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Abstract

In this paper, we remove the outstanding values m for which the existence of a
GBTD(4,m) has not been decided previously. This leads to a complete solution to the
existence problem regarding GBTD(4,m)s.
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1 Introduction

A set system is a pair S = (X,B), where X is a finite set of points and B is a collection of
subsets of X. Elements of B are called blocks. The order of S is |X|, the number of points.
Let K be a set of positive integers. A set system (X,B) is said to be K-uniform if |B| ∈ K
for all B ∈ B. Let (X,B) be a set system and S ⊆ X. A partial α-parallel class over X\S
of (X,B) is a set of blocks A ⊆ B such that each point of X\S occurs in exactly α blocks of
A, and each point of S occurs in no block of A. A partial α-parallel class over X is simply
called an α-parallel class. We adopt the convention that if α is not specified, then it is taken
to be one, so that a parallel class refers to a 1-parallel class. A set system (X,B) is said to
be resolvable if B can be partitioned into parallel classes.
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Research Foundation under Research Grant NRF-CRP2-2007-03. Research of C. Wang is also supported in
part by NSFC under Grants No. 11271280 and 10801064.
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A balanced incomplete block design of order v, block size k, and index λ, denoted by
(v, k, λ)-BIBD, is a {k}-uniform set system (X,B) of order v such that every 2-subset of X
is contained in precisely λ blocks of B. A resolvable (km, k, k − 1)-BIBD (X,B) is called a
generalized balanced tournament design (GBTD), or simply a GBTD(k,m), if the m(km−1)
blocks of B are arranged in an m× (km− 1) array such that

(i) the set of blocks in each column is a parallel class, and

(ii) each point of X is contained in at most k cells of each row.

GBTDs were introduced by Lamken [3] and are useful in the construction of many combi-
natorial designs, including resolvable, near-resolvable, doubly resolvable, and doubly near-
resolvable balanced incomplete block designs (see [2, 3]). More recently, GBTDs have also
found applications in near constant-composition codes [12], and codes for power line com-
munications [1].

Schellenberg et al. [8] showed that a GBTD(2,m) exists for all positive integers m 6= 2.
Lamken [4] showed that a GBTD(3,m) exists for all positive integers m 6= 2. For k = 4, Yin
et al. [12] obtained the following.

Theorem 1 (Yin et al. [12]). A GBTD(4,m) exists for all positive integers m > 5, except
possibly when m ∈ {28, 32, 33, 34, 37, 38, 39, 44}.

The purpose of this paper is to remove all the remaining eight possible exceptions in
Theorem 1 and to show that a GBTD(4,m) exists for m = 4 but not for m ∈ {2, 3}.

Theorem 2. For each m ∈ {4, 28, 32, 33, 34, 37, 38, 39, 44}, a GBTD(4,m) exists. For m = 2
and 3, a GBTD(4,m) does not exist.

A GBTD(4, 1) exists trivially. Combining Theorem 1 and Theorem 2, the existence of
GBTD(4,m) is now completely determined.

Theorem 3. A GBTD(4,m) exists if and only if m > 1 and m 6= 2, 3.

We first present a non-existence result.

Proposition 1.1. A GBTD(k, 2) does not exist for all k > 2.

Proof: Suppose (X,B) is a (2k, k, k−1)-BIBD whose blocks are organized into a 2×(2k−1)
array to form a GBTD(k, 2). Since (X,B) is a (2k, k, k− 1)-BIBD, each point in X appears
in exactly 2k − 1 blocks, and hence each point must appear either k times in the first row
and k − 1 times in the second row, or vice versa.

Consider a point x ∈ X that appears k times in the first row and k − 1 times in the
second row. Let y ∈ X be distinct from x. The cells in the first row can be classified as
follows:

(i) Type-xy: a cell that contains both x and y.
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(ii) Type-xȳ: a cell that contains x but not y.

(iii) Type-x̄y: a cell that contains y but not x.

(iv) Type-x̄ȳ: a cell that contains neither x nor y.

Let α and β be the number of type-xy cells and type-x̄y cells in the first row, respecitvely.
Then we have the table

T1=
Type-xy Type-xȳ Type-x̄y Type-x̄ȳ

# cells in first row α k − α β k − 1− β
# cells in second row k − 1− β β k − α α

,

where the second row is obtained from the first by the following observation: if a cell is of
type-xy (respectively, type-xȳ, type-x̄y, type-x̄ȳ) in the first row, then the cell in the second
row of the corresponding column is of type-x̄ȳ (respectively, type-x̄y, type-xȳ, type-xy). On
the other hand, the total number of type-xy cells is k − 1, since (X,B) is a BIBD of index
k − 1. Hence, we have α + (k − 1− β) = k − 1, implying α = β.

Considering the number of occurrences of y in the first row and the number of occurrences
of y in the second row of the GBTD give the inequalities

α + β 6 k,

2k − 1− α− β 6 k,

from which, and α = β shown earlier, follow that

α = bk/2c.

