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Abstract

Reliability is a major concern in the design of large disk arrays. Hellerstein et al. pioneered
the study of erasure-resilient codes that allow one to reconstruct the original data even in the
presence of disk failures. In this paper, we take a set systems view of the problem of con-
structing erasure-resilient codes. This leads to interesting extremal problems in �nite set theory.
Solutions to some of these problems are characterized by well-known combinatorial designs. In
other instances, combinatorial designs are shown to give asymptotically exact solutions to these
problems. As a result, we improve, extend and generalize previous results of Hellerstein et al.
? 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Over the last decade, there has been a sustained exponential advance in the den-
sity and performance of semiconductor technology. With this progress came faster
microprocessors as well as larger and faster primary memory devices. Improvements
in secondary storage systems, on the other hand, have not kept pace. While the perfor-
mance of RISC microprocessors has been increasing by more than 50% per year [25],
disk transfer rates, which depend on the speed of mechanical movements and magnetic
media densities, have only improved by about 20% each year [6]. This phenomenon
has transformed many computationally bound applications to being I=O-bound. Indeed,
Amdahl [3] already predicted about three decades ago that unless accompanied by cor-
responding increases in secondary storage performance, big increases in microprocessor
performance can only bring about marginal improvements in overall system perfor-
mance. This disparity has led to the consideration of parallelism as a means to speed
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Fig. 1. Disk array architecture.

up secondary storage systems. Several ideas have been proposed as to how parallelism
can be exploited. The most important and successful is the disk array architecture.
The disk array architecture organizes many independent small disks into one large

logical disk, as illustrated in Fig. 1. Small disks are preferable to large ones because
they have a lower cost and consume less power. For improved performance, disk arrays
employ the concept of data striping [31], which spreads data to multiple disks. This
allows both single and multiple I=O requests to be processed in parallel by separate
disks, thus improving e�ective transfer rates. A further advantage of disk striping is
uniform load balance.
The more disks we have in a disk array, the higher the performance we obtain.

Unfortunately, large disk arrays have low reliability. Failures in disk arrays are often
assumed to satisfy the memoryless property, that is, the life expectancy of a disk is
dependent only upon the condition that the disk is working now. Under this assumption,
the reliability of a disk array is modeled by the exponential distribution [13]. As
a consequence, for low disk failure rates, the failure rate of a disk array is directly
proportional to the number of disks it contains. Many applications, notably database and
transaction processing systems, require both high throughput and high data availability
of their storage systems. The most demanding of these applications require continuous
operation, which in terms of a storage system requires
(i) the ability to satisfy all requests for data even in the presence of disk failures,

and
(ii) the ability to reconstruct the content of a failed disk onto a replacement disk,

thereby restoring itself to a fault-free state.
These requirements strongly encourage the introduction of redundancy to tolerate disk
failures. Disk arrays which incorporate redundancy have come to be known as redun-
dant arrays of inexpensive disks (RAID).
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There are three primary types of disk failures. The �rst, called transient errors,
arise from noise corruption and are dealt with by repeating the requests. The second,
called media defects, are caused by permanent defects in material, and are detected and
masked by the manufacturer. The last are catastrophic failures, such as head crashes
and failures of the disk controller electronics. When a disk su�ers a catastrophic failure,
its data is rendered unreadable, and is e�ectively erased. We therefore call such a disk
failure an erasure. For convenience, we also call a set of k disk failures a k-erasure.
Error-correcting codes can be used to tolerate erasures. However, components in disk
arrays allow us to determine exactly where erasures have occurred. It is possible to
take advantage of this additional information to derive codes that are better than those
based on error-correcting codes.
Hellerstein et al. [16] pioneered the study of erasure-resilient codes for large disk

arrays. Earlier, Rabin [26] had investigated erasure-resilient codes for information dis-
persal, but his codes are not particularly suited for disk array applications. Very re-
cently, Alon et al. [2] have also studied erasure-resilient codes to combat bursty losses
in packet-switched networks. The parameters of interest there are also di�erent from
those for disk arrays.
In this paper, we address the problem of designing erasure-resilient codes for large

disk arrays along the theme of [16]. By interpreting the coding problem in the context
of extremal set theory, we obtain new classes of optimal and asymptotically optimal
erasure-resilient codes. These codes improve and extend previous results in the litera-
ture. Our treatment also reveals interesting and surprising connections to combinatorial
design theory.

2. Preliminaries

Let x=(x1; : : : ; xn) ∈ {0; 1}n. The weight of x; denoted wt(x); is the number ∑n
i=1 xi.

The support of x; denoted supp(x); is the set {i | xi = 1}.
A data stripe, or simply stripe, is the minimum amount of contiguous user data

allocated to one disk before any data is allocated to any other disk. The size of a
stripe must be an integral number of sectors, and is often the minimum unit of update
used by system software. Because of this, we can view each disk as a collection of
(disjoint) stripes.

De�nition 2.1. An [n; c; k]-erasure-resilient code, or briey an [n; c; k]-ERC, consists
of an encoding algorithm E and a decoding algorithm D with the following properties.
Given an n-tuple S of stripes, E produces an (n+ c)-tuple E(S)= (E1(S); : : : ;En+c(S))
of stripes, called a codeword, such that for any I ⊆{1; : : : ; n}; where |I | = n + c − k;
the decoding algorithm D is able to recover S from (I; {Ei(S) | i ∈ I}).

We often call an [n; c; k]-ERC a k-ERC when the parameters n and c are not im-
portant in the context.
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To see the relevance of an [n; c; k]-ERC to the protection of data loss in a RAID,
suppose that we have a piece of data which is partitioned into an n-tuple S of stripes.
Given an [n; c; k]-ERC, we encode S into a codeword (E1(S); : : : ;En+c(S)); and for
16i6n+ c; store Ei(S) on disk i of a disk array with n+ c disks. The de�nition of
an [n; c; k]-ERC ensures that we can reconstruct the original data in the presence of up
to k erasures.
For performance reasons, the erasure-resilient codes we study throughout this paper

are assumed to satisfy the following two conditions, as in [16].
(i) We restrict ourselves to systematic codes. An [n; c; k]-ERC is systematic if Ei(S)=

Si; for 16i6n; where S = (S1; : : : ; Sn). The stripes Ei(S); for n¡ i6n + c; are
called checks. This means that the encoding function leaves the data unmodi�ed
on some disks. This property is desirable to avoid read penalties associated with
decoding when there are no disk failures.

(ii) We restrict ourselves to linear codes over the �eld F2L ; where L is the bit-size of
a stripe. In this case, we interpret a stripe as an L-dimensional vector over F2; and
E is a linear function. Hence, computations used to encode a stripe are restricted
to component-wise modulo two arithmetic, that is, the parity operation ⊕. This
restriction ensures that encodings and manipulations can be performed e�ciently.

Restriction (i) above allows us to separate disks into information disks, which contain
the original data, and check disks, which contain the checks. In fact, restrictions (i)
and (ii) imply that an [n; c; k]-ERC can be described in terms of a c× (n+ c) matrix
H = [C | I ] over F2; where I is the c × c identity matrix and C is a c × n matrix
that determines the equations for the checks. This is a well-known result in the theory
of error-correcting codes [18]. The matrix H is called the parity-check matrix of the
code. Given the parity-check matrix H = [C | I ] of a k-ERC, we can think of the rows
of C (as well as the rows and columns of I) as being indexed by the check disks of
a disk array, and the columns of C as being indexed by the information disks. The
content of check disk i is the modulo two sum of the content of those information
disks, whose columns they index in C have a one in row i.
The following are some metrics of an erasure-resilient code that are important for

disk arrays.
Check disk overhead: This is the ratio of the number of check disks to information

disks. An [n; c; k]-ERC has a check disk overhead of c=n.
Update penalty: This is the number of check disks whose content must be changed

when an update is made in the content of a given information disk. We call these
disks the disks associated with the information disk. If m check disks need to be
involved in every write, then the parallelism of the disk array is reduced by a fac-
tor of m + 1. Since parallelism is the reason behind using disk arrays, update penal-
ties should be kept as small as possible. The update penalties of an
erasure- resilient code with parity-check matrix H = [C | I ] are the column sums
of C.
Group size: This is the number of disks that must be accessed during the recon-

struction of a single failed disk. The cost of reconstruction makes small group size
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desirable, while for load balancing reasons, uniform group size is desirable. The group
sizes of an erasure-resilient code are the row sums of its parity-check matrix.
Since updates of data are usually much more frequent than the reconstruction of

data due to erasures, the update penalties are typically of more concern than the group
sizes.

3. Properties of parity-check matrices

Suppose H = [C | I ] has a set of k or fewer linearly dependent columns (over F2).
The failure of the corresponding disks makes reconstruction of data impossible. In fact,
this is the only situation in which disk failures are irrecoverable.

Lemma 3.1 (Hellerstein et al. [16]). A set of disk failures is recoverable if and only
if the corresponding set of columns in its parity-check matrix is linearly independent.

It follows that H is the parity-check matrix of a k-ERC if and only if every set of k
columns of H contains no nonempty set of linearly dependent columns. Precisely the
same condition determines when H is the parity-check matrix of a k-error-detecting
code [18].

Corollary 3.2. A k-ERC is equivalent to a k-error-detecting code.

This equivalence between k-ERC and k-error-detecting codes means that results on
error-detecting codes can be brought to bear. However, the study of codes for error
detection has not focused on the metrics discussed in the previous section. Indeed,
as observed in [16], many of these codes are not suitable for disk array applications
because they have large update penalties.

Corollary 3.3. H = [C | I ] is the parity-check matrix of a k-ERC if and only if for
every t6k columns; c1; : : : ; ct of C; the vector x=⊕ti=1 ci has weight at least k+1− t.

Proof. The condition is exactly what is needed for every set of at most k columns of
H to be linearly independent.

