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Abstract: Generalized balanced tournament packings (GBTPs) extend the concept of gener-
alized balanced tournament designs introduced by Lamken and Vanstone (1989). In this paper,
we establish the connection between GBTPs and a class of codes called equitable symbol weight
codes (ESWCs). The latter were recently demonstrated to optimize the performance against
narrowband noise in a general coded modulation scheme for power line communications. By
constructing classes of GBTPs, we establish infinite families of optimal ESWCs with code
lengths greater than alphabet size and whose narrowband noise error-correcting capability to
code length ratios do not diminish to zero as the length grows. © 2014 Wiley Periodicals, Inc. J.
Combin. Designs 23: 151–182, 2015
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1. INTRODUCTION

Power line communications (PLCs) is a technology that enables the transmission of data
over electric power lines. It was started in the 1910s for voice communication [28],
and used in the 1950s in the form of ripple control for load and tariff management
in power distribution. With the emergence of the Internet in the 1990s, research into
broadband PLC gathered pace as a promising technology for Internet access and local
area networking, since the electrical grid infrastructure provides “last mile” connectivity
to premises and capillarity within premises. Recently, there has been a renewed interest
in high-speed narrowband PLC due to applications in sustainable energy strategies,
specifically in smart grids (see [15, 17, 25, 34]). However, power lines present a difficult
communications environment and overcoming permanent narrowband disturbance has
remained a challenging problem [2, 26, 30]. Vinck [30] addressed this problem through
the use of a coded modulation scheme based on permutation codes. More recently, Chee
et al. [8] extended Vinck’s analysis to general block codes and motivated the study of
equitable symbol weight codes (ESWCs).

Relatively little is known about optimal ESWCs, other than those that correspond
to permutation codes, injection codes, and frequency permutation arrays. In particular,
only six infinite families of optimal ESWCs with code length greater than alphabet
size are known. These have all been constructed by Ding and Yin [13], and Huczynska
and Mullen [18] as frequency permutation arrays and they meet the Plotkin bound.
One drawback with the code parameters of these families is that the narrowband noise
error-correcting capability to length ratio diminishes as length grows.

In this paper, we construct infinite families of optimal ESWCs whose code lengths
are larger than alphabet size and whose narrowband noise error-correcting capability
to length ratios tend to a positive constant as code length grows. These families of
codes all attain the generalized Plotkin bound. Our results are based on the construction
of equivalent combinatorial designs called generalized balanced tournament packings
(GBTPs).

GBTPs extend the concept of generalized balanced tournament designs (GBTDs)
introduced by Lamken and Vanstone [19]. GBTDs have been extensively studied
[9, 11, 20–22, 33] and are useful in the constructions of resolvable, near-resolvable,
doubly resolvable, and doubly near-resolvable balanced incomplete block designs
[20, 23, 24]. Using the classical correspondence given by Semakov and Zinoviev [29]
(see also [4, 12, 33]), we construct optimal families of ESWCs from certain fami-
lies of GBTPs. We establish existence results for these families of GBTPs by bor-
rowing standard recursion and direct construction methods from combinatorial design
theory.

The paper is organized as follows. In Section 2, we introduce ESWCs and survey the
known results on optimal codes. In Section 3, we introduce GBTPs and establish the
equivalence between GBTPs and ESWCs. At the end of the section, we establish two
classes of GBTPs that correspond to optimal ESWCs. In Sections 4–7, we settle the
existence of these two classes of GBTPs. Section 4 outlines the general strategy, while
Sections 5 and 6 provide recursive and direct constructions, respectively.

Some of the results of the paper have been initially reported at IEEE International
Symposium on Information Theory 2012 [7], and the present paper contains detailed
proofs and includes a new existence result on a family of GBTPs with block size 2
and 3.
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2. PRELIMINARIES

2.1. Notation

For positive integer m and prime power q, denote the ring Z/mZ by Zm and the finite
field of q elements by Fq . Let Z>0 denote the set of positive integers. Let [m] denote the
set {1, 2, . . . , m}. We use angled brackets (〈 and 〉) for multisets. Disjoint set union is
depicted using �. For sets A and B, an element (a, b) ∈ A × B is sometimes written as
ab for succinctness.

A set system is a pair S = (X,A), where X is a finite set of points and A ⊆ 2X.
Elements of A are called blocks. The order of S is the number of points in X, and the
size of S is the number of blocks in A. Let K be a set of nonnegative integers. The set
system (X,A) is said to be K-uniform if |A| ∈ K for all A ∈ A.

2.2. Equitable Symbol Weight Codes

Let � be a set of q symbols. A q-ary code of length n over the alphabet � is a
subset C ⊆ �n. Elements of C are called codewords. The size of C is the number of
codewords in C. For i ∈ [n], the ith coordinate of a codeword u ∈ C is denoted ui , so
that u = (u1, u2, . . . , un). Denote the frequency of symbol σ ∈ � in codeword u ∈ �n

by wσ (u), that is, wσ (u) = |{ui = σ : i ∈ [n]}|.
An element u ∈ �n is said to have equitable symbol weight if wσ (u) ∈ {�n/q�, 	n/q
}

for any σ ∈ �. If all the codewords of C have equitable symbol weight, then the code C is
called an ESWC. Consider the usual Hamming distance defined on codewords and codes
and let d denote the minimum distance of a code C. In addition, consider the following
parameter.

Definition 2.1. Let C be a q-ary code with minimum distance d. The narrowband noise
error-correcting capability of C is

c(C) = min{e : EC(e) ≥ d},

where EC is a function EC : [q] → [n], given by

EC(e) = max
�⊆�

|�|=e

max
c∈C

{∑
σ∈�

wσ (c)

}
.

Chee et al. [8] established that a code C can correct up to c(C) − 1 narrowband noise
errors and demonstrated that an ESWC maximizes the quantity c(C), for fixed n, d,
and q.

Henceforth, only ESWCs are considered. A q-ary ESWC of length n having minimum
distance d is denoted ESWC(n, d)q . Denote the maximum size of an ESWC(n, d)q by
AESW

q (n, d). Any ESWC(n, d)q of size AESW
q (n, d) is said to be optimal. Taken as a q-ary

code of length n, an optimal ESWC(n, d)q satisfies the generalized Plotkin bound [3].
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154 CHEE ET AL.

Theorem 2.2 (Generalized Plotkin bound). If there is an ESWC(n, d)q C of size M ,
then

(
M

2

)
d ≤ n

q−2∑
i=0

q−1∑
j=i+1

MiMj, (1)

where Mi = �(M + i)/q�. If q divides M and
(
M

2

)
d = n

(
q

2

)
(M/q)2, then C is optimal.

In the rest of this paper, ESWCs whose sizes attain the generalized Plotkin bound are
constructed. In particular, the following is established.

Theorem 2.3. The following holds.

(i)

AESW
q (2q − 1, 2q − 2) =

{
3, q = 2,

2q, q ≥ 3.

(ii)

AESW
q (3q − 1, 3q − 3) =

{
4, q = 2,

3q, q ≥ 3.

(iii)

AESW
q (4q − 1, 4q − 4) =

{
4q − 1, q = 2, 3,

4q, q ≥ 4.

(iv) If q ≥ 62 or q ∈ {5 − 18, 30, 42, 46, 48 − 50, 54 − 57},

AESW
q (5q − 1, 5q − 5) = 5q.

(v) If q is an odd prime power,

AESW
q (q2 − 1, q2 − q) = q2.

(vi)

AESW
q

(
3q − 1

2
,

3q − 3

2

)
=
{

4q − 6, q = 3, 5,

3q, q ≥ 7 is odd.

(vii)

AESW
q (2q − 3, 2q − 4) =

⎧⎨
⎩

6q − 12, q = 3, 4,

14, q = 5, 6,

2q + 1, q ≥ 7, except possibly q ∈ {12, 13}.

Observe that any ESWC C with the above parameters must have c(C) = q − 1. In
Table I, we verify that c(C)/n tends to a positive constant as q grows. In the same table,
we compare with known families of optimal ESWC(n, d)q .
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In particular, only six infinite nontrivial families of optimal codes with n > q are
known. However, code parameters for these six families are such that their relative nar-
rowband noise error-correcting capability to length ratios diminish to zero as q grows.
This is undesirable for narrowband noise correction for PLC. Hence, Theorem 2.3 pro-
vides infinite families of optimal ESWCs with code lengths larger than alphabet size and
whose relative narrowband noise capability to length ratios tend to a positive constant as
length grows.

These optimal ESWCs are constructed from GBTPs using the classical correspondence
given by Semakov and Zinoviev [29].1 We remark that GBTPs extend the concept of
GBTDs and consequently Theorem 2.3 (i)–(v) follows directly from known classes of
GBTDs. We explain the connection in detail in the next section.

3. CONSTRUCTIONS OF ESWCs

We first determine AESW
q (n, d) for small values of n, q, and d. With the exception

of AESW
6 (9, 8), an exhaustive computer search established the following values of

AESW
q (n, d). For AESW

6 (9, 8), an ESWC(9, 8)6 of size 14 was found via computer search.
Since an ESWC(9, 8)6 of size 15 cannot exist by the generalized Plotkin bound, it fol-
lows that AESW

6 (9, 8) = 14. We record the results of the computations in the following
proposition and the corresponding optimal codes can be found at [5].

Proposition 3.1. The following holds:

AESW
2 (3, 2) = 3 AESW

2 (5, 3) = 4 AESW
2 (7, 4) = 7

AESW
3 (3, 2) = 6 AESW

3 (4, 3) = 6 AESW
3 (11, 8) = 11

AESW
4 (5, 4) = 12 AESW

5 (7, 6) = 14 AESW
6 (9, 8) = 14.

The rest of the paper establishes the remaining values in Theorem 2.3. To do so, we
define a class of combinatorial designs that is equivalent to ESWCs.

3.1. ESWCs and GBTPs

Let λ, v be positive integers and K be a set of nonnegative integers. A (v,K, λ)-packing
is a K-uniform set system of order v such that every pair of distinct points is contained
in at most λ blocks. The value λ is called the index of the packing. A parallel class (or
resolution class) of a packing is a subset of the blocks that partitions the set of points X.
If the set of blocks can be partitioned into parallel classes, then the packing is resolvable,
and denoted by RP(v,K, λ). An RP(v,K, λ) is called a maximum resolvable packing,
denoted by MRP(v,K, λ), if it contains maximum possible number of parallel classes.

Furthermore, an MRP(v, {k}, λ) is called a resolvable (v, {k}, λ)-balanced incomplete
block design, or RBIBD(v, k, λ) in short, if every pair of distinct points is contained in
exactly λ blocks. A simple computation gives the size of an RBIBD(v, k, λ) to be λv(v−1)

k(k−1) .
We define the combinatorial object of study in this paper. We note that this definition

is a generalization of GBTDs to packings and various indices.

1Bogdanova et al. [4] gave a survey of connection between equidistant codes and designs. Using this corre-
spondence, Ding and Yin [12] constructed optimal constant-composition codes, while Yin et al. [33] constructed
near-constant-composition codes.
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GENERALIZED BALANCED TOURNAMENT PACKINGS 157

Definition 3.2. Let (X,A) be an RP(v,K, λ) with n parallel classes. Then (X,A) is
called a GBTP if the blocks ofA are arranged into an m × n array satisfying the following
conditions:

(i) every point in X is contained in exactly one cell of each column,
(ii) every point in X is contained in either 	n/m
 or �n/m� cells of each row.