Table T1 can therefore be revised to

T2=
Type-xy Type-xȳ Type-x̄y Type-x̄ȳ

# cells in first row bk/2c dk/2e bk/2c dk/2e − 1
# cells in second row dk/2e − 1 bk/2c dk/2e bk/2c

.

Counting in two ways the number of elements in the set

{(y, C) : y ∈ X, y 6= x, and C is a cell of type-xy in the second row}.

gives
(2k − 1)(dk/2e − 1) = (k − 1)2,

which is a contradiction. 2
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2 Existence of GBTD(4,m)s with m = 3 and 4

For a positive integer n, the set {1, 2, . . . , n} is denoted by [n]. Let Σ be a set of q symbols.
A q-ary code of length n over Σ is a subset C ⊆ Σn. Elements of C are called codewords.
The size of C is the number of codewords in C. For i ∈ [n], the ith coordinate of a codeword
u ∈ C is denoted ui, so that u = (u1, u2, . . . , un).

The symbol weight of u ∈ Σn, denoted swt(u), is the maximum frequency of appearance
of a symbol in u, that is,

swt(u) = max
σ∈Σ
|{ui = σ : i ∈ [n]}|.

A code has constant symbol weight w if all of its codewords have symbol weight exactly w.
The (Hamming) distance between u, v ∈ Σn is dH(u, v) = |{i ∈ [n] : ui = vi}|, the number
of coordinates at which u and v differ. A code C is said to have distance d if dH(u, v) > d
for all distinct u, v ∈ C. A q-ary code of length n, constant symbol weight w, and distance
d is referred to as an (n, d, w)q-symbol weight code. An (n, d, w)q-symbol weight code with
maximum size is said to be optimal.

Chee et al. [1] established the following relation between a GBTD and a symbol weight
code.

Theorem 4 (Chee et al. [1]). A GBTD(k,m) exists if and only if an optimal (km−1, k(m−
1), k)m-symbol weight code exists.

In view of Theorem 4, to prove the nonexistence of a GBTD(4, 3), it suffices to show that
there does not exist a ternary code of length 11, constant symbol weight four, and size 12,
that is of equidistance eight. Consider the Gilbert graph G = (V,E), where V = {u ∈ [3]11 :
swt(u) = 4} and two vertices u, v ∈ V are adjacent in G if and only if dH(u, v) = 8. Then
there exists a ternary code of length 11, constant symbol weight four, and size 12, that is of
equidistance eight if and only if there exists a clique of size 12 in G. It is not hard to see that
G is vertex-transitive so that we can just search for a clique of size 11 in G′, the subgraph of
G induced by the set of vertices {v ∈ V : dH(u, v) = 8} for some fixed u ∈ V . This induced
subgraph G′ has 8001 vertices and 7233060 edges. We solve this clique-finding problem
using Cliquer, an implementation of Österg̊ard’s clique-finding algorithm by Niskanen and
Österg̊ard [6]. The result is that the largest clique in G′ has size 10. Consequently, we have
the following.

Proposition 2.1. There does not exist a GBTD(4, 3).

There exists, however, a GBTD(4, 4). Unfortunately, a GBTD(4, 4) is too large to be
found by the method of clique-finding above. Instead, to curb the search space, we assume
the existence of some automorphisms acting on the GBTD(4, 4) to be found. Let (X,B) be a
GBTD(4, 4), where X = Z4×Z4. If B ⊆ X and x ∈ X, B+x denotes the set {b+x : b ∈ B}.
If A is an array over X and x ∈ X, A + x denotes the array obtained by adding x to every
entry of A. For succinctness, a point (x, y) ∈ Z4 × Z4 is sometimes written xy.
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The GBTD(4, 4) we construct contains the 4× 3 subarray

A0 =

{00, 02, 20, 22} {11, 13, 31, 33} {10, 12, 30, 32}
{01, 03, 21, 23} {00, 02, 20, 22} {11, 13, 31, 33}
{10, 12, 30, 32} {01, 03, 21, 23} {00, 02, 20, 22}
{11, 13, 31, 33} {10, 12, 30, 32} {01, 03, 21, 23}

.

The blocks in A0 contain exactly the 2-subsets {ab, cd} ⊆ X, where a+ c ≡ b+d ≡ 0 mod 2,
each thrice. The remaining 4× 12 subarray of the GBTD(4, 4) is built from a set of 12 base
blocks S = {Bi,j : i ∈ [3] and 0 6 j 6 3} as follows. Let

A1 =

B1,0 B2,0 B3,0

B1,1 B2,1 B3,1

B1,2 B2,2 B3,2

B1,3 B2,3 B3,3

.

Then the 4× 12 subarray is given by

A1 A1 + (0, 1) A1 + (0, 2) A1 + (0, 3) .

For
A0 A1 A1 + (0, 1) A1 + (0, 2) A1 + (0, 3)

to be a GBTD(4, 4), the following conditions are imposed:

(i)
⋃3
j=0Bi,j = Z4 × Z4, for i ∈ [3], so that every column is a parallel class.

