Generalized Balanced Tournament Designs with Block Size Four*

Yeow Meng Chee Han Mao Kiah
School of Physical and Mathematical Sciences
Nanyang Technological University
Singapore 637371
\{YMChee, KIAHOO01\}@ntu.edu.sg
Chengmin Wang ${ }^{\dagger}$
School of Science
Jiangnan University
Wuxi, China 214122
wcm@jiangnan.edu.cn

Submitted: Sep 16, 2012; Accepted: Jun 1, 2013; Published: Jun 7, 2013
Mathematics Subject Classifications: 05B05, 94B25

Abstract

In this paper, we remove the outstanding values m for which the existence of a $\operatorname{GBTD}(4, m)$ has not been decided previously. This leads to a complete solution to the existence problem regarding $\operatorname{GBTD}(4, m)$ s.

Keywords: generalized balanced tournament design; holey generalized balanced tournament design; starter-adder

1 Introduction

A set system is a pair $\mathfrak{S}=(X, \mathcal{B})$, where X is a finite set of points and \mathcal{B} is a collection of subsets of X. Elements of \mathcal{B} are called blocks. The order of \mathfrak{S} is $|X|$, the number of points. Let K be a set of positive integers. A set system (X, \mathcal{B}) is said to be K-uniform if $|B| \in K$ for all $B \in \mathcal{B}$. Let (X, \mathcal{B}) be a set system and $S \subseteq X$. A partial α-parallel class over $X \backslash S$ of (X, \mathcal{B}) is a set of blocks $\mathcal{A} \subseteq \mathcal{B}$ such that each point of $X \backslash S$ occurs in exactly α blocks of \mathcal{A}, and each point of S occurs in no block of \mathcal{A}. A partial α-parallel class over X is simply called an α-parallel class. We adopt the convention that if α is not specified, then it is taken to be one, so that a parallel class refers to a 1-parallel class. A set system (X, \mathcal{B}) is said to be resolvable if \mathcal{B} can be partitioned into parallel classes.

[^0]A balanced incomplete block design of order v, block size k, and index λ, denoted by (v, k, λ) - BIBD , is a $\{k\}$-uniform set system (X, \mathcal{B}) of order v such that every 2 -subset of X is contained in precisely λ blocks of \mathcal{B}. A resolvable $(k m, k, k-1)$ - $\operatorname{BIBD}(X, \mathcal{B})$ is called a generalized balanced tournament design (GBTD), or simply a $\operatorname{GBTD}(k, m)$, if the $m(k m-1)$ blocks of \mathcal{B} are arranged in an $m \times(k m-1)$ array such that
(i) the set of blocks in each column is a parallel class, and
(ii) each point of X is contained in at most k cells of each row.

GBTDs were introduced by Lamken [3] and are useful in the construction of many combinatorial designs, including resolvable, near-resolvable, doubly resolvable, and doubly nearresolvable balanced incomplete block designs (see [2, 3]). More recently, GBTDs have also found applications in near constant-composition codes [12], and codes for power line communications [1].

Schellenberg et al. [8] showed that a $\operatorname{GBTD}(2, m)$ exists for all positive integers $m \neq 2$. Lamken [4] showed that a $\operatorname{GBTD}(3, m)$ exists for all positive integers $m \neq 2$. For $k=4$, Yin et al. [12] obtained the following.

Theorem 1 (Yin et al. [12]). A $\operatorname{GBTD}(4, m)$ exists for all positive integers $m \geqslant 5$, except possibly when $m \in\{28,32,33,34,37,38,39,44\}$.

The purpose of this paper is to remove all the remaining eight possible exceptions in Theorem 1 and to show that a $\operatorname{GBTD}(4, m)$ exists for $m=4$ but not for $m \in\{2,3\}$.

Theorem 2. For each $m \in\{4,28,32,33,34,37,38,39,44\}$, a $\operatorname{GBTD}(4, m)$ exists. For $m=2$ and 3, a $\operatorname{GBTD}(4, m)$ does not exist.

A $\operatorname{GBTD}(4,1)$ exists trivially. Combining Theorem 1 and Theorem 2, the existence of $\operatorname{GBTD}(4, m)$ is now completely determined.

Theorem 3. $A \operatorname{GBTD}(4, m)$ exists if and only if $m \geqslant 1$ and $m \neq 2,3$.
We first present a non-existence result.
Proposition 1.1. $A \operatorname{GBTD}(k, 2)$ does not exist for all $k \geqslant 2$.
Proof: Suppose (X, \mathcal{B}) is a $(2 k, k, k-1)$-BIBD whose blocks are organized into a $2 \times(2 k-1)$ array to form a $\operatorname{GBTD}(k, 2)$. Since (X, \mathcal{B}) is a $(2 k, k, k-1)$-BIBD, each point in X appears in exactly $2 k-1$ blocks, and hence each point must appear either k times in the first row and $k-1$ times in the second row, or vice versa.

Consider a point $x \in X$ that appears k times in the first row and $k-1$ times in the second row. Let $y \in X$ be distinct from x. The cells in the first row can be classified as follows:
(i) Type-xy: a cell that contains both x and y.
(ii) Type- $x \bar{y}$: a cell that contains x but not y.
(iii) Type- $\bar{x} y$: a cell that contains y but not x.
(iv) Type- $\bar{x} \bar{y}$: a cell that contains neither x nor y.

Let α and β be the number of type- $x y$ cells and type- $\bar{x} y$ cells in the first row, respecitvely. Then we have the table

$\mathrm{T} 1=$| | Type- $x y$ | Type $-x \bar{y}$ | Type $-\bar{x} y$ | Type $-\bar{x} \bar{y}$ |
| :---: | :---: | :---: | :---: | :---: |
| \# cells in first row | α | $k-\alpha$ | β | $k-1-\beta$ |
| \# cells in second row | $k-1-\beta$ | β | $k-\alpha$ | α |

where the second row is obtained from the first by the following observation: if a cell is of type- $x y$ (respectively, type- $x \bar{y}$, type- $\bar{x} y$, type- $\bar{x} \bar{y}$) in the first row, then the cell in the second row of the corresponding column is of type- $\bar{x} \bar{y}$ (respectively, type- $\bar{x} y$, type- $x \bar{y}$, type- $x y$). On the other hand, the total number of type-xy cells is $k-1$, since (X, \mathcal{B}) is a BIBD of index $k-1$. Hence, we have $\alpha+(k-1-\beta)=k-1$, implying $\alpha=\beta$.

Considering the number of occurrences of y in the first row and the number of occurrences of y in the second row of the GBTD give the inequalities

$$
\begin{aligned}
\alpha+\beta & \leqslant k, \\
2 k-1-\alpha-\beta & \leqslant k,
\end{aligned}
$$

from which, and $\alpha=\beta$ shown earlier, follow that

$$
\alpha=\lfloor k / 2\rfloor .
$$

Table T1 can therefore be revised to

$\mathrm{T} 2=$| | Type- $x y$ | Type- $x \bar{y}$ | Type $-\bar{x} y$ | Type $-\bar{x} \bar{y}$ |
| ---: | :---: | :---: | :---: | :---: |
| \# cells in first row | $\lfloor k / 2\rfloor$ | $\lceil k / 2\rceil$ | $\lfloor k / 2\rfloor$ | $\lceil k / 2\rceil-1$ |
| \# cells in second row | $\lceil k / 2\rceil-1$ | $\lfloor k / 2\rfloor$ | $\lceil k / 2\rceil$ | $\lfloor k / 2\rfloor$ |

Counting in two ways the number of elements in the set

$$
\{(y, C): y \in X, y \neq x, \text { and } C \text { is a cell of type- } x y \text { in the second row }\} .
$$

gives

$$
(2 k-1)(\lceil k / 2\rceil-1)=(k-1)^{2},
$$

which is a contradiction.

2 Existence of $\operatorname{GBTD}(4, m)$ s with $m=3$ and 4

For a positive integer n, the set $\{1,2, \ldots, n\}$ is denoted by $[n]$. Let Σ be a set of q symbols. A q-ary code of length n over Σ is a subset $\mathcal{C} \subseteq \Sigma^{n}$. Elements of \mathcal{C} are called codewords. The size of \mathcal{C} is the number of codewords in \mathcal{C}. For $i \in[n]$, the i th coordinate of a codeword $\mathrm{u} \in \mathcal{C}$ is denoted u_{i}, so that $\mathbf{u}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{n}\right)$.

The symbol weight of $u \in \Sigma^{n}$, denoted $\operatorname{swt}(\mathbf{u})$, is the maximum frequency of appearance of a symbol in u, that is,

$$
\operatorname{swt}(\mathbf{u})=\max _{\sigma \in \Sigma}\left|\left\{\mathbf{u}_{i}=\sigma: i \in[n]\right\}\right|
$$

A code has constant symbol weight w if all of its codewords have symbol weight exactly w. The (Hamming) distance between $\mathbf{u}, \mathbf{v} \in \Sigma^{n}$ is $d_{\mathrm{H}}(\mathbf{u}, \mathbf{v})=\left|\left\{i \in[n]: \mathbf{u}_{i}=\mathrm{v}_{i}\right\}\right|$, the number of coordinates at which \mathbf{u} and v differ. A code \mathcal{C} is said to have distance d if $d_{\mathrm{H}}(\mathbf{u}, \mathbf{v}) \geqslant d$ for all distinct $\mathbf{u}, \mathbf{v} \in \mathcal{C}$. A q-ary code of length n, constant symbol weight w, and distance d is referred to as an $(n, d, w)_{q}$-symbol weight code. An $(n, d, w)_{q}$-symbol weight code with maximum size is said to be optimal.

