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Abstract. We consider the problem of constructing optimal authentication
codes with splitting. New infinite families of such codes are obtained. In

particular, we establish the first known infinite family of optimal authentication

codes with splitting that are secure against spoofing attacks of order two.

1. Introduction. In the standard model of authentication theory [13, 14, 15, 18], a
transmitter wants to send some information to a receiver across an insecure channel
while an opponent with access to the channel wants to deceive the receiver. The
opponent can either insert new messages into the channel, or intercept messages
from the transmitter and modify them into his own. In each case, the opponent’s
goal is to deceive the receiver into believing that the new messages are authentic
(coming from the transmitter). The first attack based on insertion of new messages
is known as impersonation and the second attack based on modification of messages
from the transmitter is known as substitution.

More formally, let S denote the set of all source states, M be the set of all
messages, and E be the set of all encoding rules. All these are finite sets. A source
state is the information the transmitter wishes to communicate to the receiver. An
encoding rule is an injection from S to 2M. The transmitter and receiver agree
beforehand on a secret encoding rule e ∈ E. To communicate a source state s ∈ S,
the transmitter determines M = e(s) (note that M ⊆ M) and chooses a message
m ∈ M to send to the receiver. The receiver accepts the received message as
authentic if there exists an M in the image of e containing the received message.
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For the receiver to recover the source state, each encoding rule must satisfy the
condition

e(s) ∩ e(s′) = ∅, for distinct s, s′ ∈ S.

The triple (S,M,E) is called an authentication code, or A-code in short.
An A-code (S,M,E) can be represented by an |E| × |S| matrix, whose rows are

indexed by authentication rules, and columns indexed by source states, such that
the entry in row e ∈ E and column s ∈ S is e(s).

For k an integer and X a finite set, we denote by
(
X
k

)
the set of all k-subsets of

X. Research on authentication codes have focused on the case when every encoding
rule is an injection from S to

(
M
c

)
, for some positive c. Such an A-code is called a

c-splitting A-code. A 1-splitting A-code is also known as an A-code without splitting,
and a c-splitting A-code with c ≥ 2 is known as an A-code with splitting. A-codes
with splitting are useful for the analysis of authentication with arbitration [9], an
extended model of authentication introduced by Simmons [16, 17] for the scenario
when the transmitter and receiver may both be deceptive.

In a spoofing attack of order i [10], the opponent observes i distinct messages sent
by the transmitter through the insecure channel under the same encoding rule. The
opponent then inserts a new message (distinct from the i messages already sent),
hoping to have it accepted by the receiver as authentic. Within this framework,
impersonation and substitution attacks are just spoofing attacks of order zero and
one, respectively. While these attacks have been rather well studied for A-codes,
less is known for the case of spoofing attacks of order i ≥ 2, especially on c-splitting
A-codes when c ≥ 2.

The probability distribution on the set of source states S induces a probability
distribution on

(
S
i

)
, i ≥ 0. Given these probability distributions, the transmitter

and receiver choose a probability distribution on E, called an encoding strategy. For
any s ∈ S and e ∈ E, the transmitter also chooses a probability distribution on
e(s), called a splitting strategy. The opponent is assumed to know the encoding
and splitting strategies. The transmitter and receiver chooses the encoding and
splitting strategies to minimize the probability of being deceived by the opponent.
We denote by Pdi the probability that the opponent can deceive the receiver with
a spoofing attack of order i. The following lower bound on Pdi is known.

Proposition 1.1 (Huber [7]). In a c-splitting A-code (S,M,E),

Pdi
≥ c · |S| − i

|M| − i
,

for every i ≥ 0.

A c-splitting A-code is said to be (t − 1)-fold secure against spoofing if Pdi
=

c(|S| − i)/(|M| − i), for all i, 0 ≤ i < t. For succinctness, we call such a code a
(t, c)-splitting A-code.

Huber [7] also showed that the number of encoding rules must be large enough
if an A-code is to be (t− 1)-fold secure against spoofing.