We denote such a GBTP by GBTPλ(K; v, m × n).

Unless otherwise stated, the rows of a GBTPλ(K; v,m × n) are indexed by [m] and
the columns by [n].

In a GBTPλ(K; v,m × n), given point x and column j , there is a unique row that
contains the point x in column j . Hence, for each point x ∈ X of a GBTPλ(K; v,m × n)
(X,A), we may correspond the codeword c(x) = (r1, r2, . . . , rn) ∈ [m]n, where rj is
the row in which point x appears in column j . It is obvious that C = {c(x) : x ∈ X} is
an m-ary code of length n over the alphabet [m]. We note that this correspondence is
precisely the one used by Semakov and Zinoviev [29] to show the equivalence between
equidistant codes and resolvable balanced incomplete block designs.

For distinct points x, y ∈ X, the distance between c(x) and c(y) is the number of
columns for which x and y are not both contained in the same row. Since there are at
most λ blocks containing both x and y, and that no two such blocks can occur in the
same column of the GBTPλ(K; v,m × n), the distance between c(x) and c(y) is at least
n − λ.

Next, we determine wi(c(x)), for x ∈ X and i ∈ [m]. From the construction of c(x), the
number of times a symbol i appears in c(x) is the number of cells in row i that contains
x. By the definition of a GBTPλ(K; v,m × n), this number belongs to {�n/m� , 	n/m
}.
Hence, C is an ESWC of size v. Finally, this construction of an ESWC from a GBTP can
easily be reversed. We record these observations as:

Theorem 3.3. Let K be set of non-negative integers. Then a GBTPλ(K; v,m × n)
exists if and only if an ESWC(n, n − λ)m of size v exists.

We note that the correspondence between GBTPs and ESWCs was observed by Yin
et al. [33, Theorem 2.2]. However, in the latter paper, the class of codes constructed is
called near-constant-composition codes (NCCCs). Indeed, an NCCC is a special class of
ESWC and one observes that an ESWC(n, d)q is an NCCC when n + 1 ≡ 0 mod q.

Example 3.1. Consider the GBTP1({2, 3}, 6, 3 × 4) below.

{1,4 {} 2,6 {} 3,5}
{1,2,3 {} 2,5 {} 3,4 {} 1,6}
{4,5,6 {} 3,6 {} 1,5 {} 2,4}

Each point x ∈ [6] gives a codeword c(x) = (r1, r2, . . . , r5), where rj is the row in
which point x appears in column j . Hence, we have

c(1) = (2, 1, 3, 2), c(2) = (2, 2, 1, 3), c(3) = (2, 3, 2, 1),

c(4) = (3, 1, 2, 3), c(5) = (3, 2, 3, 1), c(6) = (3, 3, 1, 2).

The code C = {c(1), c(2), c(3), c(4), c(5), c(6)} is an ESWC(4, 3)3 of size 6.
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158 CHEE ET AL.

Theorem 3.3 sets up the equivalence between GBTPs and ESWCs. In general, a GBTP
may not correspond to an optimal ESWC. However, in the following, we look at specific
K’s to derive families of optimal ESWCs.

3.2. Optimal ESWCs from GBTDs

A GBTPλ

({k}; km, m × λ(km−1)
k−1

)
is called a GBTD, denoted by GBTDλ(k, m). In this

case, we check that each pair of distinct points is contained in exactly λ blocks and every
point is contained in either 	 λ(km−1)

m(k−1) 
 or � λ(km−1)
m(k−1) � cells of each row.

Applying Theorem 3.3, an ESWC( λ(km−1)
k−1 , λk(m−1)

k−1 )m of size km exists and the corre-
sponding code is optimal by generalized Plotkin bound. So, we have the following.

Theorem 3.4. A GBTDλ(k, m) exists if and only if an optimal ESWC( λ(km−1)
k−1 , λk(m−1)

k−1 )m
of size km exists and attains the generalized Plotkin bound.

We remark that our definition of a GBTD extends that of Lamken and Vanstone
[19], which corresponds in our definition to the case when λ = k − 1. The following
summarizes the state-of-the-art results on the existence of GBTDk−1(k, m).

Theorem 3.5 (Lamken [19–22], Yin et al. [33], Chee et al. [9], Dai et al. [11]). The
following holds.

(i) A GBTD1(2,m) exists if and only if m = 1 or m ≥ 3.
(ii) A GBTD2(3,m) exists if and only if m = 1 or m ≥ 3.

(iii) A GBTD3(4,m) exists if and only if m = 1 or m ≥ 4.
(iv) A GBTD4(5,m) exists if m ≥ 62 or m ∈ {5 − 18, 30, 42, 46, 48 − 50, 54 − 57}.
(v) A GBTDk−1(k, k) exists if k is an odd prime power.

Theorem 2.3 (i)–(v) is now an immediate consequence of Theorems 3.4, 3.5, and
Proposition 3.1. The existence of GBTDλ(k, m) when λ �= k − 1 has not been previously
investigated. The smallest open case is when k = 3 and λ = 1, which is the case dealt
with in this paper.

It follows, readily from the fact that a GBTD1(3,m) is also an RBIBD(3m, 3, 1), that
a necessary condition for a GBTD1(3, m) to exist is that m must be odd. We note from
Proposition 3.1 that AESW

3 (4, 3) = 6 and AESW
5 (7, 6) = 14, which do not meet the Plotkin

bound. Hence, the corresponding designs GBTD1(3, 3) and GBTD1(3, 5) do not exist by
Theorem 3.4.

Hence, a GBTD1(3,m) can exist only if m is odd and m /∈ {3, 5}. In Sections 4–7, we
prove that this necessary condition is also sufficient for the existence of GBTD1(3, m).
A direct consequence of this is Theorem 2.3 (vi).

3.3. Optimal ESWCs from GBTP1({2, 3∗}; 2m + 1, m × (2m − 3))

Theorem 3.4 constructs optimal ESWCs from GBTDs. In this subsection, we make slight
variations to obtain another infinite family of optimal ESWCs.

Consider a GBTP1({2, 3}; v,m × n). If there is exactly one block of size 3 in each
resolution class, then we denote the GBTP by GBTP1({2, 3∗}; v, m × n). A simple com-
putation then shows v = 2m + 1. Now we establish the following construction for optimal
ESWCs.

Journal of Combinatorial Designs DOI 10.1002/jcd
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GENERALIZED BALANCED TOURNAMENT PACKINGS 159

Theorem 3.6. Let m ≥ 7. If there exists a GBTP1({2, 3∗}; 2m + 1, m × (2m − 3)),
then there exists an optimal ESWC(2m − 3, 2m − 4)m of size 2m + 1, which attains the
generalized Plotkin bound.

Proof. By Theorem 3.3, we have a ESWC(2m − 3, 2m − 4)m of size 2m + 1. It remains
to verify its optimality.

Suppose otherwise that there exists an ESWC(2m − 3, 2m − 4)m of size 2m + 2.
Consider (1) in Theorem 2.2. On the left-hand side, we have

(
2m + 2

2

)
· (2m − 4) = 4m3 − 2m2 − 10m − 4.

Since � 2m+2+i
m

� = 2 for 0 ≤ i ≤ m − 3 and � 2m+2+(m−2)
m

� = � 2m+2+(m−1)
m

� = 3, the term
on the right hand is

(2m − 3)

((
m−3∑
i=0

4(m − 3 − i) + 12

)
+ 9

)

= (2m − 3)(4m(m − 2) − 2(m − 3)(m − 2) + 9)

= 4m3 − 2m2 − 12m + 9.

But for m ≥ 7,

4m3 − 2m2 − 10m − 4 > 4m3 − 2m2 − 12m + 9,

contradicting (1). Hence, an ESWC(2m − 3, 2m − 4)m of size 2m + 2 does not exist and
the result follows. �

In the rest of this paper, we construct a GBTP1({2, 3∗}; 2m + 1, m × (2m − 3)) for
m ≥ 4, except possibly m ∈ {12, 13}. This with Theorem 3.6 and Proposition 3.1 gives
Theorem 2.3 (vii).

4. PROOF STRATEGY OF THEOREM 2.3 (vi) AND THEOREM 2.3 (vii)

For the rest of the paper, we determine with finite possible exceptions the existence of
GBTD1(3, m) and GBTP1({2, 3∗}; 2m + 1, m × (2m − 3)). Our proof is technical and
rather complex. However, it follows the general strategy of the previous work [11,
21, 33]. This section outlines the general strategy used, and introduces some required
combinatorial designs.

As with most combinatorial designs, using direct constructions to settle their existence
is often difficult. Instead, we use recursive constructions, building big designs from
smaller ones. Direct methods are used to construct a large enough set of small designs on
which the recursions can work to generate all larger designs. For our recursive techniques
to work, the GBTPs must possess more structure than stipulated in its definition. First,
we consider GBTD1(3, m)s that are ∗colorable, which are defined below.

Journal of Combinatorial Designs DOI 10.1002/jcd
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160 CHEE ET AL.

0001∞ ♣ 204031 ♣ 614010 ♦ 211161 ♣ 511020 ♥ 413111 ♥ 514121 ♦
615131 ♣ 1011∞ ♣ 305041 ♣ 3031∞ ♦ 500061 ♦ 601001 ♦ 002011 ♥
103021 ♣ 016141 ♣ 2021∞ ♦ 406051 ♣ 116030 ♦ 5051∞ ♥ 311050 ♦
412060 ♣ 513000 ♣ 110151 ♦ 015020 ♥ 4041∞ ♦ 210040 ♥ 6061∞ ♥
114050 ♣ 215060 ♦ 316000 ♣ 410010 ♦ 312101 ♥ 612030 ♣ 013040 ♦

FIGURE 1. A 3-∗colorable RBIBD(15, 3, 1) (X,A), where X = (Z7 × Z2) ∪ {∞}. The set of
colors used is {♣,♦,♥}. (X,A) has property � as 10 is a witness for ♣ and ∞ is a witnesses
for both ♦ and ♥ in row 1. For succintness, a block {x, y, z} is written xyz.

4.1. c-∗colorable GBTDs

We generalize the notion of factored GBTDs (FGBTDs) introduced by Lamken [22].
FGBTDs are crucial in the k-tupling construction for GBTDs of index k − 1. However,
when the index is 1, we extend this notion to ∗-colorability.

Definition 4.1. Let c be positive. A c-∗colorable RBIBD(v, k, λ) is an RBIBD(v, k, λ)
with the property that its λv(v−1)

k(k−1) blocks can be arranged in a v
k

× λ(v−1)
k−1 array, and each

block can be colored with one of c colors so that

(i) each point appears exactly once in each column, and
(ii) in each row, blocks of the same color are pairwise disjoint.

Definition 4.2. A GBTDλ(k, m) is c-∗colorable if each of its blocks can be colored
with one of c colors so that in each row, blocks of the same color are pairwise disjoint.

Definition 4.3. A k-∗colorable RBIBD(v, k, 1) is k-∗colorable with property � if there
exists a row r such that for each color i, there exists a point (called a witness for i) that
is not contained in any block in row r that is colored i.