Chee et al. [1] established the following relation between a GBTD and a symbol weight code.

Theorem 4 (Chee et al. [1]). A $\operatorname{GBTD}(k, m)$ exists if and only if an optimal $(k m-1, k(m-$ $1), k)_{m}$-symbol weight code exists.

In view of Theorem 4, to prove the nonexistence of a $\operatorname{GBTD}(4,3)$, it suffices to show that there does not exist a ternary code of length 11 , constant symbol weight four, and size 12 , that is of equidistance eight. Consider the Gilbert graph $G=(V, E)$, where $V=\left\{\mathrm{u} \in[3]^{11}\right.$: $\operatorname{swt}(\mathbf{u})=4\}$ and two vertices $\mathbf{u}, \mathbf{v} \in V$ are adjacent in G if and only if $d_{\mathrm{H}}(\mathbf{u}, \mathbf{v})=8$. Then there exists a ternary code of length 11 , constant symbol weight four, and size 12 , that is of equidistance eight if and only if there exists a clique of size 12 in G. It is not hard to see that G is vertex-transitive so that we can just search for a clique of size 11 in G^{\prime}, the subgraph of G induced by the set of vertices $\left\{v \in V: d_{\mathrm{H}}(\mathrm{u}, \mathrm{v})=8\right\}$ for some fixed $\mathrm{u} \in V$. This induced subgraph G^{\prime} has 8001 vertices and 7233060 edges. We solve this clique-finding problem using Cliquer, an implementation of Ostergård's clique-finding algorithm by Niskanen and Östergård [6]. The result is that the largest clique in G^{\prime} has size 10. Consequently, we have the following.

Proposition 2.1. There does not exist a $\operatorname{GBTD}(4,3)$.
There exists, however, a $\operatorname{GBTD}(4,4)$. Unfortunately, a $\operatorname{GBTD}(4,4)$ is too large to be found by the method of clique-finding above. Instead, to curb the search space, we assume the existence of some automorphisms acting on the $\operatorname{GBTD}(4,4)$ to be found. Let (X, \mathcal{B}) be a $\operatorname{GBTD}(4,4)$, where $X=\mathbb{Z}_{4} \times \mathbb{Z}_{4}$. If $B \subseteq X$ and $x \in X, B+x$ denotes the set $\{b+x: b \in B\}$. If A is an array over X and $x \in X, \mathrm{~A}+x$ denotes the array obtained by adding x to every entry of A . For succinctness, a point $(x, y) \in \mathbb{Z}_{4} \times \mathbb{Z}_{4}$ is sometimes written $x y$.

The $\operatorname{GBTD}(4,4)$ we construct contains the 4×3 subarray

$$
A_{0}=\begin{array}{|lll|}
\hline\{00,02,20,22\} & \{11,13,31,33\} & \{10,12,30,32\} \\
\{01,03,21,23\} & \{00,02,20,22\} & \{11,13,31,33\} \\
\{10,12,30,32\} & \{01,03,21,23\} & \{00,02,20,22\} \\
\{11,13,31,33\} & \{10,12,30,32\} & \{01,03,21,23\} \\
\hline
\end{array}
$$

The blocks in A_{0} contain exactly the 2-subsets $\{a b, c d\} \subseteq X$, where $a+c \equiv b+d \equiv 0 \bmod 2$, each thrice. The remaining 4×12 subarray of the $\operatorname{GBTD}(4,4)$ is built from a set of 12 base blocks $\mathcal{S}=\left\{B_{i, j}: i \in[3]\right.$ and $\left.0 \leqslant j \leqslant 3\right\}$ as follows. Let

$$
\mathrm{A}_{1}=\begin{array}{lll}
B_{1,0} & B_{2,0} & B_{3,0} \\
B_{1,1} & B_{2,1} & B_{3,1} \\
B_{1,2} & B_{2,2} & B_{3,2} \\
B_{1,3} & B_{2,3} & B_{3,3}
\end{array} .
$$

Then the 4×12 subarray is given by

$$
\begin{array}{|llll|}
\hline \mathrm{A}_{1} & \mathrm{~A}_{1}+(0,1) & \mathrm{A}_{1}+(0,2) & \mathrm{A}_{1}+(0,3) \\
\hline
\end{array}
$$

For

$$
\begin{array}{|lllll}
\hline \mathrm{A}_{0} & \mathrm{~A}_{1} & \mathrm{~A}_{1}+(0,1) & \mathrm{A}_{1}+(0,2) & \mathrm{A}_{1}+(0,3) \\
\hline
\end{array}
$$

to be a $\operatorname{GBTD}(4,4)$, the following conditions are imposed:
(i) $\bigcup_{j=0}^{3} B_{i, j}=\mathbb{Z}_{4} \times \mathbb{Z}_{4}$, for $i \in[3]$, so that every column is a parallel class.
(ii) For each $j, 0 \leqslant j \leqslant 3$, each element of \mathbb{Z}_{4} appears exactly three times as a first coordinate among the elements of $\bigcup_{i=1}^{3} B_{i, j}$, so that every row contains each element of $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$ at most three times.
(iii) Let $k, l \in \mathbb{Z}_{4}$ and define $\Delta_{k, l} \mathcal{S}$ to be the multiset $\bigcup_{A \in \mathcal{S}}\{x-y:(k, x),(l, y) \in A\}$. Then

$$
\Delta_{k, l} \mathcal{S}= \begin{cases}\{1,1,1,3,3,3\}, & \text { if } k=l \text { or } k+l \equiv 0 \bmod 2 \\ \{0,0,0,1,1,1,2,2,2,3,3,3\}, & \text { otherwise }\end{cases}
$$

This ensures that every 2-subset of X not contained in any block in A_{0} is contained in exactly three blocks in $\mathrm{A}_{1}, \mathrm{~A}_{1}+(0,1), \mathrm{A}_{1}+(0,2)$, or $\mathrm{A}_{1}+(0,3)$.

A computer search found the following array A_{1} that satisfies all the conditions above.

$$
A_{1}=\begin{array}{|lll|}
\{23,22,32,11\} & \{10,00,21,11\} & \{00,01,30,33\} \\
\{20,01,30,33\} & \{33,02,03,12\} & \{10,13,22,23\} \\
\{31,00,12,21\} & \{01,13,20,32\} & \{02,11,21,32\} \\
\{02,10,13,03\} & \{22,23,30,31\} & \{03,12,20,31\} \\
\hline
\end{array} .
$$

Consequently, we have the following.
Proposition 2.2. There exists a $\operatorname{GBTD}(4,4)$.

3 Incomplete Holey GBTDs

Let (X, \mathcal{B}) be a set system, and let \mathcal{G} be a partition of X into subsets, called groups. The triple $(X, \mathcal{G}, \mathcal{B})$ is a group divisible design (GDD) of index λ when every 2-subset of X not contained in a group appears in exactly λ blocks, and $|B \cap G| \leqslant 1$ for all $B \in \mathcal{B}$ and $G \in \mathcal{G}$. We denote a $\operatorname{GDD}(X, \mathcal{G}, \mathcal{B})$ of index λ by (K, λ)-GDD if (X, \mathcal{B}) is K-uniform. The type of a $\operatorname{GDD}(X, \mathcal{G}, \mathcal{B})$ is the multiset $[|G|: G \in \mathcal{G}]$. When more convenient, the exponential notation is used to describe the type of a GDD: a GDD of type $g_{1}^{t_{1}} g_{2}^{t_{2}} \cdots g_{s}^{t_{s}}$ is a GDD where there are exactly t_{i} groups of size $g_{i}, i \in[s]$.

Suppose further $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots G_{s}\right\}$ and $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots H_{s}\right\}$ is a collection of subsets of X with the property $H_{i} \subseteq G_{i}, 0 \leqslant i \leqslant s$. Let $H=\bigcup_{i=1}^{s} H_{i}$. Then the quadruple $(X, \mathcal{G}, \mathcal{H}, \mathcal{B})$ is an incomplete group divisible design (IGDD) of index λ when every 2 -subset of X not contained in a group or H appears in exactly λ blocks, and $|B \cap G| \leqslant 1$ and $|B \cap H| \leqslant 1$ for all $B \in \mathcal{B}$ and $G \in \mathcal{G}$. The type of an $\operatorname{IGDD}\left(X,\left\{G_{1}, G_{2}, \ldots, G_{s}\right\},\left\{H_{1}, H_{2}, \ldots, H_{s}\right\}, \mathcal{B}\right)$ is the multiset $\left[\left(\left|G_{i}\right|,\left|H_{i}\right|\right): 1 \leqslant i \leqslant s\right]$ and we use the exponential notation when more convenient.

