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"ABSTRACT
in this paper, we show how ihe basis reduction algorithm of Kreher and
Radziszowski [4] can be used to construct large sets of disjoint designs
with specilied automorphisms. In particular, we construct a (34,23;4)- . .

Jarge set which gives rise to an infimiie family of la,rge sets of 4-designs
via a result of Teirlinck [{)]

1 Introductlon - :

Let X be a finite set of v elements called pomta We denote by (k) the set of all
k-clement subsets of X ‘A {-désign, or more- spemﬁca.]ly, a t-(v,k, A} design) is'a
pair (X, B) such that B .C (k , and every member of (:) is contained in precisely
A members of B. The members of B are called blocks. ' ‘

The divisibility conditions A( ) =0 (mod (k*')) for 0 <1 < g, prowde
necessary condilions for the existence of a i (v,k,X) design. For any given £, k,
and v, we denote by A*(¢, k, v} the minimum positive A that satisfies the divisibility
t.ondlflons When there is 110 confusion, we 31mply Wnte X for X* (¢ K, 'v) Tt

A (¢, k, v; A)-partition i is’ a partition’of ( ) mto t (v, k, ;) desigtis (r"( B:) where
AMEAandi=0,. N — 1. If A = {A}, we say that the p'u'htlon is'a umform
(¢, k;v; /\) partatwu lf N= {3k 1:)} the partltlon is sald to be'a (t, k, v A ) Iarge
set.. The number of designs in a (£, k,v; A* )-large set is N = ("“t)/)\* :

The motivation behind this work is the example of a, (2 3,9; ;1ylarge set, Wﬂ;h the

property that each of the seven pairwise disjoint designs in the large set. adn'uts the
permutation c.= - (o0, 8)(6,2,4,3,7,5) as an automorphism, and that the permutatlou
o=1(1,23,45, f' 7) cychcn.ﬂy permutes these seven designs. Thus this large set is
giver by the 2-(9,3,1) design { 024,136, 857, U18, 235, 467, 037, 268, 415, 056, 127,

348 } aud its 7 iinages uuder o

2 Using Basis Reduction

~Through out this liaper let X = {0,1,...,u =1} and'let G 'be'a subgroup of the
'qynnuetnc group Sym(X). We wish to construct a large set with & as an auto:
: morp!usm of “each’ of ifs members. The subgroup ‘G acts'on the subsets of ¥ in
a natural way. If S C X and g € G, then'§7 = {2 : ¢ €S} Tlie orbit of §
is §¢ = {59 : g € G}. Let Ay(G), Da{G), As(G), ... Ax.(G) and Ti(QR), Ta(GY,

I'3(G), .. Tw,(G) be complete lists of all orbits of ¢- elemenl: and k-element subsets of
X under @ respectively. For any fixed orbit representative T of A, (G) the nuinber
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of members X € Ty (G) such that 7' C K is denoted by Au{G)[z,7]. This number,
Ag{GY1,7], 15 independent of the choice of T In 13] the followmg observation is
made.

A t-(v,k,}) design (X,B) exists with G as an autormorphism group if end only if
there is a (0, 1)-vector U satisfying the molriz equalion

o Ao =2 )
where J =1{1,1,1,.. 1]

Of the several methods for solving equation (1), the approach taken by Kreher
and Radziszowski {4] has been particularly successful. 1t is described below.

Let A = {a1,...,8.,} be a set of integer valued n-dimensional vectors The
lattice generated by A is the set of all inleger linear combinations of ay, ..., @, and
is denoted by L£(A). We say that a,,...,6, is a basis for £L(A). The following
observation is crucial in the approach of Kreher and Radziszowski.

An(GYU = d S MJ for some integer d if and only if [U7,0,.. T,_[}]T 18 1n the

I?:ttiée L(A) gerterated by _the _column_s ]l[ of the mat_m'_i [ AﬂiG). _[)).J ] .

