ 6

We show that conditions (i), (ii) and (v) of the Main Theorem suffice for the
existence of f3; 6g-GDDs of type gt.

4.4.1. t � 0 or 1 ðmod 3Þ
All values of g are admissible here.

Lemma 4.10. Let t � 0 or 1 ðmod 3Þ, t 62 f4; 10; 12; 22g. Then there exists a f3; 6g-
GDD of type gt for all g � 2.
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Proof. Since t 2 Bðf3; 6gÞ, there exists a f3; 6g-GDD of type 1t. For
g 62 f2; 3; 4; 6; 10; 14; 18; 22; 42g, assign weight g to each point of this GDD and
apply WFC to obtain a f3; 6g-GDD of type gt. The required ingredients exist by
Theorem 2.4. Theorem 1.1 gives f3g-GDDs of type gt for all g � 0 ðmod 2Þ when
t � 0 or 1 ðmod 3Þ. This covers the cases g 2 f2; 4; 6; 10; 14; 18; 22; 42g. The case
g ¼ 3 and t � 5 is covered by Lemma 4.16. Theorem 1.1 gives the existence of a
f3g-GDD of type 33. (

It remains to consider f3; 6g-GDDs of type gt for t 2 f4; 10; 12; 22g.

Lemma 4.11. There exists a f3; 6g-GDD of type g4 if and only if g � 0 ðmod 2Þ.

Proof. If g � 1 ðmod 2Þ, condition (ii) of the Main Theorem is violated. When
g � 0 ðmod 2Þ, there exists a f3g-GDD of type g4 by Theorem 1.1. (

Lemma 4.12. There exists a f3; 6g-GDD of type g10 for all g � 2.

Proof. When g � 0 ðmod 2Þ, the existence of f3; 6g-GDDs of type g10 is handled
by Theorem 1.1. When g � 1 ðmod 2Þ, the existence of f3; 6g-GDDs of type g10

for g 2 f5; 7; 11; 13g is handled by Lemma 4.1. For g ¼ 3, existence is handled by
Lemma 4.15. A f3; 6g-GDD of type 910 can be constructed by taking a f3; 6g-
GDD of type 310, assign weight three to each point, and apply WFC. The required
ingredients exist by Lemma 4.10. For the remaining values of g, we proceed by
induction and assume that f3; 6g-GDDs of type g10 exist for all odd g � k, where
k � 13. Let g ¼ k þ 2. Then g is 3-good. Take a f3g-GDD of type ½g1; . . . ; gs�,
where

Ps
i¼1 gi ¼ g, and gi � 3 for 1 � i � s. Apply Lemma 2.1 to this GDD to

obtain a f3; 6g-GDD of type g10. The required ingredients exist by the induction
hypothesis. (

The proof for the following lemmas mimic that for Lemma 4.12.

Lemma 4.13. There exists a f3; 6g-GDD of type g12 for all g � 2.

Lemma 4.14. There exists a f3; 6g-GDD of type g22 for all g � 2.

4.4.2. t � 2 ðmod 3Þ
We must have g � 0 ðmod 3Þ. We begin with the construction of some small
ingredients.

Lemma 4.15. There exists a f3; 6g-GDD of type 3t for t 2 f6; 8; 10; 12; 14; 20g.

Proof. For t ¼ 6, it is known that there is a TDð3; 6Þ with a parallel class [2].
Apply Lemma 2.2 to obtain a f3; 6g-GDD of type 36. For t 2 f8; 10; 12; 14; 20g,
there exist resolvable f3g-GDDs of type 6t=2 by Theorem 2.3. Apply Lemma 2.2
to obtain f3; 6g-GDDs of type 3t. (

Lemma 4.16. There exists a f3; 6g-GDD of type 3t for all t � 5.
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Proof. Let t 62 f2; 4; 12; 14; 20g. Then t 2 Bðf3; 5; 6; 8; 10gÞ. So there exists a
f3; 5; 6; 8; 10g-GDD of type 1t. Assign weight three to each point of this GDD and
apply WFC to obtain a f3; 6g-GDD of type 3t. The required ingredients exist by
Theorem 1.1 and Lemma 4.15. When t 2 f12; 14; 20g, existence of the GDDs is
settled by Lemma 4.15. (

Lemma 4.17. Let g � 0 ðmod 3Þ. Then there exists a f3; 6g-GDD of type gt for all
t � 5.

Proof. When g � 0 ðmod 6Þ, Theorem 1.1 gives a f3g-GDD of type gt for all
t � 3. When g � 3 ðmod 6Þ, assign weight g=3 to each point of a f3; 6g-GDD of
type 3t (which exists by Lemma 4.16) and apply WFC to obtain a f3; 6g-GDD of
type gt. The required ingredients exist by Theorem 2.4 and Lemma 4.10. (

4.5. The Case n ¼ 8

This is the most difficult case. We begin with the construction of f3; 8g-GDDs of
type gt for g 2 f2; 3; 4; 5g. The following results on PBD-closure are useful.

Lemma 4.18. fv � 2 ðmod 3Þ j v � 44g � Bðf3; 4; 6; 20; 23; 29gÞ.