Let k, g, u, and w be positive integers such that $k \mid g$ and $u \geqslant(k+1) w$. Let $R_{i}=\{r \in \mathbb{Z}$: $i g / k \leqslant r \leqslant(i+1) g / k-1\}$. An incomplete holey GBTD with block size k and type $g^{(u, w)}$, denoted IHGBTD $\left(k, g^{(u, w)}\right)$, is a $(\{k\}, k-1)$-IGDD $\left(X,\left\{G_{0}, G_{1}, \ldots, G_{u-1}\right\},\left\{\varnothing, \ldots, \varnothing, G_{u-w}\right.\right.$, $\left.\left.\ldots, G_{u-1}\right\}, \mathcal{B}\right)$ of type $(g, 0)^{u-w}(g, g)^{w}$, whose blocks are arranged in a $(g u / k) \times g(u-1)$ array A , with rows and columns indexed by elements from the sets $\{0,1, \ldots, g u / k-1\}$ and $\{0,1, \ldots, g(u-1)-1\}$, respectively, such that the following properties are satisfied.
(i) The $(g w / k) \times g(w-1)$ subarray whose rows are indexed by $r \in R_{i}$, where $u-w \leqslant i \leqslant$ $u-1$, and columns indexed by c, where $g(u-w) \leqslant c \leqslant g(u-1)-1$, is empty.
(ii) For each $i, 0 \leqslant i \leqslant u-w-1$, the blocks in row $r \in R_{i}$ form a partial k-parallel class over $X \backslash G_{i}$, and for each $i, u-w \leqslant i \leqslant u-1$, the blocks in row $r \in R_{i}$ form a partial k-parallel class over $X \backslash\left(\bigcup_{j=u-w}^{w-1} G_{j}\right)$.
(iii) For each $j, 0 \leqslant j \leqslant g(u-w)-1$, the blocks in column j form a parallel class, and for each $j, g(u-w) \leqslant j \leqslant g(u-1)-1$, the blocks in column j form a partial parallel class over $X \backslash\left(\bigcup_{i=u-w}^{w-1} G_{j}\right)$.
Each group acts as a hole of the design, since no block contains any 2-subset of a group. The design is also incomplete in the sense that the array A contains an empty $(g w / k) \times g(w-1)$ subarray.
We note that an $\operatorname{IHGBTD}\left(k, g^{(u, 1)}\right)$ is a holey $\operatorname{GBTD}, \operatorname{HGBTD}\left(k, g^{u}\right)$, as defined by Yin et al. [12]. The following was established by Yin et al. [12].
Proposition 3.1 (Yin et al. [12]). If there exists an $\operatorname{HGBTD}\left(k, k^{u}\right)$, then there exists a $\operatorname{GBTD}(k, u)$.

Proposition 3.1 shows that a $\operatorname{GBTD}(k, u)$ can be obtained from an $\operatorname{HGBTD}\left(k, k^{u}\right)$. The next result shows how we can obtain an $\operatorname{HGBTD}\left(k, g^{u}\right)$ (and, in particular, an $\operatorname{HGBTD}\left(k, k^{u}\right)$ from an $\operatorname{IHGBTD}\left(k, g^{(u, w)}\right)$ and an $\operatorname{HGBTD}\left(k, g^{w}\right)$.

Proposition 3.2. If there exist an $\operatorname{IHGBTD}\left(k, g^{(u, w)}\right)$ and an $\operatorname{HGBTD}\left(k, g^{w}\right)$, then there exists an $\operatorname{HGBTD}\left(k, g^{u}\right)$.

Proof: When $w=1$, an $\operatorname{HGBTD}\left(k, g^{w}\right)$ is empty and an $\operatorname{IHGBTD}\left(k, g^{(u, w)}\right)$ is just an $\operatorname{HGBTD}\left(k, g^{u}\right)$. So assume $w>1$ and let $(X, \mathcal{G}, \mathcal{B})$ be an $\operatorname{IHGBTD}\left(k, g^{(u, w)}\right)$ with $\mathcal{G}=$ $\left\{G_{0}, G_{1}, \ldots, G_{u-1}\right\}$. Fill in the empty subarray of this IHGBTD with an $\operatorname{HGBTD}\left(k, g^{w}\right)$, $\left(X^{\prime}, \mathcal{G}^{\prime}, \mathcal{B}^{\prime}\right)$, with $\mathcal{G}^{\prime}=\left\{G_{u-w}, G_{u-w+1}, \ldots, G_{u-1}\right\}$ and $X^{\prime}=\bigcup_{i=u-w}^{u-1} G_{i}$. The resulting array is a $\operatorname{HGBTD}\left(k, g^{u}\right),\left(X, \mathcal{G}, \mathcal{B} \cup \mathcal{B}^{\prime}\right)$.

4 Starter-Adder Construction for IHGBTD

The starter-adder technique first used by Mullin and Nemeth [5] to construct Room squares (also a combinatorial array) has been useful in constructing many types of designs with orthogonality properties, including GBTDs (see $[3,7,10,11,12]$). Here, we extend the technique to the construction of IHGBTDs. Since only $\operatorname{IHGBTD}\left(k, g^{(u, w)}\right)$ with $g=k$ are considered here, we describe our construction for this case.

Let Γ be an additive abelian group of order $k(u-w)$ with $u \geqslant(k+1) w$, and let $\Gamma_{0} \subseteq \Gamma$ be a subgroup of order k. Fix a set, $\Delta=\left\{\delta_{0}=0, \delta_{1}, \ldots, \delta_{u-w-1}\right\} \subseteq \Gamma$, of representatives for the cosets of Γ_{0} so that $\Gamma_{i}=\Gamma_{0}+\delta_{i}, 0 \leqslant i \leqslant u-w-1$, are the cosets of Γ_{0}. Let H be a set of $k w$ points such that H and Γ are disjoint. Further, let H be partitioned into w subsets $H_{0}, H_{1}, \ldots, H_{w-1}$ of size k each.

We take $X=\Gamma \bigcup H$ to be the point set of an $\operatorname{IHGBTD}\left(k, k^{(u, w)}\right)$. An intransitive starter for an $\operatorname{IHGBTD}\left(k, k^{(u, w)}\right)$, with groups $\left\{G_{0}, G_{1}, \ldots, G_{u-1}\right\}$, where

$$
G_{i}= \begin{cases}\Gamma_{i}, & \text { if } 0 \leqslant i \leqslant u-w-1 \\ H_{i-u+w}, & \text { if } u-w \leqslant i \leqslant u-1,\end{cases}
$$

is defined as a quadruple $(X, \mathcal{S}, \mathcal{R}, \mathcal{C})$ satisfying the properties:
(i) $(X, \mathcal{S}),(X, \mathcal{R})$, and (X, \mathcal{C}) are $\{k\}$-uniform set systems of size $u-w, w$, and $w-1$, respectively;
(ii) among the blocks in \mathcal{S}, $k w$ of them intersects H in one point, that is, $\mid\{B \in \mathcal{S}$: $|B \cap H|=1\} \mid=k w ;$
(iii) blocks in \mathcal{R} are each disjoint from H;
(iv) blocks in \mathcal{C} are each disjoint from H, and $\bigcup_{i=0}^{u-w-1}\left(\delta_{i}+C\right)=\Gamma$, for each $C \in \mathcal{C}$.
(v) $\mathcal{S} \bigcup \mathcal{R}$ is a partition of X;
(vi) the difference list from the base blocks of $\mathcal{S} \bigcup \mathcal{R} \bigcup \mathcal{C}$ contains every element of $\Gamma \backslash \Gamma_{0}$ precisely $k-1$ times, and no element in Γ_{0}.

Suppose $\mathcal{S}=\left\{B_{0}, B_{1}, \ldots, B_{u-w-1}\right\}$. Then a corresponding adder $\Omega(\mathcal{S})$ for \mathcal{S} is a permutation $\Omega(\mathcal{S})=\left(\omega_{0}, \omega_{1}, \ldots, \omega_{u-w-1}\right)$ of the $u-w$ elements of the representative system Δ satisfying the following property:
(vii) the multiset $\left(\bigcup_{i=0}^{u-w-1}\left(B_{i}+\omega_{i}\right)\right) \bigcup\left(\bigcup_{C \in \mathcal{C}} C\right)$ contains exactly k elements (not necessarily distinct) from Γ_{j} for $1 \leqslant j \leqslant u-w-1$, and is disjoint from Γ_{0}. We remark that when $B \in \mathcal{S}$ and $B \cap H=\{\infty\}$, or $B=\left\{\infty, b_{1}, b_{2}, \ldots, b_{k-1}\right\}$, the block $B+\gamma$ is defined to be $\left\{\infty, b_{1}+\gamma, b_{2}+\gamma, \ldots, b_{k-1}+\gamma\right\}$ for $\gamma \in \Gamma$.

The result below shows how to construct an IHGBTD from an intransitive starter and its corresponding adder.

Proposition 4.1. Let Γ be an additive abelian group of order $k(u-w)$ with $u \geqslant(k+1) w$ and Γ_{0} be a subgroup of order k. Define X and the groups $G_{i}(0 \leqslant i \leqslant u-1)$ as above. If there exists an intransitive starter $(X, \mathcal{S}, \mathcal{R}, \mathcal{C})$ with groups $\left\{G_{i}: 0 \leqslant i \leqslant u-1\right\}$, a corresponding adder $\Omega(\mathcal{S})$, then there exists an $\operatorname{IHGBTD}\left(k, k^{(u, w)}\right)$.