Since the complemeut of at- desxgn is a i-design, we may assume, thhcnut loss
of generality, that ||U]|> < Ni(G)/2. Tt follows that the length of [U1o,0,...,0/7
is considerably shorter than the lengths of other vectors in L(M). Kreher and
Radziszowski developed a basis reduction a.lgoni.hm that finds vectors in the lattice
£ whose lengths are as short as they can ‘make them. In fact, their algomthm very
often finds a (0,1)-solution to An(GYU =AJ. Several thousaud new t- des1gns ha.ve
been found with this algorithm [2]-

We now retiurt to the construction of large sets, Let G < H < Sym(X). The
fuswn matmm denoted F;,(G H), i§ the N;,(H) by Nk(G) madtrix deﬁned by :

: . I K(GYCT(H
FE(G’ H)[Z’J} - { ] otl(ler)mse A )

Now suppose we want. to find a (¢, k,v; A" )-large set of disjoint designs. D =
(X, B;)|i = 0,. — 1} such that each of the designs (X,B;), 0 < i < N — 1,
lms G < Sym(.«’t’) as an automorphism group. Suppose further that we want.a
pennutatmn g e Sym(X) to cyclically permute the designs in D. In particular o,
L<i< |U|, does not fix any blocks. Let H = (G, ¢) and cons1der an orbit Fy(H )
Tt is the union of some collection T, (G);...,T;(G) of orbits of k- element subsets

under G: We observe that

:f°7=' a‘”.'yll <n<y ‘tmd Joralll <i < |cr| we have
L W@y <) and
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2. (rP(G)~ nrP(G) =

1t follows that if we find a design (X, B) that contains exacily one orbit of k-element
subsets from each fusion class, then B is disjoint from B. Heuce, D = {(x B"J)IJ =
R :) /A" —1} is a large set of disjoint designs. We call such large set a eyelic
large set with shifter o” The above discussion is siunmarize in the fo]lowmg theorem.

Theorem 1 There ezists a cyclic (¢, k,v; A%)- Iarge 3et D wzth G as an automor-
phzsm group and shzﬁer o zf there is a {0, J.) Uector U satzsfymg the matm:r: eguatwn

: [FJ:EE(,C;})JU = .[AJJ]' R -. - -,(2)
B

" The approach we take to solve equation (2) is to apply the basis teduction
algorithm of Kreher and Radziszowski as descrlbed ea.r].ler to the la.ttlce generated
by the Loluluns 0[ the ma.t,nx R :

[ .

'j M=| Aw(@) ~XJ
F(H,G) =

Using this method, we were able to construct a cyclic (3,5 1:3'15)-‘1a'rgé'set" -Tliis

- large set consists of designs having G = {a, ) where :
a=(0,1,2,3,4,56,7,89,10,11,12), a.udﬁ—(ls 125)(2311 10)(4697);1.5
au aulomorphism group. The orbit representatives for the blocks in one of the tlxree
designs in the large set.are listed below L

02345 01245 02456 02478 0'1'2'4':8
01459 01269 02379 012610 024710

Applying the permutation

7= (1,3,9)26, 5)(4 12, 10)(7 8, 11)

twice geuerates the otller two deSJgns

'Ihe requirement ‘that the desired large set is cychc is often_ too strong a condltlon
for us Lo be able to find a solution, In pa:tlcular this restnctmn vields a large set of
isomorphic-designs. I this section we propose two a,pproaches for for ﬁnd.lug large
sets when no additional remnrements such as cyclic are made. -

It is casy fo sce that constructmg a (¢ k,v; A%)- large set of disjoint designs, each
with ¢ ‘as an autonmorphism group, is equwa.leui to partltlonmg the colunins of the
malrix, A (@), into: (J )/J\ classes, so that the row sums actess the ¢olumns in

“each classis equal A*. Our first approach works as follows. We find a (0,1)-vector I/
solving equation (1) using the basis reduction algorithm of Kreher and Radziszowski.
The columns corresponding to the (0,1)-vector U are then removed from Ay (G).
This procedure is repeated until one of {wo things Lappens :
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© 1. We'get a partition of the cohmms of Afk(G) 1111;0 classes correspondmg to a
{t, k,v,}\ )-large set. : : : -

2. We get a pa.rtltson of the columns of Ag,(G') 111t0 cIasses cor:respondmg toa
(t, &, v; {A%, A})- part1t1011 A=A

Our second appmach is again, to use the bams reductlon algorithm . of Kreher
and Radziszowski to rcpeatedly generate a set S of many distinct (0,1)-vectors U
_solving equation (1). This is achieved by randomly ordering the basis vectors at each
iteration so that each time after reducing the basis, diflerent short vectors appear
in the basis. An independent set in S is a set of pairwise orthogonal vectors in &.
It is not hard to see that S contains a (¢, &, v; A")-large set if and only if there is an
independent set of size (" t) /A" in &. We.can choose S to be not too: la.rge so that
we can clieck S for a maximum independent set. in reasonable time. . :

Using these two approaches, sometimes in combination, we were able to construct
the (3,4,23;4)-large set and a (4,6,14;15)-large set appearing in Table I and Table 11.

