Generalized Balanced Tournament Designs with Block Size Four^{*}

Yeow Meng Chee Han Mao Kiah

School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Chengmin Wang[†]

School of Science Jiangnan University Wuxi, China 214122

{YMChee,KIAH0001}@ntu.edu.sg

wcm@jiangnan.edu.cn

Submitted: Sep 16, 2012; Accepted: Jun 1, 2013; Published: Jun 7, 2013 Mathematics Subject Classifications: 05B05, 94B25

Abstract

In this paper, we remove the outstanding values m for which the existence of a GBTD(4, m) has not been decided previously. This leads to a complete solution to the existence problem regarding GBTD(4, m)s.

Keywords: generalized balanced tournament design; holey generalized balanced tournament design; starter-adder

1 Introduction

A set system is a pair $\mathfrak{S} = (X, \mathcal{B})$, where X is a finite set of *points* and \mathcal{B} is a collection of subsets of X. Elements of \mathcal{B} are called *blocks*. The order of \mathfrak{S} is |X|, the number of points. Let K be a set of positive integers. A set system (X, \mathcal{B}) is said to be K-uniform if $|\mathcal{B}| \in K$ for all $\mathcal{B} \in \mathcal{B}$. Let (X, \mathcal{B}) be a set system and $S \subseteq X$. A partial α -parallel class over $X \setminus S$ of (X, \mathcal{B}) is a set of blocks $\mathcal{A} \subseteq \mathcal{B}$ such that each point of $X \setminus S$ occurs in exactly α blocks of \mathcal{A} , and each point of S occurs in no block of \mathcal{A} . A partial α -parallel class over X is simply called an α -parallel class. We adopt the convention that if α is not specified, then it is taken to be one, so that a parallel class refers to a 1-parallel class. A set system (X, \mathcal{B}) is said to be resolvable if \mathcal{B} can be partitioned into parallel classes.

^{*}Research of Y. M. Chee, H. M. Kiah, and C. Wang is supported in part by the Singapore National Research Foundation under Research Grant NRF-CRP2-2007-03. Research of C. Wang is also supported in part by NSFC under Grants No. 11271280 and 10801064.

[†]Corresponding author.

A balanced incomplete block design of order v, block size k, and index λ , denoted by (v, k, λ) -BIBD, is a $\{k\}$ -uniform set system (X, \mathcal{B}) of order v such that every 2-subset of X is contained in precisely λ blocks of \mathcal{B} . A resolvable (km, k, k - 1)-BIBD (X, \mathcal{B}) is called a generalized balanced tournament design (GBTD), or simply a GBTD(k, m), if the m(km-1) blocks of \mathcal{B} are arranged in an $m \times (km - 1)$ array such that

- (i) the set of blocks in each column is a parallel class, and
- (ii) each point of X is contained in at most k cells of each row.

GBTDs were introduced by Lamken [3] and are useful in the construction of many combinatorial designs, including resolvable, near-resolvable, doubly resolvable, and doubly nearresolvable balanced incomplete block designs (see [2, 3]). More recently, GBTDs have also found applications in near constant-composition codes [12], and codes for power line communications [1].

Schellenberg et al. [8] showed that a GBTD(2, m) exists for all positive integers $m \neq 2$. Lamken [4] showed that a GBTD(3, m) exists for all positive integers $m \neq 2$. For k = 4, Yin et al. [12] obtained the following.

Theorem 1 (Yin et al. [12]). A GBTD(4, m) exists for all positive integers $m \ge 5$, except possibly when $m \in \{28, 32, 33, 34, 37, 38, 39, 44\}$.

The purpose of this paper is to remove all the remaining eight possible exceptions in Theorem 1 and to show that a GBTD(4, m) exists for m = 4 but not for $m \in \{2, 3\}$.

Theorem 2. For each $m \in \{4, 28, 32, 33, 34, 37, 38, 39, 44\}$, a GBTD(4, m) exists. For m = 2 and 3, a GBTD(4, m) does not exist.

A GBTD(4, 1) exists trivially. Combining Theorem 1 and Theorem 2, the existence of GBTD(4, m) is now completely determined.

Theorem 3. A GBTD(4, m) exists if and only if $m \ge 1$ and $m \ne 2, 3$.

We first present a non-existence result.

Proposition 1.1. A GBTD(k, 2) does not exist for all $k \ge 2$.

Proof: Suppose (X, \mathcal{B}) is a (2k, k, k-1)-BIBD whose blocks are organized into a $2 \times (2k-1)$ array to form a GBTD(k, 2). Since (X, \mathcal{B}) is a (2k, k, k-1)-BIBD, each point in X appears in exactly 2k - 1 blocks, and hence each point must appear either k times in the first row and k - 1 times in the second row, or vice versa.

Consider a point $x \in X$ that appears k times in the first row and k-1 times in the second row. Let $y \in X$ be distinct from x. The cells in the first row can be classified as follows:

(i) Type-xy: a cell that contains both x and y.

- (ii) Type- $x\bar{y}$: a cell that contains x but not y.
- (iii) Type- $\bar{x}y$: a cell that contains y but not x.
- (iv) Type- $\bar{x}\bar{y}$: a cell that contains neither x nor y.

Let α and β be the number of type-xy cells and type- $\bar{x}y$ cells in the first row, respectively. Then we have the table

		Type- <i>xy</i>	Type- $x\bar{y}$	Type- $\bar{x}y$	Type- $\bar{x}\bar{y}$
T1 =	# cells in first row	α	$k - \alpha$	β	$k-1-\beta$
	# cells in second row	$k-1-\beta$	β	$k - \alpha$	α

where the second row is obtained from the first by the following observation: if a cell is of type-xy (respectively, type- $x\bar{y}$, type- $\bar{x}y$, type- $\bar{x}\bar{y}$) in the first row, then the cell in the second row of the corresponding column is of type- $\bar{x}\bar{y}$ (respectively, type- $\bar{x}y$, type- $x\bar{y}$, type-xy). On the other hand, the total number of type-xy cells is k - 1, since (X, \mathcal{B}) is a BIBD of index k - 1. Hence, we have $\alpha + (k - 1 - \beta) = k - 1$, implying $\alpha = \beta$.

Considering the number of occurrences of y in the first row and the number of occurrences of y in the second row of the GBTD give the inequalities

$$\begin{array}{rcl} \alpha + \beta & \leqslant & k, \\ 2k - 1 - \alpha - \beta & \leqslant & k, \end{array}$$

from which, and $\alpha = \beta$ shown earlier, follow that

$$\alpha = \lfloor k/2 \rfloor.$$

Table T1 can therefore be revised to

		Type- xy	Type- $x\bar{y}$	Type- $\bar{x}y$	Type- $\bar{x}\bar{y}$
T2=	# cells in first row	$\lfloor k/2 \rfloor$	$\lceil k/2 \rceil$	$\lfloor k/2 \rfloor$	$\lceil k/2 \rceil - 1$
	# cells in second row	$\lceil k/2 \rceil - 1$	$\lfloor k/2 \rfloor$	$\lceil k/2 \rceil$	$\lfloor k/2 \rfloor$

Counting in two ways the number of elements in the set

 $\{(y, C) : y \in X, y \neq x, \text{ and } C \text{ is a cell of type-} xy \text{ in the second row}\}.$

gives

$$(2k-1)(\lceil k/2 \rceil - 1) = (k-1)^2,$$

which is a contradiction.

2 Existence of GBTD(4, m)s with m = 3 and 4

For a positive integer n, the set $\{1, 2, ..., n\}$ is denoted by [n]. Let Σ be a set of q symbols. A *q*-ary code of length n over Σ is a subset $\mathcal{C} \subseteq \Sigma^n$. Elements of \mathcal{C} are called *codewords*. The *size* of \mathcal{C} is the number of codewords in \mathcal{C} . For $i \in [n]$, the *i*th coordinate of a codeword $\mathbf{u} \in \mathcal{C}$ is denoted \mathbf{u}_i , so that $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n)$.