Proposition 1.2 (Huber [7]). In a (t, c)-splitting A-code (S,M,E),

|E| ≥ 1
ct
·
(|M|

t

)(|S|
t

) .
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For efficiency, we want the number of encoding rules in an A-code to be as small as
possible. We call a (t, c)-splitting A-code optimal if the lower bound in Proposition
1.2 is met with equality.

The main contribution of this paper is on the construction of optimal (t, c)-
splitting A-codes with three source states, for c ≥ 2 and t ∈ {2, 3}. In particular,
we show that the following two new families of A-codes exist:

(i) (2, 5)-splitting A-codes with three source states and v messages, for all v ≡
1 mod 150, v 6= 301.

(ii) (3, 2)-splitting A-codes with three source states and v messages, for all v ≡
2 mod 8.

The (3, 2)-splitting A-codes we obtained is the first known infinite family of (t, c)-
splitting A-codes with t > 2 and c > 1. We also prove that a (2, c)-splitting A-code
with k source states and v messages exists for all sufficiently large v (with k and c
fixed).

2. Preliminaries. This section serves to provide notions and results that are re-
quired for our construction in subsequent sections.

The ring Z/nZ is denoted Zn.

2.1. Design-Theoretic Background. Huber [7] defined splitting t-designs, gen-
eralizing the splitting 2-designs of Ogata et al. [12].

Definition 2.1. Let t, v, k, c, and λ be positive integers, with t ≤ k and ck ≤ v. A
splitting t-design, or more precisely, a splitting t-(v, k× c, λ) design, is a pair (X,A)
such that

(i) X is a set of v elements, called points;
(ii) A is a set of k × c arrays, called blocks, with entries from X, such that each

point of X occurs at most once in each block;
(iii) for every {xi : 1 ≤ i ≤ t} ∈

(
X
t

)
, there are exactly λ blocks in which xi,

1 ≤ i ≤ t, occur in t different rows.

Note that a splitting t-(v, k× 1, λ) design coincides with the classical notion of a
t-(v, k, λ) design. Huber [7] proved the equivalence between splitting t-designs and
optimal splitting A-codes.

Theorem 2.2 (Huber [7]). There exists a splitting t-(v, k×c, 1) design if and only if
there exists an optimal (t, c)-splitting A-code for k equiprobable source states, having
v messages and

(
v
t

)
/ct
(
k
t

)
encoding rules.

The necessary divisibility conditions for the existence of splitting t-designs are as
follows.

Proposition 2.1 (Huber [7]). The necessary conditions for the existence of a split-
ting t-(v, k × c, λ) design are

λ

(
v − s
t− s

)
≡ 0 mod ct−s

(
k − s
t− s

)
, for all s, 0 ≤ s ≤ t.

Sometimes, the points of a splitting t-design (X,A) can be identified with the
elements of an additive group Γ, so that X = Γ. If the set of blocks A can be
generated by a set B ⊆ A, that is,

A = ∪B∈B{B + g : g ∈ Γ},
then B is called a set of base blocks of (X,A).
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Example 2.1. Let X = Z151. The set containing the single array

A =

 0 1 2 3 4
5 13 59 105 118
28 67 73 112 134


as a base block, generates the set of blocks A for a splitting 2-(151, 3× 5, 1) design
(X,A).

Our constructions for splitting t-designs also rely on group divisible designs
(GDD). Let t, k, and v be nonnegative integers. A group divisible t-design of
order v and block size k, denoted GDD(t, k, v), is a triple (X,G,A) satisfying the
following properties:

(i) X is a set of v elements, called points;
(ii) G = {G1, . . . , Gs} is a partition of X into subsets, called groups;

(iii) A ⊆
(
X
k

)
, whose elements are called blocks, such that each A ∈ A intersects

any group G ∈ G in at most one point;
(iv) every T ∈

(
X
t

)
containing at most one point from each group is contained in

exactly one block.
The type of a GDD(t, k, v) (X,G,A) is the multiset [|G| : G ∈ G]. We use the
exponential notation to describe the type of a GDD: a GDD of type gn1

1 · · · gns
s is a

GDD where there are exactly ni groups of size gi, 1 ≤ i ≤ s.
We require the following result.