If an erasure-resilient code is able to tolerate all k-erasures, then every update must
a�ect the content of at least k + 1 disks (one information disk and k check disks).
Thus, the update penalties of a k-ERC are at least k. In view of the importance of
minimizing update penalties, we consider from here on only those k-ERC for which
the update penalties are all equal to k; the minimum possible. We speak, therefore, of
the update penalty, instead of the update penalties of an erasure-resilient code. The
corresponding parity-check matrix H = [C | I ] has column sums for C all equal to k.
A (k + 1)-erasure is irrecoverable if it corresponds to the failure of an information

disk and its k associated check disks. We call such (k + 1)-erasures bad. With update
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penalty k; one can nonetheless hope to tolerate all (k+1)-erasures, except for bad ones
[16]. In fact, it can happen that all t-erasures for some t ¿ k are recoverable except
for those that contain bad (k + 1)-erasures.

De�nition 3.4. A t-erasure, t¿k+1; is bad if it includes the failure of an information
disk and all of its k associated check disks.

With this in mind, we extend De�nition 2:1 to encompass this notion of higher
resilience.

De�nition 3.5. An [n; c; k; l]-ERC is an [n; c; k]-ERC which can tolerate all t-erasures,
for k + 16t6l; except for bad t-erasures.

An alternative view of an [n; c; k; l]-ERC is that it is an erasure-resilient code with
update penalty k that is able to tolerate all t-erasures, t6l; except bad ones. We often
write (k; l)-ERC for [n; c; k; l]-ERC when the parameters n and c are not important in the
context. Requirements for higher reliability of disk arrays make (k; l)-ERC attractive.
A (k; k)-ERC is simply a k-ERC. Corollary 3.3 can be extended to handle the more
general (k; l)-ERC.

Lemma 3.6. H = [C | I ] is the parity-check matrix of a (k; l)-ERC if and only if for
every t columns; c1; : : : ; ct of C; where 26t6l; the vector x = ⊕ti=1 ci has weight at
least l+ 1− t.

Proof. First we prove necessity. Suppose there exists x = ⊕ti=1 ci ; for some columns
c1; : : : ; ct of C; such that wt(x)6l − t. Then there exists wt(x) columns of I whose
sum together with x gives the zero vector. Hence, the corresponding s-erasure, where
s=wt(x) + t6l; cannot be recovered. We may assume that this s-erasure is not bad,
for otherwise we may discard information disks and their k associated check disks and
obtain an s′-erasure, for some 0¡s′¡s; which is still irrecoverable.
For su�ciency, suppose to the contrary that there exists an r-erasure, r6l; which

is irrecoverable. Then there exist columns c1; : : : ; ct of C and columns e1; : : : ; er−t of
I; such that

(⊕t
i=1 ci

)⊕ (⊕r−t
i=1 ei

)
= 0. This is possible if and only if the weight of

x=
⊕t

i=1 ci is exactly r − t. Hence, wt(x) = r − t6l− t; a contradiction.

Before we leave this section, let us make the following de�nition.

De�nition 3.7. Given c; k; and l; de�ne F(c; k; l) to be the maximum n such that there
exists an [n; c; k; l]-ERC.

The maximum number of information disks that can be supported by c check disks
is F(c; k; l); if one desires an update penalty of k and wants to tolerate all t-erasures,
t6l; except bad ones. The important problem is: For given k and l; determine the
behavior of F(c; k; l) with respect to c; and construct [n; c; k; l]-ERC having n as close
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to F(c; k; l) as possible. An [n; c; k; l]-ERC with n = F(c; k; l) is said to have optimal
check disk overhead. We also abbreviate F(c; k; k) to F(c; k).

4. Tur�an-type problems

If X is a �nite set, we denote by
(X
k

)
the set of all k-subsets of X; that is,

(X
k

)
=

{K ⊆X | |K |= k}.

De�nition 4.1. Let X be a �nite set. A set system, or con�guration, is a pair (X;A);
where A⊆ 2X . The order of the set system is |X |. The elements of X are called points
and the elements of A are called blocks.

A set system (X;A) for which A⊆ (X
k

)
is said to be k-uniform. The replication

number of a point x ∈ X is rx = |{A ∈ A | x ∈ A}|.
Two set systems (X;A) and (Y;B) are isomorphic if there exists a bijection � :

X → Y such that A ∈ A if and only if {�(a) | a ∈ A} ∈ B. A set system (X;A)
is said to contain a con�guration (Y;B) if there exists Z ⊆X and C⊆A such that
(Z;C) is isomorphic to (Y;B). If (X;A) does not contain (Y;B); then (X;A) is said
to avoid (Y;B). In this case, we also call (Y;B) a forbidden con�guration of (X;A).
The symmetric di�erence of two sets A and B is denoted A�B.
A Tur�an-type problem takes the form: Given a family F of con�gurations, de-

termine the maximum number of blocks in a (k-uniform) set system of order n that
avoids all the con�gurations in F. We now explain the role of Tur�an-type problems
in the design of erasure-resilient codes.
Given any matrix M ∈ {0; 1}m×n; one can de�ne a set system (X;A); where X =

{1; : : : ; m} and A contains precisely the supports of the columns of M . We call (X;A)
the set system of M.
Let H=[C | I ] be the parity-check matrix of an erasure-resilient code. We also call the

set system of C the set system of the erasure-resilient code. If (X;A) is the set system
of an [n; c; k; l]-ERC, then with our foregoing discussion, (X;A) is k-uniform, |X |= c;
and |A| = n. Therefore, the check disk overhead is |X |=|A|; and the group sizes are
one more than the replication numbers. This correspondence between set systems and
parity-check matrices gives rise to Tur�an-type problems in erasure-resilient codes.

Lemma 4.2. (X;A) is the set system of a (k; l)-ERC if and only if for any 26t6l;
there do not exist t blocks A1; : : : ; At ∈ A such that |�ti=1 Ai|6l− t.

Proof. Translate Lemma 3.6 into the language of set systems and observe that
supp(u ⊕ v) = supp(u)�supp(v) for any two vectors u; v ∈ {0; 1}n.

It follows that the construction of a (k; l)-ERC with optimal check disk overhead is
precisely the Tur�an-type problem of determining the maximum number of blocks in a
set system satisfying the condition of Lemma 4.2.
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When considering (k; l)-ERC, we may assume l62k − 1 for the following reason.
Let (X;A) be the set system of a (k; l)-ERC. If A contains at least two blocks A
and A′ with nonempty intersection, then |A�A′|62k − 2. It follows from Lemma 4.2
that l − 2¡ 2k − 2; which implies l62k − 1. Hence if l¿2k; then A must consist
of pairwise disjoint blocks. This corresponds to the scheme where the content of each
information disk is replicated on k di�erent check disks. This scheme is able to tolerate
all t-erasures, for any t; except for bad ones. For �xed update penalty, this scheme has
the highest reliability, but su�ers from a huge check disk overhead of k. Henceforth,
we restrict our attention to k6l62k − 1.
In the next section, we give a general construction for (k; l)-ERC and establish a

limit on how good a (k; l)-ERC can be.

5. Expander-based construction and an upper bound

Given a set system (X;A); one can construct a bipartite graph G = (X ∪A; E) as
follows. The vertex sets of the bipartition are X and A. Two vertices x ∈ X and A ∈ A

are incident if and only if x ∈ A. This graph is called the point-block incidence graph
of (X;A). The set system (X;A) can be reconstructed from its point-block incidence
graph.
Let S be a subset of vertices in a graph. The neighborhood of S; denoted @(S); is

the set of all vertices not in S that are adjacent to some vertex in S. The elements of
@(S) are called the neighbors of S. A vertex v is an odd neighbor of S if v is adjacent
to an odd number of vertices in S.

Lemma 5.1. Let 16k6l and 26t6l. Let G=(U ∪V; E) be a bipartite graph where
each vertex in U has degree k; and such that for any subset T ∈ (V

t

)
;

|@(T )|¿ t(k − 1) + l+ 1
2

:

Then G is the point-block incidence graph of a (k; l)-ERC.

Proof. From Lemma 4.2, it su�ces to show that any T ∈ (V
t

)
has at least l + 1 − t

odd neighbors. Suppose that there are only s6l − t odd neighbors of T . Then there
are |@(T )| − s neighbors of T; each of which is adjacent to at least two vertices of T .
Hence,

2(|@(T )| − s) + s6tk;
which gives

|@(T )|6 tk + s
2

6
tk + l− t

2
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=
t(k − 1) + l

2
:

This is a contradiction.

Lemma 5.1 shows that bipartite graphs for which the neighborhood of any set of ver-
tices S is large relative to the size of S give erasure-resilient codes. This neighborhood
property is exactly what de�nes an important class of graphs known as expanders. Un-
fortunately, the study of bipartite expanders have focused on the case when the sizes
of the two partitions are linearly related, making them unsuitable for our application.
The probabilistic construction we give next yields bipartite expanders where the sizes
of the two partitions are polynomially related. The construction is a modi�cation of
the usual probabilistic construction for expanders (see [22]).

Theorem 5.2. Let k and l be constants such that 16k6l; and de�ne �=(2k+1−l)=4.
Let 26t6l. There is an integer n0 such that for all n¿n0; there exists a bipartite
graph G = (U ∪ V; E) with |U | = n and |V | = 
(n�) satisfying the following two
conditions:
(i) each vertex in V has degree k;
(ii) for every T ∈ (V

t

)
; we have |@(T )|¿(t(k − 1) + l+ 1)=2.