The symbol weight of $\mathbf{u} \in \Sigma^n$, denoted $\operatorname{swt}(\mathbf{u})$, is the maximum frequency of appearance of a symbol in \mathbf{u} , that is,

$$\operatorname{swt}(\mathsf{u}) = \max_{\sigma \in \Sigma} |\{\mathsf{u}_i = \sigma : i \in [n]\}|.$$

A code has constant symbol weight w if all of its codewords have symbol weight exactly w. The (Hamming) distance between $\mathbf{u}, \mathbf{v} \in \Sigma^n$ is $d_{\mathrm{H}}(\mathbf{u}, \mathbf{v}) = |\{i \in [n] : \mathbf{u}_i = \mathbf{v}_i\}|$, the number of coordinates at which \mathbf{u} and \mathbf{v} differ. A code C is said to have distance d if $d_{\mathrm{H}}(\mathbf{u}, \mathbf{v}) \ge d$ for all distinct $\mathbf{u}, \mathbf{v} \in C$. A q-ary code of length n, constant symbol weight w, and distance d is referred to as an $(n, d, w)_q$ -symbol weight code. An $(n, d, w)_q$ -symbol weight code with maximum size is said to be optimal.

Chee et al. [1] established the following relation between a GBTD and a symbol weight code.

Theorem 4 (Chee et al. [1]). A GBTD(k, m) exists if and only if an optimal $(km-1, k(m-1), k)_m$ -symbol weight code exists.

In view of Theorem 4, to prove the nonexistence of a GBTD(4,3), it suffices to show that there does not exist a ternary code of length 11, constant symbol weight four, and size 12, that is of equidistance eight. Consider the *Gilbert graph* G = (V, E), where $V = \{\mathbf{u} \in [3]^{11} :$ $\operatorname{swt}(\mathbf{u}) = 4\}$ and two vertices $\mathbf{u}, \mathbf{v} \in V$ are adjacent in G if and only if $d_{\mathrm{H}}(\mathbf{u}, \mathbf{v}) = 8$. Then there exists a ternary code of length 11, constant symbol weight four, and size 12, that is of equidistance eight if and only if there exists a clique of size 12 in G. It is not hard to see that G is vertex-transitive so that we can just search for a clique of size 11 in G', the subgraph of G induced by the set of vertices $\{\mathbf{v} \in V : d_{\mathrm{H}}(\mathbf{u}, \mathbf{v}) = 8\}$ for some fixed $\mathbf{u} \in V$. This induced subgraph G' has 8001 vertices and 7233060 edges. We solve this clique-finding problem using Cliquer, an implementation of Östergård's clique-finding algorithm by Niskanen and Östergård [6]. The result is that the largest clique in G' has size 10. Consequently, we have the following.

Proposition 2.1. There does not exist a GBTD(4,3).

There exists, however, a GBTD(4, 4). Unfortunately, a GBTD(4, 4) is too large to be found by the method of clique-finding above. Instead, to curb the search space, we assume the existence of some automorphisms acting on the GBTD(4, 4) to be found. Let (X, \mathcal{B}) be a GBTD(4, 4), where $X = \mathbb{Z}_4 \times \mathbb{Z}_4$. If $B \subseteq X$ and $x \in X$, B+x denotes the set $\{b+x : b \in B\}$. If A is an array over X and $x \in X$, A + x denotes the array obtained by adding x to every entry of A. For succinctness, a point $(x, y) \in \mathbb{Z}_4 \times \mathbb{Z}_4$ is sometimes written xy.

The GBTD(4, 4) we construct contains the 4×3 subarray

$A_0 =$	$\{00, 02, 20, 22\}$	$\{11, 13, 31, 33\}$	$\{10, 12, 30, 32\}$
	$\{01, 03, 21, 23\}$	$\{00, 02, 20, 22\}$	$\{11, 13, 31, 33\}$
	$\{10, 12, 30, 32\}$	$\{01, 03, 21, 23\}$	$\{00, 02, 20, 22\}$
	$\{11, 13, 31, 33\}$	$\{10, 12, 30, 32\}$	$\{01, 03, 21, 23\}$

The blocks in A_0 contain exactly the 2-subsets $\{ab, cd\} \subseteq X$, where $a + c \equiv b + d \equiv 0 \mod 2$, each thrice. The remaining 4×12 subarray of the GBTD(4, 4) is built from a set of 12 base blocks $S = \{B_{i,j} : i \in [3] \text{ and } 0 \leq j \leq 3\}$ as follows. Let

$$\mathsf{A}_{1} = \begin{bmatrix} B_{1,0} & B_{2,0} & B_{3,0} \\ B_{1,1} & B_{2,1} & B_{3,1} \\ B_{1,2} & B_{2,2} & B_{3,2} \\ B_{1,3} & B_{2,3} & B_{3,3} \end{bmatrix}$$

Then the 4×12 subarray is given by

$$A_1 \quad A_1 + (0,1) \quad A_1 + (0,2) \quad A_1 + (0,3)$$
.

For

$$A_0 \quad A_1 \quad A_1 + (0,1) \quad A_1 + (0,2) \quad A_1 + (0,3)$$

to be a GBTD(4, 4), the following conditions are imposed:

- (i) $\bigcup_{j=0}^{3} B_{i,j} = \mathbb{Z}_4 \times \mathbb{Z}_4$, for $i \in [3]$, so that every column is a parallel class.
- (ii) For each $j, 0 \leq j \leq 3$, each element of \mathbb{Z}_4 appears exactly three times as a first coordinate among the elements of $\bigcup_{i=1}^3 B_{i,j}$, so that every row contains each element of $\mathbb{Z}_4 \times \mathbb{Z}_4$ at most three times.
- (iii) Let $k, l \in \mathbb{Z}_4$ and define $\Delta_{k,l} \mathcal{S}$ to be the multiset $\bigcup_{A \in \mathcal{S}} \{x y : (k, x), (l, y) \in A\}$. Then

$$\Delta_{k,l} \mathcal{S} = \begin{cases} \{1, 1, 1, 3, 3, 3\}, & \text{if } k = l \text{ or } k + l \equiv 0 \mod 2; \\ \{0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3\}, & \text{otherwise.} \end{cases}$$

This ensures that every 2-subset of X not contained in any block in A_0 is contained in exactly three blocks in A_1 , $A_1 + (0, 1)$, $A_1 + (0, 2)$, or $A_1 + (0, 3)$.

A computer search found the following array A_1 that satisfies all the conditions above.

	${23, 22, 32, 11} {20, 01, 30, 33}$	${10,00,21,11} {33,02,03,12}$	$\{00, 01, 30, 33\} \\ \{10, 13, 22, 23\}$
$A_1 =$	$\{31, 00, 12, 21\}\$	$\{01, 13, 20, 32\}\$	$\{02, 11, 21, 32\}\$
	$\{02, 10, 13, 03\}$	$\{22, 23, 30, 31\}$	$\{03, 12, 20, 31\}$

Consequently, we have the following.

Proposition 2.2. There exists a GBTD(4, 4).

The electronic journal of combinatorics $\mathbf{20(2)}$ (2013), #P51

3 Incomplete Holey GBTDs

Let (X, \mathcal{B}) be a set system, and let \mathcal{G} be a partition of X into subsets, called groups. The triple $(X, \mathcal{G}, \mathcal{B})$ is a group divisible design (GDD) of index λ when every 2-subset of X not contained in a group appears in exactly λ blocks, and $|B \cap G| \leq 1$ for all $B \in \mathcal{B}$ and $G \in \mathcal{G}$. We denote a GDD $(X, \mathcal{G}, \mathcal{B})$ of index λ by (K, λ) -GDD if (X, \mathcal{B}) is K-uniform. The type of a GDD $(X, \mathcal{G}, \mathcal{B})$ is the multiset $[|G| : G \in \mathcal{G}]$. When more convenient, the exponential notation is used to describe the type of a GDD: a GDD of type $g_1^{t_1}g_2^{t_2}\cdots g_s^{t_s}$ is a GDD where there are exactly t_i groups of size $g_i, i \in [s]$.