A GBTD1(k, m) that is c-∗colorable with property � is similarly defined.

Example 4.1. The RBIBD(15, 3, 1) in Fig. 1 is 3-∗colorable with property �.

Proposition 4.4. If an RBIBD(v, k, 1) is (k − 1)-∗colorable, then it is k-∗colorable
with property �.

Proof. Consider a (k − 1)-∗colorable RBIBD(v, k, 1) with colors c1, c2, . . . , ck−1.
There must exists a point, say x, that appears only once in the first row. Recolor the block
that contains this point with color ck . This new coloring shows that the RBIBD(v, k, 1)
is k-∗colorable with property �, since for the first row, the point x is a witness for colors
c1, c2, . . . , ck−1, and any point not in the block colored by ck is a witness for ck . �
Example 4.2. The GBTD1(3, 9) in Fig. 2 is 2-∗colorable and is therefore 3-∗colorable
with property � by Proposition 4.4.

We note that a 3-∗colorable RBIBD and a 3-∗colorable RBIBD with property �

are crucial in the tripling construction of a GBTD1(3, m) and a special GBTD(1(3, m),
respectively (see Proposition 5.1). This is an adaptation of the k-tupling construction
for GBTDs with index k − 1 [22, Theorem 3.1]. However, we note certain differences.
An FGBTD by definition is necessary a GBTD, while ∗-colorability and property � are

Journal of Combinatorial Designs DOI 10.1002/jcd
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GENERALIZED BALANCED TOURNAMENT PACKINGS 161

A B

where A is the array

1071∞2 ♣ 6032∞1 ♣ 004162 ♣ 607102 ♦ 700112 ♣ 505152 ♦ 1142∞0 ♣
5022∞1 ♦ 2001∞2 ♣ 7042∞1 ♣ 105172 ♣ 404142 ♦ 001122 ♣ 7051∞2 ♦
3162∞0 ♣ 4172∞0 ♦ 3011∞2 ♣ 0052∞1 ♣ 206102 ♣ 307112 ♦ 102132 ♣
304152 ♣ 101112 ♦ 5102∞0 ♣ 4021∞2 ♦ 5031∞2 ♣ 2072∞1 ♣ 400122 ♣
602142 ♦ 405162 ♣ 506172 ♦ 6112∞0 ♣ 1062∞1 ♦ 6041∞2 ♣ 3002∞1 ♣
000102 ♦ 502102 ♣ 407132 ♣ 201162 ♣ 7122∞0 ♦ 106142 ♣ 003172 ♣
706132 ♣ 703152 ♦ 603112 ♣ 500142 ♣ 302172 ♣ 0132∞0 ♦ 207152 ♣
205112 ♣ 007142 ♣ 202122 ♦ 704122 ♣ 601152 ♣ 403102 ♣ 606162 ♦
401172 ♣ 306122 ♣ 100152 ♣ 303132 ♦ 005132 ♣ 702162 ♣ 504112 ♣

where B is the array

0061∞2 ♦ 406152 ♣ 102040 ♦ 203050 ♣ 227202 ♣ 213151 ♣
2152∞0 ♣ 507162 ♣ 314161 ♣ 011131 ♦ 304060 ♣ 320212 ♣
203142 ♦ 600172 ♣ 421222 ♣ 415171 ♣ 516101 ♦ 405070 ♣
707172 ♦ 002112 ♣ 025262 ♦ 607010 ♣ 623242 ♣ 617111 ♣
501132 ♣ 103122 ♣ 710121 ♣ 522232 ♦ 700020 ♣ 724252 ♣
605122 ♣ 204132 ♦ 3070∞0 ♣ 126272 ♦ 5212∞2 ♣ 4101∞1 ♣
104102 ♣ 305142 ♦ 1151∞1 ♣ 4000∞0 ♣ 112141 ♦ 6222∞2 ♣
300162 ♣∞0∞1∞2 ♦ 3272∞2 ♣ 2161∞1 ♣ 5010∞0 ♣ 001030 ♦

4012∞1 ♦ 701102 ♦ 506000 ♦ 4202∞2 ♣ 3171∞1 ♣ 6020∞0 ♣

FIGURE 2. A 2-∗colorable special GBTD1(3, 9) (X,A), where X = (Z8 × Z3) ∪
{∞0,∞1,∞2} and colors {♣,♦}. The cell (1, 5), occupied by the block 700112, is special.
For succinctness, a set {x, y, z} is written xyz.

defined for RBIBDs. Hence, we do not need a smaller GBTD to seed the recursion in
Proposition 5.1. We make use of this fact to yield a special GBTD1(3, 15) in Lemma 7.1.

4.2. Incomplete GBTPs

Incomplete designs are ubiquitous in combinatorial design theory and crucial in “filling
in the holes” constructions described in Section 5.

Suppose that (X,A) is a (v,K, λ)-packing. Let W ⊂ X with |W | = w. Furthermore,
we call (X, W,A) as an incomplete resolvable packing, denoted by IRP(v,K, λ; w), if it
satisfies the following conditions:

(i) any pair of points from W occurs in no blocks of A,
(ii) the blocks in A can be partitioned into parallel classes and partial parallel classes

X \ W .

Journal of Combinatorial Designs DOI 10.1002/jcd
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162 CHEE ET AL.

Definition 4.5. Let (X, W,A) be an IRP(v,K, λ; w). Then (X, W,A) is called an
incomplete GBTP (IGBTP) if the blocks of A are arranged into an m × n array A, with
rows and columns indexed by R and C, respectively, satisfying the following conditions:

(i) there exist a P ⊂ R with |P | = m′ and a Q ⊂ C with |Q| = n′ such that the cell
(r, c) is empty if r ∈ P and c ∈ Q;

(ii) for any row r ∈ P , every point in X \ W is contained in either 	n/m
 or �n/m�
cells and the points in W do not appear; for any row r ∈ R \ P , every point in X is
contained in either 	n/m
 or �n/m� cells;

(iii) the blocks in any column c ∈ Q form a partial parallel class of X \ W and the blocks
in any column c ∈ C \ Q forms a parallel class of X.

Denote such an IGBTP by IGBTPλ(K, v, m × n; w, m′ × n′).

Example 4.3. An IGBTP1({2, 3∗}, 29, 14 × 25; 9, 4 × 5) is given in Fig. 3.

Consider an IGBTP1({k}, km, m × km−1
k−1 ; k, 1 × 1). Then its corresponding array has

one empty cell and we fill this cell with the block W to obtain a GBTD1(k, m). A
GBTD1(k, m) obtained in this way is called a special GBTD1(k, m) and the cell occupied
by W is said to be special.

Example 4.4. The GBTD1(3, 9) in Fig. 2 is a special GBTD1(3, 9) with special cell
(1, 5).

A few more classes of auxiliary designs are also required.

4.3. Group Divisible Designs and Transversal Designs

Definition 4.6. Let (X,A) be a set system and let G = {G1, G2, . . . , Gs} be a partition
of X into subsets, called groups. The triple (X,G,A) is a group divisible design (GDD)
when every 2-subset of X not contained in a group appears in exactly one block, and
|A ∩ G| ≤ 1 for A ∈ A and G ∈ G.

We denote a GDD (X,G,A) by K-GDD if (X,A) is K-uniform. The type of a GDD
(X,G,A) is the multiset 〈|G| : G ∈ G〉. For convenience, the exponential notation is used
to describe the type of a GDD: a GDD of type g

t1
1 g

t2
2 . . . gts

s is a GDD with exactly ti
groups of size gi , i ∈ [s].

Definition 4.7. A transversal design TD(k, n) is a {k}-GDD of type nk .

The following result on the existence of transversal designs (see [1]) is sometimes used
without explicit reference throughout this paper.

Theorem 4.8. Let TD(k) denote the set of positive integers n such that there exists a
TD(k, n). Then, we have

(i) TD(4) ⊇ Z>0 \ {2, 6},
(ii) TD(5) ⊇ Z>0 \ {2, 3, 6, 10},

(iii) TD(6) ⊇ Z>0 \ {2, 3, 4, 6, 10, 14, 18, 22},
(iv) TD(7) ⊇ Z>0 \ {2, 3, 4, 5, 6, 10, 14, 15, 18, 20, 22, 26, 30, 34, 38, 46, 60},
(v) TD(k) ⊇ {q : q ≥ k − 1 is a prime power}.

Journal of Combinatorial Designs DOI 10.1002/jcd
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GENERALIZED BALANCED TOURNAMENT PACKINGS 163

A B

where A is the array

– – – – – 2, 13 3, 14 4, 15 5, 16 6, 17 7, 18 8, 19 9, 0
– – – – – 12, 16 13, 17 14, 18 15, 19 16, 0 17, 1 18, 2 19, 3
– – – – – 15, 18 16, 19 17, 0 18, 1 19, 2 0, 3 1, 4 2, 5
– – – – – 1, 3 2, 4 3, 5 4, 6 5, 7 6, 8 7, 9 8, 10

0, 10 2, 7 12, 17 4, 16 14, 6 4, 5, 11 i, 18 h, 1 g, 12 f, 18 e, 13 d, 16 c, 13
1, 11 3, 8 13, 18 5, 17 15, 7 a, 0 5, 6, 12 i, 19 h, 2 g, 13 f, 19 e, 14 d, 17
2, 12 4, 9 14, 19 6, 18 16, 8 b, 7 a, 1 6, 7, 13 i, 0 h, 3 g, 14 f, 0 e, 15
3, 13 5, 10 15, 0 7, 19 17, 9 c, 6 b, 8 a, 2 7, 8, 14 i, 1 h, 4 g, 15 f, 1
4, 14 6, 11 16, 1 8, 0 18, 10 d, 10 c, 7 b, 9 a, 3 8, 9, 15 i, 2 h, 5 g, 16
5, 15 7, 12 17, 2 9, 1 19, 11 e, 8 d, 11 c, 8 b, 10 a, 4 9, 10, 16 i, 3 h, 6
6, 16 8, 13 18, 3 10, 2 0, 12 f, 14 e, 9 d, 12 c, 9 b, 11 a, 5 10, 11, 17 i, 4
7, 17 9, 14 19, 4 11, 3 1, 13 g, 9 f, 15 e, 10 d, 13 c, 10 b, 12 a, 6 11, 12, 18
8, 18 10, 15 0, 5 12, 4 2, 14 h, 19 g, 10 f, 16 e, 11 d, 14 c, 11 b, 13 a, 7
9, 19 11, 16 1, 6 13, 5 3, 15 i, 17 h, 0 g, 11 f, 17 e, 12 d, 15 c, 12 b, 14

where B is the array

10, 1 11, 2 12, 3 13, 4 14, 5 15, 6 16, 7 17, 8 18, 9 19, 10 0, 11 1, 12
0, 4 1, 5 2, 6 3, 7 4, 8 5, 9 6, 10 7, 11 8, 12 9, 13 10, 14 11, 15
3, 6 4, 7 5, 8 6, 9 7, 10 8, 11 9, 12 10, 13 11, 14 12, 15 13, 16 14, 17
9, 11 10, 12 11, 13 12, 14 13, 15 14, 16 15, 17 16, 18 17, 19 18, 0 19, 1 0, 2
b, 15 a, 9 14, 15, 1 i, 8 h, 11 g, 2 f, 8 e, 3 d, 6 c, 3 b, 5 a, 19
c, 14 b, 16 a, 10 15, 16, 2 i, 9 h, 12 g, 3 f, 9 e, 4 d, 7 c, 4 b, 6
d, 18 c, 15 b, 17 a, 11 16, 17, 3 i, 10 h, 13 g, 4 f, 10 e, 5 d, 8 c, 5
e, 16 d, 19 c, 16 b, 18 a, 12 17, 18, 4 i, 11 h, 14 g, 5 f, 11 e, 6 d, 9
f, 2 e, 17 d, 0 c, 17 b, 19 a, 13 18, 19, 5 i, 12 h, 15 g, 6 f, 12 e, 7
g, 17 f, 3 e, 18 d, 1 c, 18 b, 0 a, 14 19, 0, 6 i, 13 h, 16 g, 7 f, 13
h, 7 g, 18 f, 4 e, 19 d, 2 c, 19 b, 1 a, 15 0, 1, 7 i, 14 h, 17 g, 8
i, 5 h, 8 g, 19 f, 5 e, 0 d, 3 c, 0 b, 2 a, 16 1, 2, 8 i, 15 h, 18