Theorem 2.3 (Hanani [4], Brouwer et al. [1], Mills [11], Ji [8]).
(i) There exists a GDD(2, 3, gn) of type gn if and only if n ≥ 3, (n − 1)g ≡

0 mod 2, and n(n− 1)g2 ≡ 0 mod 6.
(ii) There exists a GDD(2, 4, gn) of type gn if and only if n ≥ 4, (n − 1)g ≡

0 mod 3, and n(n − 1)g2 ≡ 0 mod 12, with the exception of (g, n) ∈ {(2, 4),
(6, 4)}.

(iii) For n > 3, n 6= 5, a GDD(3, 4, gn) of type gn exists if and only if gn ≡ 0 mod 2
and (n − 1)(n − 2)g ≡ 0 mod 3. A GDD(3, 4, 5g) of type g5 exists when
g ≡ 0 mod 2, g 6= 2, and g 6≡ 10, 26 mod 48.

Analogous to splitting t-designs, a “splitting” version of a GDD can be defined.
This has been done by Wang [19] for t = 2. Here, we extend it to general t.
A splitting group divisible t-design, denoted splitting GDD(t, k × c, v), is a triple
(X,G,A) satisfying the following properties:

(i) X is a set of v elements, called points;
(ii) G = {G1, . . . , Gs} is a partition of X into subsets, called groups;
(iii) A is a set of k × c arrays, called blocks, with entries from X, such that each

point of X occurs at most once in each block;
(iv) for every {xi : 1 ≤ i ≤ t} ∈

(
X
t

)
containing at most one point from each group,

there is exactly one block in which xi, 1 ≤ i ≤ t, occur in t different rows.
The type of a splitting GDD is defined in a fashion similar to that for a GDD.

Splitting GDDs play an important role in the recursive constructions of splitting
designs. The following is a straightforward extension of Wilson’s Fundamental
Construction for GDDs [21, 22] to splitting GDDs.

Theorem 2.4 (Fundamental Construction). Let (X,G,A) be a GDD(t, k, v). Sup-
pose that for each block A ∈ A, there exists a splitting GDD(t, k′× c, kc) of type ck,
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(XA,GA,BA), where

XA = A× {1, . . . , c},
GA = {{x} × {1, . . . , c} : x ∈ A},

then there exists a splitting GDD(t, k′ × c, vc) of type [c|G| : G ∈ G] (X ′,G′,A′),
where

X ′ = X × {1, . . . , c},
G′ = {G× {1, . . . , c} : G ∈ G},
A′ = ∪A∈ABA.

Since the trivial splitting GDD(t, k×c, kc) of type ck (containing only one block)
always exists for any t, k, and c, we have the following.

Corollary 2.1. If there exists a GDD(t, k, v) of type gn1
1 . . . gns

s , then there exists
a splitting GDD(t, k × c, vc) of type (cg1)n1 . . . (cgs)ns .

As shown by Ge et al. [3], we can also fill in the groups of a splitting GDD with
a splitting 2-design to obtain new splitting 2-designs.

Proposition 2.2 (Filling-In Groups). Let (X,G,A) be a splitting GDD(2, k× c, v).
If for each G ∈ G, there exists a splitting 2-(|G|+1, k×c, 1) design, then there exists
a splitting 2-(v + 1, k × c, 1) design.

2.2. State of Affairs. The following theorem summarizes the state of knowledge
on the existence of splitting t-designs with λ = 1.