Proof. Let |V |= dn� for some positive constant d. Consider a random bipartite graph
on the vertices in U and V; in which each vertex of V chooses its k neighbors by
sampling a k-subset of vertices from U independently and uniformly from

(U
k

)
. The

bipartite graph so constructed satis�es condition (i).
Let Et denote the event that a subset of t vertices from V has fewer than s =

(t(k−1)+l+1)=2 neighbors in U . Fix any T ∈ (V
t

)
and any S ∈ (U

s

)
. There are

(
dn�

t

)
ways of choosing T and

( n
s

)
ways of choosing S. The probability that S contains @(T )

is (
( s
k

)
=
( n
k

)
)t . Thus, the probability of the event that all the edges emanating from

some t vertices of V fall within any s vertices of U is bounded as follows:

Pr[Et]6
(
dn�

t

)(n
s

)[( s
k

)( n
k

)
]t
:

Using the inequalities
( n
k

)
6(ne=k)k and

( n
k

)
¿(n=k)k ; we obtain

Pr[Et]6O(n−(t−2)(l+1)=4):
The probability that the bipartite graph fails to satisfy (ii) is at most

∑l
t=2 Pr[Et];

which can be made to be less than one for n large enough by an appropriate choice
of d. The desired result follows.

Next, we establish an upper bound on F(c; k; l). First, let us recall some de�nitions
from design theory.

De�nition 5.3. A t-(v; k; 1) packing is a k-uniform set system, (X;A); of order v; such
that every t-subset of X is contained in at most one block of A.
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De�nition 5.4. A t-(v; k; 1) design is a k-uniform set system, (X;A); of order v; such
that every t-subset of X is contained in precisely one block of A.

A 2-(v; 3; 1) design is known as a Steiner triple system of order v, denoted STS(v). A
3-(v; 4; 1) design is known as a Steiner quadruple system of order v, denoted SQS(v).
A t-(v; k; 1) design is cyclic if its element set is Zv, and whenever {x1; : : : ; xk} is a
block, so also is {x1+1; : : : ; xk+1} (with arithmetic modulo v). A set of representatives
of the orbits under the action of Zv is called a set of base blocks.
The maximum number of blocks in a t-(v; k; 1) packing is denoted D(v; k; t). Then

D(v; k; t)6
( v
t

)
=
(
k
t

)
with equality if and only if there exists a t-(v; k; 1) design.

Theorem 5.5. Let k and l be constants such that 16k6l. Then F(c; k; l) = O
(ck+1−bl=2c).

Proof. Consider all con�gurations of two blocks of size k intersecting in at least
k + 1− bl=2c points. Any set system (X;A) of an [n; c; k; l]-ERC must avoid all such
con�gurations, for otherwise it would violate the condition of Lemma 4.2. Hence, any
two blocks of (X;A) intersect in at most k − bl=2c points. It follows that (X;A) is a
(k + 1− bl=2c)-(c; k; 1) packing. Hence,

|A|6
(

c
k+1−bl=2c

)
(

k
k+1−bl=2c

) =O(ck+1−bl=2c):

Theorems 5.2 and 5.5 give the following.

Corollary 5.6. For any �xed k and l such that 16k6l; there exist positive constants
a1 and a2 such that

a1c(2k+1−l)=46F(c; k; l)6a2ck+1−bl=2c;

for all positive integer c.

For general k, the only previously known lower bound on F(c; k; l) is due to
Hellerstein et al. [16] and applies when l= k.

Theorem 5.7 (Hellerstein et al. [16]). For any positive integer k; F(c; k)¿(1− o(1))( c
2

)
=
(
k
2

)
.

For k6l62k − 8 (hence k¿8), the (k; l)-ERC we built from expanders are at least
as reliable and have asymptotically better check disk overheads than those provided by
Theorem 5.7. The theorem is proved by establishing that every 2-(v; k; 1) packing with
b blocks is a [b; v; k]-ERC. One might hope that, when k is large enough, a 3-(v; k; 1)
packing might also give a [b; v; k]-ERC. However, this condition does not su�ce. When
k=2s, for instance, form a complete bipartite graph Ks;s and add a second copy of each
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Fig. 2. Forbidden con�gurations for (3; 4)-ERC.

edge. Now label each of the 2s2 edges with distinct symbols, and form 2s sets each
of size 2s by listing, for each vertex, the labels of the edges incident with the vertex.
No two of these share more than two symbols, but by Lemma 4.2 it corresponds to
an irrecoverable k-erasure.
The exponent in the upper bound of Corollary 5.6 is about twice that for the lower

bound. We believe the upper bound to be the true asymptotic behavior of F(c; k; l),
but tightening the lower bound in general appears di�cult. In Sections 6 and 7, we
give exact and asymptotically exact bounds for several cases when k is small.

6. Optimal (3; l)-ERC and anti-Pasch Steiner triple systems

An extensive treatment of (3; l)-ERC was given by Hellerstein et al. [16] for l= 3
and 4. We summarize their results next.

Lemma 6.1 (Hellerstein et al. [16]). (X;
(X
3

)
) is the set system of a 3-ERC. Hence;

F(c; 3) =
( c
3

)
.

Lemma 6.2 (Hellerstein et al. [16]). For any positive integer c; F(c; 3; 4)6c(c−1)=6;
with equality if c is a power of 3. If c ≡ 3 (mod 6); then F(c; 3; 4)¿c(c − 3)=6.

We can improve on Lemma 6.2 by examining the set system of a (3; 4)-ERC. The
only 3-uniform con�gurations (Y;B); 26|B|64, for which |�B∈B B|¿4− t, are those
shown in Fig. 2. By Lemma 4.2, these con�gurations must be avoided by the set
system of any (3; 4)-ERC.
Forbidding P1 from the set system (X;A) of an [n; c; 3; 4]-ERC is equivalent to

saying that (X;A) is a 2-(c; 3; 1) packing. The con�guration P2 is known in the design
theory literature under various names: quadrilateral, Pasch con�guration, fragment,
or arrow (see [9]). A 2-(v; 3; 1) packing that does not contain a Pasch con�guration
is called anti-Pasch or quadrilateral-free (QF). The construction of (3; 4)-ERC with
optimal check disk overhead is therefore equivalent to the following problem.

Problem 6.3. Determine the maximum number of blocks in an anti-Pasch 2-(v; 3; 1)
packing.
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The maximum number of blocks in a 2-(v; 3; 1) packing has been determined a long
time ago [32]:

D(v; 3; 2) =

{
b v3b v−12 cc − 1; if v ≡ 5 (mod 6);
b v3b v−12 cc; otherwise:

However, a complete solution to Problem 6:3 is not known. An anti-Pasch 2-(v; 3; 1)
packing with D(v; 3; 2) blocks is said to be optimal. We believe that for all su�ciently
large v, there exists an optimal anti-Pasch 2-(v; 3; 1) packing. It is su�cient to treat the
cases v ≡ 1, 3, or 5 (mod 6):

Lemma 6.4. Let v ≡ 1; 3; or 5 (mod 6). If there exists an optimal anti-Pasch 2-(v; 3; 1)
packing; then there exists an optimal anti-Pasch 2-(v− 1; 3; 1) packing.

Proof. Sch�onheim [32] has shown that for v ≡ 1, 3, or 5 (mod 6), every 2-(v; 3; 1)
packing with D(v; 3; 2) blocks contains a 2-(v − 1; 3; 1) packing with D(v − 1; 3; 2)
blocks.

Already 20 years ago, Erd�os [10] made the conjecture that there exists an anti-Pasch
STS(v) for all v ≡ 1 or 3 (mod 6) whenever v is su�ciently large. The unique STS(7)
and the two nonisomorphic STS(13) contain Pasch con�gurations. Brouwer [5] re�ned
Erd�os’ conjecture as follows.

Conjecture 6.5 (Brouwer [5]). There exists an anti-Pasch STS(v) for all v ≡ 1 or
3 (mod 6); except when v= 7 or 13.

Conjecture 6.5 is known to be true for v ≡ 3 (mod 6).

Theorem 6.6 (Brouwer [5]). There exists an anti-Pasch STS(v) for all v ≡ 3 (mod 6).

The results for anti-Pasch STS(v); v ≡ 1 (mod 6) are more fragmented; see [9]
for a survey, and [17] for recent results. So by observing the equivalence between
[n; c; 3; 4]-ERC with optimal check disk overhead and optimal anti-Pasch 2-(c; 3; 1)
packings, we can improve Lemma 6.2 as follows.

Lemma 6.7. For each positive integer c; we have F(c; 3; 4)6D(c; 3; 2); with equality
if c ≡ 2 or 3 (mod 6).

Proof. Follows from Theorem 6.6 and Lemma 6.4.

We now turn our attention to (3; 5)-ERC. It turns out that there are no con�gurations
in addition to P1 and P2 which need to be avoided by the set system of a (3; 5)-ERC.
Consequently, every (3; 4)-ERC is also a (3; 5)-ERC.
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Fig. 3. Forbidden con�gurations for 4-ERC.

Lemma 6.8. For each positive integer c; we have F(c; 3; 5) = F(c; 3; 4).

7. Asymptotically optimal (4; l)-ERC

The only previously known result concerning (4; l)-ERC is the lower bound F(c; 4)¿
(1 − o(1))c(c − 1)=12 given by Theorem 5.7. Hellerstein et al. [16] posed the open
problem of determining F(c; 4).

7.1. Finite �eld construction for l ∈ {4; 5}

Lemma 4.2 implies that for (X;A) to be the set system of an [n; c; 4]-ERC, it
is necessary and su�cient to avoid the �ve con�gurations in Fig. 3. Avoiding Q1
means that (X;A) is a 3-(c; 4; 1) packing. Therefore, F(c; 4)6D(c; 4; 3). It follows
that F(c; 4) = c(c − 1)(c − 2)=24 if and only if there exists an SQS(c) that avoids all
the con�gurations Q2; Q3; Q4, and Q5. At present, we do not know of any example
of an SQS(c); c¿ 4, that avoids all these con�gurations. For a comprehensive survey
on Steiner quadruple systems, we refer the reader to [15].
Here, we address the more di�cult problem of constructing (4; 5)-ERC, and in the

process, obtain asymptotically exact bounds on both F(c; 4) and F(c; 4; 5). A short com-
putation demonstrates that in order for (X;A) to be the set system of an [n; c; 4; 5]-ERC,
it is necessary and su�cient to avoid Qi; 16i65, and the nine con�gurations shown in
Fig. 4. The remainder of this section describes a �nite �eld construction for (4; 5)-ERC.