Proof: Retain the notations in the definition of intransitive starter and adder. Suppose

$$
\mathcal{A}=\{A+\gamma: \gamma \in \Gamma, A \in \mathcal{S} \cup \mathcal{R} \cup \mathcal{C}\}
$$

then $\left(X,\left\{G_{0}, G_{1}, \ldots, G_{u-1}\right\},\left\{\varnothing, \ldots, \varnothing, H_{0}, \ldots, H_{w-1}\right\}, \mathcal{A}\right)$ forms a $(\{k\}, k-1)$-IGDD of type $(k, 0)^{u-w}(k, k)^{w}$ by Condition (vi) in the definition of intransitive starter. Therefore, it remains to arrange the blocks in a $u \times k(u-1)$ array.

First, consider the blocks \mathcal{S}. Consider a $(u-w) \times(u-w)$ array S , whose rows and columns are indexed with the elements in Δ. Now identify the elements in Δ with elements in the quotient group Γ / Γ_{0}, so that the binary operation + on Δ is defined by the additive operation on Γ / Γ_{0}. In addition, for $\delta \in \Delta$, denote the additive inverse of δ by ${ }^{\circ} \delta$. That is, $\delta \stackrel{\circ}{+}(\stackrel{\circ}{-} \delta)=\delta_{0}$.

So, for $0 \leqslant i, j \leqslant u-w-1$, we place the block $B_{i}+\delta_{j}$ at the cell $\left(\delta_{j}{ }^{\circ} \delta_{l}, \delta_{j}\right)$ if $\delta_{l}=\omega_{i}$. Note that this placement is well defined because $\Omega(\mathcal{S})$ is a permutation of Δ. Let $\Gamma_{0}=\left\{\gamma_{0}=\right.$ $\left.0, \gamma_{1}, \cdots, \gamma_{k-1}\right\}$. Form a $(u-w) \times k(u-w)$ array $\widehat{\mathrm{S}}$ from the square S by concatenating k squares $\mathbf{D}+\gamma_{i}$ where $0 \leqslant i \leqslant k-1$ as follows.

$$
\widehat{\mathrm{S}}=\begin{array}{|llll}
\mathrm{S} & \mathrm{~S}+\gamma_{1} & \cdots & \mathrm{~S}+\gamma_{k-1} \\
\hline
\end{array}
$$

Next, let $\mathcal{R}=\left\{R_{1}, R_{2}, \ldots, R_{w}\right\}$ and construct a $w \times k(u-w)$ array $\widehat{\mathrm{R}}$ in the following way:

$$
\widehat{\mathrm{R}}=\begin{array}{|llll}
\mathrm{R} & \mathrm{R}+\gamma_{1} & \cdots & \mathrm{R}+\gamma_{k-1},
\end{array}
$$

where the $w \times w$ subarray R is given by

$$
\mathrm{R}=\begin{array}{|cccc|}
\hline R_{1} & R_{1}+\delta_{1} & \cdots & R_{1}+\delta_{u-w-1} \\
R_{2} & R_{2}+\delta_{1} & \cdots & R_{2}+\delta_{u-w-1} \\
\vdots & \vdots & \ddots & \vdots \\
R_{w} & R_{w}+\delta_{1} & \cdots & R_{w}+\delta_{u-w-1} \\
\hline
\end{array} .
$$

Similarly, let $\mathcal{C}=\left\{C_{0}, C_{1}, \ldots, C_{w-2}\right\}$, and we construct a $(u-w) \times k(w-1)$ array $\widehat{\mathrm{C}}$.

$$
\widehat{\mathrm{C}}=\begin{array}{|llll}
\mathrm{C}_{0} & \mathrm{C}_{1} & \cdots & \mathrm{C}_{w-2}, \\
\hline
\end{array}
$$

where each $(u-w) \times k$ subarray $\mathrm{C}_{i}, 0 \leqslant i \leqslant w-2$, is given by

$$
\mathrm{C}_{i}=\begin{array}{|cccc|}
\hline C_{i} & C_{i}+\gamma_{1} & \cdots & C_{i}+\gamma_{k-1} \\
C_{i}+\delta_{1} & C_{i}+\delta_{1}+\gamma_{1} & \cdots & C_{i}+\delta_{1}+\gamma_{k-1} \\
\vdots & \vdots & \ddots & \vdots \\
C_{i}+\delta_{u-w-1} & C_{i}+\delta_{u-w-1}+\gamma_{1} & \cdots & C_{i}+\delta_{u-w-1}+\gamma_{k-1} \\
\hline
\end{array}
$$

Finally, let

$$
A=\begin{array}{|c|c|}
\hline \widehat{S} & \widehat{C} \\
\hline \widehat{R} & \\
\hline
\end{array}
$$

and it is readily verified that the placement results in an $\operatorname{IHGBTD}\left(k, k^{(u, w)}\right)$.

5 Proof of Theorem 1.2

We first remove all the eight remaining values in Theorem 1.
Lemma 5. For $(u, w) \in\{(28,5),(32,5),(33,6)\}$, an $\operatorname{IHGBTD}\left(4,4^{(u, w)}\right)$ exists.
Proof: We apply Proposition 4.1 to construct the desired IHGBTDs. Take

$$
\begin{aligned}
\Gamma & =\mathbb{Z}_{u-w} \times \mathbb{Z}_{4}, \\
\Gamma_{0} & =\{0\} \times \mathbb{Z}_{4}, \\
\Delta & =\{(0,0),(1,0), \ldots,(u-w-1,0)\}, \text { and } \\
H & =\bigcup_{i=0}^{w-1} H_{i}, \text { where } H_{i}=\left\{\infty_{i}, \infty_{i+w}, \infty_{i+2 w}, \infty_{i+3 w}\right\} \text { for } 0 \leqslant i \leqslant w-1 .
\end{aligned}
$$

For each pair $(u, w) \in\{(28,5),(32,5),(33,6)\}$, the desired intransitive starter and corresponding adder are displayed below. Here we write the element (a, b) of Γ as a_{b} for succinctness.

When $(u, w)=(28,5)$:

\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$
$\left\{4_{1}, 3_{0}, 7_{0}, 0_{0}\right\}$	17_{0}	$\left\{5_{0}, 19_{0}, 12_{1}, 1_{2}\right\}$	12_{0}	$\left\{18_{0}, 13_{3}, 16_{3}, 8_{1}\right\}$	19_{0}
$\left\{\infty_{0}, 3_{1}, 12_{2}, 11_{3}\right\}$	1_{0}	$\left\{\infty_{1}, 14_{3}, 6_{0}, 10_{3}\right\}$	21_{0}	$\left\{\infty_{2}, 14_{1}, 9_{1}, 20_{1}\right\}$	20_{0}
$\left\{\infty_{3}, 19_{1}, 10_{1}, 22_{2}\right\}$	7_{0}	$\left\{\infty_{4}, 3_{3}, 1_{3}, 2_{2}\right\}$	18_{0}	$\left\{\infty_{5}, 0_{2}, 15_{1}, 1_{0}\right\}$	15_{0}
$\left\{\infty_{6}, 1_{1}, 6_{3}, 9_{3}\right\}$	2_{0}	$\left\{\infty_{7}, 14_{0}, 11_{1}, 0_{1}\right\}$	10_{0}	$\left\{\infty_{8}, 0_{3}, 17_{2}, 21_{2}\right\}$	22_{0}
$\left\{\infty_{9}, 4_{3}, 8_{0}, 21_{0}\right\}$	6_{0}	$\left\{\infty_{10}, 13_{1}, 19_{3}, 16_{2}\right\}$	9_{0}	$\left\{\infty_{11}, 4_{2}, 21_{3}, 17_{1}\right\}$	5_{0}
$\left\{\infty_{12}, 17_{0}, 5_{2}, 21_{1}\right\}$	16_{0}	$\left\{\infty_{13}, 5_{1}, 20_{2}, 11_{2}\right\}$	4_{0}	$\left\{\infty_{14}, 22_{0}, 2_{3}, 16_{0}\right\}$	14_{0}
$\left\{\infty_{15}, 18_{3}, 20_{3}, 2_{0}\right\}$	0_{0}	$\left\{\infty_{16}, 12_{3}, 2_{1}, 22_{3}\right\}$	3_{0}	$\left\{\infty_{17}, 5_{3}, 7_{1}, 17_{3}\right\}$	8_{0}
$\left\{\infty_{18}, 6_{2}, 9_{0}, 19_{2}\right\}$	13_{0}	$\left\{\infty_{19}, 7_{2}, 8_{3}, 22_{1}\right\}$	11_{0}		

$$
\begin{aligned}
& \mathcal{C}=\left\{18_{0}, 11_{1}, 5_{3}, 6_{2}\right\}, \quad\left\{18_{2}, 8_{3}, 19_{0}, 6_{1}\right\}, \quad\left\{14_{3}, 12_{0}, 3_{2}, 7_{1}\right\}, \\
& \left\{5_{2}, 7_{1}, 16_{3}, 11_{0}\right\} \text {. } \\
& \mathcal{R}=\left\{3_{2}, 18_{2}, 16_{1}, 10_{2}\right\}, \quad\left\{8_{2}, 15_{0}, 20_{0}, 13_{2}\right\}, \quad\left\{13_{0}, 9_{2}, 18_{1}, 15_{3}\right\}, \\
& \left\{6_{1}, 7_{3}, 14_{2}, 15_{2}\right\}, \quad\left\{12_{0}, 10_{0}, 4_{0}, 11_{0}\right\} .
\end{aligned}
$$