(ii) For each j, 0 6 j 6 3, each element of Z4 appears exactly three times as a first
coordinate among the elements of

⋃3
i=1 Bi,j, so that every row contains each element

of Z4 × Z4 at most three times.

(iii) Let k, l ∈ Z4 and define ∆k,lS to be the multiset
⋃
A∈S{x− y : (k, x), (l, y) ∈ A}. Then

∆k,lS =

{
{1, 1, 1, 3, 3, 3}, if k = l or k + l ≡ 0 mod 2;

{0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3}, otherwise.

This ensures that every 2-subset of X not contained in any block in A0 is contained in
exactly three blocks in A1, A1 + (0, 1), A1 + (0, 2), or A1 + (0, 3).

A computer search found the following array A1 that satisfies all the conditions above.

A1 =

{23, 22, 32, 11} {10, 00, 21, 11} {00, 01, 30, 33}
{20, 01, 30, 33} {33, 02, 03, 12} {10, 13, 22, 23}
{31, 00, 12, 21} {01, 13, 20, 32} {02, 11, 21, 32}
{02, 10, 13, 03} {22, 23, 30, 31} {03, 12, 20, 31}

.

Consequently, we have the following.

Proposition 2.2. There exists a GBTD(4, 4).
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3 Incomplete Holey GBTDs

Let (X,B) be a set system, and let G be a partition of X into subsets, called groups. The
triple (X,G,B) is a group divisible design (GDD) of index λ when every 2-subset of X not
contained in a group appears in exactly λ blocks, and |B ∩G| 6 1 for all B ∈ B and G ∈ G.
We denote a GDD (X,G,B) of index λ by (K,λ)-GDD if (X,B) is K-uniform. The type
of a GDD (X,G,B) is the multiset [|G| : G ∈ G]. When more convenient, the exponential
notation is used to describe the type of a GDD: a GDD of type gt11 g

t2
2 · · · gtss is a GDD where

there are exactly ti groups of size gi, i ∈ [s].
Suppose further G = {G1, G2, . . . Gs} and H = {H1, H2, . . . Hs} is a collection of subsets

of X with the property Hi ⊆ Gi, 0 6 i 6 s. Let H =
⋃s
i=1Hi. Then the quadruple

(X,G,H,B) is an incomplete group divisible design (IGDD) of index λ when every 2-subset of
X not contained in a group or H appears in exactly λ blocks, and |B∩G| 6 1 and |B∩H| 6 1
for all B ∈ B and G ∈ G. The type of an IGDD (X, {G1, G2, . . . , Gs}, {H1, H2, . . . , Hs},B)
is the multiset [(|Gi|, |Hi|) : 1 6 i 6 s] and we use the exponential notation when more
convenient.

Let k, g, u, and w be positive integers such that k | g and u > (k+1)w. Let Ri = {r ∈ Z :
ig/k 6 r 6 (i+1)g/k−1}. An incomplete holey GBTD with block size k and type g(u,w), de-
noted IHGBTD

(
k, g(u,w)

)
, is a ({k}, k − 1)-IGDD (X, {G0, G1, . . . , Gu−1}, {∅, . . . ,∅, Gu−w,

. . . , Gu−1},B) of type (g, 0)u−w(g, g)w, whose blocks are arranged in a (gu/k) × g(u − 1)
array A, with rows and columns indexed by elements from the sets {0, 1, . . . , gu/k − 1} and
{0, 1, . . . , g(u− 1)− 1}, respectively, such that the following properties are satisfied.

(i) The (gw/k)× g(w− 1) subarray whose rows are indexed by r ∈ Ri, where u−w 6 i 6
u− 1, and columns indexed by c, where g(u− w) 6 c 6 g(u− 1)− 1, is empty.

(ii) For each i, 0 6 i 6 u− w − 1, the blocks in row r ∈ Ri form a partial k-parallel class
over X \Gi, and for each i, u−w 6 i 6 u− 1, the blocks in row r ∈ Ri form a partial

k-parallel class over X \
(⋃w−1

j=u−wGj

)
.

(iii) For each j, 0 6 j 6 g(u−w)− 1, the blocks in column j form a parallel class, and for
each j, g(u−w) 6 j 6 g(u−1)−1, the blocks in column j form a partial parallel class
over X \

(⋃w−1
i=u−wGj

)
.

Each group acts as a hole of the design, since no block contains any 2-subset of a group. The
design is also incomplete in the sense that the array A contains an empty (gw/k)× g(w− 1)
subarray.
We note that an IHGBTD(k, g(u,1)) is a holey GBTD, HGBTD(k, gu), as defined by Yin et
al. [12]. The following was established by Yin et al. [12].

Proposition 3.1 (Yin et al. [12]). If there exists an HGBTD(k, ku), then there exists a
GBTD(k, u).

Proposition 3.1 shows that a GBTD(k, u) can be obtained from an HGBTD(k, ku). The
next result shows how we can obtain an HGBTD(k, gu) (and, in particular, an HGBTD(k, ku)
from an IHGBTD(k, g(u,w)) and an HGBTD(k, gw).
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Proposition 3.2. If there exist an IHGBTD(k, g(u,w)) and an HGBTD(k, gw), then there
exists an HGBTD(k, gu).