Suppose further $\mathcal{G} = \{G_1, G_2, \ldots, G_s\}$ and $\mathcal{H} = \{H_1, H_2, \ldots, H_s\}$ is a collection of subsets of X with the property $H_i \subseteq G_i, 0 \leq i \leq s$. Let $H = \bigcup_{i=1}^s H_i$. Then the quadruple $(X, \mathcal{G}, \mathcal{H}, \mathcal{B})$ is an *incomplete group divisible design* (IGDD) of index λ when every 2-subset of X not contained in a group or H appears in exactly λ blocks, and $|B \cap G| \leq 1$ and $|B \cap H| \leq 1$ for all $B \in \mathcal{B}$ and $G \in \mathcal{G}$. The type of an IGDD $(X, \{G_1, G_2, \ldots, G_s\}, \{H_1, H_2, \ldots, H_s\}, \mathcal{B})$ is the multiset $[(|G_i|, |H_i|) : 1 \leq i \leq s]$ and we use the exponential notation when more convenient.

Let k, g, u, and w be positive integers such that $k \mid g$ and $u \ge (k+1)w$. Let $R_i = \{r \in \mathbb{Z} : ig/k \le r \le (i+1)g/k-1\}$. An *incomplete holey* GBTD with block size k and type $g^{(u,w)}$, denoted IHGBTD $(k, g^{(u,w)})$, is a $(\{k\}, k-1)$ -IGDD $(X, \{G_0, G_1, \ldots, G_{u-1}\}, \{\emptyset, \ldots, \emptyset, G_{u-w}, \ldots, G_{u-1}\}, \mathcal{B})$ of type $(g, 0)^{u-w}(g, g)^w$, whose blocks are arranged in a $(gu/k) \times g(u-1)$ array A, with rows and columns indexed by elements from the sets $\{0, 1, \ldots, gu/k-1\}$ and $\{0, 1, \ldots, g(u-1)-1\}$, respectively, such that the following properties are satisfied.

- (i) The $(gw/k) \times g(w-1)$ subarray whose rows are indexed by $r \in R_i$, where $u w \leq i \leq u 1$, and columns indexed by c, where $g(u w) \leq c \leq g(u 1) 1$, is empty.
- (ii) For each $i, 0 \leq i \leq u w 1$, the blocks in row $r \in R_i$ form a partial k-parallel class over $X \setminus G_i$, and for each $i, u w \leq i \leq u 1$, the blocks in row $r \in R_i$ form a partial k-parallel class over $X \setminus \left(\bigcup_{j=u-w}^{w-1} G_j\right)$.
- (iii) For each $j, 0 \leq j \leq g(u-w) 1$, the blocks in column j form a parallel class, and for each $j, g(u-w) \leq j \leq g(u-1) 1$, the blocks in column j form a partial parallel class over $X \setminus \left(\bigcup_{i=u-w}^{w-1} G_j\right)$.

Each group acts as a *hole* of the design, since no block contains any 2-subset of a group. The design is also *incomplete* in the sense that the array A contains an empty $(gw/k) \times g(w-1)$ subarray.

We note that an IHGBTD $(k, g^{(u,1)})$ is a holey GBTD, HGBTD (k, g^u) , as defined by Yin et al. [12]. The following was established by Yin et al. [12].

Proposition 3.1 (Yin et al. [12]). If there exists an HGBTD (k, k^u) , then there exists a GBTD(k, u).

Proposition 3.1 shows that a GBTD(k, u) can be obtained from an $\text{HGBTD}(k, k^u)$. The next result shows how we can obtain an $\text{HGBTD}(k, g^u)$ (and, in particular, an $\text{HGBTD}(k, k^u)$ from an $\text{IHGBTD}(k, g^{(u,w)})$ and an $\text{HGBTD}(k, g^w)$.

Proposition 3.2. If there exist an IHGBTD $(k, g^{(u,w)})$ and an HGBTD (k, g^w) , then there exists an HGBTD (k, g^u) .

Proof: When w = 1, an HGBTD (k, g^w) is empty and an IHGBTD $(k, g^{(u,w)})$ is just an HGBTD (k, g^u) . So assume w > 1 and let $(X, \mathcal{G}, \mathcal{B})$ be an IHGBTD $(k, g^{(u,w)})$ with $\mathcal{G} = \{G_0, G_1, \ldots, G_{u-1}\}$. Fill in the empty subarray of this IHGBTD with an HGBTD (k, g^w) , $(X', \mathcal{G}', \mathcal{B}')$, with $\mathcal{G}' = \{G_{u-w}, G_{u-w+1}, \ldots, G_{u-1}\}$ and $X' = \bigcup_{i=u-w}^{u-1} G_i$. The resulting array is a HGBTD (k, g^u) , $(X, \mathcal{G}, \mathcal{B} \cup \mathcal{B}')$.

4 Starter-Adder Construction for IHGBTD

The starter-adder technique first used by Mullin and Nemeth [5] to construct Room squares (also a combinatorial array) has been useful in constructing many types of designs with orthogonality properties, including GBTDs (see [3, 7, 10, 11, 12]). Here, we extend the technique to the construction of IHGBTDs. Since only IHGBTD $(k, g^{(u,w)})$ with g = k are considered here, we describe our construction for this case.

Let Γ be an additive abelian group of order k(u-w) with $u \ge (k+1)w$, and let $\Gamma_0 \subseteq \Gamma$ be a subgroup of order k. Fix a set, $\Delta = \{\delta_0 = 0, \delta_1, \ldots, \delta_{u-w-1}\} \subseteq \Gamma$, of representatives for the cosets of Γ_0 so that $\Gamma_i = \Gamma_0 + \delta_i$, $0 \le i \le u - w - 1$, are the cosets of Γ_0 . Let H be a set of kw points such that H and Γ are disjoint. Further, let H be partitioned into w subsets $H_0, H_1, \ldots, H_{w-1}$ of size k each.

We take $X = \Gamma \bigcup H$ to be the point set of an IHGBTD $(k, k^{(u,w)})$. An *intransitive starter* for an IHGBTD $(k, k^{(u,w)})$, with groups $\{G_0, G_1, \ldots, G_{u-1}\}$, where

$$G_i = \begin{cases} \Gamma_i, & \text{if } 0 \leqslant i \leqslant u - w - 1; \\ H_{i-u+w}, & \text{if } u - w \leqslant i \leqslant u - 1, \end{cases}$$

is defined as a quadruple $(X, \mathcal{S}, \mathcal{R}, \mathcal{C})$ satisfying the properties:

- (i) (X, \mathcal{S}) , (X, \mathcal{R}) , and (X, \mathcal{C}) are $\{k\}$ -uniform set systems of size u w, w, and w 1, respectively;
- (ii) among the blocks in S, kw of them intersects H in one point, that is, $|\{B \in S : |B \cap H| = 1\}| = kw;$
- (iii) blocks in \mathcal{R} are each disjoint from H;
- (iv) blocks in \mathcal{C} are each disjoint from H, and $\bigcup_{i=0}^{u-w-1}(\delta_i + C) = \Gamma$, for each $C \in \mathcal{C}$.
- (v) $\mathcal{S} \bigcup \mathcal{R}$ is a partition of X;
- (vi) the difference list from the base blocks of $S \bigcup \mathcal{R} \bigcup \mathcal{C}$ contains every element of $\Gamma \setminus \Gamma_0$ precisely k 1 times, and no element in Γ_0 .

Suppose $S = \{B_0, B_1, \ldots, B_{u-w-1}\}$. Then a corresponding *adder* $\Omega(S)$ for S is a permutation $\Omega(S) = (\omega_0, \omega_1, \ldots, \omega_{u-w-1})$ of the u - w elements of the representative system Δ satisfying the following property:

(vii) the multiset $\left(\bigcup_{i=0}^{u-w-1}(B_i+\omega_i)\right) \bigcup \left(\bigcup_{C\in\mathcal{C}} C\right)$ contains exactly k elements (not necessarily distinct) from Γ_j for $1 \leq j \leq u-w-1$, and is disjoint from Γ_0 . We remark that when $B \in \mathcal{S}$ and $B \cap H = \{\infty\}$, or $B = \{\infty, b_1, b_2, \dots, b_{k-1}\}$, the block $B + \gamma$ is defined to be $\{\infty, b_1 + \gamma, b_2 + \gamma, \dots, b_{k-1} + \gamma\}$ for $\gamma \in \Gamma$.