12, 13, 19 i, 6 h, 9 g, 0 f, 6 e, 1 d, 4 c, 1 b, 3 a, 17 2, 3, 9 i, 16
a, 8 13, 14, 0 i, 7 h, 10 g, 1 f, 7 e, 2 d, 5 c, 2 b, 4 a, 18 3, 4, 10

FIGURE 3. An IGBTP1({2, 3}, 29, 14 × 25; 9, 4 × 5) (X,A), where X = Z20 ∪
{a, b, c, d, e, f, g, h, i} and W = {a, b, c, d, e, f, g, h, i}. For succinctness, a block {x, y, z} is
written x, y, z.

Definition 4.9. A doubly resolvable TD(k, n), denoted by DRTD(k, n), is a TD(k, n)
whose blocks can be arranged in an n × n array such that each point appears exactly
once in each row and once in each column.

The following proposition describes the relationship between DRTDs and TDs.

Proposition 4.10 (Folklore, see [1, Theorem 3.18] and [10]). There exists a TD(k +
2, n) if and only if there exists a DRTD(k, n).

Journal of Combinatorial Designs DOI 10.1002/jcd
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164 CHEE ET AL.

Corollary 4.11. A DRTD(3, n) exists for all n ≥ 4 and n �∈ {6, 10}.
Proof. A TD(5, n) exists if n ≥ 4 and n �∈ {6, 10} by Theorem 4.8. �

4.4. Frame GBTD

Let (X,G,A) be a {k}-GDD with G = {G1, G2, . . . , Gs} and |Gi | ≡ 0 mod k(k − 1)
for all i ∈ [s]. Let R = 1

k

∑s
i=1 |Gi | and C = 1

k−1

∑s
i=1 |Gi |. Suppose there exists a

partition [R] = ⊔s
i=1 Ri and a partition [C] = ⊔s

i=1 Ci such that for each i ∈ [s], we
have |Ri | = |Gi |/k and |Ci | = |Gi |/(k − 1).

We say that (X,G,A) is a frame GBTD (FrGBTD) if its blocks can be arranged in an
R × C array such that the following conditions hold:

(i) the cell (r, c) is empty when (r, c) ∈ Ri × Ci for i ∈ [s],
(ii) for any row r ∈ Ri , each point in X \ Gi appears either once or twice and the points

in Gi do not appear,
(iii) for any column c ∈ Ci , each point in X \ Gi appears exactly once.

Denote this FrGBTD by FrGBTD(k, T ), where T = 〈|Gi | : i ∈ [s]〉.
Example 4.5. An FrGBTD(3, 66) is given in Fig. 4.

5. RECURSIVE CONSTRUCTIONS

In this section, we describe the necessary recursive constructions. We note that these are
straightforward adaptions of methods in previous work [11, 21, 22, 33]. Here, we state
the propositions without proof and the interested reader may refer to [6] for detailed
proofs.

5.1. Recursive Constructions for GBTPs

First, for block size 3, we have the following tripling construction for GBTDs. This is an
adaption of k-tupling construction for the case of GBTDs with index k − 1 [22, Theorem
3.1] and the doubling construction for balanced tournament designs [27].

Proposition 5.1 (Tripling construction). Suppose there exists a 3-∗colorable
RBIBD(m, 3, 1) and a DRTD(3, m). Then there exists a 2-∗colorable GBTD1(3, m).
Suppose further that the RBIBD(m, 3, 1) is 3-∗colorable with property �. Then the
GBTD1(3, m) is a special GBTD1(3, m).

Corollary 5.2. Let m > 3 and suppose an RBIBD(m, 3, 1) that is 3-∗colorable with
property � exists. Then there exists a special GBTD1(3, 3km), for all k ≥ 0.

Proof. First note that m ≡ 3 mod 6 since this is a necessary condition for the existence
of an RBIBD(m, 3, 1). Hence, there exists a DRTD(3, m) by Corollary 4.11. By Propo-
sition 5.1, there exists a 2-∗colorable special GBTD1(3, m), which may be regarded as
an RBIBD(3m, 3, 1) that is 3-∗colorable with property �. The corollary then follows by
induction. �

The following propositions are simple generalizations of the standard “filling in the
hole” construction to construct GBTPs or GBTDs using IGBTPs and FrGBTDs.

Journal of Combinatorial Designs DOI 10.1002/jcd
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GENERALIZED BALANCED TOURNAMENT PACKINGS 165

A B

where A is the array

– – – 401070 411171 421272 603090 613191 623292

– – – 607280 617081 627182 809200 819001 829102

208110 218211 228012 – – – 4182∞4 4280∞3 4081∞5

627231 607032 617130 – – – 9112∞5 9210∞4 9011∞3

400130 410231 420032 113091 123192 103290 – – –
829251 809052 819150 426182 406280 416081 – – –
602150 612251 622052 8112∞0 8210∞1 8011∞2 315011 325112 305210

021271 001072 011170 2031∞1 2132∞2 2230∞0 628102 608200 618001

804170 814271 824072 2290∞2 2091∞0 2192∞1 0132∞0 0230∞1 0031∞2

223291 203092 213190 3241∞3 3042∞5 3140∞4 4051∞1 4152∞2 4250∞0

006190 016291 026092 2162∞4 2260∞3 2061∞5 4210∞2 4011∞0 4112∞1

425211 405012 415110 7192∞5 7290∞4 7091∞3 5261∞3 5062∞5 5160∞4

where B is the array

805010 815111 825212 007030 017131 027232 209050 219151 229252

001220 011021 021122 203240 213041 223142 405260 415061 425162

6230∞2 6031∞0 6132∞1 4172∞0 4270∞1 4071∞2 911071 921172 901270

7281∞3 7082∞5 7180∞4 8091∞1 8192∞2 8290∞0 224162 204260 214061

6102∞4 6200∞3 6001∞5 8250∞2 8051∞0 8152∞1 6192∞0 6290∞1 6091∞2

1132∞5 1230∞4 1031∞3 9201∞3 9002∞5 9100∞4 0011∞1 0112∞2 0210∞0

– – – 8122∞4 8220∞3 8021∞5 0270∞2 0071∞0 0172∞1

– – – 3152∞5 3250∞4 3051∞3 1221∞3 1022∞5 1120∞4

517031 527132 507230 – – – 0142∞4 0240∞3 0041∞5

820122 800220 810021 – – – 5172∞5 5270∞4 5071∞3

2152∞0 2250∞1 2051∞2 719051 729152 709250 – – –
6071∞1 6172∞2 6270∞0 022142 002240 012041 – – –

FIGURE 4. An FrGBTD1(3, 66) (X,G,A), where X = (Z10 × Z3) ∪ {∞i : i ∈ Z6} and
G = {{t0, t1, t2, (5 + t)0, (5 + t)1, (5 + t)2} : t ∈ Z5} ∪ {∞i : i ∈ Z6}. For succinctness, a set
{x, y, z} is written xyz.

Proposition 5.3 (IGBTP construction for GBTP). If an IGBTPλ(K, v,m × n; w, m′ ×
n′) and a GBTPλ(K,w, m′ × n′) exists, then a GBTPλ(K, v, m × n) exists.

FrGBTD is a useful tool to construct larger GBTPs from smaller ones.

Proposition 5.4 (FrGBTD construction for GBTP). Let k ∈ K . Suppose there ex-
ists an FrGBTD(k, T )(X,G,A), where G = {G1, G2, . . . ,Gs}, and let ri = |Gi |/k and
ci = |Gi |/(k − 1), for i ∈ [s]. If there exists an IGBTP1(K, |Gi | + w, (ri + m) × (ci +
n); w,m × n) for all i ∈ [s], then there exists an IGBTP1(K,

∑s
i=1 |Gi | + w, (

∑s
i=1 ri +

Journal of Combinatorial Designs DOI 10.1002/jcd
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166 CHEE ET AL.

m) × (
∑s

i=1 ci + n); w, m × n). Furthermore, if a GBTP1(K, w,m × n) exists, then a
GBTP1(K,

∑s
i=1 |Gi | + w, (

∑s
i=1 ri + m) × (

∑s
i=1 ci + n)) exists.

Since a GBTD is an instance of GBTP, we have the following recursive construction
for GBTDs.

Corollary 5.5 (FrGBTD construction for GBTD). Suppose an FrGBTD(k, T ) exists
with groups {G1, G2, . . . , Gs}. Let gi = |Gi |/k, for i ∈ [s]. If there exists a special
GBTD1(k, gi + 1) for all i ∈ [s], then there exists a special GBTD1(k,

∑s
i=1 gi + 1).

When the groups are of the same size, we have the following corollary.

Corollary 5.6. If there exists an FrGBTD(3, (3g)t ) and a special GBTD1(3, g + 1),
then there exists a special GBTD1(3, gt + 1).

For Proposition 5.3 and Corollary 5.5 to be useful, we require large classes of FrGBTDs.
We give three recursive constructions for FrGBTDs next.

5.2. Recursive Constructions for FrGBTDs

We adapt the standard direct product construction.

Proposition 5.7 (Inflation). Suppose an FrGBTD(k, T ) and a DRTD(k, n) exists. Then
there exists an FrGBTD(k, nT ).

Wilson’s fundamental construction for GDDs [32] can also be modified to construct
FrGBTDs.

Proposition 5.8 (Fundamental construction). Suppose there exists a (master) GDD
(X,G,A) of type T and let w : X → Z≥0 be a weight function. If for each A ∈
A, there exists an (ingredient) FrGBTD(k, 〈w(a) : a ∈ A〉), then there exists an
FrGBTD(k, 〈∑x∈G w(x) : G ∈ G〉).

Proposition 5.8 admits the following specialization.

Proposition 5.9 FrGBTD from truncated TD. Let s > 0. Suppose there exists a
TD(u + s, m), and g1, g2, . . . , gs are non-negative integers at most m. If there exists an
FrGBTD(k, gt ) for each t ∈ {u, u + 1, . . . , u + s}, then there exists an FrGBTD(k, T ),
where T = (g · m)u(g · g1)(g · g2) · · · (g · gs).