Proof: When w = 1, an HGBTD(k, gw) is empty and an IHGBTD(k, g(u,w)) is just an
HGBTD(k, gu). So assume w > 1 and let (X,G,B) be an IHGBTD(k, g(u,w)) with G =
{G0, G1, . . . , Gu−1}. Fill in the empty subarray of this IHGBTD with an HGBTD(k, gw),
(X ′,G ′,B′), with G ′ = {Gu−w, Gu−w+1, . . . , Gu−1} and X ′ =

⋃u−1
i=u−wGi. The resulting array

is a HGBTD(k, gu), (X,G,B ∪ B′). 2

4 Starter-Adder Construction for IHGBTD

The starter-adder technique first used by Mullin and Nemeth [5] to construct Room squares
(also a combinatorial array) has been useful in constructing many types of designs with
orthogonality properties, including GBTDs (see [3, 7, 10, 11, 12]). Here, we extend the
technique to the construction of IHGBTDs. Since only IHGBTD(k, g(u,w)) with g = k are
considered here, we describe our construction for this case.

Let Γ be an additive abelian group of order k(u−w) with u > (k + 1)w, and let Γ0 ⊆ Γ
be a subgroup of order k. Fix a set, ∆ = {δ0 = 0, δ1, . . . , δu−w−1} ⊆ Γ, of representatives for
the cosets of Γ0 so that Γi = Γ0 + δi, 0 6 i 6 u−w− 1, are the cosets of Γ0. Let H be a set
of kw points such that H and Γ are disjoint. Further, let H be partitioned into w subsets
H0, H1, . . . , Hw−1 of size k each.

We take X = Γ
⋃
H to be the point set of an IHGBTD(k, k(u,w)). An intransitive starter

for an IHGBTD(k, k(u,w)), with groups {G0, G1, . . . , Gu−1}, where

Gi =

{
Γi, if 0 6 i 6 u− w − 1;

Hi−u+w, if u− w 6 i 6 u− 1,

is defined as a quadruple (X,S,R, C) satisfying the properties:

(i) (X,S), (X,R), and (X, C) are {k}-uniform set systems of size u − w, w, and w − 1,
respectively;

(ii) among the blocks in S, kw of them intersects H in one point, that is, |{B ∈ S :
|B ∩H| = 1}| = kw;

(iii) blocks in R are each disjoint from H;

(iv) blocks in C are each disjoint from H, and
⋃u−w−1
i=0 (δi + C) = Γ, for each C ∈ C.

(v) S
⋃
R is a partition of X;

(vi) the difference list from the base blocks of S
⋃
R
⋃
C contains every element of Γ \ Γ0

precisely k − 1 times, and no element in Γ0.
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Suppose S = {B0, B1, . . . , Bu−w−1}. Then a corresponding adder Ω(S) for S is a per-
mutation Ω(S) = (ω0, ω1, . . . , ωu−w−1) of the u−w elements of the representative system ∆
satisfying the following property:

(vii) the multiset
(⋃u−w−1

i=0 (Bi + ωi)
)⋃ (⋃

C∈C C
)

contains exactly k elements (not nec-
essarily distinct) from Γj for 1 6 j 6 u−w−1, and is disjoint from Γ0. We remark
that when B ∈ S and B ∩H = {∞}, or B = {∞, b1, b2, . . . , bk−1}, the block B + γ
is defined to be {∞, b1 + γ, b2 + γ, . . . , bk−1 + γ} for γ ∈ Γ.

The result below shows how to construct an IHGBTD from an intransitive starter and
its corresponding adder.

Proposition 4.1. Let Γ be an additive abelian group of order k(u−w) with u > (k+1)w and
Γ0 be a subgroup of order k. Define X and the groups Gi (0 6 i 6 u− 1) as above. If there
exists an intransitive starter (X,S,R, C) with groups {Gi : 0 6 i 6 u− 1}, a corresponding
adder Ω(S), then there exists an IHGBTD(k, k(u,w)).

Proof: Retain the notations in the definition of intransitive starter and adder. Suppose

A = {A+ γ : γ ∈ Γ, A ∈ S ∪R ∪ C} ,

then (X, {G0, G1, . . . , Gu−1}, {∅, . . . ,∅, H0, . . . , Hw−1},A) forms a ({k}, k−1)-IGDD of type
(k, 0)u−w(k, k)w by Condition (vi) in the definition of intransitive starter. Therefore, it
remains to arrange the blocks in a u× k(u− 1) array.

First, consider the blocks S. Consider a (u − w) × (u − w) array S, whose rows and
columns are indexed with the elements in ∆. Now identify the elements in ∆ with elements
in the quotient group Γ/Γ0, so that the binary operation +̊ on ∆ is defined by the additive
operation on Γ/Γ0. In addition, for δ ∈ ∆, denote the additive inverse of δ by −̊δ. That is,
δ+̊(−̊δ) = δ0.