Proof. In [3], f3g-GDDs of types 20146; 231124; 20110145; 2317333; 20110361; and
291130 were shown to exist. Since 7; 10 2 Bðf3; 4gÞ, this gives
f44; 47; 50; 53; 56; 59g � Bðf3; 4; 6; 20; 23; 29gÞ. Theorem 1.2 gives f3g-GDDs of
types 6t201 and 6t221 for all t � 6. This shows 6t þ 20 2 Bðf3; 6; 20gÞ and
6t þ 23 2 Bðf3; 23gÞ for all t � 6. The result then follows. (

Lemma 4.19. fv � 0 ðmod 2Þ jv � 34gnf38; 44g � Bðf3; 10; 12; 14; 16; 18; 20gÞ.

Proof. Theorem 1.2 provides the existence of a f3g-GDD of type 12tu1 for all
t � 3 and u 2 f10; 12; 14; 16; 18; 20g. This gives a f3; 10; 12; 14; 16; 18; 20g-PBDðvÞ
for all even v � 46. For v ¼ 36; 42, view a TDð3; 12Þ and TDð3; 14Þ as PBDs.
Adjoin a new point to the groups of a TDð3; 11Þ and TDð3; 13Þ to get the
appropriate PBDs on 34 and 40 points, respectively. (

Lemma 4.20. There exists a f3; 8g-GDD of type 2t if and only if t 62 f2; 5; 8;
11; 14; 17g.
Proof. Theorem 1.1 settles the case when t � 0 or 1 ðmod 3Þ. Hence we deal only
with the case t � 2 ðmod 3Þ. If t < 44, t 62 f5; 8; 11; 14; 17g, the existence of a
f3; 8g-GDD of type 2t is given by Lemma 4.1. When t � 44, there exists a
f3; 4; 6; 20; 23; 29g-GDD of type 1t by Lemma 4.18. Assign weight two to each
point of this GDD and apply WFC to obtain a f3; 8g-GDD of type 2t. The
required ingredients exist by Lemma 4.1. Nonexistence of the remaining GDDs is
handled by the necessary conditions of the Main Theorem. (

Lemma 4.21. There exists a f3; 8g-GDD of type 3t if and only if
t 62 f2; 4; 6; 10; 12g.
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Proof. First note that the existence of f3; 8g-GDDs of types 38 and 316 follows
from Lemma 2.2 and Theorem 2.3. For t 2 f14; 18; 20; 26; 28; 30; 34g, the exis-
tence of a f3; 8g-GDD of type 3t is provided by Lemma 4.1. Let
t 62 f4; 6; 10; 12; 14; 16; 18; 20; 26; 28; 30; 34g. Then t 2 Bðf3; 5; 8gÞ. Hence, there
exists a f3; 5; 8g-GDD of type 1t. Assign weight three to each point of this GDD
and apply WFC to obtain a f3; 8g-GDD of type 3t. The required ingredients exist
by Theorem 1.1 and the note above. Nonexistence of the remaining GDDs is
handled by the necessary conditions of the Main Theorem. (

Lemma 4.22. There exists a f3; 8g-GDD of type 4t if and only if t 62 f2; 5; 8g.

Proof. The existence of a f3; 8g-GDD of type 4t exists for all t � 0 or 1 ðmod 3Þ
by Theorem 1.1. For t � 5 ðmod 6Þ, first note that there exist f3; 8g-GDDs of
types 411 and 417 by Lemma 4.1. If t � 23, then t 2 Bðf3; 11�gÞ [10]. Hence, there
exists a f3; 11g-GDD of type 1t. Assign weight four to each point of this GDD
and apply WFC to obtain a f3; 8g-GDD of type 4t. The required ingredients exist
by Theorem 1.1 and the note above. We now deal with the remaining case when
t � 2 ðmod 6Þ. Lemma 4.1 gives the existence of f3; 8g-GDDs of type 4t for
t 2 f14; 20; 26; 32; 38g. We proceed by unduction on t, assuming that all f3; 8g-
GDDs of type 4t exist for t � k, where k � 38, and t 6¼ 2; 5; 8. Let t ¼ k þ 6. Then
there exists a f3g-GDD of type t�14

3

� �3
141 by Theorem 1.2. View this GDD as a

3; 14; t�14
3

� �
-GDD of type 1t. Assign weight four to each point of this GDD

andapply WFC to obtain a f3; 8g-GDD of type 4t. The required ingredients exist
by Theorem 1.1, the note above, and the induction hypothesis. Nonexistence of
the remaining GDDs is handled by the necessary conditions of the Main
Theorem. (

Lemma 4.23. There exists a f3; 8g-GDD of type 5t if and only if t 62 f2; 4; 5; 6; 8g.

Proof. The case t � 1 or 3 ðmod 6Þ is handled by Theorem 1.1. Existence of
f3; 8g-GDDs of types 511 and 517 is provided by Lemma 4.1. When t � 5 ðmod 6Þ,
t � 23, we have t 2 Bðf3; 11�gÞ [10]. Hence, there exists a f3; 11g-GDD of type 1t.
Assign weight five to each point of this GDD and apply WFC to obtain a f3; 8g-
GDD of type 5t. The required ingredients exist by Theorem 2.4 and Lemma 4.1.
This settles the case when t is odd. Lemma 4.1 gives the existence of f3; 8g-GDDs
of type 5t for t 2 f10; 12; 14; 16; 18; 20; 22; 24; 26; 32; 38; 44g. When t is even and
t � 34, t 62 f38; 44g, there exists a f3; 10; 12; 14; 16; 18; 20g-GDD of type 1t by
Lemma 4.19. Assign weight five to each point of this GDD and apply WFC to
obtain a f3; 8g-GDD of type 5t. The required ingredients exist by Theorem 2.4
and Lemma 4.1. Nonexistence of the remaining GDDs is handled by the necessary
conditions of the Main Theorem. (

At this point, we need only consider the existence of f3; 8g-GDDs of type gt

for g � 6.