6. DIRECT CONSTRUCTIONS

This section constructs some small GBTDs and FrGBTDs that are required to seed the
recursive constructions given in Section 5. Our main tools are starters and the method of
differences .

Starter–adder constructions are ubiquitous in the constructions for GBTDs with index
k − 1, associated frames, and other types of similar designs (see, e.g., [9, 11, 21, 22, 33]).
Unlike previous work and due to the lack of symmetry in our arrays, we fix the positions
of the starters in our arrays and “develop” the blocks in a variety of “directions” (see Figs.
5–7). This removes the use of adders and surprisingly a careful analysis of the starter
conditions allows a prime power construction that is given in Proposition 6.3.

Journal of Combinatorial Designs DOI 10.1002/jcd
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GENERALIZED BALANCED TOURNAMENT PACKINGS 167

A B

where A is the array

A0 A−α1 + α1 A−α2 + α2 · · · A−αm−1 + αm−1

Aα1 A0 + α1 Aα1−α2 + α2 · · · Aα1−αm−1 + αm−1

...
...

...
. . .

...
Aαm−1 Aαm−1−α1 + α1 Aαm−1−α2 + α2 · · · A0 + αm−1

and B is the array

B1 B2 · · · B(m−1)/(k−1)

B1 + α1 B2 + α1 · · · B(m−1)/(k−1) + α1

...
...

. . .
...

B1 + αm−1 B2 + αm−1 · · · B(m−1)/(k−1) + αm−1

.

FIGURE 5. A GBTD1(k,m) from (� × [k])-GBTD-starter S = {Aα : α ∈ �} ∪ {Bt : t ∈ T },
where � = {0, α1, . . . , αm−1} and T = [(m − 1)/(k − 1)].

First, we recall certain concepts with regards to the method of differences. Let � be
an additive abelian group and let n be a positive integer. For a set system (�,S), the
difference list of S is the multiset

�S = 〈x − y : x, y ∈ A, x �= y, and A ∈ S〉.
For a set system (� × [n],S) and i, j ∈ [n], the multiset

�ijS = 〈x − y : xi, yj ∈ A, xi �= yj , and A ∈ S〉
is called a list of pure differences when i = j , and called a list of mixed differences when
i �= j .

6.1. Direct Constructions for GBTDs

Definition 6.1 (Starter for GBTD). Let m be an odd positive integer, � be an additive
abelian group of size m. Let T be an index set of size (m − 1)/2. Let (� × [3],S) be a
{3}-uniform set system of size (3m − 1)/2, where

S = {Aα : α ∈ �} ∪ {Bt : t ∈ T }.
S is called a (� × [3])-GBTD-starter if the following conditions hold:

(i) �iiS = � \ {0}, for i ∈ [3],
(ii) �ijS = �, for i, j ∈ [3], i �= j ,

(iii) ∪α∈�Aα = � × [3],

Journal of Combinatorial Designs DOI 10.1002/jcd
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168 CHEE ET AL.

W B B + 01

A C C + 01

where W is a (w − 1)/2 × (w − 4) empty array, A is an m × (w − 4) array,

{00, 01} A1 A1 + 01 A2 A2 + 01 · · · A(w−5)/2 A(w−5)/2 + 01

{10, 11} A1 + 10 A1 + 11 A2 + 10 A2 + 11 · · · A(w−5)/2 + 10 A(w−5)/2 + 11

...
...

...
...

...
. . .

...
...

{(m − 1)0, (m − 1)1}A1 − 10 A1 − 11 A2 − 10 A2 − 11 · · · A(w−5)/2 − 10 A(w−5)/2 − 11

,

B and C are the following (w − 1)/2 × m and m × m arrays,

B1 B1 + 10 · · · B1 − 10

B2 B1 + 10 · · · B1 − 10

...
...

. . .
...

B(w−1)/2 B(w−1)/2 + 10 · · · B(w−1)/2 − 10

,

C0 Cm−1 + 10 · · · C1 − 10

C1 C0 + 10 · · · C2 − 10

...
...

. . .
...

Cm−1 Cm−2 + 10 · · · C0 − 10

.

FIGURE 6. An IGBTP1({2, 3∗}, 2m + w, (m + (w − 1)/2) × (2m + w − 4); w, (w − 1)/2 ×
(w − 4)) from a ((Zm × Z2) ∪ Ww)-GBTP-starter.

W B B + 01 B + 02 B + 03

A
C D + 01 C + 02 D + 03

D C + 01 D + 02 C + 03

where W is a 4 × 5 empty array, A is a 2m × 5 array,

{00, 01} {x0, x2} {y0, y3} A A + 02

{10, 11} {(x + 1)0, x2} {(y + 1)0, (y + 1)3} A + 10 A + 12

...
...

...
...

...
{(m − 1)0, (m − 1)1} {(x − 1)0, x2} {(y − 1)0, (y − 1)3} A + (m − 1)0 A + (m − 1)2

{02, 03} {x1, x3} {y1, y2} A + 01 A + 03

{12, 13} {(x + 1)1, x3} {(y + 1)1, (y + 1)2} A + 11 A + 13

...
...

...
...

...
{(m − 1)2, (m − 1)3} {(x − 1)1, x3} {(y − 1)1, (y − 1)2} A + (m − 1)1 A + (m − 1)3

,

B, C and D are the following 4 × m, m × m and m × m arrays respectively,

B1 B1 + 10 · · · B1 − 10

B2 B2 + 10 · · · B2 − 10

B3 B3 + 10 · · · B3 − 10

B4 B4 + 10 · · · B4 − 10

,

C0 Cm−1 + 10 · · · C1 − 10

C1 C0 + 10 · · · C2 − 10

...
...

. . .
...

Cm−1 Cm−2 + 10 · · · C0 − 10

,

D0 Dm−1 + 10 · · · D1 − 10

D1 D0 + 10 · · · D2 − 10

...
...

. . .
...

Dm−1 Dm−2 + 10 · · · D0 − 10

.

FIGURE 7. An IGBTP1({2, 3∗}, 4m + 9, (2m + 4) × (4m + 5); 9, 4 × 5) from a ((Zm × Z4) ∪
W9)-GBTP-starter.
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GENERALIZED BALANCED TOURNAMENT PACKINGS 169

(iv) {j : αj ∈ Bt for some α ∈ �} = [3], for t ∈ T ,
(v) each element in � × [3] appears either once or twice in the multiset

R =
(⋃

α∈�

Aα − α

)
∪
(⋃

t∈T

Bt

)
.

Furthermore, S is said to be special if
(vi) each element in A0 appears exactly once in R.

Also, S is said to be 3-∗colorable with property � if each of the blocks in

{Aα − α : α ∈ �} and {Bt : t ∈ T },

can be colored with one of three colors so that
(vii) blocks of the same color are pairwise disjoint,

(viii) for each color c, there exists a point (a witness for c) that is not contained in any
block assigned color c.

Proposition 6.2. If a (� × [k])-GBTD-starter exists, then a GBTD1(k, m) exists.
Similarly, if there exists a special (� × [3])-GBTD-starter, then there exists a special
GBTD1(3, m); and if there exists a 3-∗colorable (� × [3])-GBTD-starter with property
�, then there exists a 3-∗colorable GBTD1(3, m) with property �.

Proof. Let X = � × [k], and supposeS = {Aα : α ∈ �} ∪ {Bt : t ∈ T } is an (� × [k])-
GBTD-starter. Let

A =
⋃
A∈S

{A + α : α ∈ �}.

Then (X,A) is a BIBD(km, k, 1), whose blocks can be arranged in an m × (km−1)
k−1 array,

whose rows and columns are indexed by � and � ∪ T , respectively, as follows:

� for α, β ∈ �, the block Aα + β is placed in cell (α + β, β), and
� for t ∈ T and α ∈ �, the block Bt + α is placed in cell (α, t).

Figure 5 depicts the placement of blocks in the array.
For β ∈ �, the set of blocks occupying column β is {Aα + β : α ∈ �}, which form a

resolution class by condition (iii) of Definition 6.1. Similarly, for t ∈ T , the set of blocks
occupying column t is {Bt + α : α ∈ �}, which form a resolution class by condition (iv)
in Definition 6.1.

The set of blocks occupying row 0 is given by R, and by condition (v) of Definition
6.1, each point in X appears either once or twice in row 0. Since the blocks occupying
row α (α ∈ �) are exactly the translates of the blocks in R by α, every point in X also
appears either once or twice in row α.

Suppose S = {Aα : α ∈ �} ∪ {Bt : t ∈ T } is a special (� × [3])-GBTD-starter. Then
condition (vi) of Definition 6.1 ensures that the cell (0, 0) is special.

On the other hand, if S be a 3-∗colorable (� × [3])-GBTD-starter and let

ci be the color assigned to

{
Ai − i, if i ∈ �,

Bi, otherwise.

Journal of Combinatorial Designs DOI 10.1002/jcd
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170 CHEE ET AL.

For α, β ∈ � and t ∈ T , assign the block Aα + β color cα and the block Bt + β color
ct . Then conditions (vii) and (viii) of Definition 6.1 ensure that the GBTD1(3, m) is
3-∗colorable with property �. �
Proposition 6.3. Let q ≡ 1 mod 6. Then there exists a special (Fq × [3])-GBTD-
starter that is 3-∗colorable with property �.

Proof. Let s = (q − 1)/6 and ω be a primitive element of Fq . Consider γ ∈ Fq that
satisfies the following conditions (note that ω2s has order three):

(A) γ /∈ {0,−1,−ω2s ,−ω4s};
(B) γ /∈ {ω2is−ωt+2js

ωt−1 : i �= j ∈ [3], t ∈ [s − 1]}.
The existence of γ is guaranteed since the cardinality of the union of sets in (A) and

(B) is at most 4 + 6(s − 1) < 6s + 1 = q.
Define � to be {−γωt−1+2(j−1)s : t ∈ [s], j ∈ [3]} and construct the following q +

3s = (3q − 1)/2 blocks. For α ∈ Fq , let

Aα =
{{(

ωt−1+2(j−1)s
)
i

: j ∈ [3]
}
, if α = −γωt−1+2(i−1)s where t ∈ [s], i ∈ [3],{(

− α
γ
ω2(i−1)s

)
i

: i ∈ [3])
}

, otherwise.

For (t, j ) ∈ [s] × [3], let

B(t,j ) = {(ωt−1+2(j−1)s(ω2(i−1)s + γ ))i : i ∈ [3]}.
Let S = {Aα : α ∈ Fq} ∪ {B(t,j ) : (t, j ) ∈ [s] × [3]} and we claim that S is the desired

starter.
Define

D = {{ωt−1+2(j−1)s : j ∈ [3]} : t ∈ [s]},
and Wilson [31] showed that the blocks in D are mutually disjoint and �D = Fq \ {0}.

Hence, for condition (i) of Definition 6.1, we check for i ∈ [3],

�iiS = �ii{Aα : α = −γωt−1+2(i−1)s, t ∈ [s], i ∈ [3]}
= �D = Fq \ {0}.