Theorem 2.5 (Du [2], Ge et al. [3], Wang [19], Wang and Su [20]). The necessary
divisibility conditions (of Proposition 2.1) are also sufficient for the existence of a
splitting 2-(v, k × c, 1) design when

(i) (k, c) = (2, 2n), for any positive integer n;
(ii) (k, c) = (2, 3), except for v = 10;

(iii) (k, c) = (3, 2), except for v = 9;
(iv) (k, c) = (3, 3), with the possible exception of v = 55;
(v) (k, c) = (4, 2), with the possible exception of v ∈ {49, 385}.

In addition, there exists a 2-(v, 3× 4, 1) design for all v ≡ 1 mod 96.

3. Nonexistence and Asymptotic Existence. Let λ be a positive integer. The
complete (loopless) multigraph on v vertices, denoted λKv, is the graph where every
pair of distinct vertices is connected by λ edges. Let G be a simple graph without
isolated vertices. A G-design of order v and index λ is a partition of edge set of λKv

into subgraphs, each of which is isomorphic to G. If e(G) denotes the number of
edges in G, and d(G) denotes the greatest common divisor of the degrees of vertices
in G, then simple counting shows that the conditions

(i) λv(v − 1) ≡ 0 mod 2e(G), and
(ii) λ(v − 1) ≡ 0 mod d(G)

are necessary for the existence of a G-design of order v and index λ. A celebrated
result of Wilson [23] states that these necessary conditions are also asymptotically
sufficient.
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Theorem 3.1 (Wilson [23]). Let G be a simple graph without isolated vertices.
Then there exists a constant v0 depending only on G and λ such that a G-design
of order v and index λ exist for all v ≥ v0 satisfying λv(v − 1) ≡ 0 mod 2e(G) and
λ(v − 1) ≡ 0 mod d(G).

Let Kk×c denote the complete k-partite graph, with each part having c vertices.
A splitting 2-(v, k × c, λ) design (X,A) is equivalent to a Kk×c-design of order v
and index λ through the following correspondence:

(i) a point in X corresponds to a vertex in λKv,
(ii) a block A ∈ A corresponds to the complete k-partite graph, where the i-th

part contains c vertices corresponding to the c entries in row i of A, 1 ≤ i ≤ k.
Applying Theorem 3.1 with G = Kk×c then gives the following result on the

asymptotic existence of splitting 2-designs.

Corollary 3.1. There exists a constant v0 depending only on k, c, and λ, such
that a splitting 2-(v, k × c, λ) design exists for all v ≥ v0 satisfying λv(v − 1) ≡
0 mod c2k(k − 1) and λ(v − 1) ≡ 0 mod c(k − 1).

We end this section with a nonexistence result. Huang [6] has shown that the
number of complete k-partite graphs required to partition the edge set of Kv is at
least d(v − 1)/(k − 1)e. This has the following consequence.

Proposition 3.1. There does not exist a splitting 2-((k− 1)c2 + 1, k× c, 1) design,
for all k, c ≥ 2.

Proof. Suppose a splitting 2-((k − 1)c2 + 1, k × c, 1) design exists. The number of
blocks in this splitting 2-design is ((k − 1)c2 + 1)/k. This would mean that we
can partition the edge set of K(k−1)c2+1 into ((k − 1)c2 + 1)/k complete k-partite
subgraphs. This is impossible by Huang’s result, since

⌈
(k − 1)c2/(k − 1)

⌉
= c2 >

((k − 1)c2 + 1)/k.

The definite exceptions in Theorem 2.5 are special cases of Proposition 3.1.

4. Splitting 2-Designs. In this section, we establish the existence of an infinite
family of splitting 2-(v, 3×5, 1) designs, and remove v = 385 as a possible exception
from Theorem 2.5(v).

Proposition 4.1. There exists a splitting 2-(v, 3 × 5, 1) design for all v ≡ 1 mod
150, except possibly when v = 301.