Lemma 4.24. Let a � 0 and 0 � w � a. If there exist a TDð8;m þ aÞ–TDð8; aÞ and
a f3; 8g-GDD of type w8, then there exists a f3; 8g-GDD of type ðm þ wÞ8.
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Proof. Take a TDð8;m þ aÞ�TDð8; aÞ and remove a � w points from each hole to
obtain a f7; 8g-IGDD of type ðm;wÞ8. Fill in the holes of this IGDD with a f3; 8g-
GDD of type w8 and replace each block of size seven by the blocks of a Steiner
system Sð2; 3; 7Þ. (

Lemma 4.25. There exists a f3; 8g-GDD of type g8 for all g � 6.

Proof. Lemma 4.24 implies the existence of f3; 8g-GDDs of types ðm � 1Þ8 and
m8, whenever a TDð8;mÞ exists. It follows that if g 62 f14; 20; 21; 33; 34;
35; 38; 51; 54; 57g, then there exists a f3; 8g-GDD of type g8. The existence of
f3; 8g-GDDs of types 148 and 208 follows from Lemma 4.1. For g 2 f21; 33;
34; 35; 38; 51; 54; 74g, apply Lemma 2.1 with f3g-GDDs of types 121; 133;
10183;171118;8165;151;24165, and 141106, all of which exist by Theorem 1.2. (

Lemma 4.26. Let t 2 Bðf3; 8gÞ. Then there exists a f3; 8g-GDD of type gt for all
g � 6.

Proof. Take a f3; 8g-GDD of type 1t. Assign weight g to each point of this GDD
and apply WFC to obtain a f3; 8g-GDD of type gt. The required ingredients exist
by Theorem 2.4 and Lemma 4.25. (

It remains to deal with those cases when t 62 Bðf3; 8gÞ.

Lemma 4.27. Let t 2 f4; 6g. Then there exists a f3; 8g-GDD of type gt if and only if
g � 0 ðmod 2Þ.

Proof. If g � 1 ðmod 2Þ, condition (ii) of the Main Theorem is violated. When
g � 0 ðmod 2Þ, there exists a f3g-GDD of type gt by Theorem 1.1. (

Lemma 4.28. There exists a f3; 8g-GDD of type g5 if and only if g � 0 ðmod 3Þ.

Proof. If g 6� 0 ðmod 3Þ, condition (ii) of the Main Theorem is violated. When
g � 0 ðmod 3Þ, there exists a f3g-GDD of type g5 by Theorem 1.1. (

Lemma 4.29. Let t 2 f10; 12g. Then there exists a f3; 8g-GDD of type gt for all
g � 6.

Proof. If g � 0 ðmod 2Þ, there exists a f3g-GDD of type gt by Theorem 1.1. If
g � 1 ðmod 2Þ and g � 25, g 62 f15; 21g, existence is handled by Lemma 4.1. To
obtain a f3; 8g-GDD of type gt for g 2 f15; 21g, we assign weight three to each
point of a f3; 8g-GDD of type ðg=3Þ10 and ðg=3Þ12 and apply WFC. The required
ingredients exist by Lemma 4.21. For g � 27, we proceed by induction, assuming
that there exist f3; 8g-GDDs of type gt for all g � k, where k � 25. Let g ¼ k þ 2.
Then g is 5-good. Take a f3g-GDD of type ½g1; . . . ; gs�, where

Ps
i¼1 gi ¼ g, and

gi � 5 for 1 � i � s. Apply Lemma 2.1 to this GDD to obtain a f3; 8g-GDD of
type gt. The required ingredients exist by the induction hypothesis. (
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Lemma 4.30. Let t 2 f11; 14; 17g. Then there exists a f3; 8g-GDD of type gt for all
g � 6.

Proof. For g 2 f7; 8; 10; 11; 12; 13; 14g, the result follows from Lemma 4.1. For
g ¼ 6, the result follows from Theorem 1.1. For g ¼ 9, the result follows by
assigning weight three to each point of a f3; 8g-GDD of type 3t and applying
WFC. The required master and ingredients exist by Lemma 4.21. For the
remaining odd (even, respectively) values of g, note that g is 3-good (4-good,
respectively) and mimic the proof of Lemma 4.29. (

Lemma 4.31. Let t 2 f16; 18; 20; 23; 26; 28; 29; 30; 34; 35; 36; 38g. Then there exists
a f3; 8g-GDD of type gt for all g � 6.

Proof. Lemma 4.1 gives the existence of f3; 8g-GDDs of type gt for
g 2 f7; 11; 13g. For the remaining odd (even, respectively) values of g, note that g
is 3-good (2-good, respectively) and mimic the proof of Lemma 4.29. (

4.6. The Case n=10

The case for even g is easily handled.

Lemma 4.32. Let g � 0 ðmod 6Þ. Then there exists a f3; 10g-GDD of type gt for all
t � 3.

Proof. Follows from Theorem 1.1. (

Lemma 4.33. Let g � 2 or 4 ðmod 6Þ. Then there exists a f3; 10g-GDD of type gt if
and only if t � 0 or 1 ðmod 3Þ.