For condition (ii), we verify for i �= i ′ ∈ [3],

�ii ′S =
⋃
α/∈�

(
−α

γ
(ω2(i−1)s − ω2(i ′−1)s)

)
∪

⋃
(t,j )∈[s]×[3]

ωt−1+2(j−1)s(ω2(i−1)s − ω2(i ′−1)s)

= (ω2(i−1)s − ω2(i ′−1)s)

⎛
⎝⋃

α/∈�

−α

γ
∪

⋃
(t,j )∈[s]×[3]

ωt−1+2(j−1)s

⎞
⎠

= (ω2(i−1)s − ω2(i ′−1)s)Fq = Fq .

For condition (iii) of Definition 6.1, since the number of points in
⋃

α∈Fq
Aα is kq,

it suffices to check that each point βi ∈ Fq × [k] belongs to some block Aα . Indeed,
if β/ω2(i−1)s = ω(t−1)+2(j−1)s for some (t, j ) ∈ [s] × [3], then let α = −γωt−1+2(i−1)s

Journal of Combinatorial Designs DOI 10.1002/jcd
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GENERALIZED BALANCED TOURNAMENT PACKINGS 171

and so, βi = (
ωt−1+2(i+j−2)s

)
i

belongs to Aα . Otherwise, −γβ/ω2(i−1)s /∈ �. Let α =
−γβ/ω2(i−1)s and βi ∈ Aα as desired.

Condition (iv) of Definition 6.1 is clearly true from the definition of B(t,j ). We establish
condition (v) of Definition 6.1 through the following claims:

Claim 6.1. The blocks in
⋃

α/∈�(Aα − α) ∪⋃(t,j )∈[s]×[3] B(t,j ) form a resolution class.

As above, it suffices to check that each point βi ∈ Fq × [3] belongs to some block in⋃
α/∈�(Aα − α) ∪⋃(t,j )∈[s]×[k] B(t,j ) as the total number of points is kq.
Indeed, if β/(ω2(i−1)s + γ ) = ωt−1+2(j−1)s for some (t, j ) ∈ [s] × [k], then βi ∈ B(t,j ).

Otherwise, −γβ/(ω2(i−1)s + γ ) /∈ �. Let α = −γβ/(ω2(i−1)s + γ ) (note that α is well
defined by Condition (A)) and βi ∈ Aα − α.

Claim 6.5. Each point in Fq × [k] appears at most once in
⋃

α∈� (Aα − α).

Note that the blocks are of the form{(
ωt−1+2(j−1)s + γωt−1+2(i−1)s)

i
: j ∈ [3]

}
for (t, i) ∈ [s] × [3]. Suppose otherwise that a point appears twice. That is, there exist
j, j ′ ∈ [3], (t, i), (t ′, i) ∈ [s] × [3] with t > t ′ such that

ωt−1+2(j−1)s + γωt−1+2(i−1)s = ωt ′−1+2(j ′−1)s + γωt ′−1+2(i−1)s .

Hence,

γ = ω2(j ′−i)s − ω2(j−i)s+(t−t ′)

ωt−t ′ − 1
.

Since t �= t ′, we have t − t ′ ∈ [s − 1]. If j �= j ′, this contradicts Condition (B). Oth-
erwise j = j ′ implies γ = −ω2(j−i)s contradicting (A).

Next, observe that A0 = {(0, i) : i ∈ [3]}. By Claim 6.1, to establish condition (vi)
of Definition 6.1, it suffices to show that 0i /∈ Aα − α for α ∈ � and i ∈ [3]. Suppose
otherwise. Then there exists (t, j ) ∈ [s] × [3] and i ∈ [3] such that

(ω(j−1)s + γ )ωt+(i−1)s = 0,

contradicting (A).
Finally, we exhibit that S is 3-∗colorable with property � by assigning the block A0

color ♣, the blocks Aα − α for α /∈ � and Bt for t ∈ T color ♥, and the blocks Aα − α

for α ∈ � color ♦. Then this assignment satisfies condition (vii) of Definition 6.1. In
addition, 01 is a witness for both ♥ and ♦ and α1 is a witness for ♣ for some α �= 0,
satisfying condition (viii) of Definition 6.1. �
Corollary 6.4. Let q ≡ 1 mod 6. Then a 3-∗colorable GBTD1(3, m) with property �

exists.

Proof. This follows from Propositions 6.2 and 6.3. �
Corollary 6.5. A special GBTD1(3, m) exists for m ∈ {1, 17, 29, 35, 47, 53, 55}, a 3-
∗colorable special GBTD1(3,m) with property � for m ∈ {9, 11, 23} and a 3-∗colorable
RBIBD(15, 3, 1) with property �.

Journal of Combinatorial Designs DOI 10.1002/jcd

 15206610, 2015, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcd.21398 by N

ational U
niversity O

f Singapore N
us L

ibraries T
echnical Services, W

iley O
nline L

ibrary on [13/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



172 CHEE ET AL.

Proof. A special GBTD1(3, 1) exists trivially. In addition, a 3-∗colorable spe-
cial GBTD1(3, 9) with property � is given by Example 4.4, and a 3-∗colorable
RBIBD(15, 3, 1) with property � is given by Example 4.1.

For m ∈ {11, 17, 23, 29, 35, 47, 53, 55}, apply Proposition 6.2 with special (Zm ×
[3])-GBTD-starters and 3-∗colorable special (Zm × [3])-GBTD-starters with property �

given in [5]. �

6.2. Direct Constructions for an IGBTP1({2, 3∗}, 2m + w, (m + (w − 1)/2)
× (2m + w − 4); w, (w − 1)/2 × (w − 4))

As with GBTDs, we use a set of starters to construct GBTPs. To construct these starters,
we need the notion of infinite elements and intransitive starters.

Given an abelian group �, we augment the point set with infinite elements, denoted by
∞i , where i belongs to some index set I . The infinite elements are fixed under addition
by elements in �. That is, ∞i + γ = ∞i for γ ∈ �. Let w be a positive integer and
Ww = {∞i : i ∈ [w]}. So, given a block A ⊂ � ∪ Ww and γ ∈ �, A + γ = {a + γ :
a ∈ A \ Ww} ∪ (A ∩ Ww).

We also extend the definition of difference lists. For a set system (� ∪ Ww,S), then
the difference list of S is given by the multiset

�S = 〈x − y : x, y ∈ A \ Ww, x �= y, A ∈ S〉.

Definition 6.6. Let m be an odd integer with m ≥ 11. Let (Zm × Z2 ∪ Ww,S) be a
{2, 3}-uniform set system of size w − 3 + m, where

S = {Ai : i ∈ [(w − 5)/2]} ∪ {Bi : i ∈ [(w − 1)/2]} ∪ {Ci : i ∈ Zm}

satisfying |Ai | = 2 for i ∈ [(w − 5)/2], |Bi | = 2 for i ∈ [(w − 1)/2], |C0| = 3, and
|Ci | = 2 for i ∈ Zm \ {0}.
S is called a ((Zm × Z2) ∪ Ww)-IGBTP-starter if the following conditions hold:

(i) �S = Zm × Z2 \ {00, 01},
(ii) {j : aj ∈ Ai} = Z2 for i ∈ [(w − 5)/2],

(iii) {Bi : i ∈ [(w − 1)/2]} ∪ {Cj : j ∈ Zm} = (Zm × Z2) ∪ Ww,
(iv) |Ci ∩ Ww| ≤ 1 for i ∈ Zm,
(v) each element in (Zm × Z2) ∪ Ww appears either once or twice in the multiset

R = {00, 01} ∪

⎛
⎜⎜⎜⎝

⋃
i ∈ [(w − 5)/2]

j ∈ Z2

Ai + 0j

⎞
⎟⎟⎟⎠ ∪

⎛
⎝ ⋃

ij ∈Zm×Z2

Ci − ij

⎞
⎠ .

Proposition 6.7. Suppose there exists a ((Zm × Z2) ∪ Ww)-IGBTP-starter. Then there
exists an IGBTP1({2, 3∗}, 2m + w, (m + (w − 1)/2) × (2m + w − 4); w, (w − 1)/2 ×
(w − 4)).
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GENERALIZED BALANCED TOURNAMENT PACKINGS 173

Proof. Let

X = Zm × Z2 ∪ Ww,

A = {S + j : S ∈ S and j ∈ Zm × Z2} ∪ {{i0, i1} : i ∈ Zm}.

Then (X, Ww,A) is an IRP(2m + w, K, 1; w), whose blocks can be arranged in an (m +
(w − 1)/2) × (2m + w − 4) array as in Fig. 7. We index the rows by [(w − 1)/2] ∪ Zm

and the columns by [w − 4] ∪ (Zm × Z2).
First, check that the cell (r, c) is empty for (r, c) ∈ [(w − 1)/2] × [w − 4].
For j ∈ [w − 4], the set of blocks occupying column j is Zm × Z2 by condition (ii)

of Definition 6.6. For j ∈ Zm × Z2, first observe that the set of the blocks occupying
the column 00 by condition (iii) of Definition 6.6 is (Zm × Z2) ∪ Ww. Since the blocks
of column j are translates (by j ) of the blocks in column 00, the union of the blocks in
column j is also (Zm × Z2) ∪ Ww.

For i ∈ [(w − 1)/2], each element in Zm × Z2 appears exactly twice in row i by
construction. For i ∈ Zm, let Ri denote the multiset containing all the points appearing
in the blocks of row i. Then R0 = R and Ri = R0 + i0, for all i ∈ Zm. Hence, it suffices
each element in X appears either once or twice in R, which follows immediately from
conditions (v) in Definition 6.6. �

Definition 6.8. Let m be an odd integer with m ≥ 11. Let ((Zm × Z4) ∪ W9,S) be a
{1, 2, 3}-uniform set system of size 7 + 2m, where

S = {x0} ∪ {y0} ∪ A ∪ {Bi : i ∈ [4]} ∪ {Ci : i ∈ Zm} ∪ {Di : i ∈ Zm}

satisfying |A| = 2, |Bi | = 2 for i ∈ [4], |C0| = 3, |Ci | = 2 for i ∈ Zm \ {0}, and |Di | = 2
for i ∈ Zm.
S is called a ((Zm × Z4) ∪ W9)-IGBTP-starter if the following conditions hold:

(i) �S = (Zm × Z4) \ {00, 01, 02, 03},
(ii) {j : aj ∈ A} = {0, 2},

(iii) {Bi : i ∈ [(w − 1)/2]} ∪ {Ci : i ∈ Zm} ∪ {Di : i ∈ Zm} = (Zm × Z4) ∪ W9,
(iv) |Ci ∩ W9| ≤ 1 and |Di ∩ W9| ≤ 1 for i ∈ Zm,
(v) each element in (Zm × Z4) ∪ W9 appears either once or twice in the multisets

R◦ = {00, 01, x0, x2, y0, y3} ∪ A ∪ A

+ 02 ∪
⎛
⎝ ⋃

i∈Zm,j∈{0,2}
Ci − ij

⎞
⎠ ∪

⎛
⎝ ⋃

i∈Zm,j∈{1,3}
Di − ij

⎞
⎠ ,

R• = {02, 03, x1, x3, y1, y2} ∪ A

+ 01 ∪ A + 03 ∪
⎛
⎝ ⋃

i∈Zm,j∈{1,3}
Ci − ij

⎞
⎠ ∪

⎛
⎝ ⋃

i∈Zm,j∈{0,2}
Di − ij

⎞
⎠ .