The result below shows how to construct an IHGBTD from an intransitive starter and its corresponding adder.

Proposition 4.1. Let Γ be an additive abelian group of order k(u-w) with $u \ge (k+1)w$ and Γ_0 be a subgroup of order k. Define X and the groups G_i $(0 \le i \le u-1)$ as above. If there exists an intransitive starter $(X, \mathcal{S}, \mathcal{R}, \mathcal{C})$ with groups $\{G_i : 0 \le i \le u-1\}$, a corresponding adder $\Omega(\mathcal{S})$, then there exists an IHGBTD $(k, k^{(u,w)})$.

Proof: Retain the notations in the definition of intransitive starter and adder. Suppose

$$\mathcal{A} = \{ A + \gamma : \gamma \in \Gamma, A \in \mathcal{S} \cup \mathcal{R} \cup \mathcal{C} \}$$

then $(X, \{G_0, G_1, \ldots, G_{u-1}\}, \{\emptyset, \ldots, \emptyset, H_0, \ldots, H_{w-1}\}, \mathcal{A})$ forms a $(\{k\}, k-1)$ -IGDD of type $(k, 0)^{u-w}(k, k)^w$ by Condition (vi) in the definition of intransitive starter. Therefore, it remains to arrange the blocks in a $u \times k(u-1)$ array.

First, consider the blocks S. Consider a $(u - w) \times (u - w)$ array S, whose rows and columns are indexed with the elements in Δ . Now identify the elements in Δ with elements in the quotient group Γ/Γ_0 , so that the binary operation + on Δ is defined by the additive operation on Γ/Γ_0 . In addition, for $\delta \in \Delta$, denote the additive inverse of δ by $-\delta$. That is, $\delta + (-\delta) = \delta_0$.

So, for $0 \leq i, j \leq u - w - 1$, we place the block $B_i + \delta_j$ at the cell $(\delta_j - \delta_l, \delta_j)$ if $\delta_l = \omega_i$. Note that this placement is well defined because $\Omega(\mathcal{S})$ is a permutation of Δ . Let $\Gamma_0 = \{\gamma_0 = 0, \gamma_1, \dots, \gamma_{k-1}\}$. Form a $(u - w) \times k(u - w)$ array $\widehat{\mathsf{S}}$ from the square S by concatenating k squares $\mathsf{D} + \gamma_i$ where $0 \leq i \leq k-1$ as follows.

$$\widehat{\mathsf{S}} = \begin{bmatrix} \mathsf{S} & \mathsf{S} + \gamma_1 & \cdots & \mathsf{S} + \gamma_{k-1} \end{bmatrix}$$

Next, let $\mathcal{R} = \{R_1, R_2, \dots, R_w\}$ and construct a $w \times k(u - w)$ array $\widehat{\mathsf{R}}$ in the following way:

$$\mathsf{R} = \begin{bmatrix} \mathsf{R} & \mathsf{R} + \gamma_1 & \cdots & \mathsf{R} + \gamma_{k-1} \end{bmatrix},$$

where the $w \times w$ subarray R is given by

$$\mathsf{R} = \begin{bmatrix} R_1 & R_1 + \delta_1 & \cdots & R_1 + \delta_{u-w-1} \\ R_2 & R_2 + \delta_1 & \cdots & R_2 + \delta_{u-w-1} \\ \vdots & \vdots & \ddots & \vdots \\ R_w & R_w + \delta_1 & \cdots & R_w + \delta_{u-w-1} \end{bmatrix}$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(2) (2013), #P51

Similarly, let $\mathcal{C} = \{C_0, C_1, \dots, C_{w-2}\}$, and we construct a $(u-w) \times k(w-1)$ array $\widehat{\mathsf{C}}$.

$$\widehat{\mathsf{C}} = \boxed{\begin{array}{cccc} \mathsf{C}_0 & \mathsf{C}_1 & \cdots & \mathsf{C}_{w-2} \end{array}},$$

where each $(u - w) \times k$ subarray $C_i, 0 \leq i \leq w - 2$, is given by

$$\mathsf{C}_{i} = \begin{bmatrix} C_{i} & C_{i} + \gamma_{1} & \cdots & C_{i} + \gamma_{k-1} \\ C_{i} + \delta_{1} & C_{i} + \delta_{1} + \gamma_{1} & \cdots & C_{i} + \delta_{1} + \gamma_{k-1} \\ \vdots & \vdots & \ddots & \vdots \\ C_{i} + \delta_{u-w-1} & C_{i} + \delta_{u-w-1} + \gamma_{1} & \cdots & C_{i} + \delta_{u-w-1} + \gamma_{k-1} \end{bmatrix}$$

Finally, let

$$\mathsf{A} = \boxed{\begin{array}{c|c} \widehat{\mathsf{S}} & \widehat{\mathsf{C}} \\ \hline \widehat{\mathsf{R}} & \end{array}}$$

and it is readily verified that the placement results in an IHGBTD $(k, k^{(u,w)})$.

5 Proof of Theorem 1.2

We first remove all the eight remaining values in Theorem 1.

Lemma 5. For $(u, w) \in \{(28, 5), (32, 5), (33, 6)\}$, an IHGBTD $(4, 4^{(u,w)})$ exists.

Proof: We apply Proposition 4.1 to construct the desired IHGBTDs. Take

$$\Gamma = \mathbb{Z}_{u-w} \times \mathbb{Z}_4,
\Gamma_0 = \{0\} \times \mathbb{Z}_4,
\Delta = \{(0,0), (1,0), \dots, (u-w-1,0)\}, \text{ and}
H = \bigcup_{i=0}^{w-1} H_i, \text{ where } H_i = \{\infty_i, \infty_{i+w}, \infty_{i+2w}, \infty_{i+3w}\} \text{ for } 0 \leq i \leq w-1.$$

For each pair $(u, w) \in \{(28, 5), (32, 5), (33, 6)\}$, the desired intransitive starter and corresponding adder are displayed below. Here we write the element (a, b) of Γ as a_b for succinctness.

When (u, w) = (28, 5):

S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$
$\{4_1, 3_0, 7_0, 0_0\}$	17_{0}	$\{5_0, 19_0, 12_1, 1_2\}$	12_{0}	$\{18_0, 13_3, 16_3, 8_1\}$	19_{0}
$\{\infty_0, 3_1, 12_2, 11_3\}$	1_0	$\{\infty_1, 14_3, 6_0, 10_3\}$	21_{0}	$\{\infty_2, 14_1, 9_1, 20_1\}$	20_{0}
$\{\infty_3, 19_1, 10_1, 22_2\}$	7_0	$\{\infty_4, 3_3, 1_3, 2_2\}$	18_{0}	$\{\infty_5, 0_2, 15_1, 1_0\}$	15_{0}
$\{\infty_6, 1_1, 6_3, 9_3\}$	2_0	$\{\infty_7, 14_0, 11_1, 0_1\}$	10_{0}	$\{\infty_8, 0_3, 17_2, 21_2\}$	22_{0}
$\{\infty_9, 4_3, 8_0, 21_0\}$	6_0	$\{\infty_{10}, 13_1, 19_3, 16_2\}$	9_0	$\{\infty_{11}, 4_2, 21_3, 17_1\}$	5_0
$\{\infty_{12}, 17_0, 5_2, 21_1\}$	16_{0}	$\{\infty_{13}, 5_1, 20_2, 11_2\}$	4_0	$\{\infty_{14}, 22_0, 2_3, 16_0\}$	14_{0}
$\{\infty_{15}, 18_3, 20_3, 2_0\}$	00	$\{\infty_{16}, 12_3, 2_1, 22_3\}$	3_0	$\{\infty_{17}, 5_3, 7_1, 17_3\}$	8_0
$\{\infty_{18}, 6_2, 9_0, 19_2\}$	13_{0}	$\{\infty_{19}, 7_2, 8_3, 22_1\}$	11_{0}		