De�nition 7.1. A set system (X;A) is k-partite if there is a partition of X into k parts,
X =X1 ∪ · · · ∪Xk , such that for every block A ∈ A, we have |A∩Xi|61, for 16i6k.

One idea we use to simplify our construction is to restrict our attention to set
systems of (4; 5)-ERC that are 4-partite. It is known [11] that for every k-uniform
set system (X;A), one can �nd a k-partite set system (X;B), where B⊆A, such
that |B|¿(k!=kk)|A|. So our restriction to 4-partite set systems is not a severe one,
and a�ects F(c; 4; l) by at most a constant factor of 32=3. The con�gurations Qi; i ∈
{2; 6; 7; 8; 9; 10; 11; 12; 13; 14}, are not 4-partite. Hence, they are avoided by any 4-partite
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Fig. 4. Forbidden con�gurations in (4; 5)-ERC.

set system. It therefore su�ces to construct 4-partite set systems that avoid Qi for i ∈
{1; 3; 4; 5}.

De�nition 7.2. An extension of a set system (X;A) by a point ∞ 6∈ X is the set
system (X ∪ {∞};B), where B= {A ∪ {∞} |A ∈ A}.

We now describe the �nite �eld construction. Let q be an odd prime power and
let ! be a primitive element of Fq. For each i; 16i6(q − 1)=2, de�ne a set system
(Xi;Bi), where

Xi = Fq × {0; 1; 2}
and

Bi = {{(a; 0); (b; 1); (a+ !ib; 2)} | a; b ∈ Fq; b 6= 0}:
Now let (Yi;Ci) be the extension of (Xi;Bi) by the point ∞i ; 16i6(q−1)=2. Finally,
de�ne (Y;C) so that

Y =
(q−1)=2⋃
i=1

Yi and C =
(q−1)=2⋃
i=1

Ci :

For 16i6(q − 1)=2; (Xi;Bi) is a 2-(3q; 3; 1) packing, and (Y;C) is a 4-uniform set
system. Since each block in C intersects each of the sets Fq×{0}; Fq×{1}; Fq×{2},
and {∞1; : : : ;∞(q−1)=2} in exactly one point, and these sets partition Y; (Y;C) is also
4-partite. The lemmas that follow show that (Y;C) avoids several con�gurations.

Lemma 7.3. The set system (Y;C) avoids Q1.
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Proof. Suppose (Y;C) contains the con�guration below:

a

Without loss of generality, either x =∞i, or y =∞i and z =∞j, for some i 6= j.
If x=∞i, then some (Xi;Bi) must contain P1, which contradicts the fact that (Xi;Bi)

is a 2-(3q; 3; 1) packing.
If y=∞i and z=∞j, then there exists {(a; 0); (b; 1); (c; 2)} ∈ Bi ∩Bj. This is only

possible if b= 0, a contradiction.

Lemma 7.4. The set system (Y;C) avoids Q3.

Proof. Suppose (Y;C) contains the con�guration below:

Without loss of generality, either x =∞i, or y =∞i and z =∞j, for some i 6= j.
If x =∞i, then (Xi;Bi) contains P2. The only way P2 can occur in (Xi;Bi) is as

follows.

But this implies c= a+!ib= d+!ie and f= a+!ie= d+!ib, which can only
be satis�ed if b= e. This is a contradiction.
If y=∞i and z=∞j, then (Xi;Bi) and (Xj;Bj) must contain four blocks (two from

each of Bi ;Bj) that occur in one of the following three ways:

The blocks in Bi are shown in solid lines and those in Bj are shown in dashed lines.
In the �rst situation, we have c= a+!ib= a+!jd and e= a+!id= a+!jb, which
can only be satis�ed if b= d. In the second situation, we have c= d+!ib= a+!jb
and e= a+!ib= d+!jb, which can only be satis�ed if a= d. For the last situation,
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we have c = a + !ib = d + !je = a + !ie = d + !jb, which can only be satis�ed if
b= e. All these lead to contradictions.

Lemma 7.5. The set system (Y;C) avoids Q4.

Proof. Suppose (Y;C) contains the con�guration below:

Without loss of generality, we may assume x =∞i and y =∞j, for some i 6= j.
Then (Xi;Bi) and (Xj;Bj) must contain four blocks (two from each of Bi ;Bj) that
occur as shown here:

The blocks in Bi are shown in solid lines and those in Bj are shown in dashed
lines. But this implies that c = a+ !ib= d+ !jb and f = a+ !ie = d+ !je, which
can only be satis�ed if b= e. This is a contradiction.

Lemma 7.6. The set system (Y;C) avoids Q5.

Proof. Suppose (Y;C) contains the con�guration below:

Without loss of generality, either w =∞i and z =∞j, or x =∞i and y =∞j, for
some i 6= j.
If w =∞i and z =∞j, then (Xi;Bi) and (Xj;Bj) must contain four blocks (two

from each of Bi ;Bj) that occur as shown here:
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This, as we have seen in the proof of Lemma 7.5, is impossible.
If x =∞i and y =∞j, then (Xi;Bi) and (Xj;Bj) must contain four blocks (two

from each of Bi ;Bj) that occur in one of the following three ways.

The blocks in Bi are shown in solid lines and the blocks in Bj are shown in dashed
lines. The �rst situation gives c = a + !ib = d + !je and f = a + !ie = d + !jb,
which can only be satis�ed if b = e or !i = −!j. But −!j = !j+(q−1)=2 since q is
odd, and i 6≡ j (mod (q− 1)=2), because 16i; j6(q− 1)=2. The second situation gives
c= a+!ib=d+!je and f=d+!ib= a+!je, which can only be satis�ed if d= a.
For the last situation, we have c = a + !ib = d + !ie and f = a + !je = d + !jb,
which can only be satis�ed if b= e or !i =−!j. As before !i =−!j is impossible.
All these lead to contradictions.

We now state the main result of this section.

Theorem 7.7. Let q be an odd prime power; and let � be an integer such that
16�6(q − 1)=2. Then there exists an [n; c; 4; 5]-ERC; where c = 3q − 1 + � and
n= �q(q− 1).

Proof. The set system (
⋃�
i=1 Yi;

⋃�
i=1 Ci) is a 4-uniform 4-partite set system of order

3q− 1 + � having �q(q− 1) blocks, which avoids Qi; i ∈ {1; 3; 4; 5}, by the previous
lemmas. Hence, it is the set system of a (4; 5)-ERC.

The asymptotic behavior of F(c; 4) and F(c; 4; 5) can now be determined.

Corollary 7.8. F(c; 4) =�(c3) and F(c; 4; 5) =�(c3).

Proof. Let q be the largest odd prime power at most (2c+3)=7. Taking �=(q− 1)=2
in Theorem 7.7 gives a [q(q− 1)2=2; (7q− 3)=2; 4; 5]-ERC. Hence,

F(c; 4; 5)¿ F((7q− 3)=2; 4; 5)

¿
q(q− 1)2

2

¿ (1− o(1)) 4
343

c3:

The last inequality follows from bounds on the gap between consecutive primes (see,
for example, [23]). This, together with the inequalities

F(c; 4; 5)6F(c; 4)6D(c; 4; 3)6 1
24c

3;

gives the required result.
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The bound on F(c; 4; 5) in Corollary 7.8 improves upon the results of Hellerstein
et al. [16]. It is an order of magnitude better than the bound on F(c; 4) obtained in
[16].
One drawback of the (4; 5)-ERC constructed in Theorem 7.7 is that the group sizes

are large and nonuniform. Among the 3q − 1 + � points, 2q have replication number
�(q−1); q−1 have replication number �q, and the remaining � have replication number
q(q−1). When �=(q−1)=2, all groups have size �(q2), but the largest group remains
about twice as big as the smallest. However, the following splitting process can be
used to make the group sizes more uniform.

De�nition 7.9. Suppose (X;A) is a set system and x ∈ X . Let Ax = {A ∈ A | x ∈ A}
and B⊆Ax such that |B|=b|Ax|=2c. De�ne W=X∪{x′} and D=(A\B)∪{(A\{x})∪
{x′} |A ∈ B}. Then (W;D) is the set system obtained by splitting x in (X;A); and is
denoted splitx(X;A).

We can extend this de�nition to splitting a subset S ⊆X in (X;A) as follows:

splitS(X;A) =
{
splitx(X;A) if S = {x};
splitS\{x}(splitx(X;A)) if x ∈ S and |S|¿2:

Next, we show that splitting preserves erasure-resilience.

Lemma 7.10. If (X;A) is the set system of a (k; l)-ERC and x ∈ X; then splitx(X;A)
is also the set system of a (k; l)-ERC.

Proof. Suppose not. Then by Lemma 4.2, there exist t blocks A1; : : : ; At in splitx(X;A),
where 26t6l, such that |�ti=1 Ai|6l−t. For each of the blocks A1; : : : ; At that contains
x′, replace x′ by x. This does not increase the size of their symmetric di�erence. But
now, all these blocks are in A, contradicting the assumption that (X;A) is the set
system of a (k; l)-ERC.

Then splitx(Y;C) is a set system of order 4q − 2 with q(q − 1)2=2 blocks and all
replication numbers are q2=2 or q(q− 1)=2. By Lemma 7.10, this is the set system of
a (4; 5)-ERC:

Lemma 7.11. Let q be an odd prime power. Then there exists a [q(q − 1)2=2; 4q
− 2; 4; 5]-ERC; where the group sizes are q2=2 and q(q− 1)=2.