The {3,4,23;4)-large set is of particular interest because of a recent result of
Teirlinck [6]. Teirtinck proved that (4,5,20u + 4; A*}-large sets exist for all positive
integers u that are relatively prime to 30 if there exists a (3,4,23;4)-large set. Hence
we now lnve the followmg theorem.

Theorem 2 There exist (4,5, 20u + 4 /\ ) large ‘sets for all pomtzve mtegers u that
are relatively przme to 30.

-I‘lus f'umly of (4 5 20u + 4; A ) im'ge sets is one of the only two non- l;nvm.l mﬁmte
fauulies of (¢, k, v; A")-large sets known for £ > 4.

3 Using i-Homogeneous Groups

For notation, definitions and theorems on permitation groitps the reader is directed
to ke book by Wielandt 7] and also to the book by Biggs and White [1] Here
we introduce some of the notation and concepts that are relevant to thls paper. A
subgmup @ < Sym{X) is said to be & horrwgeneaus if the orbit of any t-element
‘subset is all 6f the {-eleiuent subsets. In Llis case, it is easy to see that the orbit B¢
of any k-element subset, B C X, is a t-(v,k, A) demgn where A = |G’I( )/]Ggl( )
and Gp ={g€G: B = B} Thus, the the complete hst D of all the orbits of

k-element subsets pa_r,htmn (':) into ¢- deSJgns In partlcular if |Ggl = 1 for every

BC X, |Bl=k, then Dis a uniform (%, k,v; A)-partition w;th A= EGI( ) () ;
- Given a subgroup action G < .S'ym(X) a pennutatlon geG 110.v111g € cycles of
lengtl: ¢; is said to have type ‘ : !

type(g) = [l

We make the following observation.
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" Table I: A .(3,4.,23;4)-Ia.rge set.

Group generators

a=o—z+1

{mod 23)

B =z b5z (mod23)

Orbit representatives

design 1 | design 2 | design 3 | design 4 | design 5
D312} 0136|0134 0123|0145
0138 |01313| 0125101350137
01210|01345}.0127 |01318]0:1314
01321]01420(01310(01318j01322
+ .. Table II: A (4,6,14;15)-1arge set.
Group generators
a=1(1 2345678,9,10111213)
8 ={2,4,10)(3,7,6)(5,13,11)(8,9, 12}
Orbil representatives
design 1’ design 2 design 3 .
1235810012345 | 123578 123456 (1234571012358
012357 | 123567 (012456 (012347012457 }012358
124567 1012468 | 012467 | 1235681012348 | 012368
012359 | 012678 | 123458 | 012378 [ 012478 [ 012469
123459 (012459 | 123478 (012389 (012379 (0123410
123479 | 124679 | 123569 | 124678 | 123789 | 124689
123589 | 123489 1012349 | 123579124789 (1235811
0123810(1234710] 124579 [1234810(1234511{1245910
U124810{0123411[1247810(0123511)1334711[12467 11
123491011235611}11245611)1235711;0123712(0123412
01246111234512(1234911{0123011({1235911|1235612
0124512(1245612|0123512|0124612(1235712 1245712
1235812 |1237912|1234712|0123813(1246712{1235613
1235 13 12348912 1235813
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{Gp| # 1 for some k-element subset B C X if and only if there 13 a g € G with
type(g) = TI., ¢ such that k& can be written as k = 377 | fic; with each f; < ¢,
1=1,...,v. ’ - :

Thus, knowing the types of all the elements of G is sufficient to decide when the orbits

of k-element subsets under @ is a uniform (¢, k, v; A)- paa:tltlon with A = ]G|( )/(:)
Using this 0bserv1t1011 we present two exa.mples .