Proof. Condition (v) of the Main Theorem is violated if t � 2 ðmod 3Þ. If t � 0 or
1 ðmod 3Þ, there exists a f3g-GDD of type gt by Theorem 1.1. (

We now focus on the case g � 1 ðmod 2Þ.

Lemma 4.34. There exists a f3; 10g-GDD of type g10 for all g � 1 ðmod 2Þ.

Proof. The case g ¼ 3 follows from Lemma 2.2 and Theorem 2.3. Lemma 4.1
settles the cases g 2 f5; 7; 11; 13g. The remaining values of g are 3-good. The result
then follows by induction using Lemma 2.1. (

Lemma 4.35. Let t 2 Bðf3; 10gÞ. Then there exists a f3; 10g-GDD of type gt for all
g � 1 ðmod 2Þ.

Proof. Take a f3; 10g-GDD of type 1t and assign weight g to each of the points.
Apply WFC to obtain a f3; 10g-GDD of type gt. The required ingredients exist by
Theorem 2.4 and Lemma 4.34. (
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Lemma 4.36. Let t 2 f4; 6g. Then there exists a f3; 10g-GDD of type gt if and only
if g � 0 ðmod 2Þ.

Proof. If g � 1 ðmod 2Þ, condition (ii) of the Main Theorem is violated. Existence
follows from Lemmas 4.32 and 4.33. (

Lemma 4.37. There exists a f3; 10g-GDD of type g12 for all g � 1 ðmod 2Þ, except
when g ¼ 3.

Proof. First note that condition (iii) of the Main Theorem excludes the existence
of a f3; 10g-GDD of type 312, since 36 =2Bðf3; 10gÞ by Theorem 2.5.

Lemma 4.1 gives the existence of f3; 10g-GDDs of type g12 when
g 2 f5; 7; 9; 11; 13; 17; 19; 23; 25g. For g 2 f15; 21g, take a f3; 10g-GDD of type
ðg=3Þ12, which exists by Lemma 4.1, and assign weight three to each of its points.
Apply WFC to obtain a f3; 10g-GDD of type g12. The required ingredients exist
by Theorem 1.1 and Lemma 4.35. If g � 27, then g is 5-good. Straightforward
induction using Lemma 2.1 establishes the required result. (

Lemma 4.38. Let t 2 f16; 18; 22; 24; 34; 36; 42g. Then there exists a f3; 10g-GDD
of type gt for all g � 1 ðmod 2Þ.

Proof. The case g 2 f3; 5; 7; 11; 13g is handled by Lemma 4.1. For the remaining
odd values of g, note that g is 3-good and proceed by induction using
Lemma 2.1. (

It remains to consider those values of t � 2 ðmod 3Þ. Condition (v) of the
Main Theorem requires that g � 0 ðmod 3Þ in this case.

Lemma 4.39. fv � 2 ðmod 6Þjv � 50gnf56; 62g � Bðf3; 10; 16; 18; 20; 26; 32gÞ.

Proof. Theorem 1.2 provides the existence of a f3g-GDD of type 18tu1 for all
t � 3 and u 2 f20; 26; 32g. This gives a f3; 10; 16; 18; 20; 26; 32g-PBDðvÞ for
v � 2 ðmod 6Þ, v � 74. For v 2 f50; 68g, note that there exist f3g-GDDs of types
201103 and 201163 by Theorem 1.2. (

Lemma 4.40. There exists a f3; 10g-GDD of type 3t for all t � 2 ðmod 3Þ,
t 62 f2; 8; 14g.

Proof. The case t � 5 ðmod 6Þ is handled by Theorem 1.1. If t � 2 ðmod 6Þ,
t � 50 and t 62 f56; 62g, there exists a f3; 10; 16; 18; 20; 26; 32g-GDD of type 1t by
Lemma 4.39. Assign weight three to each point of this GDD and apply WFC to
obtain a f3; 10g-GDD of type 3t. The required ingredients exist by Lemma 4.1
and Lemma 4.34. The remaining values of t are handled by Lemma 4.1. (

Lemma 4.41. Let t � 2 ðmod 3Þ, t 62 f2; 8; 14g. Then there exists a f3; 10g-GDD of
type gt for all g � 0 ðmod 3Þ.
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Proof. Take a f3; 10g-GDD of type 3t (which exists by Lemma 4.40) and assign
weight g=3 to each of its points. Apply WFC to obtain a f3; 10g-GDD of type gt.
The required ingredients exist by Theorem 2.4 and Lemma 4.34. (

Lemma 4.42. There exists a f3; 10g-GDD of type g8 if and only if g � 0 ðmod 6Þ.

Proof. If g 6� 0 ðmod 6Þ, then conditions (ii) of the Main Theorem is violated. If
g � 0 ðmod 6Þ, then the existence of a f3g-GDD of type g8 is provided by The-
orem 1.1. (

Lemma 4.43. There exists a f3; 10g-GDD of type g14 if and only if g � 0 ðmod 3Þ,
g 6¼ 3.