Proposition 6.9. Suppose there exists a (Zm × Z4 ∪ W9)-IGBTP-starter. Then there
exists an IGBTP1({2, 3∗}, 4m + 9, (2m + 4) × (4m + 5); 9, 4 × 5).

Journal of Combinatorial Designs DOI 10.1002/jcd
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174 CHEE ET AL.

Proof. Let

X = (Zm × Z4) ∪ W9,

A = {S + j : S ∈ S, |S| �= 1, j ∈ Zm × Z2} ∪ {{i0, i1} : i ∈ Zm} ∪ {{i2, i3} : i ∈ Zm}
∪{{(x + i)0, (x + i)2} : i ∈ Zm} ∪ {{(x + i)1, (x + i)3} : i ∈ Zm}
∪{{(y + i)0, (y + i)3} : i ∈ Zm} ∪ {{(y + i)1, (y + i)2} : i ∈ Zm}.

Then (X, W9,A) is an IRP(4m + 9, K, 1; 9), whose blocks can be arranged in a (2m +
4) × (4m + 5) array as in Fig. 6. We index the rows by [4] ∪ (Zm × {◦, •}) and the
columns by [5] ∪ (Zm × Z4).

First, check that the cell (r, c) is empty for (r, c) ∈ [4] × [5].
For j ∈ [5], the set of blocks occupying column j is Zm × Z4 by condition (ii) of

Definition 6.8. For j ∈ Zm × Z4, first observe that the set of the blocks occupying the
column 00 by condition (iii) of Definition 6.8 is (Zm × Z4) ∪ W9. Since the blocks of
column j are translates (by j ) of the blocks in column 00, the union of the blocks in
column j is also (Zm × Z4) ∪ W9.

For i ∈ [4], each element in Zm × Z4 appears exactly twice in row i by construction.
For (i, ∗) ∈ Zm × {◦, •}, let R(i,∗) denote the multiset containing all the points appearing
in the blocks of row (i, ∗). Then R(0,∗) = R∗ and R(i,∗) = R(0,∗) + i0, for all i ∈ Zm.
Hence, it suffices each element in X appears either once or twice in R∗, which follows
immediately from conditions (v) in Definition 6.8. �
Corollary 6.10. An IGBTP1({2, 3∗}, 2m + 9, (m + 4) × (2m + 5); 9, 4 × 5) exists
for m ∈ {s : 10 ≤ s ≤ 45} ∪ {47, 49, 53, 57, 77} \ {16, 20, 24, 28, 36, 40, 44}, and an
IGBTP1({2, 3∗}, 2m + 11, (m + 5) × (2m + 7); 11, 5 × 7) exists for m ∈ {15, 19, 23,

27, 31, 35, 45, 49}.
Proof. The required ((Zm × Z2) ∪ W9)-IGBTP-starter for m ∈ {s : 11 ≤ s ≤
49, s odd} ∪ {53, 57, 77} and ((Zm × Z4) ∪ W9)-IGBTP-starter for m ∈ {s : 5 ≤ s ≤
21, s odd} is given in [5] and we apply Propositions 6.7 and 6.9 to obtain the corre-
sponding IGBTP.

Similarly, to construct an IGBTP1({2, 3∗}, 2m + 11, (m + 5) × (2m + 7); 11, 5 × 7)
for m ∈ {15, 19, 23, 27, 31, 35, 45, 49}, we apply Proposition 6.7 to (Zm × Z2 ∪ W11)-
IGBTP-starters listed in [5].

It remains to construct an IGBTP1({2, 3∗}, 33, 16 × 29; 9, 4 × 5). Consider ((Z3 ×
Z8) ∪ W9,S), a {2, 3}-uniform set system of size 36, where S comprise the blocks
below:

A1 = {10, 12} A2 = {11, 15} A3 = {00, 04} A4 = {13, 16}
A5 = {03, 05} A6 = {11, 13} A7 = {14, 17} A8 = {01, 06}
A9 = {00, 05} A10 = {02, 04} A11 = {14, 16} A12 = {10, 13}
A13 = {02, 05} A14 = {12, 17} A15 = {01, 07} A16 = {15, 17}
A17 = {02, 06} A18 = {03, 07} A19 = {11, 14} A20 = {10, 16}
B1 = {00, 01} B2 = {05, 15} B3 = {11, 24} B4 = {07, 13}
C1

0 = {10, 21, 26} C1
1 = {10, 21} C1

2 = {10, 21}
C2

0 = {02,∞1} C2
1 = {04, ∞2} C2

2 = {12,∞3}
C3

0 = {20,∞4} C3
1 = {23, ∞5} C3

2 = {16,∞6}
C4

0 = {27,∞7} C4
1 = {22, ∞8} C4

2 = {25,∞9}.
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GENERALIZED BALANCED TOURNAMENT PACKINGS 175

Let

X = (Z3 × Z8) ∪ W

A = {S + j : S ∈ S, j ∈ Z3 × Z8}.
Then (X, W,A) is an IRP(33, {2, 3∗}, 1; 9), whose blocks can be arranged in a 16 ×
29 array as in Fig. 8. It can be readily verified that this arrangement results in an
IGBTP1({2, 3∗}, 33, 16 × 29; 9, 4 × 5). �

6.3. Direct Constructions for FrGBTDs

Lemma 6.11. There exists an FrGBTD(2, 2t ) for t ∈ {4, 5}.
Proof. The desired FrGBTDs are given in Figs. 9 and 10. �
Definition 6.12. Let t be a positive integer, and let I = [t − 1] × [2]. Let (Z3t × [2],S)
be a 3-uniform set system of size 2(t − 1), where S = {Ai : i ∈ I }. S is called a (Z3t ×
[2])-FrGBTD-starter if the following conditions hold:

(i) �ijS = Z3t \ {0, t, 2t} for i, j ∈ [2],
(ii) ∪i∈IAi = (Z3t \ {0, t, 2t}) × [2],

(iii) for j ∈ [2], each element in (Zt \ {0}) × [2] appears either once or twice in the
multiset

Rj =
t−1⋃
i=1

A(i,j ) − i mod t,

(4) r ∈ (Zt \ {0}) × [2] for each r ∈ R1 ∪ R2.

Proposition 6.13. If a (Z3t × [2], 6t )-FrGBTD-starter exists, then an FrGBTD(3, 6t )
exists.

Proof. Let

X = Z3t × [2],

G = {Gi = {i1, (t + i)1, (2t + i)1, i2, (t + i)2, (2t + i)2} : i ∈ Zt },
A = {Ai + j : i ∈ Iandj ∈ Z3t }.

Then (X,G,A) is a {3}-GDD of type 6t , whose blocks can be arranged in a 2t × 3t array,
with rows and columns indexed by Zt × [2] and Z3t , respectively, as follows: the block
A(i,j ) + k is placed in cell ((i + k, j ), k).

The set of blocks occupying column zero are {Ai : i ∈ I } and by condition (ii) of
Definition 6.12,

⋃
i∈I Ai = X \ G0. For other j ∈ Z3t , observe that the blocks occupying

column j are translates (by j ) of the blocks in column zero, and hence the union of the
blocks in column j is X \ Gj ′ , where j ′ ≡ j mod t .

For (i, j ) ∈ Zt × [2], let R(i,j ) denote the multiset containing all the points appearing in
the blocks of row (i, j ). Then R(i,j ) = R(0,j ) + i, for all i ∈ Zt . Hence, it suffices to check
that each element of X \ G0 appears either once or twice in R(0,j ) and the elements of R(0,j )

belong to X \ G0 for j ∈ [2]. This, however, follows immediately from conditions (iii)
and (iv) in Definition 6.12, since R(0,j ) = Rj ∪ (Rj + t) ∪ (Rj + 2t) for j ∈ [2]. �
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176 CHEE ET AL.

W B B + 01 B + 02 B + 03 B + 04 B + 05 B + 06 B + 07

A

C1 C4 + 01 C3 + 02 C2 + 03 C1 + 04 C4 + 05 C3 + 06 C2 + 07

C2 C1 + 01 C4 + 02 C3 + 03 C2 + 04 C1 + 05 C4 + 06 C3 + 07

C3 C2 + 01 C1 + 02 C4 + 03 C3 + 04 C2 + 05 C1 + 06 C4 + 07

C4 C3 + 01 C2 + 02 C1 + 03 C4 + 04 C3 + 05 C2 + 06 C1 + 07

where W is a 4 × 5 empty array, A is a 12 × 5 array,

A1 A2 A3 A4 A5

A1 + 10 A2 + 10 A3 + 10 A4 + 10 A5 + 10

A1 + 20 A2 + 20 A3 + 20 A4 + 20 A5 + 20

A6 A7 A8 A9 A10

A6 + 10 A7 + 10 A8 + 10 A9 + 10 A10 + 10

A6 + 20 A7 + 20 A8 + 20 A9 + 20 A10 + 20

A11 A12 A13 A14 A15

A11 + 10 A12 + 10 A13 + 10 A14 + 10 A15 + 10

A11 + 20 A12 + 20 A13 + 20 A14 + 20 A15 + 20

A16 A17 A18 A19 A20

A16 + 10 A17 + 10 A18 + 10 A19 + 10 A20 + 10

A16 + 20 A17 + 20 A18 + 20 A19 + 20 A20 + 20

,

B is a 4 × 3 array,

B1 B1 + 10 B1 + 20

B2 B2 + 10 B2 + 20

B3 B3 + 10 B3 + 20

B4 B4 + 10 B4 + 20

,

Ci for i ∈ [4] is a 3 × 3 array,

Ci
0 Ci

2 + 10 Ci
1 + 20

Ci
1 Ci

0 + 10 Ci
2 + 20

Ci
2 Ci

1 + 10 Ci
0 + 20

.

FIGURE 8. An IGBTP1({2, 3∗}, 33, 16 × 29; 9, 4 × 5).

— — {2,7} {6,3} {7,1} {3,5} {5,6} {1,2}
{2,3} {6,7} — — {3,0} {7,4} {0,2} {4,6}
{5,7} {1,3} {3,4} {7,0} — — {4,1} {0,5}
{1,6} {5,2} {6,0} {2,4} {4,5} {0,1} — —

FIGURE 9. An FrGBTD1(2, 24) (X,G,A), where X = Z8 and G = {{i, 4 + i} : i ∈ Z4}.
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GENERALIZED BALANCED TOURNAMENT PACKINGS 177

— — {7,9} {2,4} {3,4} {8,9} {6,2} {1,7} {1,8} {6,3}
{7,4} {2,9} — — {8,0} {3,5} {4,5} {9,0} {7,3} {2,8}
{3,9} {8,4} {8,5} {3,0} — — {9,1} {4,6} {5,6} {0,1}
{1,2} {6,7} {4,0} {9,5} {9,6} {4,1} — — {0,2} {5,7}
{6,8} {1,3} {2,3} {7,8} {5,1} {0,6} {0,7} {5,2} — —

FIGURE 10. An FrGBTD1(2, 25) (X,G,A), where X = Z10 and G = {{i, 5 + i} : i ∈ Z5}.