So, for 0 6 i, j 6 u − w − 1, we place the block Bi + δj at the cell (δj−̊δl, δj) if δl = ωi.
Note that this placement is well defined because Ω(S) is a permutation of ∆. Let Γ0 = {γ0 =

0, γ1, · · · , γk−1}. Form a (u − w) × k(u − w) array Ŝ from the square S by concatenating k
squares D + γi where 0 6 i 6 k − 1 as follows.

Ŝ = S S + γ1 · · · S + γk−1

Next, let R = {R1, R2, . . . , Rw} and construct a w × k(u − w) array R̂ in the following
way:

R̂ = R R + γ1 · · · R + γk−1 ,

where the w × w subarray R is given by

R =

R1 R1 + δ1 · · · R1 + δu−w−1

R2 R2 + δ1 · · · R2 + δu−w−1
...

...
. . .

...
Rw Rw + δ1 · · · Rw + δu−w−1

.
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Similarly, let C = {C0, C1, . . . , Cw−2}, and we construct a (u− w)× k(w − 1) array Ĉ.

Ĉ = C0 C1 · · · Cw−2 ,

where each (u− w)× k subarray Ci, 0 6 i 6 w − 2, is given by

Ci =

Ci Ci + γ1 · · · Ci + γk−1

Ci + δ1 Ci + δ1 + γ1 · · · Ci + δ1 + γk−1
...

...
. . .

...
Ci + δu−w−1 Ci + δu−w−1 + γ1 · · · Ci + δu−w−1 + γk−1

.

Finally, let

A =
Ŝ Ĉ

R̂
,

and it is readily verified that the placement results in an IHGBTD(k, k(u,w)).

5 Proof of Theorem 1.2

We first remove all the eight remaining values in Theorem 1.

Lemma 5. For (u,w) ∈ {(28, 5), (32, 5), (33, 6)}, an IHGBTD
(
4, 4(u,w)

)
exists.

Proof: We apply Proposition 4.1 to construct the desired IHGBTDs. Take

Γ = Zu−w × Z4,

Γ0 = {0} × Z4,

∆ = {(0, 0), (1, 0), . . . , (u− w − 1, 0)}, and

H =
w−1⋃
i=0

Hi, where Hi = {∞i,∞i+w,∞i+2w,∞i+3w} for 0 6 i 6 w − 1.

For each pair (u,w) ∈ {(28, 5), (32, 5), (33, 6)}, the desired intransitive starter and cor-
responding adder are displayed below. Here we write the element (a, b) of Γ as ab for
succinctness.

When (u,w) = (28, 5):

S Ω(S) S Ω(S) S Ω(S)
{41, 30, 70, 00} 170 {50, 190, 121, 12} 120 {180, 133, 163, 81} 190
{∞0, 31, 122, 113} 10 {∞1, 143, 60, 103} 210 {∞2, 141, 91, 201} 200
{∞3, 191, 101, 222} 70 {∞4, 33, 13, 22} 180 {∞5, 02, 151, 10} 150
{∞6, 11, 63, 93} 20 {∞7, 140, 111, 01} 100 {∞8, 03, 172, 212} 220
{∞9, 43, 80, 210} 60 {∞10, 131, 193, 162} 90 {∞11, 42, 213, 171} 50
{∞12, 170, 52, 211} 160 {∞13, 51, 202, 112} 40 {∞14, 220, 23, 160} 140
{∞15, 183, 203, 20} 00 {∞16, 123, 21, 223} 30 {∞17, 53, 71, 173} 80
{∞18, 62, 90, 192} 130 {∞19, 72, 83, 221} 110
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C = {180, 111, 53, 62}, {182, 83, 190, 61}, {143, 120, 32, 71},
{52, 71, 163, 110}.

R = {32, 182, 161, 102}, {82, 150, 200, 132}, {130, 92, 181, 153},
{61, 73, 142, 152}, {120, 100, 40, 110}.

When (u,w) = (32, 5):

S Ω(S) S Ω(S) S Ω(S)
{42, 172, 161, 222} 160 {31, 41, 10, 91} 110 {43, 263, 220, 103} 00
{141, 60, 260, 30} 120 {∞0, 33, 242, 251} 70 {∞1, 22, 120, 13} 60
{∞2, 01, 261, 202} 40 {∞3, 250, 150, 230} 150 {∞4, 130, 212, 160} 30
{∞5, 50, 193, 121} 240 {∞6, 63, 143, 132} 10 {∞7, 12, 20, 00} 210
{∞8, 02, 100, 190} 140 {∞9, 152, 182, 03} 20 {∞10, 61, 52, 23} 170
{∞11, 123, 252, 113} 220 {∞12, 101, 213, 173} 180 {∞13, 170, 90, 203} 200
{∞14, 200, 32, 163} 50 {∞15, 122, 211, 82} 90 {∞16, 181, 110, 153} 100
{∞17, 11, 151, 171} 80 {∞18, 92, 162, 232} 130 {∞19, 142, 183, 210} 250

C = {13, 260, 161, 172}, {53, 141, 242, 120}, {192, 250, 171, 133},
{62, 80, 113, 131}.