When $(u, w)=(32,5)$:

\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$
$\left\{4_{2}, 17_{2}, 16_{1}, 22_{2}\right\}$	16_{0}	$\left\{3_{1}, 4_{1}, 1_{0}, 9_{1}\right\}$	11_{0}	$\left\{4_{3}, 26_{3}, 22_{0}, 10_{3}\right\}$	0_{0}
$\left\{14_{1}, 6_{0}, 26_{0}, 3_{0}\right\}$	12_{0}	$\left\{\infty_{0}, 3_{3}, 24_{2}, 25_{1}\right\}$	7_{0}	$\left\{\infty_{1}, 2_{2}, 12_{0}, 1_{3}\right\}$	6_{0}
$\left\{\infty_{2}, 0_{1}, 26_{1}, 20_{2}\right\}$	4_{0}	$\left\{\infty_{3}, 25_{0}, 15_{0}, 23_{0}\right\}$	15_{0}	$\left\{\infty_{4}, 13_{0}, 21_{2}, 16_{0}\right\}$	3_{0}
$\left\{\infty_{5}, 5_{0}, 19_{3}, 12_{1}\right\}$	24_{0}	$\left\{\infty_{6}, 6_{3}, 14_{3}, 13_{2}\right\}$	1_{0}	$\left\{\infty_{7}, 1_{2}, 2_{0}, 0_{0}\right\}$	21_{0}
$\left\{\infty_{8}, 0_{2}, 10_{0}, 19_{0}\right\}$	14_{0}	$\left\{\infty_{9}, 15_{2}, 18_{2}, 0_{3}\right\}$	2_{0}	$\left\{\infty_{10}, 6_{1}, 5_{2}, 2_{3}\right\}$	17_{0}
$\left\{\infty_{11}, 12_{3}, 25_{2}, 11_{3}\right\}$	22_{0}	$\left\{\infty_{12}, 10_{1}, 21_{3}, 17_{3}\right\}$	18_{0}	$\left\{\infty_{13}, 17_{0}, 9_{0}, 20_{3}\right\}$	20_{0}
$\left\{\infty_{14}, 20_{0}, 3_{2}, 16_{3}\right\}$	5_{0}	$\left\{\infty_{15}, 12_{2}, 21_{1}, 8_{2}\right\}$	9_{0}	$\left\{\infty_{16}, 18_{1}, 11_{0}, 15_{3}\right\}$	10_{0}
$\left\{\infty_{17}, 1_{1}, 15_{1}, 17_{1}\right\}$	8_{0}	$\left\{\infty_{18}, 9_{2}, 16_{2}, 23_{2}\right\}$	13_{0}	$\left\{\infty_{19}, 14_{2}, 18_{3}, 21_{0}\right\}$	25_{0}

$$
\begin{array}{rlll}
\mathcal{C}= & \left\{1_{3}, 26_{0}, 16_{1}, 17_{2}\right\}, & \left\{5_{3}, 14_{1}, 24_{2}, 12_{0}\right\}, & \left\{19_{2}, 25_{0}, 17_{1}, 13_{3}\right\} \\
& \left\{6_{2}, 8_{0}, 11_{3}, 13_{1}\right\} & & \\
\mathcal{R}= & \left\{5_{1}, 11_{1}, 24_{3}, 20_{1}\right\}, & \left\{24_{1}, 18_{0}, 7_{0}, 6_{2}\right\}, & \left\{22_{1}, 25_{3}, 8_{0}, 13_{3}\right\} \\
\left\{19_{2}, 7_{2}, 2_{1}, 23_{3}\right\}, & \left\{7_{1}, 9_{3}, 26_{2}, 4_{0}\right\} &
\end{array}
$$

When $(u, w)=(33,6)$:

\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$
$\left\{22_{0}, 0_{1}, 23_{0}, 21_{3}\right\}$	13_{0}	$\left\{25_{3}, 4_{3}, 15_{1}, 20_{1}\right\}$	4_{0}	$\left\{7_{3}, 2_{2}, 23_{3}, 1_{0}\right\}$	7_{0}
$\left\{\infty_{0}, 21_{1}, 3_{0}, 22_{2}\right\}$	18_{0}	$\left\{\infty_{1}, 0_{0}, 14_{3}, 10_{1}\right\}$	6_{0}	$\left\{\infty_{2}, 12_{3}, 8_{0}, 16_{1}\right\}$	8_{0}
$\left\{\infty_{3}, 6_{1}, 23_{2}, 9_{1}\right\}$	23_{0}	$\left\{\infty_{4}, 4_{0}, 8_{2}, 14_{2}\right\}$	2_{0}	$\left\{\infty_{5}, 14_{1}, 2_{3}, 6_{0}\right\}$	17_{0}
$\left\{\infty_{6}, 21_{2}, 24_{2}, 11_{2}\right\}$	9_{0}	$\left\{\infty_{7}, 5_{0}, 2_{1}, 25_{1}\right\}$	20_{0}	$\left\{\infty_{8}, 11_{1}, 22_{1}, 12_{1}\right\}$	22_{0}
$\left\{\infty_{9}, 0_{2}, 7_{2}, 19_{2}\right\}$	15_{0}	$\left\{\infty_{10}, 13_{0}, 16_{0}, 14_{0}\right\}$	24_{0}	$\left\{\infty_{11}, 11_{0}, 15_{0}, 18_{1}\right\}$	3_{0}
$\left\{\infty_{12}, 7_{0}, 9_{0}, 26_{1}\right\}$	19_{0}	$\left\{\infty_{13}, 25_{0}, 7_{1}, 10_{0}\right\}$	21_{0}	$\left\{\infty_{14}, 18_{0}, 25_{2}, 26_{3}\right\}$	26_{0}
$\left\{\infty_{15}, 4_{2}, 15_{2}, 13_{3}\right\}$	16_{0}	$\left\{\infty_{16}, 17_{1}, 20_{0}, 11_{3}\right\}$	5_{0}	$\left\{\infty_{17}, 20_{2}, 9_{3}, 12_{0}\right\}$	14_{0}
$\left\{\infty_{18}, 26_{2}, 5_{2}, 17_{2}\right\}$	12_{0}	$\left\{\infty_{19}, 24_{0}, 13_{1}, 10_{3}\right\}$	1_{0}	$\left\{\infty_{20}, 1_{3}, 10_{2}, 12_{2}\right\}$	11_{0}
$\left\{\infty_{21}, 3_{2}, 15_{3}, 24_{1}\right\}$	25_{0}	$\left\{\infty_{22}, 5_{1}, 18_{3}, 21_{0}\right\}$	10_{0}	$\left\{\infty_{23}, 17_{0}, 24_{3}, 26_{0}\right\}$	0_{0}

$$
\begin{array}{lll}
\mathcal{C}=\left\{3_{3}, 10_{1}, 5_{2}, 15_{0}\right\}, & \left\{8_{3}, 14_{1}, 9_{2}, 18_{0}\right\}, & \left\{12_{0}, 10_{3}, 26_{2}, 5_{1}\right\}, \\
\mathcal{R}=\left\{21_{2}, 11_{1}, 23_{0}, 9_{3}\right\}, & \left\{15_{1}, 5_{2}, 12_{3}, 3_{0}\right\} . & \\
\left\{6_{3}, 2_{0}, 18_{2}, 19_{0}\right\}, & \left\{8_{3}, 9_{2}, 3_{1}, 1_{2}\right\}, & \left\{17_{3}, 3_{3}, 4_{1}, 22_{3}\right\}, \\
\left\{19_{3}, 13_{2}, 6_{2}, 5_{3}\right\}, & \left\{16_{3}, 23_{1}, 1_{1}, 19_{1}\right\}, & \left\{20_{3}, 16_{2}, 8_{1}, 0_{3}\right\}
\end{array}
$$

Lemma 6. For $(u, w) \in\{(34,6),(44,8)\}$, an $\operatorname{IHGBTD}\left(4,4^{(u, w)}\right)$ exists.
Proof: As with Lemma 5, we apply Proposition 4.1 to construct the desired IHGBTDs.
Take

$$
\begin{aligned}
\Gamma & =\mathbb{Z}_{2(u-w)} \times \mathbb{Z}_{2}, \\
\Gamma_{0} & =\{0, u-w\} \times \mathbb{Z}_{2}, \\
\Delta & =\{(0,0),(1,0), \cdots,(u-w-1,0)\}, \text { and } \\
H & =\bigcup_{i=0}^{w-1} H_{i}, \text { where } H_{i}=\left\{\infty_{i}, \infty_{i+w}, \infty_{i+2 w}, \infty_{i+3 w}\right\} \text { for } 0 \leqslant i \leqslant w-1 .
\end{aligned}
$$

The desired intransitive starter and corresponding adder for $(u, w) \in\{(34,6),(44,8)\}$ are displayed below. Here we write the element (a, b) of Γ as a_{b} for succinctness.