When (u, w) = (32, 5):

S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$
$\{4_2, 17_2, 16_1, 22_2\}$	16_{0}	$\{3_1, 4_1, 1_0, 9_1\}$	11_{0}	$\{4_3, 26_3, 22_0, 10_3\}$	00
$\{14_1, 6_0, 26_0, 3_0\}$	12_{0}	$\{\infty_0, 3_3, 24_2, 25_1\}$	7_0	$\{\infty_1, 2_2, 12_0, 1_3\}$	6_0
$\{\infty_2, 0_1, 26_1, 20_2\}$	4_0	$\{\infty_3, 25_0, 15_0, 23_0\}$	15_{0}	$\{\infty_4, 13_0, 21_2, 16_0\}$	3_0
$\{\infty_5, 5_0, 19_3, 12_1\}$	24_{0}	$\{\infty_6, 6_3, 14_3, 13_2\}$	1_0	$\{\infty_7, 1_2, 2_0, 0_0\}$	21_{0}
$\{\infty_8, 0_2, 10_0, 19_0\}$	14_{0}	$\{\infty_9, 15_2, 18_2, 0_3\}$	2_0	$\{\infty_{10}, 6_1, 5_2, 2_3\}$	17_{0}
$\{\infty_{11}, 12_3, 25_2, 11_3\}$	22_{0}	$\{\infty_{12}, 10_1, 21_3, 17_3\}$	18_{0}	$\{\infty_{13}, 17_0, 9_0, 20_3\}$	20_{0}
$\{\infty_{14}, 20_0, 3_2, 16_3\}$	5_0	$\{\infty_{15}, 12_2, 21_1, 8_2\}$	9_0	$\{\infty_{16}, 18_1, 11_0, 15_3\}$	10_{0}
$\{\infty_{17}, 1_1, 15_1, 17_1\}$	80	$\{\infty_{18}, 9_2, 16_2, 23_2\}$	13_{0}	$\{\infty_{19}, 14_2, 18_3, 21_0\}$	25_{0}
$\mathcal{C} = \{ 1_3, 2_{\{6_2, 8\}} \}$	$26_0, 16_1$ $8_0, 11_3, 10_1$	$\{17_2\}, \{5_3, 14_1, 24_2, 13_1\}.$	$12_0\},$	$\{19_2, 25_0, 17_1, 13_3\},\$	
$\mathcal{R} = \{5_1, 1\}$	$11_1, 24_3$	$,20_1\}, \{24_1,18_0,7_0,$	$5_2\},$	$\{22_1, 25_3, 8_0, 13_3\},\$	
$\{19_2,$	$7_2, 2_1, 2_1$	$\{23_3\}, \{7_1, 9_3, 26_2, 4_0\}$) } .		

When (u, w) = (33, 6):

S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$
$\{22_0, 0_1, 23_0, 21_3\}$	13_{0}	$\{25_3, 4_3, 15_1, 20_1\}$	4_{0}	$\{7_3, 2_2, 23_3, 1_0\}$	7_0
$\{\infty_0, 21_1, 3_0, 22_2\}$	18_{0}	$\{\infty_1, 0_0, 14_3, 10_1\}$	6_0	$\{\infty_2, 12_3, 8_0, 16_1\}$	8_0
$\{\infty_3, 6_1, 23_2, 9_1\}$	23_{0}	$\{\infty_4, 4_0, 8_2, 14_2\}$	2_0	$\{\infty_5, 14_1, 2_3, 6_0\}$	17_{0}
$\{\infty_6, 21_2, 24_2, 11_2\}$	9_0	$\{\infty_7, 5_0, 2_1, 25_1\}$	20_{0}	$\{\infty_8, 11_1, 22_1, 12_1\}$	22_{0}
$\{\infty_9, 0_2, 7_2, 19_2\}$	15_{0}	$\{\infty_{10}, 13_0, 16_0, 14_0\}$	24_{0}	$\{\infty_{11}, 11_0, 15_0, 18_1\}$	3_0
$\{\infty_{12}, 7_0, 9_0, 26_1\}$	19_{0}	$\{\infty_{13}, 25_0, 7_1, 10_0\}$	21_{0}	$\{\infty_{14}, 18_0, 25_2, 26_3\}$	26_{0}
$\{\infty_{15}, 4_2, 15_2, 13_3\}$	16_{0}	$\{\infty_{16}, 17_1, 20_0, 11_3\}$	5_0	$\{\infty_{17}, 20_2, 9_3, 12_0\}$	14_{0}
$\{\infty_{18}, 26_2, 5_2, 17_2\}$	12_{0}	$\{\infty_{19}, 24_0, 13_1, 10_3\}$	1_0	$\{\infty_{20}, 1_3, 10_2, 12_2\}$	11_{0}
$\{\infty_{21}, 3_2, 15_3, 24_1\}$	25_{0}	$\{\infty_{22}, 5_1, 18_3, 21_0\}$	10_{0}	$\{\infty_{23}, 17_0, 24_3, 26_0\}$	00
$\mathcal{C} = \begin{cases} 3_3 \\ \{21\} \\ \mathcal{R} = \end{cases} \begin{cases} 6_3 \end{cases}$	$10_1, 5_2$ $2, 11_1, 2$ $2_0, 18_2$	$\{15_0\}, \{8_3, 14_1, 9_2, 13_0, 9_3\}, \{15_1, 5_2, 12_3, 19_0\}, \{8_3, 9_2, 3_1, 19_0\}, \{8_3, 9_2, 9_1, 19_0\}, \{8_3, 9_2, 9_1, 19_0\}, \{8_3, 9_1, 19_0\}, \{8_3, 9_1, 19_0\}, \{8_3, 9_1, 19_0\}, \{8_3, 9_1, 19_0\}, \{8_3, 9_1, 19_0\}, \{8_3, 9_1, 19_0\}, \{8_3, 9_1, 19_0\}, \{8_3, 19_0, 19_0\}, \{8_3, 19_0, 19_0, 19_0\}, \{8_3, 19_0, 19_0, 19_0\}, \{8_3, 19_0, 19_0, 19_0, 19_0, 19_0, 19_0, 19_0\}, \{8_3, 19_0, 1$	$\{18_0\}, \\ 3_0\}.$	$\{12_0, 10_3, 26_2, 5_1\},\$ $\{17_3, 3_3, 4_1, 22_3\}.$	
$\{19\}$	$3, 13_2, 6$	$\{16_3, 23_1, 1_1, 23_2, 5_3\}, \{16_3, 23_1, 1_1\}$	19_1 },	$\{20_3, 16_2, 8_1, 0_3\}.$	

Lemma 6. For $(u, w) \in \{(34, 6), (44, 8)\}$, an $IHGBTD(4, 4^{(u,w)})$ exists.