R = {51, 111, 243, 201}, {241, 180, 70, 62}, {221, 253, 80, 133},
{192, 72, 21, 233}, {71, 93, 262, 40}.

When (u,w) = (33, 6):

S Ω(S) S Ω(S) S Ω(S)
{220, 01, 230, 213} 130 {253, 43, 151, 201} 40 {73, 22, 233, 10} 70
{∞0, 211, 30, 222} 180 {∞1, 00, 143, 101} 60 {∞2, 123, 80, 161} 80
{∞3, 61, 232, 91} 230 {∞4, 40, 82, 142} 20 {∞5, 141, 23, 60} 170
{∞6, 212, 242, 112} 90 {∞7, 50, 21, 251} 200 {∞8, 111, 221, 121} 220
{∞9, 02, 72, 192} 150 {∞10, 130, 160, 140} 240 {∞11, 110, 150, 181} 30
{∞12, 70, 90, 261} 190 {∞13, 250, 71, 100} 210 {∞14, 180, 252, 263} 260
{∞15, 42, 152, 133} 160 {∞16, 171, 200, 113} 50 {∞17, 202, 93, 120} 140
{∞18, 262, 52, 172} 120 {∞19, 240, 131, 103} 10 {∞20, 13, 102, 122} 110
{∞21, 32, 153, 241} 250 {∞22, 51, 183, 210} 100 {∞23, 170, 243, 260} 00

C = {33, 101, 52, 150}, {83, 141, 92, 180}, {120, 103, 262, 51},
{212, 111, 230, 93}, {151, 52, 123, 30}.

R = {63, 20, 182, 190}, {83, 92, 31, 12}, {173, 33, 41, 223},
{193, 132, 62, 53}, {163, 231, 11, 191}, {203, 162, 81, 03}.

Lemma 6. For (u,w) ∈ {(34, 6), (44, 8)}, an IHGBTD
(
4, 4(u,w)

)
exists.

Proof: As with Lemma 5, we apply Proposition 4.1 to construct the desired IHGBTDs.
Take

Γ = Z2(u−w) × Z2,

Γ0 = {0, u− w} × Z2,

∆ = {(0, 0), (1, 0), · · · , (u− w − 1, 0)}, and

H =
w−1⋃
i=0

Hi, where Hi = {∞i,∞i+w,∞i+2w,∞i+3w} for 0 6 i 6 w − 1.
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The desired intransitive starter and corresponding adder for (u,w) ∈ {(34, 6), (44, 8)} are
displayed below. Here we write the element (a, b) of Γ as ab for succinctness.

When (u,w) = (34, 6):

S Ω(S) S Ω(S) S Ω(S)
{411, 160, 60, 150} 200 {360, 90, 331, 131} 160 {370, 180, 261, 41} 00
{161, 21, 40, 31} 30 {∞0, 201, 240, 420} 230 {∞1, 221, 300, 391} 110
{∞2, 140, 311, 11} 100 {∞3, 480, 450, 80} 250 {∞4, 251, 481, 141} 40
{∞5, 81, 301, 200} 120 {∞6, 61, 210, 441} 20 {∞7, 401, 330, 521} 10
{∞8, 451, 211, 281} 180 {∞9, 270, 280, 341} 170 {∞10, 421, 351, 371} 220
{∞11, 30, 220, 120} 190 {∞12, 440, 350, 390} 140 {∞13, 361, 70, 91} 70
{∞14, 151, 531, 511} 60 {∞15, 530, 110, 510} 150 {∞16, 500, 551, 101} 90
{∞17, 520, 321, 171} 130 {∞18, 550, 291, 250} 50 {∞19, 01, 71, 410} 270
{∞20, 121, 310, 470} 80 {∞21, 170, 271, 471} 210 {∞22, 190, 230, 290} 240
{∞23, 340, 400, 501} 260

C = {271, 100, 441, 510}, {351, 150, 500, 141}, {161, 511, 540, 270},
{241, 120, 370, 211}, {390, 21, 451, 500}.

R = {130, 260, 380, 241}, {541, 231, 461, 491}, {10, 490, 181, 430},
{100, 20, 111, 540}, {460, 191, 431, 50}, {381, 320, 51, 00}.

When (u,w) = (44, 8):