When $(u, w)=(34,6)$:

\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$
$\left\{41_{1}, 16_{0}, 6_{0}, 15_{0}\right\}$	20_{0}	$\left\{36_{0}, 9_{0}, 33_{1}, 13_{1}\right\}$	16_{0}	$\left\{37_{0}, 18_{0}, 26_{1}, 4_{1}\right\}$	0_{0}
$\left\{16_{1}, 2_{1}, 4_{0}, 3_{1}\right\}$	30	$\left\{\infty_{0}, 20_{1}, 24_{0}, 42_{0}\right\}$	23_{0}	$\left\{\infty_{1}, 22_{1}, 30_{0}, 39_{1}\right\}$	11_{0}
$\left\{\infty_{2}, 14_{0}, 31_{1}, 1_{1}\right\}$	10_{0}	$\left\{\infty_{3}, 48_{0}, 45_{0}, 8_{0}\right\}$	250	$\left\{\infty_{4}, 25_{1}, 48_{1}, 14_{1}\right\}$	4_{0}
$\left\{\infty_{5}, 8_{1}, 30_{1}, 20_{0}\right\}$	12_{0}	$\left\{\infty_{6}, 6_{1}, 21_{0}, 44_{1}\right\}$	20	$\left\{\infty_{7}, 40_{1}, 33_{0}, 52_{1}\right\}$	1_{0}
$\left\{\infty_{8}, 45_{1}, 21_{1}, 28_{1}\right\}$	180	$\left\{\infty_{9}, 27_{0}, 28_{0}, 34_{1}\right\}$	17_{0}	$\left\{\infty_{10}, 42_{1}, 35_{1}, 37_{1}\right\}$	22_{0}
$\left\{\infty_{11}, 3_{0}, 22_{0}, 12_{0}\right\}$	19_{0}	$\left\{\infty_{12}, 44_{0}, 35_{0}, 39_{0}\right\}$	14_{0}	$\left\{\infty_{13}, 36_{1}, 7_{0}, 9_{1}\right\}$	70
$\left\{\infty_{14}, 15_{1}, 53_{1}, 51_{1}\right\}$	60	$\left\{\infty_{15}, 53_{0}, 11_{0}, 51_{0}\right\}$	150	$\left\{\infty_{16}, 50_{0}, 55_{1}, 10_{1}\right\}$	9_{0}
$\left\{\infty_{17}, 52_{0}, 32_{1}, 17_{1}\right\}$	13_{0}	$\left\{\infty_{18}, 55_{0}, 29_{1}, 25_{0}\right\}$	50	$\left\{\infty_{19}, 0_{1}, 7_{1}, 41_{0}\right\}$	27_{0}
$\left\{\infty_{20}, 12_{1}, 31_{0}, 47_{0}\right\}$	80	$\left\{\infty_{21}, 17_{0}, 27_{1}, 47_{1}\right\}$	21_{0}	$\left\{\infty_{22}, 19_{0}, 23_{0}, 29_{0}\right\}$	24_{0}
$\left\{\infty_{23}, 34_{0}, 40_{0}, 50_{1}\right\}$	26_{0}				
$\mathcal{C}=\left\{27_{1}, 10_{0}, 44_{1}, 51_{0}\right\}, \quad\left\{35_{1}, 15_{0}, 50\right.$			$\begin{gathered} \left.14_{1}\right\}, \\ \left.50_{0}\right\} . \end{gathered}$	$\left\{16_{1}, 51_{1}, 54_{0}, 27_{0}\right\}$,	
$\mathcal{R}=\left\{13_{0}\right.$	[30, $\left.26_{0}, 38_{0}, 24_{1}\right\}, \quad\left\{54_{1}, 23_{1}, 46_{1}\right.$		491\},	$\left\{1_{0}, 49_{0}, 18{ }_{1}, 43_{0}\right\}$,	
	$\left\{10_{0}, 2_{0}, 11_{1}, 54_{0}\right\}$,	54 $\}$, $\quad\left\{46_{0}, 19_{1}, 43_{1}\right.$		$\left\{38_{1}, 32_{0}, 5_{1}, 0_{0}\right\} .$	

When $(u, w)=(44,8)$:

\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$
$\left\{32_{0}, 69_{1}, 36_{1}, 53_{1}\right\}$	20_{0}	$\left\{42_{1}, 65_{1}, 0_{0}, 43_{1}\right\}$	1_{0}	$\left\{39_{1}, 27_{1}, 45_{1}, 51_{1}\right\}$	3_{0}
$\left\{22_{1}, 39_{0}, 55_{1}, 33_{1}\right\}$	11_{0}	$\left\{\infty_{0}, 67_{0}, 40_{1}, 54_{0}\right\}$	22_{0}	$\left\{\infty_{1}, 23_{0}, 10_{1}, 34_{1}\right\}$	25_{0}
$\left\{\infty_{2}, 18_{0}, 67_{1}, 36_{0}\right\}$	28_{0}	$\left\{\infty_{3}, 25_{1}, 10_{0}, 28_{1}\right\}$	16_{0}	$\left\{\infty_{4}, 63_{1}, 6_{0}, 37_{0}\right\}$	29_{0}
$\left\{\infty_{5}, 16_{0}, 44_{0}, 2_{0}\right\}$	35_{0}	$\left\{\infty_{6}, 28_{0}, 50_{1}, 35_{1}\right\}$	10_{0}	$\left\{\infty_{7}, 43_{0}, 46_{1}, 32_{1}\right\}$	9_{0}
$\left\{\infty_{8}, 69_{0}, 52_{1}, 2_{1}\right\}$	13_{0}	$\left\{\infty_{9}, 37_{1}, 66_{0}, 71_{1}\right\}$	26_{0}	$\left\{\infty_{10}, 70_{1}, 21_{1}, 24_{1}\right\}$	8_{0}
$\left\{\infty_{11}, 71_{0}, 15_{1}, 47_{0}\right\}$	32_{0}	$\left\{\infty_{12}, 59_{0}, 19_{1}, 6_{1}\right\}$	23_{0}	$\left\{\infty_{13}, 9_{0}, 47_{1}, 20_{0}\right\}$	7_{0}
$\left\{\infty_{14}, 52_{0}, 46_{0}, 60_{1}\right\}$	24_{0}	$\left\{\infty_{15}, 17_{0}, 60_{0}, 22_{0}\right\}$	0_{0}	$\left\{\infty_{16}, 64_{0}, 54_{1}, 12_{0}\right\}$	17_{0}
$\left\{\infty_{17}, 49_{0}, 9_{1}, 53_{0}\right\}$	4_{0}	$\left\{\infty_{18}, 68_{0}, 0_{1}, 56_{1}\right\}$	15_{0}	$\left\{\infty_{19}, 27_{0}, 12_{1}, 4_{1}\right\}$	27_{0}
$\left\{\infty_{20}, 65_{0}, 68_{1}, 23_{1}\right\}$	2_{0}	$\left\{\infty_{21}, 20_{1}, 18_{1}, 8_{0}\right\}$	31_{0}	$\left\{\infty_{22}, 59_{1}, 17_{1}, 44_{1}\right\}$	14_{0}
$\left\{\infty_{23}, 1_{0}, 70_{0}, 26_{1}\right\}$	12_{0}	$\left\{\infty_{24}, 57_{1}, 11_{1}, 13_{0}\right\}$	21_{0}	$\left\{\infty_{25}, 16_{1}, 5_{0}, 7_{0}\right\}$	18_{0}
$\left\{\infty_{26}, 58_{1}, 4_{0}, 57_{0}\right\}$	5_{0}	$\left\{\infty_{27}, 41_{1}, 13_{1}, 31_{1}\right\}$	19_{0}	$\left\{\infty_{28}, 64_{1}, 56_{0}, 30_{1}\right\}$	30_{0}
$\left\{\infty_{29}, 19_{0}, 48_{0}, 21_{0}\right\}$	6_{0}	$\left\{\infty_{30}, 48_{1}, 58_{0}, 50_{0}\right\}$	33_{0}	$\left\{\infty_{31}, 40_{0}, 49_{1}, 55_{1}\right\}$	34_{0}

$$
\begin{array}{rlll}
\mathcal{C}= & \left\{2_{1}, 3_{1}, 22_{0}, 69_{0}\right\}, & \left\{28_{1}, 69_{0}, 19_{1}, 62_{0}\right\}, & \left\{41_{1}, 4_{0}, 20_{1}, 59_{0}\right\}, \\
\left\{57_{0}, 12_{1}, 4_{0}, 55_{1}\right\}, & \left\{41_{0}, 21_{1}, 32_{1}, 8_{0}\right\}, & \left\{7_{1}, 13_{0}, 14_{1}, 28_{0}\right\}, \\
& \left\{33_{1}, 21_{0}, 28_{1}, 52_{0}\right\} . & & \\
\mathcal{R}= & \left\{66_{1}, 3_{1}, 25_{0}, 29_{1}\right\}, & \left\{38_{0}, 34_{0}, 3_{0}, 24_{0}\right\}, & \left\{55_{0}, 15_{0}, 62_{0}, 45_{0}\right\}, \\
& \left\{62_{1}, 61_{0}, 42_{0}, 29_{0}\right\}, & \left\{51_{0}, 35_{0}, 30_{0}, 26_{0}\right\}, & \left\{61_{1}, 1_{1}, 14_{0}, 38_{1}\right\}, \\
& \left\{14_{1}, 11_{0}, 31_{0}, 63_{0}\right\}, & \left\{7_{1}, 33_{0}, 8_{1}, 41_{0}\right\} . &
\end{array}
$$

Lemma 7. For each $(u, w) \in\{(37,6),(38,7),(39,6)\}$, an $\operatorname{IHGBTD}\left(4,4^{(u, w)}\right)$ exists.