Proof: As with Lemma 5, we apply Proposition 4.1 to construct the desired IHGBTDs. Take

$$\Gamma = \mathbb{Z}_{2(u-w)} \times \mathbb{Z}_{2},
\Gamma_{0} = \{0, u - w\} \times \mathbb{Z}_{2},
\Delta = \{(0, 0), (1, 0), \cdots, (u - w - 1, 0)\}, \text{ and}
H = \bigcup_{i=0}^{w-1} H_{i}, \text{ where } H_{i} = \{\infty_{i}, \infty_{i+w}, \infty_{i+2w}, \infty_{i+3w}\} \text{ for } 0 \leq i \leq w - 1.$$

The electronic journal of combinatorics $\mathbf{20(2)}$ (2013), #P51

The desired intransitive starter and corresponding adder for $(u, w) \in \{(34, 6), (44, 8)\}$ are displayed below. Here we write the element (a, b) of Γ as a_b for succinctness. When (u, w) = (34, 6):

S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$
$\{41_1, 16_0, 6_0, 15_0\}$	20_{0}	$\{36_0, 9_0, 33_1, 13_1\}$	16_{0}	$\{37_0, 18_0, 26_1, 4_1\}$	00
$\{16_1, 2_1, 4_0, 3_1\}$	3_0	$\{\infty_0, 20_1, 24_0, 42_0\}$	23_{0}	$\{\infty_1, 22_1, 30_0, 39_1\}$	11_{0}
$\{\infty_2, 14_0, 31_1, 1_1\}$	10_{0}	$\{\infty_3, 48_0, 45_0, 8_0\}$	25_{0}	$\{\infty_4, 25_1, 48_1, 14_1\}$	4_0
$\{\infty_5, 8_1, 30_1, 20_0\}$	12_{0}	$\{\infty_6, 6_1, 21_0, 44_1\}$	2_0	$\{\infty_7, 40_1, 33_0, 52_1\}$	1_0
$\{\infty_8, 45_1, 21_1, 28_1\}$	18_{0}	$\{\infty_9, 27_0, 28_0, 34_1\}$	17_{0}	$\{\infty_{10}, 42_1, 35_1, 37_1\}$	22_{0}
$\{\infty_{11}, 3_0, 22_0, 12_0\}$	19_{0}	$\{\infty_{12}, 44_0, 35_0, 39_0\}$	14_{0}	$\{\infty_{13}, 36_1, 7_0, 9_1\}$	7_0
$\{\infty_{14}, 15_1, 53_1, 51_1\}$	6_0	$\{\infty_{15}, 53_0, 11_0, 51_0\}$	15_{0}	$\{\infty_{16}, 50_0, 55_1, 10_1\}$	9_0
$\{\infty_{17}, 52_0, 32_1, 17_1\}$	13_{0}	$\{\infty_{18}, 55_0, 29_1, 25_0\}$	5_0	$\{\infty_{19}, 0_1, 7_1, 41_0\}$	27_{0}
$\{\infty_{20}, 12_1, 31_0, 47_0\}$	8_0	$\{\infty_{21}, 17_0, 27_1, 47_1\}$	21_{0}	$\{\infty_{22}, 19_0, 23_0, 29_0\}$	24_{0}
$\{\infty_{23}, 34_0, 40_0, 50_1\}$	26_{0}				
$\mathcal{C} = \{27_1, 1, 2, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	$10_0, 44_1$ $12_0, 37_0$	$\{51_0\}, \{35_1, 15_0, 50_0, 21_1\}, \{39_0, 2_1, 45_1, 50_0\}, \{39_0, 2_1, 50_0\}, \{39_0, 2_0\}, \{39_0, 20_0\}, \{39_0, 20_0\}, \{39_0, 20_0\}$	$14_1\}, 50_0\}.$	$\{16_1, 51_1, 54_0, 27_0\},\$	
$\mathcal{R} = \{13_0, 2$	$26_0, 38_0$	$,24_1\}, \{54_1,23_1,46_1\}$	$49_1\},$	$\{1_0, 49_0, 18_1, 43_0\},\$	
$\{10_0, 2$	$2_0, 11_1, $	$\{46_0, 19_1, 43_$	$5_0\},$	$\{38_1, 32_0, 5_1, 0_0\}.$	

When (u, w) = (44, 8):

S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$
$\{32_0, 69_1, 36_1, 53_1\}$	20_{0}	$\{42_1, 65_1, 0_0, 43_1\}$	1_0	$\{39_1, 27_1, 45_1, 51_1\}$	3_0
$\{22_1, 39_0, 55_1, 33_1\}$	11_{0}	$\{\infty_0, 67_0, 40_1, 54_0\}$	22_{0}	$\{\infty_1, 23_0, 10_1, 34_1\}$	25_{0}
$\{\infty_2, 18_0, 67_1, 36_0\}$	28_{0}	$\{\infty_3, 25_1, 10_0, 28_1\}$	16_{0}	$\{\infty_4, 63_1, 6_0, 37_0\}$	29_{0}
$\{\infty_5, 16_0, 44_0, 2_0\}$	35_0	$\{\infty_6, 28_0, 50_1, 35_1\}$	10_{0}	$\{\infty_7, 43_0, 46_1, 32_1\}$	9_0
$\{\infty_8, 69_0, 52_1, 2_1\}$	13_{0}	$\{\infty_9, 37_1, 66_0, 71_1\}$	26_{0}	$\{\infty_{10}, 70_1, 21_1, 24_1\}$	8_0
$\{\infty_{11}, 71_0, 15_1, 47_0\}$	32_{0}	$\{\infty_{12}, 59_0, 19_1, 6_1\}$	23_{0}	$\{\infty_{13}, 9_0, 47_1, 20_0\}$	7_0
$\{\infty_{14}, 52_0, 46_0, 60_1\}$	24_{0}	$\{\infty_{15}, 17_0, 60_0, 22_0\}$	00	$\{\infty_{16}, 64_0, 54_1, 12_0\}$	17_{0}
$\{\infty_{17}, 49_0, 9_1, 53_0\}$	4_0	$\{\infty_{18}, 68_0, 0_1, 56_1\}$	15_{0}	$\{\infty_{19}, 27_0, 12_1, 4_1\}$	27_{0}
$\{\infty_{20}, 65_0, 68_1, 23_1\}$	2_0	$\{\infty_{21}, 20_1, 18_1, 8_0\}$	31_{0}	$\{\infty_{22}, 59_1, 17_1, 44_1\}$	14_{0}
$\{\infty_{23}, 1_0, 70_0, 26_1\}$	12_{0}	$\{\infty_{24}, 57_1, 11_1, 13_0\}$	21_{0}	$\{\infty_{25}, 16_1, 5_0, 7_0\}$	18_{0}
$\{\infty_{26}, 58_1, 4_0, 57_0\}$	5_0	$\{\infty_{27}, 41_1, 13_1, 31_1\}$	19_{0}	$\{\infty_{28}, 64_1, 56_0, 30_1\}$	30_{0}
$\{\infty_{29}, 19_0, 48_0, 21_0\}$	6_0	$\{\infty_{30}, 48_1, 58_0, 50_0\}$	33_{0}	$\{\infty_{31}, 40_0, 49_1, 5_1\}$	34_0
$\mathcal{C} = \begin{cases} 2_1, 3_1 \\ \{57_0, 1 \\ \{33_1, 2 \\ \{66_1, 3 \\ \{62_1, 6 \\ \{14_1, 1 \end{cases} \end{cases}$	$(22_0, 6)$ $(21_1, 4_0, 2)$ $(21_0, 28_1, 25_0, 3)$ $(31_0, 42_0, 31_0)$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} 62_0\},\\ 8_0\},\\ 24_0\},\\ 26_0\},\\ l_0\}. \end{array} $	$ \{ 41_1, 4_0, 20_1, 59_0 \}, \\ \{ 7_1, 13_0, 14_1, 28_0 \}, \\ \{ 55_0, 15_0, 62_0, 45_0 \}, \\ \{ 61_1, 1_1, 14_0, 38_1 \}, $	

Lemma 7. For each $(u, w) \in \{(37, 6), (38, 7), (39, 6)\}$, an $IHGBTD(4, 4^{(u,w)})$ exists.

Proof: As with Lemma 5, we apply Proposition 4.1. Take

$$\Gamma = \mathbb{Z}_{u-w} \times \mathbb{Z}_2 \times \mathbb{Z}_2,
\Gamma_0 = \{0\} \times \mathbb{Z}_2 \times \mathbb{Z}_2
\Delta = \{((0,0,0), (1,0,0), \cdots, (u-w-1,0,0))\}, \text{ and}
H = \bigcup_{i=0}^{w-1} H_i, \text{ where } H_i = \{\infty_i, \infty_{i+w}, \infty_{i+2w}, \infty_{i+3w}\} \text{ for } 0 \leq i \leq w-1.$$

The desired intransitive starter and corresponding adder for $(u, w) \in \{(37, 6), (38, 7), (39, 6)\}$ are displayed below. Here we write the element (a, b, c) of Γ as a_{bc} for succinctness.