S Ω(S) S Ω(S) S Ω(S)
{320, 691, 361, 531} 200 {421, 651, 00, 431} 10 {391, 271, 451, 511} 30
{221, 390, 551, 331} 110 {∞0, 670, 401, 540} 220 {∞1, 230, 101, 341} 250
{∞2, 180, 671, 360} 280 {∞3, 251, 100, 281} 160 {∞4, 631, 60, 370} 290
{∞5, 160, 440, 20} 350 {∞6, 280, 501, 351} 100 {∞7, 430, 461, 321} 90
{∞8, 690, 521, 21} 130 {∞9, 371, 660, 711} 260 {∞10, 701, 211, 241} 80
{∞11, 710, 151, 470} 320 {∞12, 590, 191, 61} 230 {∞13, 90, 471, 200} 70
{∞14, 520, 460, 601} 240 {∞15, 170, 600, 220} 00 {∞16, 640, 541, 120} 170
{∞17, 490, 91, 530} 40 {∞18, 680, 01, 561} 150 {∞19, 270, 121, 41} 270
{∞20, 650, 681, 231} 20 {∞21, 201, 181, 80} 310 {∞22, 591, 171, 441} 140
{∞23, 10, 700, 261} 120 {∞24, 571, 111, 130} 210 {∞25, 161, 50, 70} 180
{∞26, 581, 40, 570} 50 {∞27, 411, 131, 311} 190 {∞28, 641, 560, 301} 300
{∞29, 190, 480, 210} 60 {∞30, 481, 580, 500} 330 {∞31, 400, 491, 51} 340

C = {21, 31, 220, 690}, {281, 690, 191, 620}, {411, 40, 201, 590},
{570, 121, 40, 551}, {410, 211, 321, 80}, {71, 130, 141, 280},
{331, 210, 281, 520}.

R = {661, 31, 250, 291}, {380, 340, 30, 240}, {550, 150, 620, 450},
{621, 610, 420, 290}, {510, 350, 300, 260}, {611, 11, 140, 381},
{141, 110, 310, 630}, {71, 330, 81, 410}.

Lemma 7. For each (u,w) ∈ {(37, 6), (38, 7), (39, 6)}, an IHGBTD
(
4, 4(u,w)

)
exists.
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Proof: As with Lemma 5, we apply Proposition 4.1. Take

Γ = Zu−w × Z2 × Z2,

Γ0 = {0} × Z2 × Z2

∆ = {((0, 0, 0), (1, 0, 0), · · · , (u− w − 1, 0, 0))}, and

H =
w−1⋃
i=0

Hi, where Hi = {∞i,∞i+w,∞i+2w,∞i+3w} for 0 6 i 6 w − 1.

The desired intransitive starter and corresponding adder for (u,w) ∈ {(37, 6), (38, 7), (39, 6)}
are displayed below. Here we write the element (a, b, c) of Γ as abc for succinctness.

When (u,w) = (37, 6):

S Ω(S) S Ω(S) S Ω(S)
{600, 2500, 300, 711} 3000 {2010, 1300, 2311, 2701} 2800 {1200, 1301, 1911, 1700} 200
{2011, 1900, 900, 111} 1700 {2911, 2611, 211, 001} 300 {2110, 1110, 110, 2710} 2100
{901, 2711, 410, 1611} 1100 {∞0, 2601, 2801, 500} 400 {∞1, 1410, 311, 2511} 2900
{∞2, 2100, 1111, 2301} 2400 {∞3, 2111, 510, 1800} 700 {∞4, 2811, 1011, 2001} 000
{∞5, 2810, 2501, 1511} 2500 {∞6, 010, 201, 710} 1400 {∞7, 2901, 1010, 2200} 1200
{∞8, 301, 1211, 1910} 800 {∞9, 3001, 2700, 811} 2700 {∞10, 1901, 2101, 200} 2300
{∞11, 411, 2211, 700} 2000 {∞12, 2600, 601, 400} 1900 {∞13, 2800, 2201, 1401} 2200
{∞14, 210, 1601, 2210} 1300 {∞15, 401, 2900, 701} 1800 {∞16, 2400, 801, 511} 1600
{∞17, 1811, 101, 1510} 100 {∞18, 1701, 2310, 800} 2600 {∞19, 2410, 1600, 810} 1000
{∞20, 310, 1801, 2401} 500 {∞21, 3011, 2411, 1810} 900 {∞22, 011, 1411, 2300} 1500
{∞23, 610, 1501, 2910} 600

C = {3010, 1300, 711, 801}, {701, 210, 2811, 1700}, {611, 901, 1000, 1310},
{3010, 2801, 1800, 1711}, {3001, 2600, 811, 610}.

R = {1400, 3000, 1310, 000}, {910, 1610, 1500, 1100}, {1000, 2510, 1710, 3010},
{2000, 501, 911, 100}, {2610, 1210, 1311, 1711}, {1201, 1101, 1001, 611}.

When (u,w) = (38, 7):

S Ω(S) S Ω(S) S Ω(S)
{2800, 2900, 2211, 2700} 800 {2011, 2311, 1111, 511} 600 {1800, 2710, 801, 3000} 2100
{∞0, 3001, 1300, 501} 300 {∞1, 2801, 301, 2301} 2000 {∞2, 2711, 810, 2411} 2500
{∞3, 011, 411, 600} 1100 {∞4, 400, 900, 800} 2600 {∞5, 1611, 2910, 1001} 1200
{∞6, 2600, 2901, 2101} 000 {∞7, 2701, 1600, 1810} 1900 {∞8, 701, 2300, 1311} 100
{∞9, 3011, 610, 1610} 2800 {∞10, 1301, 2410, 2200} 1400 {∞11, 200, 2000, 1211} 1300
{∞12, 1100, 2310, 1210} 1600 {∞13, 110, 1500, 1411} 1800 {∞14, 1811, 1010, 1201} 2200
{∞15, 300, 2500, 1700} 2700 {∞16, 1200, 2611, 2210} 2900 {∞17, 101, 1701, 1000} 900
{∞18, 000, 1911, 2010} 2300 {∞19, 2400, 211, 410} 1000 {∞20, 500, 210, 111} 1700
{∞21, 2510, 710, 001} 1500 {∞22, 1710, 2001, 1910} 3000 {∞23, 1400, 2111, 700} 700
{∞24, 010, 401, 1101} 500 {∞25, 911, 1901, 2110} 400 {∞26, 901, 2401, 2511} 200
{∞27, 1401, 2501, 3010} 2400