Proof. A splitting 2-(151, 3×5, 1) design is exhibited in Example 2.1, so let v ≥ 451.
Write v = 150m+1, for some integer m ≥ 3. A GDD(2, {3}, 30m) of type 30m exists
by Theorem 2.3(i). Apply Corollary 2.1 to obtain a splitting GDD(2, 3 × 5, 150m)
of type 150m. Now fill in the groups of this splitting GDD with a splitting 2-
(151, 3 × 5, 1) design (which has been constructed in Example 2.1) to obtain a
splitting 2-(150k + 1, 3× 5, 1) design.

Proposition 4.2. There exists a splitting 2-(385, 4× 2, 1) design.

Proof. A GDD(2, {4}, 192) of type 484 exists by Theorem 2.3(ii). Apply Corollary
2.1 to obtain a splitting GDD(2, 4 × 2, 384) of type 964. Now fill in the groups of
this splitting GDD with a splitting 2-(97, 4× 2, 1) design (which exists by Theorem
2.5) to obtain a splitting 2-(385, 4× 2, 1) design.
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5. Splitting 3-Designs. In this section, we establish the existence of the first
known infinite family of splitting 3-designs with c > 1.

Let t, k, and v be nonnegative integers. A (t, k) candelabra system of order v is
a quadruple (X,S,G,A) that satisfies the following properties:

(i) X is a set of v elements, called points;
(ii) S ⊆ X, called the stem;

(iii) G = {G1, . . . , Gm} is a partition of X \ S (elements of G are called groups);
(iv) A ⊆

(
X
k

)
, whose elements are called blocks;

(v) every T ∈
(
X
t

)
with |T ∩ (S ∪Gi)| < t for all i, is contained in a block in A.

The type of a (t, k) candelabra system (X,S,G,A) is the multiset [|G| : G ∈ G]. A
(t, k) candelabra system of type gn1

1 · · · gnr
r with a stem of size s is denoted (t, k)-

CS(gn1
1 · · · gnr

r : s).
Here, we introduce the notion of splitting candelabra systems.
A splitting (t, k× c) candelabra system of order v is a quadruple (X,S,G,A) that

satisfies the following properties:
(i) X is a set of v elements, called points;

(ii) S ⊆ X, called the stem;
(iii) G = {G1, . . . , Gm} is a partition of X \ S (elements of G are called groups);
(iv) A is a set of k × c arrays, called blocks, with entries from X, such that each

point of X occurs at most once in each block;
(v) for every {xi : 1 ≤ i ≤ t} ∈

(
X
t

)
with |T ∩ (S ∪ Gi)| < t for all i, there is

exactly one block in which xi, 1 ≤ i ≤ t, occur in t different rows.
We use the same notation for splitting (t, k) candelabra systems as those for (t, k)
candelabra systems.

The following theorem is an extension of Hartman’s Fundamental Construction
[5] from (3, k) candelabra systems to splitting (3, k) candelabra systems.

Theorem 5.1. If there exist a (3, k)-CS(gn1
1 · · · gnr

r : s), a splitting (3, k′ × c)-
CS(mk−1 : a), and a splitting GDD(3, k′ × c,mk) of type mk, then there exists a
splitting (3, k′ × c)-CS((g1m)n1 · · · (grm)nr : m(s− 1) + a).

Proof. Let (X,S,G,A) be a (3, k)-CS(gn1
1 · · · gnr

r : s), and let ∞ be a distinguished
point in S. For Y ⊆ X, define the set of points

P (Y ) = ((Y \ {∞})× Zm) ∪ ({∞} × Za).

Further define

S′ = ((S \ {∞})× Zm) ∪ ({∞} × Za),

G′ = {G× Zm : G ∈ G}.
For each A ∈ A containing the point ∞, let

(P (A), {∞} × Za, {{x} × Zm : x ∈ A \ {∞}},BA)

be a splitting (3, k′× c)-CS(mk−1 : a), and for each A ∈ A not containing the point
∞, let

(A× Zm, {{x} × Zm : x ∈ A},CA)
be a splitting GDD(3, k′ × c, 3m) of type mk.