S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$
$\{6_{00}, 25_{00}, 3_{00}, 7_{11}\}$	30_{00}	$\{20_{10}, 13_{00}, 23_{11}, 27_{01}\}$	28_{00}	$\{12_{00}, 13_{01}, 19_{11}, 17_{00}\}$	2_{00}
$\{20_{11}, 19_{00}, 9_{00}, 1_{11}\}$	17_{00}	$\{29_{11}, 26_{11}, 2_{11}, 0_{01}\}\$	3_{00}	$\{21_{10}, 11_{10}, 1_{10}, 27_{10}\}$	21_{00}
$\{9_{01}, 27_{11}, 4_{10}, 16_{11}\}$	11_{00}	$\{\infty_0, 26_{01}, 28_{01}, 5_{00}\}$	4_{00}	$\{\infty_1, 14_{10}, 3_{11}, 25_{11}\}$	29_{00}
$\{\infty_2, 21_{00}, 11_{11}, 23_{01}\}\$	24_{00}	$\{\infty_3, 21_{11}, 5_{10}, 18_{00}\}$	7_{00}	$\{\infty_4, 28_{11}, 10_{11}, 20_{01}\}\$	000
$\{\infty_5, 28_{10}, 25_{01}, 15_{11}\}\$	25_{00}	$\{\infty_6, 0_{10}, 2_{01}, 7_{10}\}$	14_{00}	$\{\infty_7, 29_{01}, 10_{10}, 22_{00}\}\$	12_{00}
$\{\infty_8, 3_{01}, 12_{11}, 19_{10}\}$	8_{00}	$\{\infty_9, 30_{01}, 27_{00}, 8_{11}\}\$	27_{00}	$\{\infty_{10}, 19_{01}, 21_{01}, 2_{00}\}$	23_{00}
$\{\infty_{11}, 4_{11}, 22_{11}, 7_{00}\}$	20_{00}	$\{\infty_{12}, 26_{00}, 6_{01}, 4_{00}\}\$	19_{00}	$\{\infty_{13}, 28_{00}, 22_{01}, 14_{01}\}\$	22_{00}
$\{\infty_{14}, 2_{10}, 16_{01}, 22_{10}\}\$	13_{00}	$\{\infty_{15}, 4_{01}, 29_{00}, 7_{01}\}$	18_{00}	$\{\infty_{16}, 24_{00}, 8_{01}, 5_{11}\}$	16_{00}
$\{\infty_{17}, 18_{11}, 1_{01}, 15_{10}\}\$	1_{00}	$\{\infty_{18}, 17_{01}, 23_{10}, 8_{00}\}\$	26_{00}	$\{\infty_{19}, 24_{10}, 16_{00}, 8_{10}\}$	10_{00}
$\{\infty_{20}, 3_{10}, 18_{01}, 24_{01}\}$	5_{00}	$\{\infty_{21}, 30_{11}, 24_{11}, 18_{10}\}\$	9_{00}	$\{\infty_{22}, 0_{11}, 14_{11}, 23_{00}\}\$	15_{00}
$\{\infty_{23}, 6_{10}, 15_{01}, 29_{10}\}$	6_{00}	-			
$\mathcal{C} = \begin{cases} 30_{10}, 13_0 \\ 30_{10}, 28_0 \end{cases}$	$_{00}^{0}, 7_{11}^{0}, 8_{01}^{0}, 18_{00}^{0}, 18_{0$	$\{7_{01}, \{7_{01}, 2_{10}, 28_{11}, 1', 17_{11}\}, \{30_{01}, 26_{00}, 8_{11}, 6_{10}, 26_{10}, 8_{11}, 6_{10}, 8_{10},$	$7_{00}\},$ $3_{10}\}.$	$\{6_{11}, 9_{01}, 10_{00}, 13_{10}\},\$	
$\mathcal{R} = \{14_{00}, 30_0\}$	$0, 13_{10}$	$0_{00}\}, \{9_{10}, 16_{10}, 15_{00}, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10$	11_{00} },	$\{10_{00}, 25_{10}, 17_{10}, 30_{10}\},\$	

When (u, w) = (37, 6):

When	(n)	<i>w</i>)	_	(38)	7).
wnen	(u,	w)	=	(30,	():

 $\{20_{00}, 5_{01}, 9_{11}, 1_{00}\},\$

S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$
$\{28_{00}, 29_{00}, 22_{11}, 27_{00}\}$	800	$\{20_{11}, 23_{11}, 11_{11}, 5_{11}\}\$	6_{00}	$\{18_{00}, 27_{10}, 8_{01}, 30_{00}\}\$	21_{00}
$\{\infty_0, 30_{01}, 13_{00}, 5_{01}\}$	3_{00}	$\{\infty_1, 28_{01}, 3_{01}, 23_{01}\}$	20_{00}	$\{\infty_2, 27_{11}, 8_{10}, 24_{11}\}$	25_{00}
$\{\infty_3, 0_{11}, 4_{11}, 6_{00}\}$	11_{00}	$\{\infty_4, 4_{00}, 9_{00}, 8_{00}\}$	26_{00}	$\{\infty_5, 16_{11}, 29_{10}, 10_{01}\}$	12_{00}
$\{\infty_6, 26_{00}, 29_{01}, 21_{01}\}$	0_{00}	$\{\infty_7, 27_{01}, 16_{00}, 18_{10}\}$	19_{00}	$\{\infty_8, 7_{01}, 23_{00}, 13_{11}\}$	1_{00}
$\{\infty_9, 30_{11}, 6_{10}, 16_{10}\}$	28_{00}	$\{\infty_{10}, 13_{01}, 24_{10}, 22_{00}\}$	14_{00}	$\{\infty_{11}, 2_{00}, 20_{00}, 12_{11}\}$	13_{00}
$\{\infty_{12}, 11_{00}, 23_{10}, 12_{10}\}$	16_{00}	$\{\infty_{13}, 1_{10}, 15_{00}, 14_{11}\}$	18_{00}	$\{\infty_{14}, 18_{11}, 10_{10}, 12_{01}\}\$	22_{00}
$\{\infty_{15}, 3_{00}, 25_{00}, 17_{00}\}$	27_{00}	$\{\infty_{16}, 12_{00}, 26_{11}, 22_{10}\}\$	29_{00}	$\{\infty_{17}, 1_{01}, 17_{01}, 10_{00}\}$	9_{00}
$\{\infty_{18}, 0_{00}, 19_{11}, 20_{10}\}$	23_{00}	$\{\infty_{19}, 24_{00}, 2_{11}, 4_{10}\}$	10_{00}	$\{\infty_{20}, 5_{00}, 2_{10}, 1_{11}\}$	17_{00}
$\{\infty_{21}, 25_{10}, 7_{10}, 0_{01}\}$	15_{00}	$\{\infty_{22}, 17_{10}, 20_{01}, 19_{10}\}\$	30_{00}	$\{\infty_{23}, 14_{00}, 21_{11}, 7_{00}\}\$	7_{00}
$\{\infty_{24}, 0_{10}, 4_{01}, 11_{01}\}$	5_{00}	$\{\infty_{25}, 9_{11}, 19_{01}, 21_{10}\}$	4_{00}	$\{\infty_{26}, 9_{01}, 24_{01}, 25_{11}\}$	2_{00}
$\{\infty_{27}, 14_{01}, 25_{01}, 30_{10}\}\$	24_{00}				
$\mathcal{C} = \begin{cases} 14_{00}, 29_1 \\ \{13_{00}, 24_1 \\ \mathcal{R} = \end{cases} \begin{cases} 8_{11}, 5_{10}, \\ \{26_{10}, 14_1 \\ \{3_{10}, 28_{11} \end{cases}$	$egin{array}{l} 1,25_{01},\ 0,1_{01},2\\ 19_{00},15\\ 0,21_{00},\ 11_{10},6 \end{array}$	$\begin{array}{rl} 30_{10} \}, & \{ 20_{10}, 9_{11}, 7_{01}, 5\\ 22_{11} \}, & \{ 7_{10}, 6_{01}, 20_{11}, 1\\ 5_{10} \}, & \{ 26_{01}, 7_{11}, 13_{10}, \\ 28_{10} \}, & \{ 22_{01}, 18_{01}, 10_{11} \\ 5_{11} \}. \end{array}$	$egin{aligned} & & 000 \ \ 000 \ \ \ \ \ \ \ \ \ \ \ \$	$ \{ 4_{01}, 25_{00}, 28_{11}, 12_{10} \}, \\ \{ 24_{01}, 6_{10}, 1_{00}, 16_{11} \}, \\ \{ 9_{10}, 15_{11}, 6_{01}, 1_{00} \}, \\ \{ 3_{11}, 2_{01}, 16_{01}, 29_{11} \}, $	