C = {1400, 2911, 2501, 3010}, {2010, 911, 701, 500}, {401, 2500, 2811, 1210},
{1300, 2410, 101, 2211}, {710, 601, 2011, 1000}, {2401, 610, 100, 1611}.

R = {811, 510, 1900, 1510}, {2601, 711, 1310, 1711}, {910, 1511, 601, 100},
{2610, 1410, 2100, 2810}, {2201, 1801, 1011, 1501}, {311, 201, 1601, 2911},
{310, 2811, 1110, 611}.
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When (u,w) = (39, 6):

S Ω(S) S Ω(S) S Ω(S)
{2810, 2910, 2610, 200} 2300 {2401, 1011, 901, 1700} 1300 {300, 2900, 600, 2101} 000
{1101, 3001, 1000, 711} 1000 {911, 2600, 2100, 2001} 1100 {3000, 3200, 001, 800} 800
{2201, 810, 1800, 2701} 900 {2110, 3011, 2400, 411} 500 {3201, 2710, 1801, 2500} 2500
{∞0, 2801, 1600, 1211} 3200 {∞1, 101, 1810, 1601} 2000 {∞2, 910, 611, 401} 300
{∞3, 1500, 3210, 610} 1900 {∞4, 3211, 3010, 110} 2700 {∞5, 2901, 811, 3100} 1600
{∞6, 2601, 1411, 2300} 1800 {∞7, 2800, 1301, 2410} 1500 {∞8, 2411, 3101, 1310} 3100
{∞9, 2700, 1811, 1210} 2800 {∞10, 2511, 1311, 1911} 2200 {∞11, 510, 400, 000} 3000
{∞12, 700, 1300, 1901} 600 {∞13, 210, 1611, 2501} 2600 {∞14, 1701, 701, 1110} 700
{∞15, 1501, 1910, 211} 1700 {∞16, 2200, 1200, 100} 400 {∞17, 010, 1401, 500} 100
{∞18, 1511, 201, 1400} 1200 {∞19, 410, 301, 2311} 200 {∞20, 310, 1610, 1710} 1400
{∞21, 311, 1900, 2510} 2900 {∞22, 511, 1100, 2211} 2400 {∞23, 1010, 2210, 2301} 2100

C = {1011, 1510, 2300, 1301}, {2211, 401, 2000, 2710}, {1210, 1611, 800, 401},
{2311, 1201, 100, 910}, {2000, 3001, 2310, 2811}.

R = {2011, 601, 2811, 501}, {2911, 1201, 1111, 3111}, {3110, 1001, 1510, 710},
{900, 2711, 1410, 2000}, {2310, 011, 2010, 801}, {2611, 111, 2111, 1711}.

Proof of Theorem 2: We first construct a GBTD(4,m) for any m ∈ N , where N =
{28, 32, 33, 34, 37, 38, 39, 44}.

For each w ∈ {5, 6, 7, 8}, an HGBTD(4, 4w) is given by Yin et al. [12]. For each m ∈ N ,
apply Theorem 3.2, with IHGBTDs from Lemma 5, Lemma 6 and Lemma 7 and corre-
sponding HGBTD(4, 4w)’s where w ∈ {5, 6, 7, 8} as ingredients, to produce the desired
HGBTD(4, 4m). Hence, the desired GBTD(4,m) follows from Proposition 3.1.

Combining Proposition 1.1, Proposition 2.1 and Proposition 2.2, we complete the proof.
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References

[1] Y.M. Chee, H.M. Kiah, A.C.H. Ling, and C. Wang, Optimal equitable symbol weight
codes for power line communications, Proceedings of the 2012 IEEE International Sym-
posium on Information Theory, (2012), 671-675.

[2] C.J. Colbourn, J.H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press,
Boca Raton, FL, 2007.

[3] E.R. Lamken, Generalized balanced tournament designs, Trans. Amer. Math. Soc. 318
(1990), 473-490.

[4] E.R. Lamken, Existence results for generalized balanced tournament designs with block
size 3, Des. Codes Cryptogr. 3 (1993), 33-61.

[5] R. C. Mullin and E. Nemeth, On furnishing Room squares, J. Combin. Theory 7 (1969)
266-272.

the electronic journal of combinatorics 20(2) (2013), #P51 13
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