Proof. If g � 0 ðmod 6Þ, there exists a f3g-GDD of type g14 by Theorem 1.1.
When g � 3 ðmod 6Þ, there exists a f3; 10g-GDD of type g14 for
g 2 f9; 15; 21; 33; 39g by Lemma 4.1. Theorem 1.2 gives the existence of a f3g-
GDD of type 92ru1 for all r � 2 and u 2 f9; 15; 21g. Apply Lemma 2.1 to this
GDD to obtain a f3; 10g-GDD of type g14 for all g � 45. The result for the case
g ¼ 27 follows from the existence of a f3g-GDD of type 93. The nonexistence of a
f3; 10g-GDD of type 314 is handled by the conditions of the Main Theorem. (

5. Conclusion

The Main Theorem given in this paper is an extension of the results of Hanani [8]
concerning uniform GDDs with block size three, as well as the results of Gronau,
Mullin and Pietsch [7] on the existence of PBDs with block sizes three and n,
4 � n � 10. It also dictates when the complete multipartite graph with equal-sized
partitions has an edge decomposition into K3’s and Kn’s, 4 � n � 10, thus ex-
tending also some results in graph decompositions [9].

Fig. 1. Prestructure Pðs;mÞ

Fig. 2. Prestructure Qðs;mÞ

Uniform Group Divisible Designs with Block Sizes Three and n 437



Acknowledgments. The authors would like to thank the referee for his careful reading and
for pointing out some errors in an earlier draft of the paper.

Appendix

A Some Small Uniform f3; ng-GDDs

In this appendix, we give details on the computational procedures we employed to
construct those GDDs given in Lemma 4.1.

Fig. 3. C-function for generating P ðs;mÞ
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Let ðX ;G;AÞ be a f3; ng-GDD of type gt. We call the set fA 2 A j jAj ¼ ng
the prestructure of the GDD. Given a prestructure, a set of blocks of size three
(triples) can be added to complete it to a GDD. The heuristic we used to complete
the prestructure is similar to the hill-climbing heuristic used in [7]. In what fol-
lows, we give a prestructure for each GDD listed in Table 1. The point set X is
assumed to be f1; . . . ; gtg. Unless otherwise specified, the groups are
fjt þ i j0 � j � gg, for 1 � i � t. So we list only the blocks of size n. We also omit
listing the triples here since they exhibit no particular structure and are space
consuming. Moreover, the triples can be easily found using a simple hill-climbing
heuristic. For space efficiency, we also represent all the integers a; a þ 1; . . . ; b by
a � b.

The intersection pattern of the blocks in many of the prestructures have one of
the forms shown in Figures 1 and 2. The blocks in the prestructures of the form
P ðs;mÞ are generated by calling the C-function presented in Figure 3. We are not
able to find such succinct description for the blocks in Qðs;mÞ, and we content
ourselves by exhibiting explicitly the blocks in the prestructure in this case. We use
the notation rQðs;mÞ for r disjoint copies of Qðs;mÞ.

A.1. n ¼ 4

We give prestructures of f3; 4g-GDDs of types listed in Table 1. For
g 2 f5; 7; 11; 13; 19g, a prestructure for a f3; 4g-GDD of type g6 is P ð3; 3g�5

2 Þ.

A.2. n ¼ 6

We give prestructures of f3; 6g-GDDs of types listed in Table 1.

A.3. n ¼ 8

We give prestructures of f3; 8g-GDDs of types listed in Table 1. First, we deal
with the case when g is even.

For t 2 f20; 23; 26; 29; 32; 35; 38; 41g, there exists a f3; 8g-PBDð2t þ 1Þ with
precisely ten blocks of size eight. These ten blocks of size eight may be taken to be
the following.

Prestructures of f3; 6g-GDDs

Type Prestructure Type Prestructure Type Prestructure

510 P ð5; 4Þ 712 P ð0; 14Þ 1122 Pð5; 36Þ
512 Pð0; 10Þ 722 P ð3; 23Þ 1310 Pð3; 19Þ
522 Pð5; 14Þ 1110 P ð5; 14Þ 1312 Pð0; 26Þ
710 P ð3; 9Þ 1112 P ð0; 22Þ 1322 Pð3; 45Þ

{1–7, 40} {8–15} f7; 15; 21; 27; 31; 35; 37; 39g
{8, 16–21, 40} {1, 9, 22–27} f6; 14; 20; 26; 30; 34; 36; 38g

{2, 10, 16, 22, 28–31} {3, 11, 17, 23, 32–35} f5; 13; 19; 25; 29; 33; 38; 39g
f4; 12; 18; 24; 28; 32; 36; 37g

Uniform Group Divisible Designs with Block Sizes Three and n 439



The existence of such a PBD can be verified by employing the hill-climbing
heuristic on this set of blocks. From this PBD delete a point not on the block of
size eight to obtain a f3; 8g-GDD of type 2t.

Let T be the set consisting of the following ten blocks of size eight.

For g 2 f4; 8; 10; 14g and t 2 f11; 14; 17; 20; 26; 32; 38g, let f4j þ i j 1 � i � 4g
[f4ðt þ jÞ þ i j 1 � i � g � 4g, for 0 � j � t, be the groups of a f3; 8g-GDD of
type gt. A prestructure for this GDD is the set T.

For g 2 f14; 20g, let fjg þ i j 1 � i � gg, for 0 � j � 8, be the groups of a
f3; 8g-GDD of type g8. Define the 8 � 8 matrix A ¼ ðaijÞ, with 0 � i < 8 and
1 � j � 8, such that aij ¼ ig þ j. A prestructure for this GDD consists of the 16
blocks defined by each of the columns of A, as well as each of the generalized main
diagonals of A.

For t 2 f11; 14; 17g, let f12j þ i j 1 � i � 12g, for 0 � j < t, be the groups of a
f3; 8g-GDD of type 12t. A prestructure for this GDD consists of the following
nine blocks, which is isomorphic to the triangular scheme.