7.2. Transversal design construction for l ∈ {6; 7}

Let (X;A) be the set system of a (4; 6)-ERC. Lemma 4.2 implies that (X;A) must
avoid the con�guration Q15 shown in Fig. 5. Hence, (X;A) is a 2-(c; 4; 1) packing and
F(c; 4; 6)6D(c; 4; 2). This obviates the need to consider many of the con�gurations
treated for the case when l=5. The only con�gurations that a 2-(c; 4; 1) packing must
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Fig. 5. Forbidden con�gurations for (4; 6)-ERC.

avoid in order for it to be the set system of a (4; 6)-ERC is Q14 and Q16 (shown in
Fig. 5).

De�nition 7.12. A transversal design, TD(k; n), is a triple (X;G;B), where X is a set
of kn points, G is a partition of X into k parts (called groups), each of size n, and
(X;B) is a k-uniform set system such that every 2-subset of X is contained in exactly
one group (of G) or one block (of B), but not both.

De�nition 7.13. Let (X;G;B) be a TD(k; n). The design obtained by removing a group
G ∈ G is the triple (X \G;G\{G}; {B\G |B ∈ B}).

Removing a group in a TD(k; n) gives a TD(k − 1; n). Consider the standard con-
struction of a transversal design TD(4; q), where q is a prime power (see, for example,
[4]). Let

X = Fq × {0; 1; 2; 3};
G= {Fq × {i} | i ∈ {0; 1; 2; 3}}

and

B= {{(a; 0); (b; 1); (a+ b; 2); (a+ 2b; 3)} | a; b ∈ Fq}:
Then (X;G;B) is a TD(4; q). The set system (X;B) is a 4-partite 2-(4q; 4; 1) packing.
Let (X ′;G′;B′) be the TD(3; q) obtained by removing the group Fq×{3} in (X;B;G).

Lemma 7.14. The set system (X;B) avoids Q16.

Proof. Suppose (X;B) contains the con�guration
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This con�guration has a unique (up to isomorphism) partition of its points into four
parts so that each block contains exactly one point from each part. This partition is
indicated by di�erent shadings in the �gure. Hence, the points of one of the parts must
belong to Fq×{3}. Deleting all the points in any part gives the following con�guration:

So (X ′;B′) must contain the con�guration above. There are six possibilities to con-
sider, as shown below.

Each point is an element of Fq × {0; 1; 2}. The label inside a point shows its �rst
coordinate, and the label outside a point shows its second coordinate.
Consider case (a). We have c=a+b=f+ i, e=b+f=d+h, and g=a+d=h+ i,

which is only satis�ed if b= d. This is a contradiction.
The other �ve cases can be disposed of similarly.

Corollary 7.15. (X;B) is the set system of a (4; 6)-ERC.

The set system of a (4; 7)-ERC must avoid the four con�gurations in Fig. 6 in
addition to all the forbidden con�gurations for set systems of (4; 6)-ERC.

Theorem 7.16. Let q be a prime power. Then there exists a [q2; 4q; 4; 7]-ERC.
Moreover; this code has uniform group size q.

Proof. We claim that (X;B) is the set system of a [q2; 4q; 4; 7]-ERC. By Corollary 7.15,
we only need to show that (X;B) avoids all the con�gurations in Fig. 6. None of the
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Fig. 6. Forbidden con�gurations for (4; 7)-ERC.

con�gurations in Fig. 6 is 4-partite. Since (X;B) is 4-partite, these con�gurations are
all avoided. The replication number of every point in X is q.

Corollary 7.17. F(c; 4; 6) =�(c2) and F(c; 4; 7) =�(c2).

Proof. Let q be the largest prime power at most c=4. Theorem 7.16 gives a [q2; 4q; 4; 7]-
ERC. Hence,

F(c; 4; 7)¿ F(4q; 4; 7)

¿ q2

¿ (1− o(1)) 116c2:

This, together with the inequalities

F(c; 4; 7)6F(c; 4; 6)6D(c; 4; 2)6 1
12c

2;

gives the required result.

When c ≡ 1; 4 (mod 12) and c is su�ciently large, we expect that F(c; 4; 7) =
c(c−1)=12. Equality occurs when c=(3�−1)=2 for �¿y3, using the projective spaces
PG(�; 3) (see [4] for the de�nition and basic properties). In addition, we have found a
number of sporadic small examples where equality holds. Following are base blocks for
[c(c − 1)=12; c; 4; 7]-ERCs (i.e., cyclic 2-(c,4,1) designs) with c ∈ {40; 49; 52; 61; 64}:
40: {0; 10; 20; 30}; {0; 1; 4; 13}; {0; 2; 17; 24}; {0; 5; 26; 34}.
49: {0; 1; 3; 9}; {0; 4; 18; 37}; {0; 5; 25; 32}; {0; 10; 21; 36}.
52: {0; 13; 26; 39}; {0; 1; 3; 11}; {0; 4; 16; 37}; {0; 5; 14; 32}; {0; 6; 23; 30}.
61: {0; 1; 3; 8}; {0; 4; 13; 36}; {0; 6; 28; 49}; {0; 10; 27; 47}; {0; 11; 30; 46}.
64: {0; 16; 32; 48}; {0; 1; 3; 9}; {0; 4; 18; 39}; {0; 5; 15; 41}; {0; 7; 20; 47}; {0; 11; 30; 42}.
It is a tedious veri�cation that the set systems produced are [c(c−1)=12; c; 4; 7]-ERCs.

Theorem 7.18. If a [c(c−1)=12; c; 4; 7]-ERC exists; then a [(3c+1)3c=12; 3c+1; 4; 7]-
ERC exists.

Proof. Let (V;B) be a [c(c−1)=12; c; 4; 7]-ERC. On (V×{0; 1; 2})∪{∞}, place blocks
as follows:



24 Y.M. Chee et al. / Discrete Applied Mathematics 102 (2000) 3–36

1. if {u; v; w; x}∈B, include {(v; iv); (w; iw); (x; ix); (y; iy)} for (iv; iw; ix; iy)∈{(0; 0; 0; 0),
(0; 1; 1; 2); (0; 2; 2; 1); (1; 0; 1; 1); (1; 1; 2; 0); (1; 2; 0; 2); (2; 0; 2; 2); (2; 1; 0; 1); (2; 2; 1; 0)}.

2. for x ∈ V , include {∞; (x; 0); (x; 1); (x; 2)}.
The veri�cation is tedious but straightforward.

8. Controlling group sizes by balanced orderings

Let g1; : : : ; gc be the group sizes of an [n; c; k; l]-ERC. Then,
∑c

i=1 gi = kn + c. So
the average group size is kn=c + 1. Since the check disk overhead is c=n, the smaller
the check disk overhead, the larger the average group size. In the previous sections,
our focus has been on the construction of erasure-resilient codes with optimal and
asymptotically optimal check disk overheads. Therefore, inevitably, our codes have
large average group size.
It is, however, possible to trade check disk overhead for a smaller average group

size. Given the parity-check matrix [C | I ] of an erasure-resilient code, one can simply
delete the appropriate number of columns of C so that the desired average group size
is obtained. However, this process does not guarantee that the maximum group size
is lowered. We have indicated in Section 2 that for load-balancing reasons, uniform
group size is desirable. This raises the issue of whether it is possible to construct
erasure-resilient codes in which there is a way of deleting columns from its parity-check
matrix so that every group size is close to the average. We now discuss this problem
more formally. The terminology we use here generalizes that in [16].

De�nition 8.1. Let � be a positive integer. An erasure-resilient code is said to have
�-balanced group size if the following conditions hold:
(i) when the average group size is 1 (mod �), all groups are the same size;
(ii) when the average group size is not 1 (mod �), the maximum group size is at most

� greater than the minimum group size.

Let M be an m × n matrix. For any i, 16i6n, M (i) denotes the m × i matrix
comprising the �rst i columns of M .

De�nition 8.2. Let [C | I ] be the parity-check matrix of an [n; c; k; l]-ERC, and � a
positive integer. We say that the columns of C are arranged in an �-balanced ordering
if, for any i, 16i6n, [C(i) | I ] is the parity-check matrix of an [i; c; k; l]-ERC with
�-balanced group size.

The existence of an �-balanced ordering for a (k; l)-ERC allows us to derive from
it other (k; l)-ERC with higher check disk overhead but smaller group sizes, and
whose group sizes di�er from one another by at most �. Another use of balanced
orderings observed by Hellerstein et al. [16] is in the design of extendible disk ar-
ray systems. If we have chosen a code whose parity-check matrix has more columns
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than we need, then as more disks are added to the system, the extra columns are
put to use. The existence of an �-balanced ordering for the original parity-check
matrix ensures that we have �-balanced group size at all times if disks are asso-
ciated with columns according to this ordering. The case � = 1 was considered
in [16].

De�nition 8.3. Let � be a positive integer and (X;A) a set system. Let B⊆A. Then,
(i) B is an �-resolution class if every point of X is contained in precisely � blocks

of B;
(ii) B is a partial �-resolution class if every point of X is contained in at most �

blocks of B.

De�nition 8.4. Let � be a positive integer. A set system (X;A) is �-resolvable if A
can be partitioned into parts, each of which is an �-resolution class.

De�nition 8.5. Let � be a positive integer. A set system (X;A) is almost �-resolvable
if A can be partitioned into parts, each of which is an �-resolution class, except
perhaps for one part, which is a partial �-resolution class.

If (X;A) is k-uniform, then it is �-resolvable or almost �-resolvable only if �|X | ≡ 0
(mod k). The following lemma relates the existence of balanced orderings of parity-
check matrices to resolution properties of their set systems.

Lemma 8.6. Let [C | I ] and (X;A) be the parity-check matrix and set system of an
[n; c; k; l]-ERC; respectively. Then C has an �-balanced ordering if and only if (X;A)
is almost �-resolvable.