Corollary 6.14. There exist an FrGBTD(3, 6t ) for all t ∈ {5, 6, 7, 8}, an
FrGBTD(3, 24t ) for all t ∈ {5, 8} and an FrGBTD(3, 30t ) for all t ∈ {5, 7}.
Proof. An FrGBTD1(3, 66) is given by Example 4.5. An FrGBTD(3, 6t ) for t ∈ {5, 7}
exists by applying Proposition 6.13 with FrGBTD-starters given in [5].

The existence of an FrGBTD(3, 24t ), t ∈ {5, 8} follows by applying Proposition 5.7
with an FrGBTD(3, 6t ) (constructed in this proof) and a DRTD(3, 4), whose existence is
provided by Corollary 4.11. The existence of an FrGBTD(3, 30t ), t ∈ {5, 7} follows by
applying Proposition 5.7 similarly.

To prove the existence of an FrGBTD(3, 68), consider (Z48,S), a {3}-uniform set
system of size 7, where S comprise the blocks below:

A1 = {2, 3, 5} A2 = {4, 14, 31} A3 = {9, 22, 45} A4 = {15, 34, 43}
A5 = {20, 35, 42} A6 = {13, 17, 47} A7 = {1, 6, 12}.

Observe that S satisfies the following conditions:

(i) �S = Z48 \ {0, 8, 16, 24, 32, 40},
(ii) ∪i∈[7]Ai mod 24 = Z24 \ {0, 8, 16},

(iii) each element in Z16 \ {0, 8} appears either once or twice in the multiset

R =
⋃
i∈[7]

Ai − i mod 16,

(iv) r ∈ Z16 \ {0, 8} for each r ∈ R.

Further, let

X = Z48,

G = {{i + 8k : k ∈ Z6} : i ∈ Z8},
A = {Ai + j : i ∈ [7]andj ∈ Z48}.

Then (X,G,A) is a {3}-GDD of type 68, whose blocks can be arranged in a 16 × 24
array, with rows and columns are indexed by Z16 and Z24, respectively, as follows:
the block Ai + j is placed in cell (i + j, j ). This array can be verified to be an
FrGBTD(3, 68). �
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178 CHEE ET AL.

TABLE II. Existence of special GBTD1(3, m).

Authority m

Corollary 6.5 9, 11, 17, 23, 29, 35, 47, 53, 55
Lemma 7.1 7, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39, 43,

45, 49, 57, 61, 63, 67, 69, 73, 75
Corollary 5.6 with (g, t) in

{(8, 5), (5, 10), (8, 8), (7, 10)}
41, 51, 65, 71

Lemma 7.2 with n = 5, g1 = 4 59
Lemma 7.2 with n = 7,

g1, g2 ∈ {0} ∪ {t : 3 ≤ t ≤ 7}
{s : 77 ≤ s ≤ 95, s odd}

7. EXISTENCE OF GBTDS AND GBTPs

We apply the recursive constructions in Section 5 using the small designs con-
structed directly in Section 6 to completely settle the existence of GBTD1(3, m) and
GBTP1({2, 3∗}; 2m + 1, m × (2m − 3)).

7.1. Existence of GBTD1(3, m)

Lemma 7.1. There exists a special GBTD1(3, 3rq) for all r ≥ 0 and q ∈ Q, where
Q = {q : q ≡ 1 mod 6 is a prime power} ∪ {5, 9, 11, 23}, except when (r, q) = (0, 5).

Proof. Existence of a special GBTD1(3, q) for all q ∈ Q \ {5} is provided by Corol-
laries 6.4 and 6.5. These GBTDs are all 3-∗colorable with property �. The lemma then
follows by considering these GBTDs as RBIBDs and applying Corollary 5.2. �
Lemma 7.2. Let s ∈ [2] and suppose there exists a TD(5 + s, n). If 0 ≤ gi ≤ n, i ∈ [s]
and that there exists a special GBTD1(3, m) for all m ∈ {2n + 1} ∪ {2gi + 1 : i ∈ [s]},
then there exists a special GBTD1(3, 10n + 1 + 2

∑s
i=1 gi).

Proof. By Corollary 6.14, there exists an FrGBTD(3, 6t ) for all t ∈ {5, 6, 7}. By Propo-
sition 5.9, there exists an FrGBTD(3, (6n)5(6g1) · · · (6gs)). Now apply Corollary 5.5 to
obtain a special GBTD1(3, 10n + 1 + 2

∑s
i=1 gi). �

Lemma 7.3. A special GBTD1(3, m) exists for odd m ≥ 7.

Proof. First, a special GBTD1(3, m) can be constructed for odd m, 7 ≤ m ≤ 95. Details
are provided in Table II.

We then prove the lemma by induction on m ≥ 97.
Let E = {t : t ≥ 9} \ {10, 14, 15, 18, 20, 22, 26, 30, 34, 38, 46, 60}. By Theorem 4.8,

a TD(7, n) exists for any n ∈ E. If there exists a special GBTD1(3, m′) for odd m′, 7 ≤
m′ ≤ 2n + 1, then apply Lemma 7.2 with 3 ≤ g1, g2 ≤ n to obtain a special GBTD1(3,m)
for odd m, 10n + 7 ≤ m ≤ 14n + 1.

Hence, take n = 9 to obtain a special GBTD1(3, 97).
Suppose there exists a GBTD1(3, m′) for all odd m′ < m. Then there exists n ∈ E

with 10n + 7 ≤ m ≤ 14n + 1. Suppose otherwise. Then there exists n1 ∈ E such that
14n1 + 1 < 10n2 + 7 for all n2 > n1 and n2 ∈ E. This, together with the fact that n1 ≥ 9,

Journal of Combinatorial Designs DOI 10.1002/jcd
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GENERALIZED BALANCED TOURNAMENT PACKINGS 179

TABLE III. Existence of IGBTP1({2, 3∗}, 2m + 9, (m + 4) × (2m + 5); 4 × 5).

Authority m

Corollary 6.10 {s : 10 ≤ s ≤ 57} \ {16, 20, 24, 28, 32, 36,
40, 44, 48, 50, 52, 54, 55, 56}

Lemma 7.4 with
(n, g) ∈ {(10, 0), (11, 0), (12, 0), (13, 0),
(11, 10), (11, 11), (14, 0)}

40, 44, 48, 52, 54, 55, 56

implies that n2 − n1 > 3 for all n2 ∈ E and n2 > n1. However, a quick check on E gives
a contradiction.

Since n ∈ E and there exists a special GBTD1(3, m′) for all m′ ≤ 2n + 1 < 10n +
7 ≤ m (induction hypothesis), there exists a special GBTD1(3, m) and induction is
complete. �

Lemma 7.3 shows that a GBTD1(3, m) exists for all odd m �= 3, 5. Theorem 2.3 (vi)
now follows.

7.2. Existence of GBTP1({2, 3∗}; 2m + 1, m × (2m − 3))

Lemma 7.4. Suppose there exists a TD(5, n). Suppose 0 ≤ g ≤ n and that there exists
an IGBTP1({2, 3∗}, 2m + 9, (m + 4) × (2m + 5); 9, 4 × 5) for m ∈ {n, g}. Then there
exists an IGBTP1({2, 3∗}, 2M + 9, (M + 4) × (2M + 5); 9, 4 × 5), where M = 4n + g.

Proof. By Lemma 6.11, there exists an FrGBTD(2, 2t ) for all t ∈ {4, 5}. By Proposition
5.9, there exists an FrGBTD(2, (2n)4(2g)). Now apply Proposition 5.4 to obtain an
IGBTP1({2, 3∗}, 2M + 9, (M + 4) × (2M + 5); 9, 4 × 5). �
Lemma 7.5. There exists an IGBTP1({2, 3∗}, 2m + 9, (m + 4) × (2m + 5); 9, 4 × 5)
for any m ≥ 10, except possibly for m ∈ {16, 20, 24, 28, 32, 36, 46, 50}.
Proof. Let E = {16, 20, 24, 28, 32, 36, 46, 50}. An IGBTP1({2, 3∗}, 2m + 9, (m +
4) × (2m + 5); 9, 4 × 5) can be constructed for 10 ≤ m ≤ 57 and m /∈ E ∪ {51}. De-
tails are provided in Table III. When m = 51, consider a TD(5, 11) and delete four
points from a block to form a {4, 5}-GDD of type 10411. Proposition 5.8 yields an
FrGBTD(2, 20422) and hence, Proposition 5.4 yields an IGBTP1({2, 3∗}, 2m + 9, (m +
4) × (2m + 5); 9, 4 × 5) with m = 51.

We then prove the lemma by induction on m ≥ 57. Let E′ = {4n + g : n ∈ E, 10 ≤
g ≤ 13} and assume the lemma is true for n < m.

When m /∈ E′, then write m = 4n + g with 13 ≤ n < m, n /∈ E and g ∈
{10, 11, 12, 13}. Since a TD(5, n) that exists by Theorem 4.8, applying Lemma 7.4
with the corresponding n and g, we obtain the desired IGBTP.

When m ∈ E′, we have two cases.

� If m = 77, the required IGBTP is given by Corollary 6.10.
� Otherwise, apply Lemma 7.4 with (n, g) taking values in {(15, 14), (15, 15), (19, 0),

(18, 18), (19, 15), (23, 0), (19, 17), (22, 18), (22, 19), (27, 0), (22, 21), (25, 22), (25,
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180 CHEE ET AL.

23), (31, 0), (25, 25), (29, 22), (29, 23), (35, 0), (29, 25), (31, 30), (31, 31), (39, 0),
(33, 25), (39, 38), (39, 39), (49, 0), (40, 37), (42, 42), (43, 39), (43, 40), (43, 41)}.

This completes the induction. �
Lemma 7.6. A GBTP1({2, 3∗}, 2m + 1, m × (2m − 3)) exists for m ≥ 4, except pos-
sibly for m ∈ {12, 13}.
Proof. A GBTP1({2, 3∗}; 2m + 1, m × (2m − 3)) can be found via computer search
for 4 ≤ m ≤ 11. The GBTPs are listed in [5].

For m ∈ {20, 24, 28, 32, 36, 40, 50, 54}, set M = m − 5 and we apply Proposition
5.3 with the GBTP1({2, 3∗}, 11, 5 × 7) and the IGBTP1({2, 3∗}, 2M + 11, (M + 5) ×
(2M + 7); 11, 5 × 7) constructed in Corollary 6.10.

Finally, for m ≥ 14 and m /∈ {20, 24, 28, 32, 36, 40, 50, 54}, set M = m − 4 and apply
Proposition 5.3 with GBTP1({2, 3∗}, 9, 4 × 5) and the IGBTP1({2, 3∗}, 2M + 9, (M +
4) × (2M + 5); 9, 4 × 5) constructed in Lemma 7.5. �

Lemma 7.6 shows that a GBTP1({2, 3∗}, 2m + 1, m × (2m − 3)) exists for all m ≥ 4,
except possibly for m ∈ {12, 13}. Theorem 2.3 (vii) now follows.

8. CONCLUSION

In this paper, we establish infinite families of ESWCs, whose code lengths are greater
than alphabet size and whose relative narrowband noise error-correcting capabilities tend
to a positive constant as length grows. The construction method used is combinatorial
and reveals interesting interplays with equivalent combinatorial designs called GBTPs.
These have enabled us to borrow ideas from combinatorial design theory to construct
ESWCs. In return, questions on ESWCs offer new problems to combinatorial design
theory. We expect this symbiosis to deepen.
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