We now settle the case when g is odd.
For t 2 f11; 17g, let f4j þ i j 1 � i � 4g [ f4ðt þ jÞ þ 1g, for 0 � j < t, be

thegroups of a f3; 8g-GDD of type 5t. A prestructure for this GDD is the
set T.

For g 2 f7; 9; 11; 13; 17; 19; 23; 25g, a prestructure for a f3; 8g-GDD of type
g12 has the following blocks, which is isomorphic to Qð6; 3ðg�7Þ

2 Þ.

For g 2 f7; 11; 13g and t 2 f11; 17; 23; 29; 35g, let f4j þ i j 1 � i � 4g
[f4ðt þ jÞ þ i j 1 � i � g � 4g, for 0 � j � t, be the groups of a f3; 8g-GDD of
type gt. A prestructure for this GDD is the set T.

f1; 13; 25; 37; 49; 61; 73; 85g f1; 26; 38; 50; 62; 74; 86; 98g f13; 26; 51; 63; 75; 87; 99; 111g
f25; 38; 51; 76; 88; 100; 112; 124g f5; 37; 50; 63; 76; 101; 113; 125g f6; 18; 49; 62; 75; 88; 101; 126g
f19; 31; 61; 74; 87; 100; 113; 126g f6; 19; 43; 73; 86; 99; 112; 125g f5; 18; 31; 43; 85; 98; 111; 124g

f7; 36–42g f7; 71–76; 80g f8; 77–79; 81–84g f15; 43–49g f22; 50–56g f29; 57–63g
f36; 64–70g f7j þ i j 1 � i � 8g; 0 � j � 4 f8j þ i j 5 � i � 12g; 10 � j � 3ðg�1Þ

2

f1; 5; 9; 13; 17; 21; 25; 29g f2; 6; 10; 14; 28; 33; 37; 41g f1; 7; 22; 26; 30; 33; 38; 42g
f3; 5; 11; 15; 19; 23; 34; 37g f4; 9; 22; 27; 31; 34; 39; 41g f2; 8; 11; 13; 26; 35; 40; 43g
f3; 6; 12; 16; 17; 27; 30; 35g f10; 15; 20; 21; 31; 36; 38; 43g f8; 12; 14; 19; 25; 36; 39; 42g
f4; 7; 16; 20; 23; 28; 29; 40g
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Prestructures of several other GDDs of the form Qðs;mÞ are given in the next
table.

Type Prestructure Blocks in prestructure

314 Qð3; 0Þ f1–8g, f8–14; 16g, f1; 16–22g, f1; 23–28; 30g, f8; 15; 37–42g,
f16; 29; 31–36g

328 2Qð3; 0Þ f1–8g þ i, f8–15g þ i, f1; 15–21g þ i, f1; 22–28g þ i,
f8; 29–35g þ i, f15; 36–42g þ i, i 2 f0; 42g

514 Qð5; 0Þ f1; 28; 30–35g, f1; 36–42g, f8; 43–49g, f15; 50–56g,
f22; 57–62; 70g, f28; 63–69g, f7j þ i j 1 � i � 8g, 0 � j � 3

718 3Qð3; 0Þ f1–8g þ i, f8–15g þ i, f1; 15–18; 20–22g þ i,
f1; 23–29g þ i, f8; 19; 30–35g þ i, f15; 36–42g þ i, i 2 f0; 42; 84g

910 Qð3; 6Þ f1–8g, f8–15g, f2; 15–21g, f2; 23–29g, f8; 22; 30; 31; 33–35; 46g,
f15; 36–42g, f32; 43–45; 47–50g,
f8j þ i j 3 � i � 10g, 6 � j � 10

1110 Qð5; 5Þ f6; 29–35g, f6; 57–63g, f8; 53; 64–67; 69; 70g, f15; 36–42g,
f22; 43–49g, f29; 50–52; 54–56; 68g,

f7j þ i j 1 � i � 8g, 0 � j � 3,
f8j þ i j 7 � i � 14g, 8 � j � 12

1114 Qð11; 0Þ f1; 70; 72–77g, f1; 78–84g, f8; 85–91g, f15; 92–98g, f22; 99–105g,
f29; 106–112g, f36; 113–119g, f43; 120–126g, f50; 127–133g,

f57; 134–140g, f64; 141–146; 154g, f70; 147–153g,
f7j þ i j 1 � i � 8g, 0 � j � 9

1116 2Qð4; 4Þ f1–8g þ i, f8–15g þ i, f15–22g þ i, f1; 22–28g þ i, f1; 50–56g þ i,
f8; 29–35g þ i, f15; 36–42g þ i, f22; 43–49g þ i, i 2 f0; 56g

1118 3Qð3; 3Þ f1–8g þ i, f8–15g þ i, f1; 15–18; 20–22g þ i, f1; 23–29g þ i,
f8; 19; 30–35g þ i, f15; 36–42g þ i, i 2 f0; 42; 84g