It is easy to check that (P (X), S′,G′,A′), where

A′ =

( ⋃
A∈A:∞∈A

BA

)
∪

 ⋃
A∈A:∞6∈A

CA

 ,
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is the required splitting (3, k′ × c)-CS((g1m)n1 · · · (grm)nr : m(s− 1) + a).

We can also fill in the groups of a splitting candelabra system by splitting 3-
designs to obtain larger splitting 3-designs.

Proposition 5.1. If there exists a splitting (3, k × c)-CS(gn1
1 · · · gnr

r : s), where
s ≤ 2, and there exists a splitting 3-(gi + s, k × c, 1) design for each i, 1 ≤ i ≤ r,
then there exists a splitting 3-(s+

∑r
i=1 gini, k × c, 1) design.

Proof. Let (X,S,G,A) be a splitting (3, k × c)-CS(gn1
1 · · · gnr

r : s), where s ≤ 2.
For each G ∈ G, let (G ∪ S,BG) be a splitting 3-(|G| + s, k × c, 1) design. Then
(X,A ∪ (∪G∈GBG)) is the required splitting 3-(s+

∑r
i=1 gini, k × c, 1) design.

To apply Theorem 5.1 and Proposition 5.1, we require some splitting candelabra
systems to start with.

Lemma 5.2. There exist a splitting (3, 3× 2)-CS(82 : 0) and a splitting (3, 3× 2)-
CS(82 : 2).

Proof. Let X = Z16 and G = {{2i+ j : 0 ≤ i ≤ 7} : j ∈ {0, 1}}. Let

B =


0 4

6 9
7 11

 ,

 0 14
1 4
11 13

 ,

 0 5
8 10
13 15

 ,

0 2
4 1
7 15

 ,

0 13
1 15
2 12

 ,

0 13
1 9
4 6

 ,

 0 6
9 7
14 15

 .

Then (X,G,∅,A), where A = ∪B∈B{B + 2i mod 16 : 0 ≤ i < 8}, is a splitting
(3, 3× 2)-CS(82 : 0).

Now let S = {x, y} be such that S ∩X = ∅, and let

C =


 x y

2i 2i+ 2
2j + 1 2j + 3

 : i, j ∈ {0, 2, 4, 6}

 .

Then (X ∪ {x, y}, S,G,A ∪ C) is a splitting (3, 3× 2)-CS(82 : 2).

We now establish an infinite family of splitting 3-designs.

Theorem 5.3. A splitting 3-(v, 3× 2, 1) design exists if and only if v ≡ 2 mod 8.

Proof. Necessity of the condition v ≡ 2 mod 8 follows from Proposition 2.1.
Huber [7] has shown the existence of a splitting 3-(10, 3 × 2, 1) design, so we

consider v > 10. Write v = 8m+2, for some m ≥ 2. Let X be a set of m+1 points,
containing ∞ as a distinguished point. It is easy to verify that (X, {∞}, {{x} :
x ∈ X \ {∞}},

(
X
3

)
) is a (3, 3)-CS(1m : 1). Apply Theorem 5.1 with a splitting

(3, 3× 2)-CS(82 : 2) (which exists by Lemma 5.2) and a splitting GDD(3, 3× 2, 24)
of type 83 (whose existence is implied by the trivial GDD(3, 3, 12) of type 43 and
Corollary 2.1) to obtain a splitting (3, 3 × 2)-CS(8m : 2). Now apply Proposition
5.1 to this splitting (3, 3 × 2)-CS(8m : 2) with a splitting 3-(10, 3 × 2, 1) design to
obtain a splitting 3-(8m+ 2, 3× 2, 1) design.

6. Conclusion. Determining the existence of optimal c-splitting authentication
codes with k source states that are (t− 1)-fold secure against spoofing is a difficult
problem, when k, c and t are large. New constructions, both direct and recursive,
need to be developed in order to make further progress on the problem.
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