Proof. Suppose (X;A) is almost �-resolvable with �-resolution classes A1; : : : ;Ar−1
and a partial �-resolution class Ar (which can be empty). Order the matrix C so
that C=[C1 | · · · |Cr], where each Ci contains precisely those columns whose supports
are in Ai. The ordering of the columns within each Ci can be arbitrary. This is an
�-balanced ordering for C.
Now suppose C has an �-balanced ordering. Consider the �rst �c=k columns of C

and the set of their supports A1. The erasure-resilient code formed by these columns
has average group size �+1, and hence each group has size �+1. It follows that every
point is contained in exactly � blocks in Ai. Now consider the �rst i(�c=k) columns
of C; 26i6bnk=�cc, and the set of their supports B ∪ Ai, where Ai is the set of
supports of columns (i − 1)�c=k + 1 to i(�c=k) of C. The average group size of the
code formed by the �rst i(�c=k) columns of C is i� + 1. Hence, every point appears
in exactly i� blocks of B ∪ Ai. By the induction hypothesis, every point appears in
exactly (i − 1)� blocks of B. It follows that every point must appear in precisely �
blocks of Ai. Consequently, Ai is an �-resolution class. The supports of the remaining
columns of C constitute a partial �-resolution class.
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Hellerstein et al. [16] construct [3m(3m − 1)=6; 3m; 3; 4]-ERCs with a 1-balanced or-
dering. In fact, the set system of their (3; 4)-ERC is the a�ne geometry AG1(m; 3)
(see, for example, [4]), whose 1-resolvability is a classical result in design theory. An
STS(v) that is 1-resolvable is known as a Kirkman triple system of order v, or KTS(v).
Our discussion shows that the problem of constructing [n; c; 3; 4]-ERC, c ≡ 3 (mod 6),
with optimal check disk overhead, having a 1-balanced ordering is equivalent to the
following problem.

Problem 8.7. Determine those v for which there exists an anti-Pasch KTS(v).

The existence of KTS(v) has long been settled [27]; the condition v ≡ 3 (mod 6) is
both necessary and su�cient. Work on the existence problem for anti-Pasch STS(v)
is also well under way. However, Problem 8:7 appears not to have been studied, perhaps
due to the lack in motivation. This is not the case now. We settle here the existence
of anti-Pasch KTS(v) for a third of the admissible values of v. In particular, we prove
that there exists an anti-Pasch KTS(v) for all v ≡ 9 (mod 18). The proof is somewhat
technical and uses more complex design-theoretic machinery than we have required
thus far. In order to conserve space, we refer the reader to [4,7] for de�nitions and
results in design theory not explicitly stated here.
A group divisible design (GDD) is a triple (X;G;B) which satis�es the following

properties:
(1) G is a partition of a set X (of points) into subsets called groups,
(2) B is a set of subsets of X (called blocks) such that a group and a block contain

at most one common point,
(3) every pair of points from distinct groups occurs in a unique block.
The group-type (type) of the GDD is the multiset [|G|: G ∈ G]. We usually use an
“exponential” notation to describe group-type: a group-type gu11 · · · guss denotes ui occur-
rences of gi for 16i6s. Groups of size 0 are permitted as a notational convenience.
The type is uniform when all groups have the same size, in which case the type is of
the form gu.
If K is a set of positive integers, each of which is not less than 2, then we say that

a GDD (X;G;B) is a K-GDD if |B| ∈ K for every block B in B. When K = {k}, we
simply write k for K . A balanced incomplete block design BIBD(v; k; 1) is a k-GDD
of type 1v. A transversal design TD(k; n) is a k-GDD of type nk .
We need the following notion of resolvability. A set of blocks is an �-parallel class if

every point x is contained in exactly � blocks. A GDD(X;G;B) is called A-resolvable
where A is a multiset of positive integers of r elements and if its block set B admits
a partition into subsets B1; B2; : : : ; Br where for each i = 1; 2; : : : ; r, there is an � ∈ A
such that Bi is an �-parallel class. The case when A= [1r] corresponds to the case of
the usual notion of resolvability.
A 3-GDD is anti-Pasch, and called a QFGDD, when it contains no Pasch con�gura-

tions. In fact, we enforce the stronger condition that there is no way to place a single
triple on the points within one group and thereby introduce a Pasch con�guration. In
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e�ect, since the Pasch con�guration does not have two disjoint blocks, the consequence
is that no matter how triples are placed within groups, a Pasch con�guration would
lie (if at all) entirely on the points of a single group. A TD(3,n) which is a QFGDD
is denoted by QFTD(n). It is an easy exercise to see that a QFTD(n) is precisely the
same as a latin square of order n which has no subsquare of order two (see [21] for
related results).

8.1. Direct constructions

In this subsection, we present some direct constructions of anti-Pasch KTS.
The basic necessary condition for the existence of anti-Pasch KTS(v) is v ≡

3 (mod 6). There does not exist an anti-Pasch KTS(15) as the only anti-Pasch STS(15)
is number 80 of [20], and it is not resolvable. Hence, the smallest open case is when
v=21. In [19], 30 nonisomorphic Kirkman triple systems of order 21 are found. How-
ever, each of them contains a subsystem of order 7. Hence, none can be anti-Pasch.

Lemma 8.8. There exists an anti-Pasch KTS(33).

Proof. Consider the following KTS(33) from [33]. Let V = Z33.
{1; 3; 6}; {17; 19; 32}; {9; 11; 24}; {22; 25; 13}; {5; 8; 29}; {27; 30; 18};
{31; 4; 23}; {14; 20; 6}; {15; 21; 7}; {28; 2; 12}; {26; 0; 10};
{3; 10; 20}; {1; 2; 6}; {2; 3; 7}; {3; 4; 8}; {1; 12; 23}:

Let �(x) = x + 3. The design is generated by letting � act on the set of blocks. The
�rst 11 blocks form a parallel class; the action of � gives 11 parallel classes. Each of
the remaining base blocks generates a parallel class under the action of �.

Lemma 8.9. There exists an anti-Pasch KTS(39); an anti-Pasch KTS(45); and an
anti-Pasch KTS(63).

Proof. Let V = Z39. Consider
{0; 7; 16}; {4; 10; 25}; {1; 6; 18}; {8; 9; 11}
{0; 8; 19}; {0; 4; 14}; {2; 15; 28}:

These form the base blocks of an anti-Pasch STS(39) over Z39. The 12 points in
the �rst four base blocks are distinct (mod 13). Adding 13 and 26 to each block and
appending the block {2; 15; 28} gives a parallel class. Develop to obtain 13 parallel
classes. Each of the two remaining base blocks generates three parallel classes, as the
points in each block are distinct (mod 3).
Similarly, let V = Z45. Consider

{0; 1; 3}; {2; 7; 13}; {12; 19; 39}; {5; 14; 26}; {6; 10; 23};
{0; 8; 31}; {0; 10; 29}:
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The �rst �ve blocks contain elements that are all distinct modulo 15, and hence generate
15 parallel classes. The last two blocks each generate three parallel classes, as the points
in each block are distinct (mod 3). Finally, the base block {0; 15; 30} generates a single
parallel class.
Let V = Z63. Consider

{0; 1; 3}; {4; 8; 13}; {6; 12; 19}; {15; 23; 39}; {5; 17; 49}; {16; 30; 52}; {20; 35; 53};
{0; 10; 38}; {0; 11; 34}; {0; 17; 43}:

These generate an anti-Pasch KTS(63) in the same manner as the anti-Pasch KTS(45).

Next we present a general construction for anti-Pasch KTSs.

Theorem 8.10. Suppose that v ≡ 1 (mod 6); and there exists a cyclic anti-Pasch
STS(v) over V with mutually disjoint base blocks. Then there exists an anti-Pasch
KTS(3v).

Proof. This construction is a simple modi�cation of one in [12]. Let V ′=V ×{0; 1; 2}.
We construct the following set of blocks.
(i) For every block {a; b; c} in the STS(v), include blocks {(a; 0); (b; 0); (c; 0)};

{(2a; 1); (2b; 1); (2c; 1)} and {(3a; 2); (3b; 2); (3c; 2)}.
(ii) {(i; 0); (i + 2j; 1); (i + 3j; 2)} for i; j ∈ V .
This results in a KTS(3v) [12], and the veri�cation that it is anti-Pasch is routine.

It is therefore of interest to determine when a cyclic anti-Pasch STS exists whose
base blocks can be made mutually disjoint. A conjecture of Nov�ak [24] asserts that
when v ≡ 1 (mod 6), every cyclic STS(v) can be made to have disjoint base blocks
by suitable addition of di�erent values (modulo v) to each base block. This is widely
believed to be true but not much progress has been made.
The only known in�nite class of cyclic anti-Pasch STS(v) when v ≡ 1(mod 6) is

the Netto triple systems. Let q = pn where p is a prime such that p ≡ 7 (mod 12).
Take two primitive sixth roots of unity �1 and �2 in Fq; they both are non-squares and
satisfy the equation x2 − x + 1 = 0. It follows that �1 + �2 = �1�2 = 1; �21 = −�2 and
�22 = −�1. For any two distinct elements a; b ∈ Fq de�ne a → b if and only if b − a
is a non-zero square in Fq. This relation has the property that exactly one of a → b
and b→ a is true for a 6= b, since −1 is not a square in Fq. On the set of all ordered
pairs (a; b) such that a→ b, de�ne a function f by f(a; b)= a�1 + b�2. If c=f(a; b),
then also b→ c with f(b; c) = a and c→ a with f(c; a) = b. The Netto system N (q)
is the STS (V;B) where V = Fq and B= {{a; b; c} : a→ b and c = f(a; b)}.

Theorem 8.11 (Robinson [30]). If p ≡ 19 (mod 24); then N (q) is anti-Pasch and
transitive over Fq. If {a; b; c} is a block in N (q); so is {!2a; !2b; !2c} for any ! ∈ Fq.
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Theorem 8.12 (Abel [1]). If q is a prime power congruent to 1 (mod 6); ! is a prim-
itive root over Fq; and A is a block of size three so that {!6iA: i=0; 1; : : : ; (q−1)=6}
is the set of base blocks for the cyclic STS(q); then the STS(q) can be made to have
disjoint base blocks.