1310 Qð7; 4Þ f1; 43–49g, f1; 92–98g, f8; 50–56g, f15; 57–63g, f22; 64–70g,
f29; 71–77g, f36; 78–84g, f43; 85–91g,

f7j þ i j 1 � i � 8g, 0 � j � 5,
f8j þ i j 3 � i � 10g, 12 � j � 15

1710 Qð11; 2Þ f1; 70; 72–77g, f1; 134–140g, f8; 141–147g, f15; 78–84g,
f22; 85–91g, f29; 92; 94–98; 150g, f36; 99–105g, f43; 106–112g,

f50; 113–119g, f57; 120–126g, f64; 127–133g,
f70; 148; 149; 151–155g,

f93; 156–162g, f163–170g, f7j þ i j 1 � i � 8g, 0 � j � 9
2310 Qð5; 20Þ f6; 29–35g, f6; 57–63g, f8; 51; 64–67; 69; 70g, f15; 36–42g,

f22; 43–49g, f29; 50; 52–56; 68g,
f7j þ i j 1 � i � 8g, 0 � j � 3,
f8j þ i j 7 � i � 14g, 8 � j � 27

2510 Qð7; 19Þ f1; 43–49g, f1; 64; 85–90g, f8; 71; 92–97g, f15; 78–84g,
f22; 73–77; 91; 98g, f29; 50–56g, f36; 57–63g, f43; 65–70; 72g,

f7j þ i j 1 � i � 8g, 0 � j � 5
f8j þ i j 3 � i � 10g, 12 � j � 30
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The following are prestructures of the form Pðs;mÞ.

Prestructures for the remaining GDDs do not have one of the forms P ðs;mÞ or
Qðs;mÞ, and are presented in the next table. In each case, the groups of the GDD
are taken to be fjg þ i j 1 � i � gg, 0 � j < t.

Prestructures of f3; 8g-GDDs

Type Prestructure Type Prestructure Type Prestructure

330 Pð7; 5Þ 726 Pð19; 6Þ 1138 Pð23; 32Þ
518 Pð7; 5Þ 728 Pð21; 6Þ 1316 P ð9; 18Þ
520 Pð5; 8Þ 730 Pð7; 20Þ 1318 P ð7; 23Þ
522 P ð11; 4Þ 734 Pð3; 27Þ 1320 Pð13; 21Þ
524 P ð0; 15Þ 736 P ð13; 20Þ 1326 P ð7; 36Þ
532 P ð17; 5Þ 738 Pð7; 27Þ 1328 Pð21; 27Þ
538 Pð11; 14Þ 1120 Pð5; 23Þ 1330 Pð19; 32Þ
544 P ð5; 23Þ 1126 P ð11; 26Þ 1334 Pð15; 42Þ
710 Pð3; 6Þ 1128 Pð5; 34Þ 1336 Pð13; 47Þ
714 Pð7; 6Þ 1130 Pð7; 35Þ 1338 Pð19; 45Þ
716 Pð9; 6Þ 1134 P ð11; 37Þ 1910 P ð3; 21Þ
720 P ð13; 6Þ 1136 P ð13; 38Þ

Type Blocks in prestructure

318 f1; 4; 7; 10; 13; 16; 19; 22g, f2; 5; 8; 25; 28; 31; 34; 37g, f3; 6; 9; 40; 43; 46; 49; 52g,
f1; 5; 9; 11; 14; 17; 20; 23g, f2; 6; 7; 26; 29; 32; 35; 38g, f3; 4; 8; 41; 44; 47; 50; 53g,
f3; 5; 7; 12; 15; 18; 21; 24g, f2; 4; 9; 27; 30; 33; 36; 39g, f1; 6; 8; 42; 45; 48; 51; 54g

320 f1; 4; 7; 10; 13; 16; 19; 22g, f22; 25; 28; 31; 34; 37; 40; 43g, f2; 5; 43; 46; 49; 52; 55; 58g,
f5; 8; 11; 14; 17; 20; 23; 26g, f26; 29; 32; 35; 38; 41; 44; 47g, f3; 6; 7; 47; 50; 53; 56; 59g,

f5; 7; 27; 30; 33; 36; 39; 42g, f22; 26; 45; 48; 51; 54; 57; 60g,
f9; 12; 15; 18; 21; 24; 43; 47g

326 f1; 4; 7; 10; 13; 16; 19; 22g, f22; 25; 28; 31; 34; 37; 40; 43g, f2; 5; 43; 46; 49; 52; 55; 58g
f5; 8; 11; 14; 17; 20; 23; 26g, f26; 29; 32; 35; 38; 41; 44; 47g, f3; 6; 7; 47; 50; 53; 56; 59g,

f5; 7; 27; 30; 33; 36; 39; 42g, f22; 26; 45; 48; 51; 54; 57; 60g,
f9; 12; 15; 18; 21; 24; 43; 47g,

f7; 26; 61; 64; 67; 70; 73; 76g, f26; 43; 62; 65; 68; 71; 74; 77g,
f7; 43; 63; 66; 69; 72; 75; 78g

334 f1; 4; 7; 10; 13; 16; 19; 22g, f22; 25; 28; 31; 34; 37; 40; 43g, f2; 5; 43; 46; 49; 52; 55; 58g
f5; 8; 11; 14; 17; 20; 23; 26g, f26; 29; 32; 35; 38; 41; 44; 47g, f3; 6; 7; 47; 50; 53; 56; 59g,

f5; 7; 27; 30; 33; 36; 39; 42g, f22; 26; 45; 48; 51; 54; 57; 60g,
f9; 12; 15; 18; 21; 24; 43; 47g,

f7; 26; 61; 64; 67; 70; 73; 76g, f26; 43; 62; 65; 68; 71; 74; 77g,
f7; 43; 63; 66; 69; 72; 75; 78g,