 $\{26_{10}, 12_{10}, 13_{11}, 17_{11}\}, \{12_{01}, 11_{01}, 10_{01}, 6_{11}\}.$

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(2) (2013), #P51

When (u, w) = (39, 6):

S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$	S	$\Omega(\mathcal{S})$
$\{28_{10}, 29_{10}, 26_{10}, 2_{00}\}$	23_{00}	$\{24_{01}, 10_{11}, 9_{01}, 17_{00}\}\$	13_{00}	$\{3_{00}, 29_{00}, 6_{00}, 21_{01}\}$	000
$\{11_{01}, 30_{01}, 10_{00}, 7_{11}\}$	10_{00}	$\{9_{11}, 26_{00}, 21_{00}, 20_{01}\}$	11_{00}	$\{30_{00}, 32_{00}, 0_{01}, 8_{00}\}$	8_{00}
$\{22_{01}, 8_{10}, 18_{00}, 27_{01}\}$	9_{00}	$\{21_{10}, 30_{11}, 24_{00}, 4_{11}\}$	5_{00}	$\{32_{01}, 27_{10}, 18_{01}, 25_{00}\}\$	25_{00}
$\{\infty_0, 28_{01}, 16_{00}, 12_{11}\}$	32_{00}	$\{\infty_1, 1_{01}, 18_{10}, 16_{01}\}$	20_{00}	$\{\infty_2, 9_{10}, 6_{11}, 4_{01}\}$	3_{00}
$\{\infty_3, 15_{00}, 32_{10}, 6_{10}\}$	19_{00}	$\{\infty_4, 32_{11}, 30_{10}, 1_{10}\}$	27_{00}	$\{\infty_5, 29_{01}, 8_{11}, 31_{00}\}$	16_{00}
$\{\infty_6, 26_{01}, 14_{11}, 23_{00}\}$	18_{00}	$\{\infty_7, 28_{00}, 13_{01}, 24_{10}\}$	15_{00}	$\{\infty_8, 24_{11}, 31_{01}, 13_{10}\}$	31_{00}
$\{\infty_9, 27_{00}, 18_{11}, 12_{10}\}$	28_{00}	$\{\infty_{10}, 25_{11}, 13_{11}, 19_{11}\}$	22_{00}	$\{\infty_{11}, 5_{10}, 4_{00}, 0_{00}\}$	30_{00}
$\{\infty_{12}, 7_{00}, 13_{00}, 19_{01}\}$	6_{00}	$\{\infty_{13}, 2_{10}, 16_{11}, 25_{01}\}$	26_{00}	$\{\infty_{14}, 17_{01}, 7_{01}, 11_{10}\}$	7_{00}
$\{\infty_{15}, 15_{01}, 19_{10}, 2_{11}\}$	17_{00}	$\{\infty_{16}, 22_{00}, 12_{00}, 1_{00}\}$	4_{00}	$\{\infty_{17}, 0_{10}, 14_{01}, 5_{00}\}$	1_{00}
$\{\infty_{18}, 15_{11}, 2_{01}, 14_{00}\}$	12_{00}	$\{\infty_{19}, 4_{10}, 3_{01}, 23_{11}\}$	2_{00}	$\{\infty_{20}, 3_{10}, 16_{10}, 17_{10}\}$	14_{00}
$\{\infty_{21}, 3_{11}, 19_{00}, 25_{10}\}$	29_{00}	$\{\infty_{22}, 5_{11}, 11_{00}, 22_{11}\}$	24_{00}	$\{\infty_{23}, 10_{10}, 22_{10}, 23_{01}\}\$	21_{00}
$ \mathcal{C} = \{ 10_{11}, 15_{10}, 23_{00}, 13_{01} \}, \{ 22_{11}, 4_{01}, 20_{00}, 27_{10} \}, \{ 12_{10}, 16_{11}, 8_{00}, 4_{01} \}, \\ \{ 23_{11}, 12_{01}, 1_{00}, 9_{10} \}, \{ 20_{00}, 30_{01}, 23_{10}, 28_{11} \}, \\ \mathcal{R} = \{ 20_{11}, 6_{01}, 28_{11}, 5_{01} \}, \{ 29_{11}, 12_{01}, 11_{11}, 31_{11} \}, \{ 31_{10}, 10_{01}, 15_{10}, 7_{10} \} $					
$ \{9_{00}, 27_{11}, 14_{10}, 20_{00}\}, \{23_{10}, 0_{11}, 20_{10}, 8_{01}\}, \{26_{11}, 1_{11}, 21_{11}, 17_{11}\}. $					

Proof of Theorem 2: We first construct a GBTD(4, m) for any $m \in N$, where $N = \{28, 32, 33, 34, 37, 38, 39, 44\}$.

For each $w \in \{5, 6, 7, 8\}$, an HGBTD $(4, 4^w)$ is given by Yin *et al.* [12]. For each $m \in N$, apply Theorem 3.2, with IHGBTDs from Lemma 5, Lemma 6 and Lemma 7 and corresponding HGBTD $(4, 4^w)$'s where $w \in \{5, 6, 7, 8\}$ as ingredients, to produce the desired HGBTD $(4, 4^m)$. Hence, the desired GBTD(4, m) follows from Proposition 3.1.

Combining Proposition 1.1, Proposition 2.1 and Proposition 2.2, we complete the proof. $\hfill \Box$

Acknowledgement We are grateful to the anonymous reviewers for their helpful comments.

References

- Y.M. Chee, H.M. Kiah, A.C.H. Ling, and C. Wang, Optimal equitable symbol weight codes for power line communications, *Proceedings of the 2012 IEEE International Symposium on Information Theory*, (2012), 671-675.
- [2] C.J. Colbourn, J.H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 2007.
- [3] E.R. Lamken, Generalized balanced tournament designs, Trans. Amer. Math. Soc. 318 (1990), 473-490.
- [4] E.R. Lamken, Existence results for generalized balanced tournament designs with block size 3, Des. Codes Cryptogr. 3 (1993), 33-61.
- [5] R. C. Mullin and E. Nemeth, On furnishing Room squares, J. Combin. Theory 7 (1969) 266-272.

- [6] S. Niskanen and P. R. J. Östergård, *Cliquer Users Guide, Version 1.0*, Cliquer users guide, version 1.0, Tech. Report T48, Communications Laboratory, Helsinki University of Technology, 2003.
- [7] A. Rosa and S.A. Vanstone, Starter-adder techniques for Kirkman squares and Kirkman cubes of small sides, *Ars Combinatoria* 14 (1982), 199-212.
- [8] P.J.Schellenberg, G.H.J. Van Rees and S.A. Vanstone, The existence of balanced tournament designs, Ars Combinatoria 3 (1977), 303-318.
- [9] N.V. Semakov, V.A. Zinov'ev, Equidistant q-ary codes with maximal distance and resolvable balanced incomplete block designs, *Problemy Peredači Informacii*, 4 (1968), 3-10.
- [10] J. Yan and J. Yin, Constructions of optimal $\text{GDRP}(n, \lambda; v)$ of type $\lambda^1 \mu^{m-1}$, Discrete Appl. Math. **156** (2008), 2666-2678.
- [11] J. Yan and J. Yin, A class of optimal constant composition codes from GDRPs, Des. Codes Cryptogr. 50 (2009), 61-76.
- [12] J. Yin, J. Yan and C. Wang, Generalized balanced tournament designs and related codes, *Des. Codes Cryptogr.* 46 (2008), 211-230.