Combining Theorems 8.10 and 8.12 with Netto triple systems, we obtain:

Corollary 8.13. If v= 3q; q=p� and p ≡ 19 (mod 24) a prime; then there exists an
anti-Pasch KTS(v).

Next, we present some further base block disjoint anti-Pasch STS(v) where v ≡
1 (mod 6).
25: {1; 2; 4}; {3; 7; 14}; {6; 12; 21}
31: {1; 2; 4}; {3; 7; 14}; {5; 10; 18}; {6; 12; 24}; {8; 16; 25}
37: {1; 2; 4}; {3; 7; 29}; {5; 10; 19}; {6; 12; 31}; {8; 15; 25}; {9; 17; 30}
49: {1; 2; 4}; {3; 7; 12}; {5; 11; 22}; {6; 13; 29}; {8; 16; 38}; {9; 19; 40}; {10; 23; 35};

{14; 38; 48}
55: {1; 2; 4}; {3; 7; 12}; {5; 11; 21}; {6; 13; 38}; {8; 16; 37}; {9; 20; 51}; {14; 26; 41};

{10; 24; 46}; {15; 32; 52}
61: {1; 2; 4}; {3; 7; 12}; {5; 11; 18}; {6; 14; 31}; {9; 19; 42}; {10; 21; 40};

{13; 25; 45}; {8; 22; 48}; {15; 30; 52}; {16; 32; 50}
73: {3; 7; 13}; {5; 10; 40}; {9; 16; 41}; {6; 14; 30}; {8; 17; 63}; {11; 22; 64}; {15; 27; 67},

{18; 32; 47}; {0; 19; 36}; {20; 42; 65}; {1; 2; 4}
79: {9; 15; 31}; {12; 19; 64}; {11; 20; 66}; {14; 24; 67}; {16; 28; 75}; {17; 32; 71};

{25; 43; 73}; {0; 23; 44}; {1; 2; 30}; {3; 5; 22}; {4; 7; 18}; {6; 10; 48}; {8; 13; 21}
85: {1; 2; 60}; {3; 5; 52}; {4; 7; 50}; {6; 10; 67}; {8; 13; 27}; {9; 15; 77}; {11; 18; 29};

{12; 20; 68}; {14; 23; 83}; {16; 26; 48}; {19; 31; 64}; {17; 30; 61}; {21; 36; 56};
{24; 45; 79}

91: {1; 2; 4}; {22; 43; 62}; {23; 46; 72}; {3; 7; 14}; {5; 10; 39}; {6; 12; 65}; {8; 16; 44};
{9; 18; 36}; {11; 21; 82}; {13; 25; 71}; {15; 28; 63}; {17; 31; 56}; {19; 34; 88};
{24; 40; 84}; {20; 37; 87}

97: {1; 2; 4}; {10; 21; 82}; {14; 26; 56}; {17; 30; 74}; {15; 29; 62}; {18; 33; 50}; {3; 7;12};
{5;11; 31}; {6;13; 72}; {8;16; 43}; {9;19; 67}; {25; 48; 77}; {20; 36; 57}; {22; 40; 91};
{23; 42; 96}; {24; 46; 80}.

These designs are from [8] and made base block disjoint here.

Lemma 8.14. If n is odd; then there exists a resolvable QFTD(3; n).

Proof. Construct the TD(3; n) by taking V = Zn × {0; 1; 2}. The block set is {{(a; 0);
(b; 1); (a+ b; 2)}: a; b ∈ Zn}.

Theorem 8.15. If there exists an anti-Pasch KTS(2v+1); an anti-Pasch KTS(2n+1)
and a resolvable QFTD(3; n); then there exists an anti-Pasch KTS(2vn+ 1).
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Proof. Delete a point from the anti-Pasch KTS(2v + 1) to form a 3-GDD of type
2v. Give weight n using a resolvable QFTD(3; n) to produce a 3-GDD of type (2n)v.
Add one in�nite point ∞, and on each group together with ∞, place a copy of the
QFSTS(2n+ 1) so that when {∞; a; b} is a triple, a and b arise from di�erent points
of the 3-GDD of type 2v. Call the triples of the 3-GDD of type (2n)v vertical, and the
triples of the STS(2n + 1)s horizontal. The result is an STS(2vn + 1) [4], which we
prove is anti-Pasch.
Suppose to the contrary that a Pasch con�guration is present. If it contains ∞,

it contains two horizontal and two vertical triples, since the STS(2n + 1) used is
anti-Pasch. The placement of the blocks containing ∞, and the fact that the STS(2v+1)
is anti-Pasch, ensures that the two vertical blocks are disjoint and hence not in a Pasch
con�guration. Hence any Pasch con�guration must involve six points other than ∞.
Then there cannot be two horizontal triples (since they are either disjoint or from the
same QFSTS(2n+ 1). If there is one horizontal triple, the three vertical triples cannot
involve only three further points. So all triples are vertical. However, at most one can
arise from each QFTD(3; n) used, and hence any Pasch con�guration would correspond
to a Pasch con�guration in the QFSTS(2v+ 1), which is a contradiction.

We have established existence of resolvable QFTD(3,n)s here only when n is odd.
Obtaining such TDs when n is even is more involved and not needed for the main
result we present, and so we omit it here.

8.2. Rees’s construction

In this section, we employ Rees’s construction [28] on resolvable group divisible
designs to obtain some new anti-Pasch KTSs.
A partial transversal design PlTD(k; n) is a triple (X;C;B) where X is a kn-set,

B is a collection of k-subsets of X (blocks) so that any pair of distinct points from
X is contained in at most one block, and C is a strong k-vertex-coloring of X (i.e.,
each block receives k di�erent colors) so that |C|=n for each C ∈ C. Any transversal
design is a PlTD (just take each group as a color class). Similarly, a partial group
divisible design K-PlGD of type T is a triple (X;C;B) where X is a v-set, B is a
collection of subsets of C (blocks) each having same size from the set K so that any
pair of distinct points from X is contained in at most one block, and C is a strong
coloring of X .
A group H of automorphisms on a set V acts sharply transitively on V if for every

two elements x; y ∈ V , there exists h ∈ H so that xh = y where the group action is
written as left multiplication.
A block-partition of a transversal design (X;G;B) is a partition P of its block set

B; we refer to the members of P as aggregates. If each member of P is a clear
set (i.e., composed of mutually disjoint blocks) then we refer to P by the usual term
block-coloring.
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Theorem 8.16 (Rees [28]). Let (X;G;B) be an A-resolvable K-PlGD of type T in
which for each �i ∈ A; there are ri �i-parallel classes of blocks. Suppose that there is
a TD(u; h) admitting H as a group of automorphism acting transitively on the points
of each group where u = |G|. Let Hj be a collection of subsets of H; with ri such
subsets of size �i for each �i ∈A; and suppose that the collection {Hi∗r: r ∈H; j=1; 2;
: : : ;

∑
i ri} is �-resolvable on H. Then there is a �-resolvable K-PlGD of type hT.

Theorem 8.17 (Rees [28]). Let (X;G;B) be a K-PlGD of type T whose block set
B forms an �-parallel class; and let u = |G|. Suppose that there is a TD(u; h)
each of whose groups J1; J2; : : : ; Ju is written on the symbols of a group H; and
let H 1; H 2; : : : ; Hu be a sequence of subsets of H each of size �. Let C be a
block-partition of the TD with the following property: for each aggregate C ∈ C

and each i=1; 2; : : : ; u; the set {Hi ∗ r: r ∈ Ji ∩ (
⋃
b∈C b)} forms a -parallel class on

Ji. Then there is a K-PlGD of type hT whose block set is -resolvable.

These two constructions are complicated and very powerful. In our case, if we begin
with an anti-Pasch GDD, we can inate to get an anti-Pasch resolvable GDD. The proof
of this theorem is lengthy and similar to the proof in [28], so we do not include it here.
Briey, we inate the GDD so that for every block of size k, we put the TD(k; h) that
corresponds to the groups of the k points. Hence, when all blocks have size three, if
the TD(u; h) has the extra property that any three groups induce an anti-Pasch TD, then
we produce an anti-Pasch GDD. Therefore, it is important to know if such TD(u; h)s
exist.

Lemma 8.18. If h=p�11 p
�2
2 : : : p

�n
n ; where pi are odd prime powers and �i are positive

integers; and m = mini(p
�i
i ); then there exists a TD(m − 1; h) admitting H = F�1p1 ×

F�2p2 × · · · × F�npn acting sharply transitively on the points of each group. In addition;
the TD(3; h) induced by any three groups is anti-Pasch.

Proof. Let V = F�1p1 × F�2p2 × · · · × F�npn . There exist m− 1 elements t1; t2; : : : ; tm−1 ∈ V
so that the di�erence between any two of them is invertible over the ring V . We can
construct a TD(m−1; h) over V ×{0; : : : ; m−2} by taking the blocks {(at1 +b; 1); (at2
+ b; 2); : : : ; (atm−1 + b; m− 1)} for a; b ∈ V . This is a TD(m− 1; h) for which V acts
sharply transitively on the points of each group. To see that the TD(3; h) induced by
any three groups is anti-Pasch, the presence of a Pasch con�guration implies that the
desarguesian projective plane of order p contains a projective subplane of order two,
which it does not when p is odd [4].

In order to apply Rees’s technique, we begin with an anti-Pasch GDD which admits
a certain resolution. Many examples come from Bose’s construction.