fj þ 3i j 0 � i � 7g, 79 � j � 81
510 f1; 6; 11; 16; 21; 26; 31; 36g, f1; 7; 12; 17; 22; 27; 41; 46g, f1; 8; 13; 18; 32; 37; 42; 47g,

f2; 6; 23; 28; 32; 38; 41; 48g, f2; 9; 11; 19; 33; 37; 43; 46g, f2; 14; 18; 24; 27; 34; 39; 44g,
f5; 6; 15; 25; 27; 35; 37; 50g, f3; 20; 25; 30; 32; 40; 45; 46g,

f4; 10; 11; 18; 25; 29; 41; 49g
512 f1; 6; 11; 16; 21; 26; 31; 36g, f1; 7; 12; 17; 41; 46; 51; 56g, f1; 22; 27; 32; 37; 42; 47; 52g,

f3; 6; 13; 18; 23; 28; 33; 57g, f2; 13; 17; 38; 43; 48; 53; 58g, f4; 8; 13; 19; 22; 29; 34; 39g,
f6; 14; 24; 40; 44; 49; 54; 59g, f9; 15; 17; 25; 30; 35; 40; 45g,

f5; 10; 20; 22; 40; 50; 55; 60g
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A.4. n ¼ 10

We give prestructures of f3; 10g-GDDs of types listed in Table 1. A prestructure
for a f3; 10g-GDD of type 5t for t 2 f10; 12; 16; 18; 22; 24; 34; 36; 42g is P ð0; t=2Þ.

The following blocks constitute a prestructure for a f3; 10g-GDD of type 1312.

Prestructures of the form Qðs;mÞ for several other GDDs are given in the next
table.

Type Blocks in prestructure

516 f1; 6; 11; 16; 21; 26; 31; 36g, f1; 41; 46; 51; 56; 61; 66; 71g, f1; 7; 12; 17; 22; 27; 32; 76g,
f2; 6; 37; 42; 47; 52; 57; 62g, f3; 8; 11; 18; 37; 67; 72; 77g,

f13; 23; 28; 33; 37; 43; 48; 80g,
f4; 6; 53; 58; 63; 68; 73; 78g, f9; 14; 19; 24; 29; 34; 53; 67g,

f11; 23; 39; 44; 49; 53; 59; 64g,
f5; 10; 15; 20; 54; 69; 74; 79g, f20; 25; 30; 35; 40; 45; 50; 67g,

f20; 23; 38; 55; 60; 65; 70; 75g
526 f1; 6; 11; 16; 21; 26; 31; 36g, f1; 7; 12; 17; 27; 41; 46g, f1; 8; 13; 18; 32; 37; 42; 47g,

f2; 6; 23; 28; 32; 38; 41; 48g, f2; 9; 11; 19; 33; 37; 43; 46g, f2; 14; 18; 24; 27; 34; 39; 44g,
f5; 6; 15; 25; 27; 35; 37; 50g, f3; 20; 25; 30; 32; 40; 45; 46g,

f4; 10; 11; 18; 25; 29; 41; 49g,
fj þ 5i j 0 � i � 7g, 51 � j � 55 and 91 � j � 95

f1–10g f1; 11; 12; 14–20g f1; 21–24; 26–30g f10; 31–33; 35–40g f10; 41–45; 47–50g
f13; 51–59g f25; 99–107g f34; 60–68g f46; 108; 116g

f10j þ i j 9 � i � 18g; 6 � j � 8 f10j þ i j 7 � i � 16g; 11 � j � 14

Type Prestructure Blocks in prestructure

318 Qð3; 0Þ f1–10g, f1; 11–18; 20g, f2; 11; 19; 21–27g, f1; 28–36g, f2; 37; 39–45; 47g,
f11; 38; 46; 48–54g

324 Qð4; 0Þ f1–10g, f1; 11–19g, f11; 20–28g, f2; 20; 29–36g, f1; 37–45g,
f2; 46–49; 51–55g,

f11; 50; 56–58; 60–63; 68g, f20; 59; 64–67; 69–72g
712 Qð3; 3Þ f1–10g, f10–19g, f1; 19–24; 26–28g, f1; 29–33; 35; 36; 38; 46g,

f10; 25; 39–45; 47g, f19; 34; 37; 48; 50–54; 56g, f49; 55; 57–60; 62–65g,
f61; 66–72; 74; 75g, f73; 76–84g

716 Qð4; 4Þ f1–10g, f1; 11–16; 18–20g, f11; 17; 21–26; 28; 29g,
f2; 21; 27; 30–33; 35; 36; 38g,

f1; 34; 39–46g, f2; 37; 47–49; 51; 52; 54–56g, f11; 50; 53; 57; 58; 60–64g,
f21; 59; 65–68; 70–73g, f69; 74–82g, f10j þ i j 3 � i � 12g, 8 � j � 10

1112 Qð4; 6Þ f1–10g, f10–19g, f19–28g, f1; 28–36g, f1; 64–72g, f10; 37–45g,
f19; 46–54g,

f28; 55–63g, f10j þ i j 3 � i � 12g, 7 � j � 12
1712 Qð3; 15Þ f1–10g, f10–19g, f1; 19–24; 26–28g, f1; 29–36; 38g, f10; 25; 39–45; 47g,

f19; 37; 46; 48; 50–54; 203g, f49; 195–202; 204g, f10j þ i j 5 � i � 14g,
5 � j � 18
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Prestructures for the remaining cases are given below.

This completes the construction of all GDDs whose existence is claimed in
Lemma 4.1.
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