Proof: As with Lemma 5, we apply Proposition 4.1. Take

$$
\begin{aligned}
\Gamma & =\mathbb{Z}_{u-w} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \\
\Gamma_{0} & =\{0\} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \\
\Delta & =\{((0,0,0),(1,0,0), \cdots,(u-w-1,0,0))\}, \text { and } \\
H & =\bigcup_{i=0}^{w-1} H_{i}, \text { where } H_{i}=\left\{\infty_{i}, \infty_{i+w}, \infty_{i+2 w}, \infty_{i+3 w}\right\} \text { for } 0 \leqslant i \leqslant w-1 .
\end{aligned}
$$

The desired intransitive starter and corresponding adder for $(u, w) \in\{(37,6),(38,7),(39,6)\}$ are displayed below. Here we write the element (a, b, c) of Γ as $a_{b c}$ for succinctness.

When $(u, w)=(37,6)$:

\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$
$\left\{6_{00}, 25_{00}, 3_{00}, 7_{11}\right\}$	30_{00}	$\left\{20_{10}, 13_{00}, 23_{11}, 27_{01}\right\}$	28_{00}	$\left\{12_{00}, 13_{01}, 19_{11}, 17_{00}\right\}$	2_{00}
$\left\{20_{11}, 19_{00}, 9_{00}, 1_{11}\right\}$	17_{00}	$\left\{29_{11}, 26_{11}, 2_{11}, 0_{01}\right\}$	3_{00}	$\left\{21_{10}, 11_{10}, 1_{10}, 27_{10}\right\}$	21_{00}
$\left\{9_{01}, 27_{11}, 4_{10}, 16_{11}\right\}$	11_{00}	$\left\{\infty_{0}, 26_{01}, 28_{01}, 5_{00}\right\}$	4_{00}	$\left\{\infty_{1}, 14_{10}, 3_{11}, 25_{11}\right\}$	29_{00}
$\left\{\infty_{2}, 21_{00}, 11_{11}, 23_{01}\right\}$	24_{00}	$\left\{\infty_{3}, 21_{11}, 5_{10}, 18_{00}\right\}$	7_{00}	$\left\{\infty_{4}, 28_{11}, 10_{11}, 20_{01}\right\}$	0_{00}
$\left\{\infty_{5}, 28_{10}, 25_{01}, 15_{11}\right\}$	25_{00}	$\left\{\infty_{6}, 0_{10}, 2_{01}, 7_{10}\right\}$	14_{00}	$\left\{\infty_{7}, 29_{01}, 10_{10}, 22_{00}\right\}$	12_{00}
$\left\{\infty_{8}, 3_{01}, 12_{11}, 19_{10}\right\}$	8_{00}	$\left\{\infty_{9}, 30_{01}, 27_{00}, 8_{11}\right\}$	27_{00}	$\left\{\infty_{10}, 19_{01}, 21_{01}, 2_{00}\right\}$	23_{00}
$\left\{\infty_{11}, 4_{11}, 22_{11}, 7_{00}\right\}$	20_{00}	$\left\{\infty_{12}, 26_{00}, 6_{01}, 4_{00}\right\}$	19_{00}	$\left\{\infty_{13}, 28_{00}, 22_{01}, 14_{01}\right\}$	22_{00}
$\left\{\infty_{14}, 2_{10}, 16_{01}, 22_{10}\right\}$	13_{00}	$\left\{\infty_{15}, 4_{01}, 29_{00}, 7_{01}\right\}$	18_{00}	$\left\{\infty_{16}, 24_{00}, 8_{01}, 511\right\}$	16_{00}
$\left\{\infty_{17}, 18_{11}, 1_{01}, 15_{10}\right\}$	1_{00}	$\left\{\infty_{18}, 17_{01}, 23_{10}, 8_{00}\right\}$	26_{00}	$\left\{\infty_{19}, 24_{10}, 16_{00}, 8_{10}\right\}$	10_{00}
$\left\{\infty_{20}, 3_{10}, 18_{01}, 24_{01}\right\}$	5_{00}	$\left\{\infty_{21}, 30_{11}, 24_{11}, 18_{10}\right\}$	9_{00}	$\left\{\infty_{22}, 0_{11}, 14_{11}, 23_{00}\right\}$	15_{00}
$\left\{\infty_{23}, 6_{10}, 15_{01}, 29_{10}\right\}$	6_{00}				

$$
\begin{array}{rlll}
\mathcal{C}=\left\{30_{10}, 13_{00}, 7_{11}, 8_{01}\right\}, & \left\{7_{01}, 2_{10}, 28_{11}, 17_{00}\right\}, & \left\{6_{11}, 9_{01}, 10_{00}, 13_{10}\right\}, \\
\mathcal{R}=\left\{30_{10}, 28_{01}, 18_{00}, 17_{11}\right\}, & \left\{30_{01}, 26_{00}, 8_{11}, 6_{10}\right\} . & \\
\left\{14_{00}, 30_{00}, 13_{10}, 0_{00}\right\}, & \left\{9_{10}, 16_{10}, 15_{00}, 11_{00}\right\}, & \left\{10_{00}, 25_{10}, 17_{10}, 30_{10}\right\}, \\
\left\{20_{00}, 5_{01}, 9_{11}, 1_{00}\right\}, & \left\{26_{10}, 12_{10}, 13_{11}, 17_{11}\right\}, & \left\{12_{01}, 11_{01}, 10_{01}, 6_{11}\right\} .
\end{array}
$$

When $(u, w)=(38,7)$:

\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$
$\left\{28_{00}, 29_{00}, 22_{11}, 27_{00}\right\}$	800	$\left\{20_{11}, 23_{11}, 11_{11}, 5_{11}\right\}$	600	$\left\{18_{00}, 27_{10}, 8_{01}, 30_{00}\right\}$	21_{00}
$\left\{\infty_{0}, 30_{01}, 13_{00}, 5_{01}\right\}$	3_{00}	$\left\{\infty_{1}, 28_{01}, 3_{01}, 23_{01}\right\}$	20_{00}	$\left\{\infty_{2}, 27_{11}, 8_{10}, 24_{11}\right\}$	25_{00}
$\left\{\infty_{3}, 0_{11}, 4_{11}, 6_{00}\right\}$	11_{00}	$\left\{\infty_{4}, 4_{00}, 9_{00}, 8_{00}\right\}$	26_{00}	$\left\{\infty_{5}, 16_{11}, 29_{10}, 10_{01}\right\}$	12_{00}
$\left\{\infty_{6}, 26_{00}, 29_{01}, 21_{01}\right\}$	0_{00}	$\left\{\infty_{7}, 27_{01}, 16_{00}, 18_{10}\right\}$	19_{00}	$\left\{\infty_{8}, 7_{01}, 23_{00}, 13_{11}\right\}$	1_{00}
$\left\{\infty_{9}, 30_{11}, 6_{10}, 16_{10}\right\}$	2800	$\left\{\infty_{10}, 13_{01}, 24_{10}, 22_{00}\right\}$	14_{00}	$\left\{\infty_{11}, 2_{00}, 20_{00}, 12_{11}\right\}$	13_{00}
$\left\{\infty_{12}, 11_{00}, 23_{10}, 12_{10}\right\}$	16_{00}	$\left\{\infty_{13}, 1_{10}, 15_{00}, 14_{11}\right\}$	18_{00}	$\left\{\infty_{14}, 18_{11}, 10_{10}, 12_{01}\right\}$	22_{00}
$\left\{\infty_{15}, 3_{00}, 25_{00}, 17_{00}\right\}$	27_{00}	$\left\{\infty_{16}, 12_{00}, 26_{11}, 22_{10}\right\}$	29_{00}	$\left\{\infty_{17}, 1_{01}, 17_{01}, 10_{00}\right\}$	9_{00}
$\left\{\infty_{18}, 0_{00}, 19_{11}, 20_{10}\right\}$	23_{00}	$\left\{\infty_{19}, 24_{00}, 2_{11}, 4_{10}\right\}$	10_{00}	$\left\{\infty_{20}, 5_{00}, 2_{10}, 1_{11}\right\}$	17_{00}
$\left\{\infty_{21}, 25_{10}, 7_{10}, 0_{01}\right\}$	15_{00}	$\left\{\infty_{22}, 17_{10}, 20_{01}, 19_{10}\right\}$	30_{00}	$\left\{\infty_{23}, 14_{00}, 21_{11}, 7_{00}\right\}$	700
$\left\{\infty_{24}, 0_{10}, 4_{01}, 11_{01}\right\}$	500	$\left\{\infty_{25}, 9_{11}, 19_{01}, 21_{10}\right\}$	4_{00}	$\left\{\infty_{26}, 9_{01}, 24_{01}, 25_{11}\right\}$	200
$\left\{\infty_{27}, 14_{01}, 25_{01}, 30_{10}\right\}$	24_{00}				
$\begin{array}{rlll} \mathcal{C}= & \left\{14_{00}, 29_{11}, 25_{01}, 30_{10}\right\}, & \left\{20_{10}, 9_{11}, 7_{01}, 5_{00}\right\}, & \left\{4_{01}, 25_{00}, 28_{11}, 12_{10}\right\}, \\ \mathcal{R}= & \left\{13_{00}, 24_{10}, 1_{01}, 22_{11}\right\}, & \left\{7_{10}, 6_{01}, 20_{11}, 10_{00}\right\}, & \left\{24_{01}, 6_{10}, 1_{00}, 16_{11}\right\} \\ & \left\{8_{11}, 5_{10}, 19_{00}, 15_{10}\right\}, & \left\{26_{01}, 7_{11}, 13_{10}, 17_{11}\right\}, & \left\{9_{10}, 15_{11}, 6_{01}, 1_{00}\right\}, \\ & \left\{3_{10}, 14_{10}, 21_{00}, 28_{10}\right\}, & \left\{22_{01}, 18_{01}, 10_{11}, 15_{01}\right\}, & \left\{3_{11}, 2_{01}, 16_{01}, 29_{11}\right\}, \\ \left.3_{11}\right\} . & & \end{array}$					