31 =12

For this example, we consider the class of groups kuown as the affine special linear
groups. Lel X = GF{p®) be the finite ﬁeld of order v = p p o prime. Then the
affine special linear group of order v is

ASL(v) = {:c > az -+ b1 a,b€ X and e is a nonzero square}.

It is an easy exercise to show that ASL(v) acting on A is 2-homogeneous, for v a
prime congruent to 3 modulo 4." Using elementary group theory, the distribution
of the types of elements in ASL(v) can easily be obtained. These are displayed in
Table I1I and the relevant theorem follows.

. Table 111

type(g)  Number
1 ' 1
* wv—1

P
1-do-0H ()

Theorem 3 Let v be a prime congruent to § modulo L2<k<u,let X = GI'(v)
‘and let D be a complete list of orbits of k-element subsets under ASL(v).

1. If ged(k,v) = ged(k{k — 1),(v = 1)/2) =1, then D is'a uniform (2, k, v; (‘:))-
" partition. . ' ' '
<2 Ifged(k(k—1),v(v — 1)) = 2, then D i5 a (2, K, v; (‘;‘))-Id.rge set.
Proof. Part (1) follows from the observation and part (2) adds only the condition

that ged(k — 1,v) = 1. The divisibility cond_ltlous then give A" = (2) and thus the
result holds. g ' '
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3.2 =3

We now focus our attention on the projective special lincar group PS5 Ly(v), where
v.= p" is a prime power. Recall that PSLy(v) is the set of all 2 by 2 matrices over
GF(v) whose determinant is a nonzero square. It is also isomorphic to the Imear
fractional group G = LF(v) which is the set of all mappings - Lo

ax +b
cz+d’

T —

such that a,b, ¢,d ¢ GF(v) and ad — bc is 2 nonzero square. If we define a/co = 0
and ¢/0 = oo for all o € GF(v), a # 0, then it is easy to see that @ acts transitively
on & = GF(v) U {oo}, the so-called projective line. ;From this representalion of
PSLy(v), it is not difficult to establish the distribution of types of elements in G.
This distribution is given in Table IV for the.case v = 3 (mod 4).

© Table IV

type(g) Number
pett ‘ 1
1.pvie vi-1
12 2tv-1)12 (v? —v)/2

12 gle-1)/d ) (v +v)/2
) afa

By applying the Cauchy-Frobenius-Burnside lemma, it is easy to show that when
v=3 (mod4), PSLy{v) acts 3-homogeneously on X, the projective line. Thus,
by Table IV and careful examinalion of the divisibility condltlons we have

Theoremn 4 Letv = " + 1 for some prime power p" =3 (mod 4) 3<k<vand -
let G be the representation of PSLa(v) acting on the projective line X .

1. If ged(k(k—1),p) = ged(k(k—1)(k—2),{v=1}/2) = ged(k,(v+1)/2) = 1, then
the orbits of k-element subsets of X under G form a uniform (3,k,v,3( ))
pcmfztmn

2 If in addatzon to the hypotheszs of (1) we hcwe

' Lork even. ged(k—2,v—1) = 2 and ged(k— 1, v(v —1)/2) = ged(k, (v +
(v —-1)/2) =1 : :
» Fork odd. ged((k — 1)(k — 2),v(v — 1)) = 2 end ged(k — 2,v — 1) =
ged(k, (v + 1v(v—1)/2) = 1 . o —
then the orbits of k-element subsels ofr\f' under G form a (3,k, v, 3( )) large
set.
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The applicability of theorems.3 and 4 in consffﬁctihg large sets’is indieated in
the tables below, showing all large sels of 2- demgns with o< 24 and 3 deSJgus with
v < 100 that are constructed: - :

Table of 2-designs

2(11,3,3)  2-(11,4,6) 2-(19,5,10) 2-(19,8,28)
O 2(23,3,3)  2:(23,46)  2-(23,5,10)  2-(23,6,15)
- 2:(28,7,21) 2-(23,828) 2(23,9,36) 2-(23,10,45)

Table of 3-designs

3-(44,7,5)  3.(44,19,969)  3-(68,7,35)  3-(68,11,15)
3-(68,31,4495) 3-(80,19,969) 3-(80,23,1771)

Note: Interested persous :c;m gel electronic a,ecess to lists of the assorted starter
blocks by sending electronic mail to D. L. Kreher or to C. J. Colbourn.
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