Theorem 8.19 (Griggs et al. [14]). If v=3n where n is odd and (n; 7)=1; then there
exists an anti-Pasch STS(v). Indeed; there exists a 3-resolvable anti-Pasch GDD of
type 3n.
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Proof. We state the construction; see [14] for a proof. The anti-Pasch STS(3n) is
constructed over V = Zn × Z3. For every a; b; c ∈ Zn, we construct a block of form
{(a; i); (b; i); (c; i + 1)} if a + b = 2c and i ∈ Z3. Also, we take n blocks of form
{(x; 0); (x; 1); (x; 2)} for x ∈ Zn.
In this construction, if {(a; i); (b; i); (c; i + 1)} is a block then so are {(a + 1; i); (b

+ 1; i); (c + 1; i + 1)} and {(a; i + 1); (b; i + 1); (c; i + 2)}. Hence, this design is
transitive over Zn × Z3. In fact, the base blocks are {(0; 0); (2; 0); (1; 1)}; {(0; 0);
(4; 0); (2; 1)}; : : : ; {(0; 0); (n−1; 0); ((n−1)=2; 1)} together with a short orbit {(0; 0); (0; 1);
(0; 2)}. Each base block forms a 3-parallel class, and the short orbit gives a 1-parallel
class.

Lemma 8.20. Let V = Zv; v¿3 odd and B= {{0; 1; 2}+ a}: a ∈ Zv}. If v 6= 5; then
there exists a strong vertex coloring on V with at most four color classes.

Proof. If v=3m, then let C1 ={3i: i=0; 1; : : : ; m−1}; C2 =C1 +1 and C3 =C1 +2. If
v=6m+1, then let C1={3i: i=0; 1; : : : ; 2m−1}; C2=C1+1; C3=C1+2 and C4={6m}.
If v=6m+5, let C1 ={3i: i=0; 1; 2; : : : ; 2m−1}∪{6m+1}; C2 =C1 +1; C3 =C1 +2
and C4 = {6m; 6m + 4}. For any block {a; a + 1; a + 2}, the three points are in three
di�erent color classes.

Lemma 8.21. Let V =Z2n+1×Z3; n 6= 2 and B= {{(0; 0); (2a; 0); (a; 1)}+ b: b ∈ V}
for a=1; 2; : : : ; n. There exists a strong vertex coloring on V with at most four color
classes for every a= 1; 2; : : : ; n.

Proof. First of all, use Lemma 8.20 by taking v=2n+1 to obtain Ci for i=1; 2; 3; 4.
If (a; 2n + 1) = 1, then we can construct Di = aCi × Z3 which is the appropriate
vertex-coloring. If (a; 2n + 1) = c, let (a=c; (2n + 1)=c) = 1 and apply Lemma 8.20
by taking v = (2n + 1)=c to obtain Ci for i = 1; 2; 3; 4. Then de�ne Ti = (a=c)Ci for
i=1; 2; 3; 4. For every x=0; 1; : : : ; 2n, de�ne T ∗

i ={x: x=qc+r; q ∈ Ti}. Finally, de�ne
Di = T ∗

i × Z3, which is a strong vertex coloring.

We now apply Rees’s Theorem.

Theorem 8.22. If v = 9n where n is odd; v 6= 45 and (n; 7) = 1; then there exists an
anti-Pasch KTS(v).

Proof. Theorem 8.19 gives a 3-resolvable QFGDD of type 3n. For every 3-parallel
class, there exists a strong 4-vertex coloring. Hence, we can regard this as a P1GD
with block size three and four groups. Apply Theorem 8.17 with a TD(4; 3), taking
each Hi =Z3 and C to be the block set of the TD. This gives a 3-resolvable QFGDD
of type 9n. Fill in the holes with anti-Pasch KTS(9)s.
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8.3. Zhu, Du and Zhang’s construction

We use a technique introduced by Zhu et al. [34] and later extended by Rees and
Stinson [29]. A design D is s-block-colorable if its blocks can be colored with s
colors in such a way that any two blocks of the same color do not intersect. Such an
assignment of s colors is said to be an s-coloring. If D is s-block-colorable but not
(s− 1)-block-colorable, we say that the chromatic index of D is s.

Theorem 8.23 (Zhu et al. [34]). Suppose there exists an resolvable BIBD(u; k; 1); a
BIBD(v; k; 1) which is s-block-colorable; and a resolvable TD(k; v). If s6ru+ rv where
rx = (x − 1)=(k − 1); then there exists an resolvable BIBD(uv; k; 1).

Theorem 8.24 (Rees and Stinson [29]). Suppose there exists a resolvable k-GDD of
type gu; a k-GDD of type (mg)v with the property that there is an s-coloring of its
blocks such that each color class precisely covers some subset of its groups; and a
resolvable TD(k; mv). If s6ru+rv where ru=g(u−1)=(k−1) and rv=mg(v−1)=(k−1);
then there exists a resolvable k-GDD of type (mg)uv.

If we replace all ingredients by anti-Pasch KTS, QFGDD and resolvable QFTD, then
we can obtain a similar result for the construction of resolvable QFGDD. We need some
QFGDDs with few color classes, and can obtain some from Bose’s construction.

Lemma 8.25. Let n=6k +5 and Ci = {i; i+1; i+2} for i=0; 1; : : : ; n− 1; arithmetic
over Zn. If C = {Ci: i = 0; 1; : : : ; n − 1}; then for any a; b ∈ Zn C\(Ca ∪ Cb) can be
partitioned into three sets of 2k + 1 blocks so that any two blocks in the same set
are disjoint.

Proof. Sort the blocks in increasing order according to smallest element in the block.
Then put the jth block in the j (mod 3) set to obtain the required partition.

Theorem 8.26. When k ≡ 0; 2 (mod 3) and and (2k + 1; 7) = 1; there exists an
anti-Pasch 3-GDD of type 32k+1 which is 3k + 6 colorable so that each color class
misses a subset of the groups.

Proof. We use the QFGDD of type 32k+1 from Theorem 8.19 with groups formed by
taking {(i; 0); (i; 1); (i; 2)} for i ∈ Z2k+1. We construct a graph G = (V; E) as follows:
V = Z2k+1\{0} and (a; b) ∈ E if {a; 2a; 3a} ∩ {b; 2b; 3b} 6= ∅. Each vertex has degree
at most six so by Brooks’s Theorem in vertex coloring, this graph is 6-colorable. If
2k + 1 ≡ 1 (mod 6), for every color class C, consider the subset of {1; 2; : : : ; k} in
C. Form a partial parallel class missing a subset of groups: Take {(c; i); (3c; i); (2c; i
+ 1)} for i ∈ Z3 and c ∈ C. In this way, we obtain six partial parallel classes. For
each base block {(0; 0); (2a; 0); (a; 1)} over Z2k+1 × Z3, we have used the translate
{(a; i); (3a; i); (2a; i+1)}. The remaining translates can be partitioned into three partial
parallel classes, each missing one group.
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In the case when 2k + 1 ≡ 5 (mod 6), the vertices for a and −a correspond to two
distinct translates of {0; a; 2a}. For every base block {(0; 0); (2a; 0); (a; 1)} in the QF-
STS from Theorem 8.19, two blocks are used to obtain six partial parallel classes.
The remaining blocks from each base block form three partial parallel classes by
Lemma 8.25.

Theorem 8.27. Suppose there exists an anti-Pasch KTS(v) where v¿15; and
w ≡ 3; 15 (mod 18); then there exists an anti-Pasch KTS(vw=3).

Proof. Take an anti-Pasch 3-GDD of type 3w=3 from Theorem 8.26 which is
(w − 3)=2 + 6 colorable. Apply Theorem 8.24 to obtain the result.

Lemma 8.28. There exists a 14-colorable anti-Pasch 3-GDD of type 37 so that each
color class misses a subset of groups.

Proof. A QFSTS(21) exists on V = Z7 × Z3 having base blocks {(0; 0); (0; 1); (0; 2)};
{(0; 0); (1; 1); (3; 0)}; {(5; 0); (2; 2); (4; 0)} and {(0; 0); (4; 1); (5; 0)}. The �rst base block
generates a single parallel class. The second and third base blocks generate seven par-
tial parallel classes when developed over Z7 × Z3 since each mod 7 component is
distinct. The last block generates another seven partial parallel classes.

Corollary 8.29. For n odd; there exists an anti-Pasch KTS(9n).

Proof. If n ∈ {5; 7}, see Lemma 8.9. Otherwise write n=7aw where (w; 7)=1. If a=0,
apply Theorem 8.22. If a= 1, take a 14-colorable anti-Pasch 3-GDD of type 37 from
Lemma 8.28, a resolvable QFGDD of type 33w, and apply Theorem 8.24 to obtain
a resolvable QFGDD of type 321w. If a¿2, apply Theorem 8.22 with a resolvable
QFGDD of type 37

a−1·3w and a 14-colorable anti-Pasch 3-GDD of type 37.

This settles the existence of anti-Pasch KTS(v)s when v ≡ 9 (mod 18), along with
many of the small orders in the remaining classes. The techniques here do not seem
su�ciently powerful to handle the cases in which v is a multiple of 3 but not 9. From
a practical standpoint, the solution of a single congruence class modulo 18 already
provides a rich source of codes.

9. Conclusion

Disk arrays provide a solution to the disparity in performance between micropro-
cessors and secondary storage systems. There is an increasing popularity in the use of
disk arrays. One of the major problems faced by critical applications is the reliability
of disk arrays. In this paper, we have provided constructions for erasure-resilient codes
that can tolerate failures in disk arrays. Our results improve, extend, and generalize
previous results of Hellerstein et al. [16].
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One surprise in this work is the role of combinatorial designs. For example, it is
shown that (3; 4)-ERC are equivalent to anti-Pasch Steiner triple systems, which have
been studied actively for the past decade by mathematicians without having any partic-
ular applications in mind. In exchange, the study of erasure-resilient codes o�ers new
interesting problems in combinatorial design theory such as the existence of anti-Pasch
Kirkman triple systems addressed in this paper.
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