When $(u, w)=(39,6)$:

\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$	\mathcal{S}	$\Omega(\mathcal{S})$
$\left\{28_{10}, 29_{10}, 26_{10}, 2_{00}\right\}$	23_{00}	$\left\{24_{01}, 10_{11}, 9_{01}, 17_{00}\right\}$	13_{00}	$\left\{3_{00}, 29_{00}, 6_{00}, 21_{01}\right\}$	0_{00}
$\left\{11_{01}, 30_{01}, 10_{00}, 7_{11}\right\}$	10_{00}	$\left\{9_{11}, 26_{00}, 21_{00}, 20_{01}\right\}$	11_{00}	$\left\{30_{00}, 32_{00}, 0_{01}, 8_{00}\right\}$	8_{00}
$\left\{22_{01}, 8_{10}, 18_{00}, 27_{01}\right\}$	9_{00}	$\left\{21_{10}, 30_{11}, 24_{00}, 4_{11}\right\}$	5_{00}	$\left\{32_{01}, 27_{10}, 18_{01}, 25_{00}\right\}$	25_{00}
$\left\{\infty_{0}, 28_{01}, 16_{00}, 12_{11}\right\}$	32_{00}	$\left\{\infty_{1}, 1_{01}, 18_{10}, 16_{01}\right\}$	20_{00}	$\left\{\infty_{2}, 9_{10}, 6_{11}, 4_{01}\right\}$	3_{00}
$\left\{\infty_{3}, 15_{00}, 32_{10}, 6_{10}\right\}$	19_{00}	$\left\{\infty_{4}, 32_{11}, 30_{10}, 1_{10}\right\}$	27_{00}	$\left\{\infty_{5}, 29_{01}, 8_{11}, 31_{00}\right\}$	16_{00}
$\left\{\infty_{6}, 26_{01}, 14_{11}, 23_{00}\right\}$	18_{00}	$\left\{\infty_{7}, 28_{00}, 13_{01}, 24_{10}\right\}$	15_{00}	$\left\{\infty_{8}, 24_{11}, 31_{01}, 13_{10}\right\}$	31_{00}
$\left\{\infty_{9}, 27_{00}, 18_{11}, 12_{10}\right\}$	28_{00}	$\left\{\infty_{10}, 25_{11}, 13_{11}, 19_{11}\right\}$	22_{00}	$\left\{\infty_{11}, 5_{10}, 4_{00}, 0_{00}\right\}$	30_{00}
$\left\{\infty_{12}, 7_{00}, 13_{00}, 19_{01}\right\}$	6_{00}	$\left\{\infty_{13}, 2_{10}, 16_{11}, 25_{01}\right\}$	26_{00}	$\left\{\infty_{14}, 17_{01}, 7_{01}, 11_{10}\right\}$	7_{00}
$\left\{\infty_{15}, 15_{01}, 19_{10}, 2_{11}\right\}$	17_{00}	$\left\{\infty_{16}, 22_{00}, 12_{00}, 1_{00}\right\}$	4_{00}	$\left\{\infty_{17}, 0_{10}, 14_{01}, 5_{00}\right\}$	1_{00}
$\left\{\infty_{18}, 15_{11}, 2_{01}, 14_{00}\right\}$	12_{00}	$\left\{\infty_{19}, 4_{10}, 3_{01}, 23_{11}\right\}$	2_{00}	$\left\{\infty_{20}, 3_{10}, 16_{10}, 17_{10}\right\}$	14_{00}
$\left\{\infty_{21}, 3_{11}, 19_{00}, 25_{10}\right\}$	29_{00}	$\left\{\infty_{22}, 5_{11}, 11_{00}, 22_{11}\right\}$	24_{00}	$\left\{\infty_{23}, 10_{10}, 22_{10}, 23_{01}\right\}$	21_{00}

$$
\begin{array}{rlll}
\mathcal{C}=\left\{10_{11}, 15_{10}, 23_{00}, 13_{01}\right\}, & \left\{22_{11}, 4_{01}, 20_{00}, 27_{10}\right\}, & \left\{12_{10}, 16_{11}, 8_{00}, 4_{01}\right\} \\
\mathcal{R}=\left\{23_{11}, 12_{01}, 1_{00}, 9_{10}\right\}, & \left\{20_{00}, 30_{01}, 23_{10}, 28_{11}\right\} . & \\
\left\{20_{11}, 6_{01}, 28_{11}, 5_{01}\right\}, & \left\{29_{11}, 12_{01}, 11_{11}, 31_{11}\right\}, & \left\{31_{10}, 10_{01}, 15_{10}, 7_{10}\right\} \\
\left\{9_{00}, 27_{11}, 14_{10}, 20_{00}\right\}, & \left\{23_{10}, 0_{11}, 20_{10}, 8_{01}\right\}, & \left\{26_{11}, 1_{11}, 21_{11}, 17_{11}\right\} .
\end{array}
$$

Proof of Theorem 2: We first construct a $\operatorname{GBTD}(4, m)$ for any $m \in N$, where $N=$ $\{28,32,33,34,37,38,39,44\}$.

For each $w \in\{5,6,7,8\}$, an $\operatorname{HGBTD}\left(4,4^{w}\right)$ is given by Yin et al. [12]. For each $m \in N$, apply Theorem 3.2, with IHGBTDs from Lemma 5, Lemma 6 and Lemma 7 and corresponding $\operatorname{HGBTD}\left(4,4^{w}\right)$'s where $w \in\{5,6,7,8\}$ as ingredients, to produce the desired $\operatorname{HGBTD}\left(4,4^{m}\right)$. Hence, the desired $\operatorname{GBTD}(4, m)$ follows from Proposition 3.1.

Combining Proposition 1.1, Proposition 2.1 and Proposition 2.2, we complete the proof.

Acknowledgement We are grateful to the anonymous reviewers for their helpful comments.

References

[1] Y.M. Chee, H.M. Kiah, A.C.H. Ling, and C. Wang, Optimal equitable symbol weight codes for power line communications, Proceedings of the 2012 IEEE International Symposium on Information Theory, (2012), 671-675.
[2] C.J. Colbourn, J.H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 2007.
[3] E.R. Lamken, Generalized balanced tournament designs, Trans. Amer. Math. Soc. 318 (1990), 473-490.
[4] E.R. Lamken, Existence results for generalized balanced tournament designs with block size 3, Des. Codes Cryptogr. 3 (1993), 33-61.
[5] R. C. Mullin and E. Nemeth, On furnishing Room squares, J. Combin. Theory 7 (1969) 266-272.
[6] S. Niskanen and P. R. J. Östergård, Cliquer Users Guide, Version 1.0, Cliquer users guide, version 1.0, Tech. Report T48, Communications Laboratory, Helsinki University of Technology, 2003.
[7] A. Rosa and S.A. Vanstone, Starter-adder techniques for Kirkman squares and Kirkman cubes of small sides, Ars Combinatoria 14 (1982), 199-212.
[8] P.J.Schellenberg, G.H.J. Van Rees and S.A. Vanstone, The existence of balanced tournament designs, Ars Combinatoria 3 (1977), 303-318.
[9] N.V. Semakov, V.A. Zinov'ev, Equidistant q-ary codes with maximal distance and resolvable balanced incomplete block designs, Problemy Peredači Informacii, 4 (1968), 3-10.
[10] J. Yan and J. Yin, Constructions of optimal $\operatorname{GDRP}(n, \lambda ; v)$ of type $\lambda^{1} \mu^{m-1}$, Discrete Appl. Math. 156 (2008), 2666-2678.
[11] J. Yan and J. Yin, A class of optimal constant composition codes from GDRPs, Des. Codes Cryptogr. 50 (2009), 61-76.
[12] J. Yin, J. Yan and C. Wang, Generalized balanced tournament designs and related codes, Des. Codes Cryptogr. 46 (2008), 211-230.

[^0]: *Research of Y. M. Chee, H. M. Kiah, and C. Wang is supported in part by the Singapore National Research Foundation under Research Grant NRF-CRP2-2007-03. Research of C. Wang is also supported in part by NSFC under Grants No. 11271280 and 10801064.
 ${ }^{\dagger}$ Corresponding author.

